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We theoretically show that the carrier transport in a monolayer Fe;GeTe, experiences a transition between
anomalous and spin Hall effects when the spin polarization of disorders switches between out-of-plane and
in-plane. These Hall effects are allowed when the magnetization is polarized in-plane, breaking the C; rotation
symmetry. The transition originates from the selection rule of spin scattering, the strong spin-orbit coupling,
and the van Hove singularities near the Fermi surface. The scattering selection rule tolerates the sign change of
the disorder spin, which provides a convenient method to detect the switching of antiferromagnetic insulators
regardless of the interfacial roughness in a heterostructure. This provides a convenient platform for the study of
2D spintronics through various van der Waals heterostructures.
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I. INTRODUCTION

As a two-dimensional (2D) magnet, Fe;GeTe, (FGT) has a
surprisingly robust long-range ferromagnetic order with a per-
pendicular easy axis and a reasonably high Curie temperature
[1-7]. Distinct from many 2D spintronic materials discovered
recently [8,9], the family of Fe; sGeTe, are known as Ising
itinerant 2D magnets, owing to their unique gapless spec-
trum and the sizable perpendicular anisotropy [10-12]. Such
anisotropy is a consequence of the strong spin-orbit coupling
(SOC) given by the Te atoms, which also strongly impacts the
transport behavior of carriers, resulting in a sizable anomalous
Hall effect [5,6,13]. Without surface dangling bonds, few-
layer FGTs can provide atomically sharp interfaces, resulting
in high-quality heterostructures. The vast parameter space of
stacking and twisting also enables the modulation of the trans-
port and magnetic properties in a large range [14—19]. These
advantages make FGT an intriguing platform to investigate
2D magnetism as well as to implement next-generation low-
dimensional spintronic devices.

Although the anomalous Hall effect in bulk FGT is sizable,
it is expected to be small in monolayers, which motivates us to
investigate extrinsic Hall effects induced by disorder. For bulk
FGT, a symmetry-protected nodal line results in a large local
Berry curvature and a large intrinsic anomalous Hall effect
[13]. However, such a nodal line is perpendicular to the van
der Waals (vdW) planes, and therefore vanishes in the case of
a monolayer [20,21]. Furthermore, when forming spintronic
interfaces with non-vdW materials, the itinerant carriers can
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scatter from the disordered interface. The interface disorder
can be spin polarized and respond to an external magnetic
field. The spin of the disordered interfacial atoms can also be
pinned when the local atomic orbitals are closely coupled to
an adjacent layer of magnetic or antiferromagnetic insulator
with a higher ordering temperature. The interface scattering
can be particularly important when the surface roughness of
the adjacent magnetic layer destroys the long-range order
at the interface. Moreover, due to the strong SOC inherent to
Te, the spin texture, the symmetry, and the geometry of the
Fermi surface are sensitive to the direction of magnetization.
This leads to intricate selection rules of spin-dependent scat-
tering and transport.

Here, we show that the spin-dependent scattering in mono-
layer FGT works together with the van Hove singularities near
the Fermi surface, resulting in a switching between an anoma-
lous Hall effect and a spin Hall effect. These Hall effects are
allowed by an in-plane magnetization that breaks the atomic
C; rotation symmetry, which otherwise forbids any leading-
order Hall effects for all individual bands. These transport
signatures can provide information of the spin-polarized dis-
orders when a monolayer of FGT is weakly coupled to an
insulating magnetic or antiferromagnetic system, providing
a convenient experimental probe of the switching through
carrier transport.

II. FIRST-PRINCIPLES RESULTS

The atomic structure of a monolayer FGT is illustrated in
Fig. 1(a), where a top view is presented with some graphic
perspective to show the vertical alignment of the atoms. The
spectrum of the material is obtained from first-principles
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FIG. 1. (a) The top view of a monolayer FGT. The unit cell is in-
dicated by the rhombic prism containing three Fe atoms (gray), 1 Ge
atom (red), and 2 Te atoms (blue). (b) Band structure of monolayer
FGT along high-symmetry points with spins polarized along Z (dark)
and % (red). (c¢), (d) Brillouin zones (dark solid lines) and the smallest
repeating wedges (blue transparent) when the magnetization is along
Z (c) and % (d). The dark dotted lines denote the high-symmetry route
used in (b). On the Fermi surface, the positive and negative spin
components along the magnetization direction are denoted by the red
and blue solid lines, respectively.

