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The structure and function of biochemical and developmental pathways
determine the range of accessible phenotypes, which are the substrate for
evolutionary change. Accordingly, we expect that observed phenotypic
variation across species is strongly influenced by pathway structure, with
different phenotypes arising due to changes in activity along pathway
branches. Here, we use flower colour as a model to investigate how the struc-
ture of pigment pathways shapes the evolution of phenotypic diversity. We
focus on the phenotypically diverse Petunieae clade in the nightshade
family, which contains ca 180 species of Petunia and related genera, as a
model to understand how flavonoid pathway gene expression maps onto
pigment production. We use multivariate comparative methods to
estimate co-expression relationships between pathway enzymes and tran-
scriptional regulators, and then assess how expression of these genes
relates to the major axes of variation in floral pigmentation. Our results indi-
cate that coordinated shifts in gene expression predict transitions in both
total anthocyanin levels and pigment type, which, in turn, incur trade-offs
with the production of UV-absorbing flavonol compounds. These findings
demonstrate that the intrinsic structure of the flavonoid pathway and its
regulatory architecture underlies the accessibility of pigment phenotypes
and shapes evolutionary outcomes for floral pigment production.

1. Introduction

Biologists have long observed that species are not uniformly distributed across
the space of possible phenotypes, but are clustered in certain regions of the
space, leaving gaps in others. One explanation for this pattern is natural selec-
tion, where the clusters represent phenotypes associated with some adaptive
optimum (e.g. [1,2]). Another contributing factor may be developmental bias,
where some phenotypes are more likely outcomes given the underlying genetic
and developmental pathways and others are inaccessible [3,4]. As selection acts
upon the products of development, these forces may also act in concert and
jointly contribute to the patchiness of phenotype space [5].

While much of our understanding of the factors shaping phenotype space
comes from experimental work (e.g. [6-8]), macroevolutionary approaches
can also provide unique insights. For example, macroevolutionary trends
may mirror ontogenetic trajectories, suggesting that phenotypic evolution is
biased by developmental processes [9]. Comparative studies can also be used
to estimate the degree of phenotypic integration, which is tied to stronger devel-
opmental bias [10]. Beyond purely morphological studies, the field of evo-devo
has uncovered numerous instances of the same genes and pathways underlying
independent origins of complex traits in distantly related lineages (e.g. [11,12]),
highlighting the central role of genetic and developmental pathways in shaping
evolutionary trajectories.
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Here, we use flower colour as a model system to interrogate
the relationship between pathway structure and phenotypic
diversity at a macroevolutionary scale. The developmental
basis for flower pigmentation, in particular through anthocyanin
production, is arguably one of the best understood pathways in
plants and is widely conserved across species [13,14]. With an
extensive foundation in the genetics of anthocyanin biosynthesis,
the mechanisms responsible for flower colour evolution have
been dissected in a diverse and growing list of taxa (e.g.
[15-20]). Together these studies suggest that while changes in
enzyme function can contribute to flower colour transitions
(e.g. [21,22]), differences in gene expression are by far the predo-
minant mode of colour macroevolution [23,24]. Nevertheless, we
lack a broader understanding of how the structure of the path-
way combines with differential gene expression to give rise to
the range of observed flower pigment phenotypes and possibly
explain those that are not observed [25].

In order to explore the role of variation in gene expression
in generating colour diversity, we focus on the Petunieae, a
clade of roughly 180 species comprising the South American
genus Petunia and eight allied genera. This group is widely
known for its tremendous diversity in flower colours, including
white, yellow, pink, purple and red (figure 1). Moreover, the
cultivated petunia has long served as the premier system for
studying the genetics and regulation of flower colour [26].
Importantly, studies in petunia as well as other taxa have
demonstrated that many steps in the anthocyanin pathway
are jointly regulated by a complex comprising R2R3 MYB,
basic helix-loop-helix (bHLH) and WD40 transcription factors
[27], allowing for coordinated expression of enzymes and the
compounds they produce. In addition to anthocyanin pig-
ments, Petunia flowers also produce UV-absorbing flavonols,
which share biochemical precursors with anthocyanins but
appear to be independently regulated by different R2R3
MYBs [28]. Changes in the expression of these transcription fac-
tors and in turn their downstream targets (pathway enzymes)
underlie the loss of floral anthocyanins [29], the gain of floral
UV patterning due to flavonols [28], and the shift to red antho-
cyanin pigmentation [30] in different Petunia species. We
predict that this connection between pathway gene expression
and pigment variation holds across the broader Petunieae clade
and may explain its diversity of colours, including those
beyond the range of variation observed in Petunia itself.

