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ARTICLE INFO ABSTRACT
Keywords: A Darcy-Cahn-Hilliard model coupled with damage is developed to describe multiphase-flow
Multiphase flow and fluid-driven fracturing in porous media. The model is motivated by recent experimental

Hydraulic fracturing
Phase-field
Porous media

observations in Hele-Shaw cells of the fluid-driven fracturing of a synthetic porous medium
with tunable fracture resistance. The model is derived from continuum thermodynamics and
employs several simplifying assumptions, such as linear poroelasticity and viscous-dominated
flow. Two distinct phase fields are used to regularize the interface between an invading and
a defending fluid, as well as the ensuing damage. The damage model is a cohesive version
of a phase-field model for fracture, in which model parameters allow for control over both
nucleation and crack growth. Simulations with finite elements are then performed to calibrate
the model against recent experimental results. In particular, an experimentally-inferred phase
diagram differentiating two flow regimes of porous invasion and fracturing is recovered. Finally,
the model is employed to explore the parameter space beyond experimental capabilities, giving
rise to the construction of an expanded phase diagram that suggests a new flow regime.

1. Introduction

The past few decades have witnessed an increased focus on obtaining a better understanding of multiphase flow in deformable
porous media. This interest is driven by the prevalence of such phenomena in both natural and engineered systems, including
enhanced geothermal energy, geological carbon storage, and geo-hazards (Juanes et al., 2020). Models that account for various
aspects of the process can be extremely useful, as bench-scale experiments that mimic a wide range of subsurface conditions have
proven to be elusive (Pyrak-Nolte et al., 2015). From a modeling standpoint, this class of problems is nonetheless challenging, with
difficulties stemming from a three-way coupling between poromechanics, fracture mechanics, and multiphase fluid flow. This work
introduces a novel double phase-field model in which both the fluid—fluid interface and the fracture surfaces are regularized and
distinct. This permits the use of the model to explore a wide range of processes, including hydraulic fracturing, viscous fingering,
and their combination. The model is developed within a simplified setting, hinging on linear poroelasticity and restricted to viscous
flows. This paves the way for direct comparison with recent experiments examining multiphase-flow driven fracturing (Meng et al.,
2020, 2022a, 2023). Beyond its ability to explain these recent experimental observations, the broad potential of the model is utilized
to build phase diagrams indicating both existing and new flow regimes.

The current model builds on a considerable amount of previous theoretical developments in which aspects of the underlying
physics were examined in isolation or with some degree of coupling. This includes work on multiphase flow in rigid porous media,
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regularized models of fracture, and coupled poromechanics and fracture. In what follows, important theoretical works and recent
modeling approaches that informed the current approach are discussed.

To begin with, the topic of multiphase flow in rigid porous media is one with a rich history. Here, emphasis is placed on the
seminal work of Saffman and Taylor (1958), who studied the fluid—fluid displacement instability that occurs when an invading
fluid is less viscous than the defending fluid. This phenomena has since become known as the viscous fingering instability.
Subsequently, Lenormand et al. (1988) identified some of the conditions for viscous fingering, capillary fingering, and stable invasion
to occur. More recently, Zhao et al. (2016) have augmented the parameter space of consideration by taking into account the role of
wettability in multiphase flow. For a discussion of other important efforts in modeling multiphase flow through rigid porous media,
the reader is referred to the recent paper by Juanes et al. (2020).