calculations within the framework of density functional theory
(DFT) using the projector augmented wave pseudopotential
[22,23] as implemented in the Vienna Ab initio Simulation
Package (VASP) [24,25]. The local density approximation [26]
was used for the exchange-correlation energy. A 600 eV
energy cutoff for the plane-wave expansion was used through-
out the calculations. The I'-centered mesh of 15 x 15 x 1 in
the two-dimensional Brillouin zone (BZ) was adopted. a =
3.90 A was chosen as the in-plane lattice constant for hexago-
nal lattice. After we obtained the eigenstates and eigenvalues,
a unitary transformation of Bloch waves was performed to
construct the tight-binding Hamiltonian in a Wannier function
basis by using the maximally localized Wannier functions
(WFs) method [27] implemented in the Wannier90 package
[28]. The WF-based Hamiltonian has the same eigenvalues as
those obtained by first-principles calculations within 1.0 eV
of the Fermi level. The band structure of the tight-binding
model is shown in Fig. 1(b). Here, the red solid curves repre-
sent the case where the magnetization is along X, whereas the
dark solid ones correspond to the out-of-plane magnetization
along Z. The presence of SOC is evidently captured.

To examine the impact of the magnetization for low-
temperature transport, we show the Fermi surfaces for both
polarization cases in Figs. 1(c) and 1(d). When the magneti-
zation is along Z [Fig. 1(c)], the Fermi surface possesses most
symmetries of the nonmagnetic crystal structure, including an
apparent C3 rotation. Note that the atomic structure also pos-
sesses reflection symmetry with respect to the x-z plane (Ry;),
denoted by the orange dotted line in Fig. 1(a), and the mirror

plane containing the Ge atoms (R,,). When considering the
magnetization along Z, the C3 rotation and the Ry, reflection
remain symmetric, whereas R,; is broken by the spin. The
irreducible wedge of the 1st Brillouin zone is therefore an
equilateral triangle as shown in Fig. 1(c). The hexagonal full
Brillouin zone can then be restored by Cs rotations and another
combination of reflection and time reversal (R,7). On the
other hand, when the magnetization is along %, the spin breaks
the C; symmetry, which is evident in the Fermi surface in
Fig. 1(d). In this case, only R,,7 and R,,7 remain symmet-
ric. The irreducible wedge of the Brillouin zone now becomes
arectangle [blue in Fig. 1(d)]. The ' - K — M path used in
Fig. 1(b) is thus no longer a unique high-symmetry path, as
shown in Fig. 1(d).

III. SEMICLASSICAL TRANSPORT

A. The symmetry

The change in the symmetry of the Fermi surface has a
profound impact on the cryogenic magnetotransport property.
To understand this we obtain the nonequilibrium distribution
function by solving the Boltzmann transport equation:

af af

or +v-V,f+F.V,f= ol @)
Assuming uniform, steady-state transport, the first two terms
on the left side of Eq. (1) vanish. Further using the re-
laxation time approximation, we have (%)coll = —%, where
fa = f — fois the asymmetric part of the distribution function
and 1y is the k-dependent relaxation time. Assuming an exter-
nal electric field applied within the plane of the monolayer,

the force term is written as F = —e&€ and therefore f, =
rke%g - vk, where —e < 0 is the electron charge, fj is the

equilibrium distribution, and v = %Vke is the group velocity.
At zero temperature, the Boltzmann equation can be further
simplified by using —(%)GF — §(€ — €r). The Hall and the
longitudinal conductivities can be obtained by collecting the

Fermi-surface contributions from all bands, o, j =), oj_"‘)‘,
(n) (n), (n)
m _ plvie &2 Y VL :
where O =" = "7 Pemey. i om dl. Here, p is the

carrier density, n denotes the band index, d! is the infinitesimal
segment length along the Fermi loop, and v, represents the
group-velocity components that are perpendicular and parallel
to &, respectively. This is consistent with the Kubo formula
when the velocity operators are evaluated in Bloch eigen-
states. Note that although (- - - ) denotes the ensemble average
within the Fermi sea, the delta function selects only the contri-
butions from the Fermi surface. We assume that the disorders
are sparse perturbations such that Bloch eigenstates have suf-
ficient time to transition to some pure eigenstate between
scattering events. In this limit, transport can be interpreted as
independent contributions from each individual band.