Although a number of comparative studies have related
flavonoid profiles to macroevolutionary flower colour vari-
ation (e.g. [31-33]), our study encompasses the broadest
quantitative analysis connecting such biochemical variation
to patterns of gene expression across the flavonoid pathway.
Using these transcriptomic data from 60 species, we first esti-
mate patterns of co-expression between pathway enzymes
and the previously characterized classes of transcriptional reg-
ulators in Petunia. Next, we apply morphospace approaches to
characterize the pigmentation space of Petunieae and identify
clusters within that space. Finally, we combine these datasets
to determine how changes in gene expression associate with
the major axes of variation in pigment production. Our results
demonstrate that coordinated shifts in gene expression
strongly predict repeated transitions from pale to intensely
pigmented phenotypes and from the production of the
common blue pigments to the less common red and purple
pigments. These coordinated changes in gene expression also
mediate sharp trade-offs between anthocyanins and flavonols,
implicating an underappreciated role of these colourless

compounds in shaping visible colour diversity. Overall, these n

findings show that the structure of the pathway plays a
fundamental role determining the accessibility of pigment
phenotypes and in turn shapes the evolutionary trajectories
taken to reach distinct floral pigmentation phenotypes.

We generated RNA-seq data for corolla tissue from developing
floral buds equivalent to Petunia bud stage 5 [34], with three
replicates per species. The first replicate was the data used in
[35], while the second and third replicates were generated
using RNA extracted from the buds of additional individuals
collected with the same voucher (time and location) as the
first replicate. We generated RNA-seq libraries using the
Ilumina TruSeq kit with IDT-for-Illumina indexes and
sequenced them on an Illumina NovaSeq 6000 instrument at
the Weill Cornell Genomics Core Facility. For each species we
combined the paired-end reads from all three replicates to
increase depth of coverage. To assemble de novo transcriptomes
for the 59 Petunieae species and the Browallia americana out-
group used in this study, we followed the pipeline from
Wheeler et al. [35]. Briefly, the pipeline carries out the following
steps: (i) trim the reads using IDT-for-Illumina adapter
sequences, (i) perform de novo transcriptome assembly using
Trinity, (iii) detect and remove chimeric sequences using the
run_chimera_detection.py script from Yang & Smith [36],
(iv) run Corset to cluster and collapse transcripts and (v)
predict CDS using TransDecoder.

We retrieved flavonoid pathway genes and their transcription
factor regulators from transcriptomic CDS following the pipeline
from Wheeler et al. [35]. Briefly, we used BLASTN to identify
sequences matching queries (e-value cut-off=1x10"") for the
structural genes: CHS-A, CHI-A, CHI-B, F3H, FLS, F3'H,
F3'5'H, DFR, ANS, MF1, MF2 and MT; the transcription factors
AN2, DPL, PHZ, AN11, AN1, JAF13, MYBFL, MYB27, AN4,
ASR1, ASR2, ASR3; and the housekeeping genes actin, tubulin,
Rps18, Gapdh, Hprt. We then filtered these hits by similarity
to the query sequences (alignment score) using BioPython and
removed all spurious sequences. For downstream analyses relat-
ing gene expression to pigment production, we included only the
relevant pathway-related genes and transcription factors, exclud-
ing the housekeeping genes after examining them for quality
control in preliminary analyses. By contrast to the approach
taken previously, we did not reduce the BLAST hits to a single
best match for each gene (see electronic supplementary material,
text). Instead we combined paralogous transcripts (e.g. CHS-A,
CHS-)) into a single collective fasta reference file. Because the
subgroup 6 MYB activators (AN2, AN4, DPL, PHZ, ASR1,
ASR2, ASR3) are functionally similar and individual gene
presence in the transcriptomes varies considerably, we also com-
bined this set of sequences into a single group SG6-Mybs (see
electronic supplementary material, text). To confirm the accuracy
of our gene extraction pipeline we performed a reverse BLASTN
search of all the resulting sequences against the annotated CDS
from the Petunia inflata genome v.1.0.1. To quantify gene
expression we pseudo-mapped the reads from each individual
replicate separately to the combined de novo transcriptome
assembly of the corresponding species using Salmon v.1.5.2
[37]. To extract expression levels for the flavonoid pathway
genes, we used the transcript IDs from the combined fasta refer-
ence files to parse the Salmon quant.sf files and then calculated a
sum of expression levels for each gene by adding together the
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C. thymifolia (CATH)
C. humilis (CAHU)
C. pubescens (CAPU)
C. ovalifolia (CAOV)
C. heterophylla (CAHE)
C. irigangiana (CAIR)
C. linoides (CALI)
C. sellowiana (CSEL)
C. eglandulata (CAEG)
C. missonica (CAMI)
C. caesia (CACA)
C. elegans (CAEL)
I C. pygmaea (CAPY)
C. parviflora (CPAR)
F. patagonica (FAPA)
F. densa (FADE)
F. friesii (FAFR)
F. peckii (FAPE)
F. denudata (FDEN)
F. punensis (FAPU)
F. australis (PEPA)
imbricata (FAIM)
bryoides (FABR)
bonjardinensis (PBON)
altiplana (PALT)
scheideana (PSCH)
interior (PINT)
inflata (PINF)
correntina (PCOR)
exserta (PEEX)
axillaris (PAXI)
N. rigida (NRIG)
N. rivularis (NIRI)
N. graveolens (NGRA)
N. aristata (NIAR)
N. veitchii (NIVE)
N. tucumanensis (NITU)
N. pulchella (NIPU)
N. browallioides (NIBR)
N. scoparia (NISC)
N. linarifolia (NILI)
N. calycina (NICA)
Bo. anomala (BOAN)
Bo. erecta (BOER)
H. texana (HUTE)
Pl. nyctaginoides (PLNY)
L. albiflora (LEAL)
schwenkioides (LESC)
L. acutiloba (LEAC)
L. linifolia (LELI)
B. cuneifolia (BRCU)
B. australis (BRAU)
B. grandiflora (BRGR)
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B. jamaicensis (BRJA)
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Figure 1. Flavonoid pigmentation varies across the Petunieae clade. Species tree for 60 taxa from Astral analysis of 3672 gene trees. Nodes with less than 0.95 local
posterior support are indicated with asterisks. A full species tree with all supports annotated is shown in electronic supplementary material, figure S1. The tree is
rooted with Browallia americana as the outgroup. Flower colours (white, yellow, pink, purple, red, burgundy) are shown at tips. The heat map shows the log of
mean pigment mass fraction for the six anthocyanidins: pelargonidin (Pel), cyanidin (Cya), peonidin (Peo), delphinidin (Del), petunidin (Pet) and malvidin (Mal); and
the three flavonols: kaempferol (Kae), quercetin (Que) and myricetin (Myr). ‘X" indicates no detectable pigment. Totals are shown for both anthocyanins and fla-
vonols; raw values are in electronic supplementary material, table S1. Pigment level distributions are in electronic supplementary material, figure S2. Representative
flower images for each clade from top to bottom and left to right are as follows (with credits): Fabiana punensis, Calibrachoa eglandulata, Petunia reitzii, Brunfelsia
lactea, Nierembergia scoparia (all by L. C. Wheeler), Bouchetia erecta (Edith Bergquist), Hunzikeria texana (Karla M. Benitez), Plowmania nyctaginoides (R. Deanna),
Nierembergia scoparia (L. C. Wheeler), Leptoglossis albiflora (R. Deanna).

