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Abstract

Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between
organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of
reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in
reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these
methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between
images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the
female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and
optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-
dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and
the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality
reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns
of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. \We
demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT,
providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system.
This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods
for the female reptile reproductive system.

Summary Sentence
Two volumetric imaging modalities, contrast-enhanced micro-computed tomography and optical coherence tomography, facilitate visualization
of the macro- and micro- architecture of the reproductive tract of the female brown anole, Anolis sagrei.
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Introduction

The morphology of the non-avian reptilian female repro-
ductive tract varies between species. While the generalized
architecture of this system is relatively consistent across this
diverse group of animals, species-specific modifications have
evolved, corresponding to a broad range of reproduction
modes. While many species are egg-laying (oviparous), many
reptile species are viviparous, giving birth to live young. In
reptiles, viviparity has evolved over 100 times [1], including 6
origins of derived matrotrophy, which is the direct maternal
delivery of nutrients to developing embryos [1].

The reproductive organ system in most female reptiles
consists of left and right ovaries that are located medially,
containing follicles that increase in size with oocyte matura-
tion, along with left and right reproductive tracts, which are
the site of gamete and embryo transport and development.
The ovaries are located cranially to two independent ducts
that connect caudally at the cloaca along with the digestive
tract. The reproductive tract contains morphologically distinct
regions that include, from cranial to caudal, the infundibulum,
the glandular uterus, and the nonglandular uterus. Ovulated
oocytes enter the infundibulum, a thin tube with both ciliated
and secretory cells [2]. The most proximal infundibulum is
funnel-shaped and has a highly ciliated lip [3]. The glandular
uterus is the location where a fertilized oocyte will reside
for ~18 days of embryonic development in anoles [4]. In
oviparous species, the glandular uterus is the site where the
albumin and eggshell are deposited. The nonglandular uterus
consists of a cervix and vagina, connecting the glandular
uterus to the cloaca. The nonglandular uterus is a highly mus-
cular tube whose tissue architecture transitions from cranial
to caudal [3].

The brown anole, which is the subject of this study, is a
popular study organism and is part of a well-studied genus
of over 400 species [5]. This species lays approximately 1
egg per week during the summer breeding season [6, 7]
and females are capable of sperm storage [8]. As with other
reptiles, the brown anole has two independent reproductive
tracts comprised of an infundibulum, glandular uterus, and
nonglandular uterus. Historical investigation of the Anolis
reproductive system has been limited to histological studies
[9-16]. There is a good understanding of the cell types of
the reproductive tract organs [2, 8]. However, the architecture
of the reproductive tract in this species is relatively poorly
understood [3, 14] due to the two-dimensional (2D) nature
of histological studies.

Recently, micro-computed tomography (microCT) has been
used to generate volumetric structural data and gain a more
comprehensive understanding of the macro-architecture of
the nonglandular uterus in the female reproductive tract [3].
MicroCT is a high-resolution, non-destructive, volumetric
imaging method that has been applied to diverse fields of
study. MicroCT has been applied to studies of reproductive
biology across species including Drosophila [17], millipedes
[18], reptiles [19-21],and mammals [22-25]. MicroCT recon-
structs volumetric structural information using a series of two-
dimensional projection X-radiographs acquired at different
orientations of the object. While this methodology has been
traditionally used to image dense materials like bone, soft tis-
sues can be visualized using radio-opaque contrasting agents.
Though many contrasting agents can be used, Lugol’s iodine
is a popular choice for microCT in a method referred to as
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diffusible iodine-based contrast-enhanced computed tomog-
raphy or DICECT [26]. Recently, we used contrast-enhanced
microCT, specifically DICECT, to understand the 3D archi-
tecture of the nonglandular uterus of the brown anole lizard.
Our data allowed us to interpret historical histological studies
to facilitate species anatomical comparisons [3].

While microCT provides detailed structural information
of samples, and particularly reptile reproductive organs, it is
associated with some limitations. Tissue fixation, staining, and
processing for microCT is time-consuming; taking multiple
days, this preparation might result in structural disturbances
due to dehydration and is not compatible with live imaging.
Another imaging technology, optical coherence tomography
(OCT), has the potential to address these limitations and pro-
vide complementary information. OCT is an up-and-coming
imaging modality in the fields of development and reproduc-
tion [23, 27]. OCT is a non-invasive, label-free, and depth-
resolved optical imaging modality with a micro-scale spatial
resolution (1-10 um) at an imaging depth of approximately
2-3 mm in biological tissues. OCT measures the location of
light scatter within a sample by detecting the echo delay in
backscattered light samples. Dynamic imaging is possible with
OCT as three-dimensional data across a wide field of view can
be collected at a high rate. Due to its non-destructive nature,
OCT is gaining popularity in the fields of developmental
[28, 29] and reproductive [23, 27] biology to investigate
dynamic processes of germ cells (eggs and sperm) and embryos
in live mammalian tissues. However, the application of this
technology for the study of reproductive processes has not yet
extended to reptiles.