With C; rotational symmetry, anomalous Hall effects are
strictly forbidden. Within the first Brillouin zone, the Fermi
surfaces can be parametrized using the azimuthal angle of
k = k(0), so that vy — v5. We can then rewrite the integral
as Ui") = —% fnf(é’)cos dp sin ppdB, where ¢y is the angle
between vy and £, and f(0) = |vylkeTy. In the case of out-
of-plane magnetization, if all scattering mechanisms preserve
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the crystalline symmetry, f(6) should also have C; rotation
symmetry. Further using ¢, fam = b0 + ZT”, we have

— 62 2% 9
(H——E/O f()

. 27\ . 27
X [COS ¢o Sin g + cos <¢0 + ?> sin (¢9 + ?>

4\ | 4
+ cos (¢9 + ?> sin <¢9 + T)i|d9 =0, 2)

where Hall effects are strictly forbidden due to the zero
integrand. Note that the band index is omitted in Eq. (2),
suggesting that Hall effects given by such Fermi surfaces are
forbidden for each individual band. However, when the mag-
netization is along %, the C; symmetry of the Fermi surface
is broken due to the strong SOC. As a result, the integrand
in Eq. (2) becomes finite, allowing for electric or spin Hall
effects. We note that although FGT thin films are known
to have a perpendicular easy axis, an in-plane saturation is
experimentally feasible in a 4-layer thin film by applying an
in-plane field of ~37 [5,6].

B. Spin-dependent scattering

To mimic the scenario where a monolayer FGT is weakly
coupled to a spin system, we consider the scattering from a
local spin:

H = —JyQS -88(r), 3)

where S is a classical unit vector setting the polarization, §
denotes Pauli matrices of the itinerant spin, Jy is the Hund’s
rule exchange coupling, and €2 is the area of the localized
impurity. At the leading-order approximation, the transition
rate from k to k' is given by Fermi’s golden rule Syx =
2”—;;\/0|<Xkr|1‘7|)(k)|25(6k — €x’), wWhere | xx) represents the peri-
odic part of the wave function at k, and N, is the number of
impurity centers. Here, we consider S = % and S = % as two
independent types of scattering mechanisms. When S = %, the
spin of the impurity is parallel to the magnetization. The Bloch
states therefore diagonalize the scattering Hamiltonian, allow-
ing only spin-preserved scattering: | (x % |§,|x%£)|*> = 1. Here,
|x£) denotes the eigenstates of the electron spins quantized
along x. However, when S = Z or along any other direction
within the y-z plane, spin-preserving scattering is forbidden:
|(x £ |5.]x%£)|* = 0, allowing spin-flipping scatterings only.
The selection rules strongly impact the transport property
of monolayer FGT. This is a consequence of the spin compo-
sition and the density of states (DOS) on the Fermi surface.
When the magnetization is along X, van Hove singularities
[dark in Fig. 2(a)] are brought to the Fermi surface. These sin-
gularities have negative spins, resulting in large DOS for |x—).
However, these singularities vanish in the case of out-of-plane
magnetization, where the two Fermi loops that surround K and
K’ are no longer intersecting [Fig. 2(b)]. The impact of these
singularities becomes apparent considering the spin selection
rule. When the impurity spins are along Z, the selection rule
only allows scattering of |x+) — |xF). Due to the large DOS
of |x—), the scattering rate of |x+) — |x—) is dominating.
In this case, |x—) has a much longer relaxation time, and
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FIG. 2. (a), (b) The density of states (DOS) along the Fermi
loops when the magnetization is along % and Z, respectively. The
color is normalized to the maximum values of each plot. (c), (d) The
scattering for an initial state denoted by the red solid dot highlighted
by the dark orange arrow. The magnetization is along X. The color
denotes the scattering rate to different final states on the Fermi space,
normalized to the maximum value. The scattering impurity is polar-
ized along Z and X for (c) and (d), respectively. (e), (f) The free-flight
displacements solved from full-band Boltzmann equation for the
cases of S =2 and S = X, respectively. The color is normalized to
the maximum values. The coordinates of all panels are normalized to
the magnitude of the reciprocal lattice vectors b; ».

therefore dominates the transport. On the other hand, when
the impurities are polarized along X, the selection rule now
allows only [x£) — |x=x). The large density of states for |x—)
therefore makes the scattering of |x—) — |x—) much more
frequent. The relaxation time for |[x+) now becomes greater,
thus dominating the transport and Hall effects. Such transi-
tion of scattering rate can be seen from Figs. 2(c) and 2(d),
where we illustrate the scattering rate from a chosen initial
state (arrow, with the spin of |x+)) to all possible final states
on the Fermi surface. When § = Z, due to the spin selection
rule, the initial positive spin is only allowed to scatter to
negative spins hosting the van Hove singularities. This can be
seen from the dark colors in Fig. 2(c). In contrast, when the
scattering centers are polarized along %, the originally domi-
nating scattering is now forbidden, allowing only same-spin
scattering, as shown in Fig. 2(d). Note that the spinless part of
the Bloch states also affects the scattering rate, resulting in the
variation of transition rates even within the same spin.
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C. Full-band collision integral