TPM values for all corresponding transcripts (e.g. CHI-A and in our previous Petunieae work [35], following Berardi et al.
CHI-B). We then normalized the resulting summed TPM [30]. With the exception of a few samples that were re-run for
values to TPM10K using the approach of Munro et al. [38], improved data quality, the anthocyanin mass fraction data are
which accounts for the number of transcripts in each transcrip- the same as that used to calculate average total pigment concen-
tome. Scripts to conduct this analysis are available in electronic tration for the species in [35]. However, we subsequently
supplementary material, repository (https://osf.io/zg9cu/). collected data for the flavonols (kaempferol, quercetin and myr-

icetin) in corolla tissue of all replicate individuals using a similar
approach. To ensure that anthocyanin and flavonol measure-
(c) Quantification of anthocyanin and flavonol content ments were directly comparable, we conducted the flavonol
We used the same high-performance liquid chromatography measurements on the flavonol-containing layer remaining from
(HPLC) approach to quantify the mass fraction of flavonoids as the extraction procedure used to measure anthocyanin content.
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We sampled flowers from three individuals per species and used
these to calculate the mean anthocyanin mass fraction (milli-
grams of compound per gram of tissue) over replicates, based
on comparison with standard curves. For each individual, we
collected fresh floral corolla tissue, dried the tissue with silica
gel and stored the material in 2 ml tubes at —80°C. For extraction
of total flavonoids, we soaked 0.002-0.75 g of dried tissue over-
night in 1ml 2N HCl; more tissue was used for pale and
fleshy species like Brunfelsin and less for thin and intensely
coloured species like Petunia. We carried out acid hydrolysis of
flavonoid glycosides and analysed the samples using HPLC as
in [35]. Briefly, we heated samples 100-104°C for 1 h to convert
the glycosylated flavonoids into their corresponding aglycones
and then performed a series of liquid phase extractions in ethyl
acetate and isoamyl alcohol, before evaporating away excess sol-
vent using an N-EVAP apparatus and eluting in 50 nl of 1% HCl
in MeOH. We injected 10 pl of sample on the Agilent HPLC
and separated flavonols by gradient elution on a 100—-4.6 mm
Chromalith Performance column at 30°C using solvents A
(HPLC-grade water, 0.1% trifluoroacetic acid) and C (methanol,
0.05% TFA). We analysed all results using Agilent Chemstation
software and compared peaks to standards obtained from Extra-
synthese (365 nm for flavonols and 520 nm for anthocyanidins)
to calculate milligrams of pigment per extraction. We then nor-
malized these milligrams of mass values by total dry mass of
flowers (grams) to obtain the milligram per gram mass fraction
for each pigment in each sample. Chemstation peak tables
were individually cross-checked against chromatograms and
manually corrected for slight peak shifts as needed.