In order to broaden our understanding of reptilian repro-
ductive anatomy and set a platform for future imaging studies,
we comparatively investigated the use of two complementary
volumetric imaging techniques, contrast-enhanced microCT
and OCT, for volumetric imaging of the female reproductive
tract of the brown anole, Anolis sagrei.

Methods
Micro-computed tomography

The animals used for microCT analyses were collected
and euthanized at the University of Florida during the
summer of 2017 with approval by the University of Florida
Intuitional Animal Care and Use Committee (IACUC).
Lizards were euthanized with an intraperitoneal injection
of Euthasol, fixed with 10% formalin, and immersed in
1.75% aqueous Lugol’s iodine according to established
protocols for DICECT [26]. The animals Anoles 1, 2, and 3
were scanned on a Phoenix VITomelX M at the University
of Florida Nanoscale Research Facility. Tomograms were
generated from radiographs using Datos XR. Postprocessing
and segmentation were performed using 3D Slicer [30] and
Imaris (Oxford Instruments Group). MicroCT scanning
parameters and tomograms were uploaded to MorphoSource
and are available for download (MorphoSource specimen ID:
000590186, 000608703, and 000608693).

Optical coherence tomography

The animals used for OCT analyses were collected at the
Houston Arboretum during the summer of 2022 with
approval by the University of Texas MD Anderson Cancer
Center TACUC. These lizards were maintained in the lizard
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colony until March 2022, March 2023, and October 2022
when they were anesthetized by intracoelomic injection of
1% tricaine (MS-222) and euthanized with an intracoelomic
injection of 50% tricaine [31]. The extracted reproductive
organs were then imaged with one of two OCT systems.
The first system (OCS1310V1, Thorlabs), used for Anole
4 and 5, uses a swept-source laser (SL1310V1, Thorlabs)
with a central wavelength of 1300 nm and a scan range of
~100 nm. This imaging system allows for an imaging depth
of up to 12 mm, an A-line rate of 100 kHz, and axial and
transverse resolution of ~12 and ~ 16 um, respectively. The
second OCT system, used for Anole 6, is a house-built OCT
system using a supercontinuum laser (NKT Photonics) with a
central wavelength of ~800 nm and a bandwidth of ~100 nm
in a fiber-based Michelson interferometer. The interference
between light reflected by the reference and sample arms
is directed to a spectrometer based on a 250 kHz e2V
OctoPlus camera (Teledyne Technologies Inc.) and Fourier
transformed to obtain the structural OCT intensity. To image
over a volume, galvanometer mirrors (GVS012, Thorlabs
Inc.) provide a high degree of flexibility in scan area and
density. This system allows for a maximum A-line rate of
250 kHz and axial and transverse resolution of ~4 um.
To image over a volume, galvanometer mirrors provide a
high degree of flexibility in scan area and density. Each
OCT system was controlled using custom LabVIEW software
(National Instruments) to acquire data with imaging settings
selected to account for size and structural detail throughout
the reproductive organs. Data processing was performed
in Matlab (MathWorks) with custom scripts. Volumetric
renderings were compiled using Imaris software (Bitplane).

Quantitative measurements

To quantify the thickness of the wall of the different regions
of the reproductive tract from the volumetric OCT and
microCT imaging data sets, we collected measurements from
the infundibulum, the upper, middle, and lower glandular
uterus, and the most caudal region of the nonglandular uterus,
the vagina. At each region, we made linear measurements from
the lumen to the outer wall of the reproductive tract in cross-
sections oriented perpendicular to the lumen. Measurements
were collected from each of six anole lizards, three imaged
by microCT and three by OCT. In each animal, we collected
five measurements per location. For the microCT scans, we
performed these measurements in FIJI [32], and for the OCT
scans, in Imaris (Oxford Instruments Group) software. We
plotted the data in Python.