To quantitatively understand the transport signature of the
spin-dependent scattering centers, we evaluate the full-band
collision integral. Within the semiclassical approximation, the

nonequilibrium distribution function satisfies —% -Vif =

% lconn = —i—k Considering the detailed balance, the collision
integral is given by
af

ot

coll

= Sefil = fi) = > Skhl = fi). (@)
Kk’ Kk’

where Sy is the scattering rate from K’ to k. Beyond the
constant relaxation time approximation (RTA), tx should be
k dependent, satisfying & - vk = >, Skk(k& - vk — € -
vk'), where vk is the group velocity of the eigenstate at
k. With some algebra, we have vﬂ =) Sk«kvlll/tk/ +
vlllrk >k Sk, where vlll = % Further defining the free-

flight displacement along the field )\]‘L = vl‘ltk, the full-band
Boltzmann equation reduces to a linear system:

A1 =817 + 2, o)

where [S] and [A!] are the normalized scattering matrix and
the vector of free-flight displacements, respectively. Here,
STk = S/ g Sk and [A1Tx = v}/ 3 Sk Note that
the linear system defined by Eq. (5) is general for arbi-
trary combinations of scattering mechanisms included in Sy/.
Although in principle the matrices are of uncountably in-
finite dimension, we will always deal with finite ones due
to discretization in practice. Assuming N line segments are
identified in a discretization, [S] should be an N x N matrix,
whereas [A!] and [A!] should be N x 1 vectors. The choice
of discretization grid should be carefully made to avoid arti-
ficially breaking the symmetries that the system intrinsically
hosts. In this practice, an equilateral triangular mesh is used
to sample the irreducible wedge of the Brillouin zone. To
demonstrate the result, we rotate £ away from % by 50°,
and the free-flight displacement )Lll( is plotted for S = Z and
S =% in Figs. 2(e) and 2(f), where the corresponding spin
distribution is illustrated in Fig. 1(d). As discussed before,
the values of AIH( for negative-spin bands are dominating when

S = 2, as shown in Fig. 2(e). However, the )L]”( for |[x+) become
much greater when S = X, as shown in Fig. 2(f).

D. Hall effects

Once [)‘1“(] is obtained using Eq. (5), we calculate the Hall
angle using 0y = arctan(o, /o)), which depends only on the
properties of scattering mechanisms and the geometry of the
Fermi surface [29]. Here we illustrate the Hall angles given
by the full-band Boltzmann equation at different directions of
the £ field [Fig. 3(a)] and compare them to the RTA result
(dark curve) where the details of the scattering mechanisms
are neglected. Clearly, the sign of the Hall angle changes for
different scattering mechanisms. To understand this trend, we
compare the contributions given by different spins. For RTA,
the bands with positive and negative spins almost have the
same Hall angle as shown in Fig. 3(b). The sum of these two
angles is approximately equal to the dark curve in Fig. 3(a) for
small Hall angles, suggesting a net finite extrinsic anomalous
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FIG. 3. (a) The Hall angle as a function of the direction of the
electric field. The magnetization of the monolayer FGT is brought
to M = X. The dark curve is the result of constant relaxation time
approximation (RTA), whereas the dark red and light blue curves
represent the cases beyond RTA, where the spin-polarized disorders
along different directions are taken into account for the full-band
scattering. (b) The spin components of the case of RTA. (c) The
Hall angles forbidden by the symmetry captured numerically when
M = Z. (d) The spin components of the symmetry-prohibited Hall
angles for the case of RTA shown in (c). (¢) The spin components
of the finite Hall angles after the C; symmetry is broken by M = %.
Here the impurity polarization is along S = Z. (f) The pure spin Hall
effect when the impurity spins are rotated to S = X.

Hall effect of the electric current. The spin Hall angle can then
be obtained by subtracting the two spin contributions, result-
ing a near-zero spin Hall angle as shown by the orange curve
in Fig. 3(b). The finite Hall effects captured here are a conse-
quence of the FGT monolayer magnetization along X, break-
ing the C; rotation symmetry. Consistent with the discussion
shown in Eq. (2), when the magnetization is brought to M = Z,
the C; symmetry is restored and the Hall effects are strictly
forbidden, as numerically captured in Figs. 3(c) and 3(d).
Beyond RTA, the scenarios of Hall effects dramatically
change once the scattering mechanisms are turned on. When
the impurity spins are polarized along S = 2 whereas keeping
the magnetization along M = %, the Hall angles for both
positive and negative spins change sign, resulting in a net
negative Hall angle when € sweeps within [0, Z] as shown
in Fig. 3(e). This suggests the important role of the scattering
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FIG. 4. Band-resolved (spin) Hall conductivity for (a) S = Z and
(b) S = %. The band index counts from I' within the 1st Brillouin
zone. (c), (d) The magnitude of the scattering matrix element from
an initial state (dark red arrow) in the 3rd band to all other states for
S =Z and S = X, respectively. (e) The scheme of a heterostructure
detecting antiferromagnetic switching.