(d) Reconstruction of species phylogeny

We previously followed the approach of Walker et al. [39] to
reconstruct the species tree for the Petunieae clade using 3672
orthologue clusters identified from the original de novo transcrip-
tome assemblies as in [35]. However, for the current study, we
added an additional species; Fabiana australis (four-letter code=
PEPA), which has recently been renamed from Petunia patagonica
[40]. To add F. australis into the analysis we started with the
orthologue clusters from the previous publication (downloadable
from https://osf.io/b7gcp/). We identified the best-matched
sequence in the new F. australis transcriptome using BLASTN
(e-value cut-off=1x107), added these sequences into the
clusters, re-ran the cluster alignments using MAFFT, and then
re-ran the species-tree analysis in Astral 5.7.8 using the updated
clusters. We followed the TreePL smoothing approach used in
[35] to ultrametricize the tree, using a subset of 11 genes present
in all 60 species.

(e) Phylogenetic principal components analysis

To more closely approximate normally distributed data, we trans-
formed the pigment mass fraction (mg g™') values by applying a
In(mg/g x100+1) transformation and the gene expression
(TPM10K) values by applying a In(TPM10K + 1) transformation.
We used the phyl.pca function from phytools [41] and the prcomp
function from stats [42] in R v. 3.6.3 to perform a phylogenetic
principal components analysis (pPCA) while scaling and centring
the transformed data. To obtain the underlying correlation matrix
between transformed TPM10K gene expression levels for all genes
incorporated in the analysis, we extracted the covariance matrix
from the PCA output (the V attribute) and used the cov2corfunc-
tion to convert it to a matrix of correlation coefficients. To
convert this matrix into the network shown in figure 2 we selected
all positive correlation coefficients larger than the median value
(0.124) and used networkx [43] in Python v.3.8.5 to convert the
matrix to a graph edge list. We generated the network figure,
with edges coloured according to weights (correlation coefficients)
using Cytoscape v.3.9.1 [44]. To generate the pigment level

clusters shown in figure 3, we performed k-means clustering on
the first three principal components from the pigment pPCA
using the kmeans function in R with three clusters, based on the
‘elbow method’ after plotting within-cluster mean-squared error
as a function of the number of clusters.

(f) Phylogenetic canonical correlation analysis

To assess the relationships between expression of flavonoid path-
way-related genes and flavonoid pigment levels, we performed
phylogenetic canonical correlation analysis (pCCA) on the trans-
formed data using the In([mgg!] x 100) + 1 function in the R
phytools package. We treated the gene expression levels as the
‘x’ variable and pigment mass fraction as . We used the
p-values calculated by In(TPM10K + 1) to determine the statistical
significance of the canonical variates (CVs). We extracted the
canonical coefficients from the significant CVs, which quantify
the coupled associations of the original pigment mass fraction
and gene expression variables with the corresponding multi-
variate CVs, and standardized them. We re-calculated the
significant CVs, arrayed by species ID, as the linear combination
of the original variables scaled by un-standardized coefficients.
We then used the phyl.pca function in R to calculate each canoni-
cal loading (correlation coefficients of original variables with
their corresponding CV) and cross-loading (correlation coeffi-
cients of original variables with the CV for the other data
block; e.g. pigment levels with gene expression CV1) with
corresponding p-values.

(g) Stochastic mapping and ancestral state estimation
We used the stochastic mapping tools in phytools to estimate the
number of transitions between each pigment phenotype from the
k-means clustering of pPC scores. We carried out 200 realizations
using the make.simmap in phytools. We used an equal rates
model, as the all-rates-different model did not provide a signifi-
cantly better fit to the data according to a likelihood ratio test. We
summarized the 200 realizations to obtain estimated ancestral
states at each node.

(h) Molecular evolution

We selected a set of structural genes and transcription factors that
were present in the majority of taxa: AN1, AN11, ANS, CHI-A,
CHS-A, DFR, F3H, F3'H, F3'5'H, FLS, JAF13, MT and MYB27.
We extracted a single sequence, best-matched to the query
sequence for each gene, from each species using the approach
of Wheeler et al. [35]. In this analysis, we excluded the subgroup
6 MYB transcription factors due to their absence in the de novo
transcriptomes of many species in the dataset. A previous analy-
sis showed that these MYBs did not present patterns consistent
with adaptive substitutions related to flower colour transitions
[35]. We used HyPhy to fit a free-rates dN/dS model that
allows a separate dN/dS ratio for each tip. We then extracted
dN/dS trees from the HyPhy output and calculated a root-to-
tip dN/dS ratio for each tip. We assessed the relationships
between these values and the principal axes of flavonoid
variation using linear regression (for details see electronic
supplementary material, text).