The modeling of multiphase flow often gravitates around a Cahn-Hilliard (Cahn and Hilliard, 1958) description of the interface
between the fluids (Anderson et al., 1998; Kim, 2012). Such a regularization circumvents a shortcoming of sharp-interface
approaches when it comes to modeling large interfacial deformation (Anderson et al., 1998), and, in particular, interfacial
instabilities. Indeed, sharp-interface models break down when the interfacial thickness is comparable to the length scales of interest;
this is often the case for interfacial instabilities (Anderson et al., 1998). The associated general description of multiphase flow led
to the Navier-Stokes—-Cahn-Hilliard model, introduced by Lowengrub and Truskinovsky (1998), which led to the Hele-Shaw-Cahn—
Hilliard model (Lee et al., 2002) in the case of viscous flow in Hele-Shaw cells. The latter was proven to asymptotically converge to
the corresponding Hele-Shaw sharp interface problem (Lee et al., 2002). The Navier—Stokes—Cahn-Hilliard model was later formally
derived from a continuum thermodynamic framework by Abels et al. (2012). To do so, they took inspiration from Gurtin et al.’s
work (Gurtin et al., 1995), formally deriving from the laws of thermodynamics the previously ad-hoc Navier-Stokes—Cahn-Hilliard
models. In Lowengrub and Truskinovsky’s derivation (Lowengrub and Truskinovsky, 1998), the binary fluid velocity was mass-
averaged and not divergence-free, whereas in Abels et al.’s derivation (Abels et al., 2012), the velocity was volume-averaged and,
advantageously, divergence-free. Dede et al. (2018) obtained the Hele-Shaw counterpart to the model of Abels et al. (2012), along
with the proof of sharp interface convergence. Papatzacos (2002), Cueto-Felgueroso and Juanes (2008, 2009), and others, have
applied such Cahn-Hilliard approaches to multiphase flow through porous media.

The potential for porous media to fracture complicates modeling efforts considerably due to the coupling between fluid flow and
fracturing process. In essence, fluid pressure can drive the formation of new fracture surfaces, and the fracture openings, in turn,
provide preferential paths for fluid flow. Most of the existing modeling efforts in this area have focused on hydraulic fracture and
have been limited to instances in which the media is saturated with only one fluid, as opposed to multiphase flow. We refer the
reader to the paper of Chen et al. (2021) for a recent review of models for hydraulic fracture.

More recently, advances in fracture mechanics have driven new developments in hydraulic fracture modeling. We focus in
particular on models based on the variational treatment of fracture and accompanying phase-field regularizations (Francfort and
Marigo, 1998; Bourdin et al., 2000). Early efforts to extend the basic phase-field approach for modeling fracture to coupling with
fluid flow and hydraulic fracture were spearheaded by Miehe and collaborators (Miehe et al., 2015; Miehe and Mauthe, 2016).
Their approach was based on Biot’s (Biot, 1941) and Coussy’s (Coussy, 2004) poromechanics framework cast in a variational
formulation. This model opened avenues for embedding the well-established phase-field fracture approach into poromechanics. In
particular, it proposed modifying the permeability to account for the flow enhancement due to fracturing. An alternative approach
was derived from the Theory of Porous Media (Bowen, 1980; De Boer, 2012; Ehlers, 2002), which is the counterpart of Biot’s
empirical theory (Biot, 1941) embedded in continuum thermodynamics and the theory of mixtures (Truesdell and Toupin, 1960;
Bowen, 1976). We refer in particular to the models of Ehlers and Luo (2017) and Wilson and Landis (2016). The main advances
consist of the use of a thermodynamically-consistent framework for the model derivation and constitutive assumptions that permit a
transition from Darcy-type flow in the pores to Stokes-type flow within open fractures. For further references on phase-field models
of hydraulic fracture, the reader is referred to a recent review by Heider (2021).

The full three-way coupling of multiphase flow, poromechanics, and fracture has been investigated to a lesser extent, with
some notable recent advances. For instance, Holtzman et al. (2012) experimentally identified, for non-cohesive granular media, the
fracturing, capillary fingering, and viscous fingering regimes in a phase diagram representing fracturing number versus capillary
number. On the modeling side, Lee et al. (2018) introduced a hydraulic fracturing model for two-phase flows using fracture phase-
field modeling and lubrication theory. In a similar vein, Heider and Sun (2020) recently proposed a multiphase hydraulic fracturing
model for both capillary and viscous flow. However, neither the work of Lee et al. (2018) nor Heider and Sun (Heider and Sun, 2020)
regularized the fluid—fluid interfaces. As a result, these models are limited in their ability to account for aspects of the interfacial
fluid dynamics.