details. More interestingly, when the scattering centers are
rotated to S =X, only the Hall angle for negative spins
changes sign, resulting in a finite net spin Hall effect as
shown by the orange curve in Fig. 3(f). In this case, the net
Hall effect of the electric current vanishes, which is consistent
with the light-blue line in Fig. 3(a).

The transition between electric and spin Hall currents
shown in Figs. 3(e) and 3(f) is not a consequence of symmetry.
Instead, it is determined by the details of the Fermi surface
and the scattering mechanism. Particularly, the transition is
induced by the sign change of Hall angles for the negative-
spin bands denoted by the purple curves in Figs. 3(e) and 3(f).
To understand this, contributions to o /oy are resolved by the
band indices and the spins, as illustrated in Figs. 4(a) and
4(b). Here the angle of the electric field is kept at 50° from
the magnetization. When S = Z, the 3rd band (dark red arrow,
counting from I') on the Fermi surface contributes a large,
negative Hall angle. Such contribution is given by a band of
|x—), resulting in a net negative Hall angle for negative spins.
On the other hand, when S = X, the contribution from the 3rd
band almost vanishes [Fig. 4(b)]. This can also be seen from
the scattering matrix elements with a chosen initial state in
the 3rd band, as shown in Figs. 4(c) and 4(d). When S = Z, the

3rd band is forbidden to scatter into the van Hove singularities
[Fig. 4(c)]. On the other hand, such scattering is allowed when
S = %, resulting in a small contribution to the transport and
the Hall angle. The overall outcome is therefore a net positive
Hall angle for negative spins, as shown by the purple curve in
Fig. 3(f) at 50°. Such positive spin Hall angle almost exactly
cancels the negative Hall angle given by positive spins [green
in Fig. 3(f)], such that the net Hall angle for the electric
charge becomes vanishingly small. However, the magnitude
of the spin Hall angle is maximized [orange in Fig. 3(f)],
representing a pure spin current along the transverse direction.

IV. APPLICATION AND OUTLOOK

The transition between the electric and spin Hall effects
in a monolayer FGT is a plausible way to detect the switch-
ing of an adjacent insulating magnetic material using carrier
transport. This is particularly useful to detect the switching
of an antiferromagnet (AFM) since the scattering selection
rule is only sensitive to the orientation of the spins of the
disorder, instead of the sign. Without electrons near the Fermi
surface, insulating AFMs are expected to have small damping
for the Néel-vector dynamics, allowing for switchings even
faster than metallic ones. However, such switching is difficult
to detect, which often involves optical imaging, spin-wave
detection, or other nontrivial instrumentation. In a heterostruc-
ture illustrated in Fig. 4(e), the FGT monolayer is weakly
coupled to an insulating AFM, such that the transport in the
FGT layer experiences the sparse impurities with opposite
spins provided by the AFM layer. The scattering selection
rule survives the sign change of the disorder spins and is
therefore robust against the surface roughness. Although the
heterostructure illustrated in Fig. 4(e) suggests a layered AFM
structure, collinear AFMs with other spin structures can also
be detected via this mechanism. This may provide a conve-
nient playground to investigate the spintronics of insulating
antiferromagnets in general.

In conclusion, we have investigated the extrinsic anoma-
lous and spin Hall effects in monolayer FGT. When the
magnetization is in-plane, we showed that the C; rotation is
broken, allowing for finite anomalous Hall effects. The broken
symmetry works together with the strong SOC, bringing van
Hove singularities near the Fermi surface. These singulari-
ties and the spin-scattering selection rule induce a transition
between the electric and spin Hall currents when rotating
the spins of the scattering centers. The selection rule is only
determined by the orientation, rather than the sign of the
impurity spins. The Hall-effect transition is therefore robust
against interfacial roughness even in heterostructures formed
by antiferromagnets and a monolayer of FGT. This suggests
that monolayer FGTs can be a good proxy to detect the switch-
ing of neighboring insulating spin systems in various van der
Waals heterostructures.
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