3. Results

(a) Flower colour diversity is matched by diversity
of pigment profiles

Species of Petunieae produced all six types of anthocyani-
dins, the base molecules that are modified to form
glycosylated anthocyanins, and all three classes of the
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Figure 2. Two clusters of co-expressed pathway genes and transcription factors. (a) Simplified flavonoid pigment pathway, focusing on the major products found in
Petunieae (the three flavonols and six anthocyanidins). Grey boxes around products indicate increasing levels of hydroxylation (left to right, mono-, di- and tri-hydroxyl-
ated). Key intermediates are abbreviated as follows: DHK, dihydrokaempferol; DHQ, dihydroquercetin; DHM, dihydromyricetin; LCP, leucopelargonidin; LCC, leucocyanidin;
LCD, leucodelphinidin). Enzymes are shown in coloured boxes and coloured by their cluster in (b); see electronic supplementary material, table S2 for full gene names.
Arrows show the small-molecule substrates/products passed from one enzyme to another. Three of the enzymes (FLS, DFR, ANS) are shown three times because they can
potentially act on three different substrates (e.g. DHK, DHQ or DHM for DFR and FLS). (b) Correlation structure from the phylogenetic PCA of expression values for
structural genes (coloured boxes) and transcription factors (white boxes). Positive values above the median (R? > 0.124, indicated with a vertical line in the inset
scale) were visualized with a force-directed spring layout representation. Edge weights (R%) are coloured by magnitude. See electronic supplementary material,
figure S3 for full matrix of correlation coefficients. Distributions of gene expression levels are shown in electronic supplementary material, figure S4.
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Figure 3. Clusters in pigment space defined by pathway branches. (a) Biplot from pPCA with flavonoids plotted by loading on the first two PC axes. Abbreviations
follow figure 2. The three flavonols (quercetin, myricetin and kaempferol) plus the tri-hydroxylated delphinidin load negatively onto PC1 while the less hydroxylated
pelargonidin and cyanidin load positively. The three methylated anthocyanidins ( petunidin, malvidin and peonidin) load positively onto PC2. (b) Species of Petunieae
plotted by values for PC1 and PC2. Taxon labels are coloured by k-means clustering. The flower of one species from each cluster is shown; taxon abbreviations follow
figure 1. The convex hull of the points within each cluster is drawn with solid lines.

flavonol co-pigments. Delphinidin and its two methylated deep purple and pink-flowered species, like Calibrachoa
forms (petunidin and malvidin), commonly associated with caesia, producing over 3mg g™ petal tissue (figure 1; see
blue and purple flowers [23], are the most commonly pro- also [35]). Some predominantly white-flowered species,
duced pigments while the other three classes of pigments such as Calibrachoa ovalifolia and C. pygmaea, also produce
are only found in a few species (figure 1, [45]). The total relatively high amounts of anthocyanins, due to pigmenta-
quantity of anthocyanin pigments varies widely across tion of the floral veins (figure 1, electronic supplementary
species, with the many white-flowered species, like Niererm- material, table S1). Petunieae flowers of all colours produce

bergia rigida, producing little to no anthocyanins and the abundant flavonols, often at levels that are orders of
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magnitude higher than the anthocyanins (figure 1, electronic
supplementary material, table S1). These compounds may act
as co-pigments, altering hue or intensifying the colour [46]
and/or contributing to UV patterning involved in pollinator
attraction [28].

(b) Phylogenetic correlation structure reveals co-
expression relationships across the flavonoid
pathway

We used petal transcriptomic data for 59 Petunieae species to
examine clade-wide patterns of co-expression among nine
enzymes and seven transcription factors of the flavonoid
pathway. For this and subsequent analyses, we grouped
two sets of genes, the methyl-transferases (MTs) and R2R3
MYB subgroup 6 activators, which vary in copy number
across taxa but carry out similar functions (see electronic
supplementary material, text). We computed correlation coef-
ficients, accounting for phylogenetic structure, and found
two clusters of correlated structural genes, a flavonol
module (F3'H and FLS) and an anthocyanin module, com-
prising the remaining steps of the pathway (figure 2). The
‘late’ anthocyanin biosynthesis (F3'5'H, DFR, ANS and the
MTs) form a tight cluster while the other core pathway
genes (CHS and CHI) are more loosely connected. As
expected, the components of the MBW complex (the SG6
MYBs, the bHLH AN1 and the WD40 AN11) are mostly
strongly associated with the anthocyanin module, while the
flavonol regulator MYB12 [47] is co-expressed with the flavo-
nol module. Another flavonol regulator, MYB-FL, was not co-
expressed with the flavonol module, suggesting its role may
be specific to the clade of Petunia in which it was studied [28].
We also found the repressor MYB27 is most associated with
DEFR expression, consistent with the notion that it is upregu-
lated after the late steps in the pathway to provide feedback
inhibition [14]. The tighter connection of AN1 to anthocyanin
biosynthesis compared to the other bHLH transcription
factor (JAF13) may relate to the relatively late bud stage
sampled; the two bHLH genes are functionally similar but
ANT acts later in floral development [14,48].