Results
Architecture of the female brown anole
reproductive tract

The anatomy of the brown anole reproductive tract from
cranial to caudal is ovary, infundibulum, glandular uterus,
nonglandular uterus, and cloaca (Figure 1A). We demon-
strate the organization of the reproductive tract in the brown
anole lizard using brightfield microscopy, where each organ
can be clearly visualized (Figure 1B). We performed the first
volumetric comparison of microCT (Figure 1C, Supplemen-
tary Video S1) and OCT (Figure 1D, Supplementary Video S2)
imaging of the complete reproductive tract from the brown
anole lizard. The microCT data displayed is segmented from

a full-body scan and the OCT is stitched from smaller scans.
We demonstrate that the architecture of the reproductive tract
is clearly discernible in both datasets, including the ovaries,
infundibulum, glandular and nonglandular uterus.

Architecture of the female brown anole ovary

We compared microCT (Figure 2A) and OCT (Figure 2B)
volumetric imaging of the ovary. In coronal, digital cross-
section through comparable portions of the ovaries from
each dataset (Figure 2C and D), ovarian follicles are clearly
visible. We observe follicles at different stages of maturation,
which increase in volume. Notably, the female lizard in the
microCT dataset shown was imaged during the breeding
season and exhibits a large follicle on each ovary that has
accumulated a large amount of yolk and is pre-ovulatory; the
lizard in the OCT dataset shown was imaged during the non-
breeding season and the ovarian follicles are relatively small.
In the microCT dataset where follicles of varying maturity
are present, we observe density changes (in midsized follicles,
the outer edge is more dense than the center) as the follicles
increase in size (i.e. mature) (Figure 2C). In the relatively
immature follicles present in our OCT dataset, we do not see
changes in optical density (Figure 2D).

Architecture of the female brown anole
infundibulum

We compared microCT (Figure 3A) and OCT (Figure 3B)
volumetric imaging of the infundibulum, which lies laterally
to the ovary and connects to the glandular uterus. In both
datasets, we observe that the infundibulum is a highly folded
tube compromised of a narrow lumen surrounded by a thin
wall. In sagittal, digital cross-section through the infundibu-
lum of the microCT dataset, the wall of the tube is visible;
however, the resolution of the full-body CT scan makes the
lumen less clearly distinguished (Figure 3C). The superior res-
olution of the OCT imaging improves the ability to distinguish
the walls of the tube from the lumen (Figure 3D).

Architecture of the female brown anole glandular
uterus

We compared microCT (Figure 4A) and OCT (Figure 4B) vol-
umetric imaging of the glandular uterus. The glandular uterus
is a thicker tube that connects the infundibulum to the nong-
landular uterus. MicroCT (Figure 4A) and OCT (Figure 4B)
both show the glandular uterus wall clearly, which is thicker
and less folded than the infundibulum. In a coronal cross-
section though the glandular uterus in our microCT dataset,
the lumen is clearly defined and is surrounded by a thick wall
(Figure 4C). Similarly, coronal OCT cross-sections demon-
strate a thick tube with a well-defined lumen (Figure 4D).
However, due to limitations in OCT imaging depth, it is not
possible to appreciate the entirety of the tube.

Architecture of the female brown anole
nonglandular uterus

We compared microCT (Figure 5A) and OCT (Figure SE)
volumetric imaging of the nonglandular uterus. The nonglan-
dular uterus is a short, muscular tube connecting the glandular
uterus to the cloaca and exhibits a highly complex luminal
morphology. The defining features of this complex lumen can

be clearly observed in the coronal cross-sections through both
microCT (Figure SA-D) and OCT (Figure SE-H) datasets.

$20z Aepy 90 uo Jasn Jsjuan Jaoue) uosiapuy (N Sexa] 1o Alsiaalun eyl Aq 6Z24£59//6E09B01/81101/S60 1 0 1 /10p/a[o1e-soueApe/po.ldallolq/woo dno-olwapede//:sdiy Woll papeojumod]


https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioae039#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioae039#supplementary-data

4 Volumetric imaging of reptilian female reproductive tract

Diagram Brightfield microCT OCT

A Cranal +

Infundibulum

Nonglandular
uterus

Caudal *

Figure 1. Overall structure of the female reproductive tract of anole lizards. (A) The diagram of the reproductive tract showing the infundibulum, ovaries,
glandular, and nonglandular uterus. (B) Corresponding bright-field microscopic image of the extracted reproductive system. (C) Volumetric rendering of
the reproductive system, imaged with microCT. Imaging was performed within the animal and the reproductive system was digitally segmented from
the acquired data. (D) Volumetric OCT imaging of the whole extracted reproductive system. The image is compiled from three datasets acquired with an
overlap and stitched together. The anatomical structures throughout the paper are color-coded: infundibulum (cyan), ovaries (magenta), glandular uterus
(blue), and nonglandular uterus (orange). The scale bars correspond to 1 mm.