Aspects of the model in this manuscript share common features with the recent works of Carrillo and Bourg (2021), and Paulin
et al. (2022), as described below. Carrillo and Bourg (2021) adopted a fluid mechanics approach, treating soft porous media as an
intermediate state between solid and fluid, which was effectively modeled through visco-plastic rheology. The model of Carrillo and
Bourg (2021) allows for a clear distinction between the pore and continuum scales due to volume-averaging upscaling, as well as
between viscous and capillary effects. While the distinction between viscous and capillary effects was made in the non-fracturing
regime in the experimental study of Holtzman et al. (2012), the work of Carrillo and Bourg (2021) focused on this distinction in
the fracturing regime. The latter also identified a regime of non-invasive fracturing, where invasion only occurs in the cracks and
not in the porous medium. The model of Carrillo and Bourg (2021) relies on a local yield stress criterion to govern fracture and is
limited in its ability to examine the potentially important role of fracture mechanics in governing the response of the system. Such
a local, stress-based criterion for fracture is also likely to suffer from the kinds of spurious strain localization effects that plague
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local damage models (see, e.g., Pijaudier-Cabot and Bazant (1987)). Finally, we note that much like the aforementioned three-way
coupling models, the fluid—fluid interfaces are not regularized in the work of Carrillo and Bourg (2021).

Paulin et al. (2022) developed a model for non-cohesive soft porous media which accounts for regularized damage and finite-
deformation kinematics. The novelty of their work lies in envisioning the solid, liquid, and gas as three distinct phases, whose
interactions are governed by interfacial energies of Cahn-Hilliard type. Although the model was developed for non-cohesive media,
it employed a phase-field for fracture regularization that prevents the transmission of traction across fully damaged surfaces.
Distinct from many of the aforementioned works, the model of Paulin et al. (2022) does not insist that damage be irreversible,
such that fracture healing can occur. As the model was developed within the framework of continuum thermodynamics, it is
thermodynamically consistent.

The approach described in this manuscript incorporates aspects that are similar to some of the aforementioned literature, with
several important distinctions that are motivated by an interest in explaining recent experiments of fluid-driven fracturing of cohesive
media (Meng et al., 2023). The configuration consists of a monolayer of beads that are lightly cemented together and placed into a
Hele-Shaw cell, and saturated with a viscous defending fluid. The injection of a far less viscous invading fluid into this system gives
rise to a clear coupling between fracturing and fluid invasion in which the fracture resistance of the skeleton plays an important
role in delineating various regimes of the response. In the configuration examined in this work, one can expect new features such
as a non-trivial injection pressure curve and the possibility of viscous fingering instabilities. The former feature can be explained by
the fact that both the solid’s cement and the defending fluid’s viscosity act as a resistance to fracture and invasion of the injected
fluid.

Accordingly, for the fracture model, this work adopts a cohesive variation on the well-established phase-field regularization
for fracture. In particular, the model described in Geelen et al. (2019) is used. It incorporates an energetic threshold for damage
that is insensitive to the choice of regularization length. To accommodate fluid—fluid interface instabilities, a second phase field is
employed, representing the invading fluid saturation. This allows merging the two-pronged effort described above, and, in particular,
expanding the space of potential flow regimes. The aforementioned works have identified six different types of flow regimes: uniform
invasion, capillary and viscous fingering, invasive capillary and viscous fracturing, and non-invasive fracturing. A supplementary
decomposition could be made between cohesive and non-cohesive fracturing. In this contribution, a new regime where viscous
fracturing and viscous fingering are combined is revealed. For that, and in line with the experiments of Meng et al. (2023), attention
is confined to viscous flows (large capillary numbers), leaving aside the capillary regimes.