(c) Pigment phenotypes are divided by hydroxylation,

methylation and flavonoid content
A pPCA of pigment production (figure 1) revealed sharp
trade-offs among pathway branches, as manifested in the pig-
ment profiles across species. The first PC axis, which accounts
for 26% of the variation, is driven by the level of hydroxy-
lation and the amount of flavonol production (figure 3,
electronic supplementary material, table S3). It separates
pale-flowered species, which produce the tri-hydroxylated
delphinidin and high amounts of flavonols, from those
which produce the less hydroxylated cyanidin and pelargon-
din and lower amounts of flavonols, including the bright red-
flowered Plowmania nyctaginoides and Petunia exserta (PLNY,
PEEX). The intensely coloured purple and pink-flowered
species characteristic of Petunia and Calibrachoa are inter-
mediate along this axis, with mostly tri-hydroxylated
anthocyanins and a range of flavonol concentrations. The
second PC axis reflects the level of methylation and divides
the taxa that produce the unmethylated anthocyanidins (del-
phinidin, cyanidin, pelargonidin) from those that produce

mostly or entirely methylated compounds (peonidin, petuni-
din, malvidin). We used k-means clustering to group to the
taxa in this pigment profile space and recovered three clus-
ters, the pale-flowered taxa making large amounts of
flavonols, the deeply pigmented taxa making methylated
anthocyanidins, and the taxa making less hydroxylated
anthocyanidins and lower flavonols. While the first two clus-
ters are fairly uniform in colour (white to light purple and
deep pink to deep purple, respectively), the cluster contain-
ing the diverse less hydroxylated anthocyanins and low
flavonols range in colour from yellow (BRDE, LESC) to
pink (PBON, CSEL) to red (PLNY, PEEX). In the absence of
the yellowish flavonols, the yellow hues in these taxa are
likely derived from floral carotenoids (visible under light
microscopy, SD Smith 2020, unpublished data).

(d) Pathway gene expression predicts major pigment
phenotypes

PCCA revealed a tight relationship between the expression of
flavonoid pathway structural genes and regulators, and the
production of flavonoid compounds. The first three CVs are
statistically significant and have strong correlations between
gene expression and pigment concentration variables
(figure 4). Biplots of loadings for each gene and pigment on
each CV (electronic supplementary material, tables S4 and
S5) show similar clustering patterns as recovered in the
individual analyses. For example, the flavonol module corre-
sponding to F3'H, FLS and MYB12 (figure 2) emerges from
the pCCA (figure 4b,c) and is associated with the two flavonols
showing correlated production, quercetin and kaempferol
(figure 3). Similarly, the three methylated anthocyanidins (peo-
nidin, petunidin and malvidin) are associated with several of
the late pathway genes (F3'5'H, ANS, MT) that control their
production (figure 4b). Moreover, the CVs explain the
expression variation underlying the major axes of pigment
variation identified in the pPCA (figure 3). The first CV ident-
ifies genes whose expression contributes to hydroxylation
level, which distinguishes the red-flowered species from
the rest. Specifically, production of the less hydroxylated pelar-
gonidin and cyanidin is correlated with high expression of
F3'H and its regulator MYB12 and low expression of F3'5'H
(figure 4d), which diverts production towards the tri-
hydroxylated compounds (figure 2a). The second CV explains
the production of flavonols and methylated anthocyanins
(figure 4e). Here, high expression of the MTs and other
late pathway genes leads to high levels of the methylated
anthocyanins responsible for the intense purples and pinks
as in most Petunia and Calibrachoa. Conversely, high expression
of the flavonol module shifts production away from anthocya-
nins and toward the flavonols quercetin and kaempferol, as
observed in the pale and white-flowered species. Finally, the
third CV addresses production of the most common anthocya-
nidin across the species, delphinidin, and its flavonol
counterpart, the tri-hydroxylated myricetin. Their production
appears to be shaped by expression of early genes in the
pathway, which control overall flux [49].

(e) Relationship between pigment types and genes not
broadly driven by functional evolution

Changes in coding sequences may also contribute to the
relationship between particular enzymes and pathway outputs
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(e.g. [22]). For example, we might expect relaxed selection on
F3'5'H in lineages that have moved away from the production
of tri-hydroxylated anthocyanins [50]. Similarly, the MTs
would be predicted to experience strong purifying selection in
the clades with high production of methylated anthocyanins.
We tested for relationships between the rates of non-synon-
ymous to synonymous substitutions (dN/dS) across the
pathway genes and major axes of pigment variation (total antho-
cyanins, total flavonols, fraction methylated anthocyanins,
fraction tri-hydroxylated delphinidin derivatives). Despite
wide variation in dN/dS across genes (see [35] for an in-
depth discussion), we recovered no significant correlations
between root-to-tip rates and pigment phenotypes (electronic
supplementary material, table S6 and figures S8-S11). These
results suggest that changes at the coding level are not the
primary drivers of pigment variation across the species.

the strength of the correlation between the given expression and pigment CVs.