microCT OCT

Figure 2. \/olumetric imaging of anole lizard ovaries. (A) Anterior volumetric view of microCT scan showing ovaries among the digitally segmented
reproductive organs. (B) Anterior view of the ovary imaged with OCT. (C) Volumetric view from the cross-sectional plane identified by the dashed line ¢’
in panel A showing the microCT scan from the whole body including other organs. (D) Volumetric view of OCT scan from the cross-sectional plane
identified by the dashed line d" in panel B. Anatomical structures are color-coded: infundibulum (cyan), ovaries (magenta), and glandular uterus (blue). The
scale bars correspond to 1T mm.
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microCT OCT

Figure 3. Volumetric imaging of anole lizard infundibulum. (A) Volumetric anterior view of the infundibulum and ovaries imaged with microCT. (B)
Volumetric view oriented along the cross-section indicated in panel A as b’, showing the infundibulum structure. (C) Volumetric anterior view of the
infundibulum and ovary as imaged with OCT. (D) Volumetric view from the cross-section at the location indicated in panel C as d’, which shows the
infundibulum membrane and lumen. Arrows indicate an example location within the lumen. The anatomical structures are color-coded: infundibulum
(cyan), ovaries (magenta), and glandular uterus (blue). The scale bars correspond to 1 mm.

microCT OCT

Figure 4. \olumetric imaging of anole lizard glandular uterus. (A) Anterior view of the ovarian follicle and the glandular uterus imaged with microCT.

(B) Anterior view of the glandular uterus imaged with OCT. (C) Volumetric view from the cross-section labeled in panel A as ¢’ showing the microCT scan
from the whole body including other organs. (D) Volumetric view of the OCT scan from cross-section labeled in panel B as d'. Arrows indicate an
example of the uterine lumen. The anatomical structures are color-coded: infundibulum (cyan), ovaries (magenta), glandular uterus (blue), and
nonglandular uterus (orange). The scale bars correspond to 1T mm.
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Figure 5. \olumetric imaging of anole lizard nonglandular uterus. (A) Anterior view of the nonglandular uterus imaged with microCT and digitally
segmented to show only the reproductive organs. (B-D) View along the cross-sectional corresponding to the locations labeled in panel A as b'-d" showing
the nonglandular uterus (orange) imaged by microCT within the lizard body. (E) Volumetric posterior view of the nonglandular uterus imaged with OCT.
(F-H) Volumetric view along the cross-sections indicated in E as f'-h". Arrows indicate the locations demonstrating defining features of the nonglandular
uterus lumen. The reproductive tract is colorcoded: glandular uterus (blue) and nonglandular uterus (orange). The scale bars correspond to 1T mm.

Histology of this region shows that the mucosal complexity
transitions in a cranio-caudal direction. Cranially, the mucosa,
the epithelial lining, is highly folded with a thin muscle layer,
while caudally, the mucosa becomes less folded with a more
substantial muscle layer. We show, for the first time, that the
transitioning mucosa can also be appreciated using multi-
ple volumetric imaging modalities. In the microCT coronal
cross-section through the cranial nonglandular uterus, the
mucosa appears highly folded, especially in the left tube
(Figure 5B). The same features can be appreciated, but are
less obvious, in coronal cross section of the OCT dataset
(Figure SF). Furthermore, coronal cross-sections through the
mid-region of the nonglandular uterus, called the cervix, show
the three distinct luminal segments that are characteristic to
this region in both microCT (Figure 5C) and OCT (Figure 5G)
datasets. Additionally, in the microCT coronal cross-section
through the caudal region of the nonglandular uterus, called
the vagina, the lumen has observable characteristics of a strat-
ified, squamous epithelium including a characteristic folded
pattern (Figure 5D). The same features can be appreciated, but
are less obvious, in coronal cross section of the OCT dataset
(Figure SH).

Quantitative analysis of the reproductive tract wall
thickness

To explore the potential of using OCT and microCT imag-
ing data for quantitative structural analysis, we performed
measurements of the reproductive tract wall thickness in dif-
ferent regions (Figure 6). The measurements were performed
in six animals, three for each modality. While the measure-
ments between different animals are not directly comparable,
we find that the measurements across modalities and samples
are generally consistent. The animal which was noted to
be larger than the rest, Anole 2, had a noticeably thicker
reproductive tract across all regions. We found that the wall of
the reproductive tract was thinnest in the infundibulum for all
animals. The thickest region of the reproductive tract wall was
the folded epithelium of the caudal nonglandular uterus. The
measurements throughout the glandular uterus were similar
across the upper, middle, and lower regions.