This manuscript is divided into three main sections: (1) a description of the aforementioned Hele-Shaw experiments; (2) a
theoretical derivation of the model; and (3) results from simulations that explore the capabilities and predictions of the model. First,
the experimental setup and the key observations and measurements of Meng et al. (2023) are summarized. The modeling strategy
is then described, yielding a Darcy—Cahn-Hilliard model of fluid-driven fracture with multiphase flow. The composite model is
assembled through a continuum thermodynamic derivation to ensure a consistent coupling of the different components. Namely,
these components are inspired from Gurtin et al. (1995) and Cogswell and Szulczewski (2017) for the multiphase flow, and from
Ehlers (Ehlers, 2002; Ehlers and Luo, 2017) and Borja (2006) for poromechanics. The novelty in the fracture modeling will be
to employ a cohesive fracture model (Geelen et al., 2019; Hu et al., 2020, 2021) which allows for controlling both the onset of
cracks and their propagation, but also accounts for rate effects through a damage viscosity. The resulting system of coupled partial
differential equations is discretized using the finite-element method. Simulations are then employed to calibrate various parameters
against the experimental observations, and to reproduce a phase diagram representing modified capillary number versus cement
volume ratio. Finally, the parameter space to build a new phase diagram that extends beyond the experimental observations is
explored, yielding a new dimensionless group of interest and a new type of flow regime mixing fracturing and viscous fingering.

2. Description of recent experiments

In this section, recent experiments conducted at MIT concerning the fluid-driven fracturing of a cemented pack of beads in a
Hele-Shaw cell (Meng et al., 2022b, 2023) are briefly described. Observations from these experiments are employed to motivate
simplifying assumptions in the model’s derivation. Subsequently, they are used to both calibrate various parameters in the model
and demonstrate some of its capabilities and limitations.

The experimental configuration consists of a monolayer of spherical beads that are cemented together. Both the beads and
cement are made from polyurethane rubber, which enables the use of photoporoelasticity, a technique developed by Li et al. (2021)
to visualize the effective stress field. The amount of cement can be controlled, effectively modulating the fracture resistance of the
skeleton. The skeleton is placed between the two plates of the Hele-Shaw cell, and the plates are held at a constant distance from
each other with four outer clamps. The system is then saturated with oil and water is injected at the center. As such, the entire
system effectively approximates a deformable porous media interacting with multiphase flow. Aspects of the experimental setup are
very similar to those conducted for non-cohesive granular media, as described in Meng et al. (2022a).

In the most recent experiments (Meng et al., 2023), the cement renders the granular media cohesive, with the degree of cohesion
effectively delineating two regimes in the response of the system. For sufficiently high cement volume fractions, the solid skeleton
deforms but does not fracture as the water invades the media and expels the defending oil. Conversely, as the amount of cement is
decreased, the fracture resistance of the solid skeleton also decreases, and at some point the forces on the skeleton are sufficiently
large to break the cement bonds and permit fracture patterns to emerge.

The values of the main parameters are listed in Table B.1. Note in particular the oil viscosity #,, which is five orders of magnitude
larger than the water viscosity #,,. This gives rise to a relatively large viscous pressure drop ép,,;, (see (50)), acting as a driving force
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responsible for fracturing the cemented beads. The high contrast in fluid viscosities was necessary to compensate for the limited
injection rate delivered by the laboratory pump.

Another aspect of the type of experiment focused on in this work, in contrast to more conventional settings with low-permeability
porous media, is the fact that the invading fluid can leak off the fracture: the water flows both in the opening fractures and in the
pore spaces of the undamaged domain. Following the description by Carrillo and Bourg (2021), this type of response is referred
to as “invasive fracturing”. A last feature of interest is that the injection pressure keeps increasing as the cracks form, almost until
the water reaches the edge of the cell. This is expected to be the case as long as cracks are continuing to grow (see, e.g., Figure 7
in Santillan et al. (2018)), which is the case in the experiments and in the corresponding simulations.

It bears emphasis that the mechanical and fracture response of the cement-bead network was experimentally characterized
independently in dry conditions. The experimentally measured bulk moduli are listed in Table B.1. As for the fracture toughness, the
critical mode-I stress intensity factor K;, was measured via a dog-bone tension test. As a function of the cement ratio C (expressed
in %), it was experimentally found that K, = 0.15C + 0.59kPam'/2, so that

_ K (0
¢ E/1-v)

This assumes brittle failure, which is confirmed by the stress—strain output of the tensile test showing a linear increase of the stress
until failure, followed by a sharp decrease; that is, there is negligible plastic deformation and ductile failure can be neglected.