Nevertheless, we expect that high levels of red pelargoni-
din pigments should be limited by the inability of Petunia
DER to reduce the precursor dihydrokaempferol [51]. There-
fore, we examined the DFR sequence in PI. nyctaginoides, the
only species found to produce primarily pelargonidin
(figure 1). Compared with other sequenced Petunieae species,
this species has a unique Q226K substitution (relative to Vitis
vinifera sequence positions in crystal structure 2c29) in the
active site, which would be in close contact with the substrate
(electronic supplementary material, figure S4). This precise
substitution has also been documented in a distantly related
red-flowered pelargonidin-producing Solanaceae species and
it has been shown to increase DFR activity on DHK [22].
Interestingly, all three sequenced PI. nyctaginoides individuals
carry both the Q (CAA) and K (AAA) codons at this position,
suggesting that either all are heterozygous, or that there are
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two nearly indistinguishable DFR copies in this species (elec-
tronic supplementary material, figure S5 and text). All
individuals are fixed for a substitution Y227F which is
shared by close relatives Bouchetia and Hunzikeria (as well
as V. vinifera) but absent in other Petunieae species. Given
its close proximity to the Q226K substitution and its presence
in the active site, it is possible that Y227F interacts with
Q226K to change the active site environment and may have
played a role in a shift in DFR function in Pl. nyctaginoides.

We used the phylogeny to estimate the evolutionary history
of the major pigment phenotypes in Petunieae. Using the
best-fitting equal rates model and the pigment states from
the pPCA (figure 3), we infer that the ancestor of Petunieae
most likely belonged to the pale-flowered, delphinidin-pro-
ducing, high flavonol phenotype (p=0.7) with multiple
transitions to the other phenotypes (figure 5a,b). This pale-
flowered state has been retained in Fabiana and Nierembergia,
as well as some Brunfelsin and is characterized by relatively
low overall pathway expression, but high FLS expression,

leading to high flavonol accumulation (figure 5c). The
intensely coloured and highly methylated (electronic sup-
plementary material, figure S6) pink-purple phenotype is
characteristic of Petunia and Calibrachoa, while the lineages
that have diverged to produce less hydroxylated anthocya-
nins and/or lower amounts of flavonols are scattered
throughout the tree, arising from ancestors of both of the
other states (figure 5a,b). The transition to producing high
amounts of the tri-hydroxylated and methylated antho-
cyanins requires a shift to high expression of all pathway
steps and typically comes at the expense of flavonol pro-
duction (figures 4e and 5d). The red-flowered species
producing less hydroxylated anthocyanins also tend to pro-
duce lower amounts of flavonols (figure 5e), a pattern
observed in other Solanaceae [52], but which has not been
broadly examined in other families.

Our study revealed that Petunieae produce all of the six
classes of anthocyanidins, including three main branches
(the red pelargonidin, purple cyanidin and blue delphinidin
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pigments) and all three methylated derivatives (figure 1).
Although most species present only delphinidin and its
derivatives petunidin and malvidin, a few species are able
to produce pigments down two or even three branches. The
UV-absorbing flavonols are present in all species, but with
concentrations varying over 1000-fold (electronic supplemen-
tary material, table S1 and figure S2). Through multivariate
analyses of these biochemical profiles, we found that species
are clustered in pigment space by the degree of hydroxylation
and methylation of the anthocyanins and the extent of
flavonol production. These axes of variation in pigment pro-
duction are tightly correlated with variation in gene
expression of the corresponding branches of the pathway,
supporting the notion that regulatory changes are the princi-
pal drivers of flower colour evolution. Nevertheless, the
relative rarity of species that have deviated from the ancestral
state of making delphinidin and delphinidin-derived antho-
cyanins points to constraints in moving along the hue axis.

Changes in the amount of anthocyanin production, whether
associated with continuous variation in the intensity of color-
ation or discrete gains and losses of flower colour, are
common throughout angiosperms [53]. Our phylogenetic
analysis estimates four to five transitions to the intensely pig-
mented purple phenotype, in the large genera Petunia,
Calibrachoa and Brunfelsia as well as in Leptoglossis and Hunzi-
keria (figure 5). These flowers range from hot pink, to
magenta to purple, and at least for Petunia and Calibrachoa
are bee-pollinated [54,55]. This increase in anthocyanins
often comes at the cost of flavonols (figures 2b and 4),
which could influence floral UV absorbance and in turn, pol-
linator preference (e.g. [56]). Nevertheless, given the
abundance of bee pollination in Petunia and Calibrachoa, we
expect that any flavonol production is concentrated in the
centre to serve as bulls-eyes to enhance floral attraction [57].
We also found that the shift to producing high amounts of
delphinidin-derived anthocyanins is reversible in Petunieae,
and several of these lineages have subsequently transitioned
to the two other pigment composition types (figure 5).

One unexpected finding of this study was that these con-
vergent transitions to intense pigmentation involve not only
increasing flux down the delphinidin branch, but increasing
methylation as well (figure 3, electronic supplementary
material, figure S6). This pattern may relate to the co-regu-
lation of MTs with other late pathway genes (figure 2, [58]).
If increases in floral pigmentation often occur via trans-regu-
latory mutations [24], the expression of MTs may be elevated
together with F3'5'H, DFR and ANS, pulling flux toward pet-
unidin and malvidin production. The predominance of
methylated anthocyanins in highly pigmented flowers may
also have effects on the colour phenotype and its stability.
Methylation has a reddening effect on the bluish delphinidin
pigments [59], which could contribute to the hot pink hues of
many of these species. Moreover, methylation has important
biochemical properties, increasing stability and water solubi-
lity [60,61]. These factors may be particularly important as
the high levels of production of anthocyanins comes at the
expense of flavonols (esp. quercetin and kaempferol,
figure 4e), which can also stabilize anthocyanins through
intermolecular stacking [62].