Discussion

In this study, we describe for the first time the complete
brown anole reproductive tract using two volumetric imaging
modalities, contrast enhanced microCT and OCT. Structural
reproductive studies among reptiles to date have primar-
ily included histology and electron microscopy, but largely
neglected volumetric imaging [2]. In this paper, we show how
non-destructive volumetric imaging reveals anatomical con-
text including orientation and relationships between organs
of the anole lizard reproductive system. In addition to broad
patterns of morphology, both imaging modalities provide the
high resolution necessary to capture details such as luminal
shape and tissue thickness, which are key anatomical features
defining each organ [3]. Performing imaging analysis side-
by-side using microCT and OCT allowed us to evaluate the
specific advantages and limitations of these two methods for
the reptile female reproductive system.

Volumetric imaging techniques represent an exciting avenue
of experimentation for developmental and reproductive biol-
ogists. Both modalities explored here, microCT and OCT,
are non-destructive, volumetric imaging techniques that facili-
tate high-throughput imaging and preserve three-dimensional
information. Such techniques are complementary to tradi-
tional histological structural imaging, which identify cell types
but are disadvantaged by the destructive nature and loss of
three-dimensional data. In this study, we demonstrate that
classic histological features of the nonglandular uterus, such
as the highly folded luminal mucosa, can also be appreciated
in volumetric imaging using microCT and OCT, thus exem-
plifying their high-resolution capabilities within whole-tissue
architecture. We demonstrated that both modalities provide
quantitative structural information toward future phenotyp-
ing and comparative analyses. The measurements collected
here are relatively consistent between modalities and support
the architecture of these tissue previously documented with
histology [3]. We do observe some variation in measurements.
This is likely due to variation in the overall body size of the
lizards used in this study as well as due to the variation in
tissue processing necessitated by each imaging modality.

The major advantage of microCT is its high resolution and
relatively high imaging depth. MicroCT scanning is widely
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Figure 6. \Wall thickness of the reproductive tract measured from two imaging modalities. Five measurements were performed from cross sections of
the infundibulum (cyan), glandular uterus (blue), and nonglandular uterus (orange) on each specimen imaged by microCT (n=3) or OCT (n=3) as
indicated. The first specimen imaged by microCT, Anole 1, and the second imaged by OCT, Anole 5, correspond to the datasets shown in Figures 1-5.

used to study anatomy reaching resolution below 1 micron.
Contrast-enhanced microCT, as shown in this study, allows
organs of interest to be visualized in situ as part of a full-body
scan. These advantages of microCT imaging are balanced by
specific limitations. While well suited for visualizing organs in
situ, microCT tissue preparation is relatively labor intensive
[26]. Tissue artifacts, such as distortion of morphology, can
arise due to tissue fixation and dehydration, as is the case with
all histological processes. Similarly, insufficient staining with
contrast-enhancing agents can lead to improper stain penetra-
tion and incomplete data collection [33]. While staining with
improperly buffered iodine can lead to tissue degradation [34],
such contrast-enhancing dyes can be removed post-scan by
washing, thereby restoring specimens to their pre-stained state
[26]. These fixed specimens are stable and suited to long-term
storage and future imaging.

The second volumetric imaging modality used in this paper
is OCT. This modality has previously never been used to
image the reptilian reproductive tract. A major advantage of
OCT is that it requires no pre-processing of the tissue and is
dye-free, avoiding the tissue artifacts introduced by fixation
for microCT, and thereby enabling fresh and iz vivo tissue
analysis. Another advantage of OCT is that the rapid imaging
speed allows for dynamic imaging to observe motion in live
tissues [35, 36]. However, the limited penetration depth of
OCT prevents imaging the reproductive tract through the skin
or the other organs in the body cavity, and, in some locations,
prevents imaging the full volume of the reproductive organs.
In our OCT datasets, the limited depth penetration obscured
portions of the glandular and nonglandular uterus.