(€Y

3. Derivation
3.1. Overall framework and approach

The model uses two distinct phase fields to regularize geometric features of interest (see Fig. 1). The first phase field, denoted by
S, corresponds to the invading fluid saturation, so that § = 1 in the invading fluid and .§ = 0 in the defending fluid. Intermediate
values of S correspond to the diffuse interface, of thickness /g, which regularizes the otherwise sharp interface and ensures a smooth
transition from O to 1. The second phase field d can be similarly described in that it discriminates between fully cracked regions,
where d = 1, and fully intact regions, where d = 0. The thickness of the damage band is characterized by the regularization length
.

Although the resulting phase-field equations will end up looking similar, the saturation phase-field stems from a gradient energy
regularization, following the pioneering work of Cahn (Cahn and Hilliard, 1958), whereas the damage phase-field theory stems
from a variational regularization of Griffith’s crack surface energy, as introduced by Francfort and Marigo (1998). Both phase-field
approaches are reconciled by the configurational theory of Fried and Gurtin (1994), Gurtin (1996), da Silva et al. (2013), whereby
phase-field equations are derived from a fundamental law, the micro-force balance. The latter approach is followed in this work to
derive the evolution equations governing both phase fields.

3.2. Notation and terminology

Consider a porous medium consisting of three components: one solid and two pore fluids. In keeping with Coussy’s theory
and terminology (Coussy, 2004) (see section 1.1 therein), a porous medium is modeled as the superimposition of a solid skeleton
continuum (formed by the solid matrix and the connected pore space emptied of fluid) and of a pore-filling (binary) fluid continuum.
Both subscripts and superscripts will be used to denote fields associated with one of the components. In particular, s is used to denote
the solid component and « = {1,2} is used to denote the fluid components, with a = 1 representing the invading fluid and a = 2
the defending fluid.

The true volume fractions of the components are denoted by ¢°, ¢!, and ¢?, and satisfy ¢° + ¢' + ¢> = 1. They measure the
volume of each phase per unit current bulk volume. Therefore, ¢ = ¢' + ¢> measures the volume of pores per unit current bulk
volume. Similarly, the respective partial densities (at the macroscale, or continuum scale) are denoted by p* and p*, and the partial
Cauchy stresses by ¢° and o%. The corresponding intrinsic quantities (at the mesoscale, or pore scale) are denoted with subscripts.
The volume fraction of each fluid in the pores is described by the saturations S¢, whereby S! + 52 = 1.

Given the above notations, some key relationships can be summarized as:

P =1-9¢, P" = ¢S°, d=0"+¢%
P=U-do, =S, o =p"+7% )
o' =(l-¢)o,, o°=pS%, o =c'+06?%

where tensorial quantities are written in bold font. In (2), the three columns are associated with the solid phase, the individual fluid
phases, and the resulting binary fluid, respectively.
Finally, let x denote the coordinate vectors in the current configuration. Upon noting a a general scalar quantity, a a general
vector, A and B two general tensors, and adopting the Einstein summation convention, the following conventions for the spagial
i i

gradient, spatial divergence, and double contraction are employed in the following: (Va);, = :7”, (Va),; = 37, Vea = -4,
i j i

9A;; .p_
(V-A) =54, A: B=AyB,.
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Pore scale
(mesoscale)

Continuum scale
(macroscale)

Water —— Sharp fluid-fluid interface

—— Sharp crack surface
Oil
Diffuse fluid-fluid interface

Diffuse crack surface

Fig. 1. Schematic of the modeling of the fluid—fluid interface and crack surfaces through the phase fields .5 (water saturation) and 4 (damage), respectively.