Shifts in floral hue (e.g. from blue to pink) are often associ-
ated with changes in the type of anthocyanin produced.
Specifically, transitions from blue or purple to red commonly
involve shifting from more to less hydroxylated anthocyanins
(reviewed in [23]). Despite the range of colours present in Pet-
unieae (figure 1), we found that such changes in the level of
hydroxylation are uncommon (see also [31,45]). Although 10
species make detectable amounts of pelargonidin and cyani-
din (electronic supplementary material, table S1), these are
generally present in trace amounts. The exceptions are Pe.
exserta, which produces roughly half cyanidin and half
delphinidin and methylated derivatives [30], and PI. nyctagi-
noides, which makes 96% pelargonidin. The addition of
carotenoids may further contribute to the intensity of the
red coloration in PI. nyctaginoides, but anthocyanins alone
underlie the colour change in Pe. exserta (electronic sup-
plementary material, figure S7, [30]). Our phylogenetic
CCA suggests that the downregulation of F3'5'H is the
most highly correlated expression difference associated with
shifts away from the production of delphinidin-derived
anthocyanins (figure 4d), a pattern observed in other clades
where red flowers have evolved (e.g. [20,63,64]).

The fact that Petunieae present a range of pink,
fuschia and purple hues despite largely producing only
delphinidin-derived pigments (figure 1) implicates other
mechanisms for diversifying colour. Combining anthocya-
nins with carotenoid pigments to produce redder hues is a
common strategy in flowering plants (e.g. [65,66]), and sev-
eral of the hot pink Petunia and Calibrachoa species express
floral carotenoids (e.g. Pe. correntina, C. caesia, LC Wheeler
& SD Smith 2022, unpublished data)). Acidification of the
vacuole, where anthocyanins are stored, can also shift the
colour to appear more red [59]. This phenomenon is known
in cultivars of Petunia and Calibrachoa [67], but not yet docu-
mented as part of an evolutionary colour transition. Finally,
in addition to the reddening effect of methylation mentioned
above, acylation of anthocyanins has a blueing effect, so
reduction in acylation can also contribute to redder colours
[30,45]. The most deeply red Calibrachoa, C. sendtneriana, is
extremely rare [68], and although we were not able to
obtain replicates to include in the present study, previous
work demonstrates that it only produces delphinidin deriva-
tives [25], making it another Petunieae species to produce red
flowers with blue pigments. Other Petunieae with unique
shades, such as the bright salmon-coloured Petunia reitzii
and the burgundy Leptoglossis acutiloba also comprise candi-
dates for using a combination of biochemical mechanisms
to produce diverse colours.

The rarity of shifts from producing delphinidin-derived
anthocyanins to those derived from pelargonidin also
points to strong underlying constraints in moving along the
hydroxylation axis. The most likely source of such constraints
is substrate specificity of multi-functional pathway enzymes
(e.g. DFR, ANS, figure 2a). The inefficiency of Petunia hybrida
DFR in acting on pelargonidin precursors has been well
documented as part of efforts to breed red horticultural var-
ieties (e.g. [69-71]). The prevalence of delphinidin-derived
anthocyanins across the Petunieae suggests that the prefer-
ence for the precursors of delphinidin is not particular to
Pe. hybrida, but likely represents the ancestral state for the
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clade, and perhaps for the entire Solanaceae [22]. In this
context, it is notable that the only species of Petunieae to
make predominantly pelargonidin, Pl. nyctaginoides, carries
the precise single amino acid mutation found in another
red-flowered lineage of Solanaceae which is known to more
than double activity on the pelargonidin precursor, dihydro-
kaempferol (electronic supplementary material, figure S5,
[22]). These patterns suggest that transitioning to pelargoni-
din production is accessible only through changes in the
ancestral enzyme function.

Comparative evo-devo studies have the potential to reveal
commonly traversed evolutionary paths and the mechanisms
underlying those phenotypic shifts. Floral pigmentation has
long been the subject of comparative analysis in plants (e.g.
[72-74]), allowing us to identify those frequently travelled
evolutionary paths (e.g. from blue to white coloration) and
laying the groundwork for connecting these transitions to
changes in the expression and function of the biochemical
pathways. Our study demonstrates that Petunia and its
close relatives have diversified in pigmentation by repeatedly
calibrating the production of blue delphinidin-derived pig-
ments and UV-absorbing flavonols through changes in gene
expression in the anthocyanin pathway. We posit that these
axes comprise evolutionary paths of least resistance, whereby
adjusting gene expression allows for a wide range of visible
and UV-visible pigmentation levels. However, expression
changes are probably insufficient to overcome ancestral pat-
terns of substrate specificity in multi-functional enzymes to
allow transitions along the hydroxylation axis. Thus,
moving beyond the range of colours accessible by changing
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