Both microCT and OCT provide beneficial volumetric
information, however, direct comparison between modalities
is not feasible as the two technologies inherently rely on
different modes of data collection. MicroCT is an x-ray-
based technology, and therefore signal is based on tissue
density. OCT, on the other hand, is light based, providing
data on the optical reflection of near-infrared wavelengths of
light. Each imaging modality provides a unique set of data, in
that dense tissue is not necessarily more opaque and opaque

tissue is not necessarily denser, meaning that signal is not
directly comparable. For example, in our comparison, we
observe some ovarian follicles in the microCT dataset that
have a dense outer rim. In the OCT dataset, we see a fairly
uniform reflectivity across each follicle. These differences
could reflect either differences in tissue density compared
to optical density or variation across stages of follicular
maturation.

In this study, we also examined individuals collected from
two populations, from Gainesville, FL and Houston, TX.
Populations of A. sagrei are known to be genetically and mor-
phologically distinct across their range in the southern United
States [37]. However, the morphological features discussed
here, though understudied in this genus, appear to be largely
conserved even between Anolis species [9, 13, 16] and appear
to be conserved in the specimens used for this study.

Full-body scans, such as presented here, are a well-
developed and readily accessible tool for anatomical research
as part of an existing repertoire of microCT data. The
past two decades have seen the widespread adoption of
microCT in non-clinical research and, despite the costs of
the instrumentation, there is a growing global network of
imaging facilities that employ microCT (https://nocturnetwo
rk.org/resources/ct-lab-world-map/). The beneficial aspects
of microCT (non-destructive, scalable, and high-throughput)
have resulted in it being used in large-scale efforts to increase
the availability of preserved biological specimens via online
digital repositories, including The Open Vertebrate Project
(oVert, https://www.floridamuseum.ufl.edu/overt/; [38]) and
Scan All Fish (https://osf.io/ecmz4/). Open access databases
like MorphoSource [39] allow an unprecedented diversity
of readily available comparative datasets for CT-based
research. These efforts were designed to be taxonomically
comprehensive, and so often lack details that can be necessary
for small scale analysis including the sex, age, and life history
of the specimen; however, the reproductive organs can still
be viewed in such scans. We characterize, for the first time,
the full reproductive tract from microCT of the female
anole lizard and highlight how full-body scans and digital
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segmentation can be used to study specific organ systems and
reproductive anatomy.

While the OCT imaging presented in study was performed
on freshly excised samples, there is a potential for dynamic
and longitudinal in vivo OCT imaging of reproductive events
in anole lizards. Currently, it is not possible to perform in
vivo OCT imaging non-invasively in adult reptiles due to
the optical density of the reptilian scales. However, in vivo
OCT imaging could potentially be done through an intravital
approach, similar to one previously implemented in mouse
reproductive studies. To enable live in vivo imaging of the
reproductive organs, a surgical procedure has been developed
in mice to bypass skin and muscle tissues for imaging by
implanting an imaging chamber with a clear aperture over-
lying the reproductive organs [40]. This technique has been
used to study oviductal contractions [40], track oocyte and
embryo transport [35], and visualize the trajectories of indi-
vidual spermatozoa at the site of fertilization [36]. Intravital
OCT imaging was also implemented in males for in vivo
dynamic investigation of the mouse testis and epididymis [41].
Adapting this intravital imaging technique to adult reptiles
would be groundbreaking for the field, where information
about the specifics of ovulation, fertilization, and embryo
transport is almost completely lacking. Furthermore, OCT
has also been applied to capture dynamic ciliary movements
within the female reproductive tract in vivo [42, 43], which
has the potential to provide insight into the role of cilia in egg
and embryo transport in mice. Cilia are present throughout
the reproductive tract of the brown anole [3, 8], but the ciliary
dynamics have not yet been described. OCT live functional
analysis is likely feasible in reptiles with adaptation of the
methods developed in mice.

In summary, we present volumetric analyses of the female
brown anole reproductive tract. This is the first comprehen-
sive review of the anole lizard female reproductive organs
as imaged with microCT and the very first time that OCT
has been used in this species. We compare these two non-
destructive imaging modalities for descriptive analysis of the
ovaries, infundibulum, glandular uterus, and nonglandular
uterus. The brown anole is one of the most widely studied
reptiles in developmental biology research. Recently, genome
editing techniques have been developed in this species [44],
further contributing to the popularity of the brown anole as a
research model. Application of volumetric imaging techniques
like microCT and OCT can significantly broaden the ques-
tions that can be addressed in this system. This combination
of specialized imaging technologies with an under-utilized,
non-mammalian model opens further avenues for compar-
ative investigation of reproductive anatomy and addressing
fundamental questions in reproductive biology.
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