3.3. Main assumptions

Consider the isothermal motion of a binary fluid through a deformable porous skeleton, and assume that the two components
of the binary fluid are incompressible (i.e. p; and p, are constant) and immiscible. The reader is referred to Lowengrub and
Truskinovsky’s derivation (Lowengrub and Truskinovsky, 1998) when fluids are compressible or quasi-incompressible. For simplicity,
and consistent with the experiments described in Section 2, further assume that the difference in densities p; and p, is negligible.
The reader is referred to Abels et al. (2012) for a derivation when this assumption does not hold. Following Gurtin et al. (1995),
also assume that “the momenta and kinetic energies of the constituents are negligible when computed relative to the gross motion
of the fluid”. This means in particular that the binary fluid is tracked in time through the material time derivative associated with
the average velocity

v, =Sv;+(1-Sv,. ()]

Furthermore, assume that the capillary number (the ratio of viscous forces to capillary forces, see (49),) is sufficiently high such
that the pore pressure p is identical in both phases 1 and 2, and also that the flow is sufficiently slow to neglect the fluid’s kinetic
energy. In other words, consider a viscous flow. In the case where capillary effects cannot be neglected (low capillary number), the
effect of the mean pore pressure p should be decomposed into the separate effects of the pressures of both phases. The reader is
referred to the derivation of Ehlers (2018) following the Theory of Porous Media, and to the work of Cueto-Felgueroso and Juanes
(2014) and Paulin et al. (2022) for an alternative approach.

With regard to the porous skeleton, small deformations are assumed, so that the formulation falls in the framework of linear
poroelasticity. Unlike the fluid components, the solid matrix is assumed to be compressible, so that its density is not constant. This
assumption is justified by the fact that, in the experiments described in Section 2, the beads comprising the porous medium have
a bulk modulus that is three orders of magnitude smaller than that of water. The resulting continuum is approached through the
Theory of Porous Media (see, e.g., Ehlers and Luo (2017) and Ehlers (2002)), that is, it stems from the superimposition of the
continua formed by the different solid and fluid components.

3.4. Mass balance

To derive the mass balance equations for the three phases, the derivation here follows Coussy (2004), Borja (2006), and Ehlers
(2002), Ehlers and Luo (2017), combined with Gurtin et al. (1995).

The partial fluxes associated with the fluid constituents 1 and 2 are denoted by i' and izz, respectively. As these are internal to
the fluid mixture, they satisfy h'+h* = 0. In what follows, a superposed dot is used to denote the material time derivative following
the solid skeleton motion. The solid velocity v, is therefore given by v, = i, where u, denotes the solid displacement.
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With these definitions in hand, the balances for the solid skeleton and the two fluid phases read

.S 5 _
;'7a+paV v, =0, y @
P +p'V-vg+V-pw,=-V-h,

where V = d/dx denotes the spatial gradient, and w, = ¢*(v, — v,) is the Darcy flux of phase a. Note that the right side of (4),
vanishes because there is no mass exchange between the solid phase and either of the liquid phases.

Following Borja’s strategy (Borja, 2006), a one-to-one relationship is assumed to exist between the solid density p; and the pore
pressure p (barotropic flow). The corresponding functional relationship can be expressed as p, = j,(p). As a result, p* = (1 — ¢p)p, =
p*(¢, p), or equivalently p = p(¢, p*). Following Borja (2006) (see Appendix A), these relationships lead to the following equivalent
forms of the solid mass balance (4),, both of which will prove useful in the model’s derivation:

f¢+(1—¢)<v.vs+K£>=o,

s

. 6]
l=¢p+(b-pV v, =0,

where b = 1 — K/K, denotes Biot’s coefficient, K is the bulk modulus of the matrix and K is the bulk modulus of the skeleton.'
Both K and K, are assumed to be constants in this work.
As for the mass balances of the incompressible fluid constituents, dividing (4), by the constant densities yields

DS+ S,V v, +V w, =V -k,

- (6)
DS, + SV v, +V w, ==V - k2,

where h® = h“/p,. Summing up the two previous equations, the mass balance of the binary fluid can be written as
d+¢V-v,+V-w=0, Q)

where w = w| + w, = ¢v;, is the Darcy flux of the binary fluid and v, ,, = S, — vy) + (1 - S)(v, — v,), the velocity of the binary
fluid with respect to the solid, is defined here for later use. Then, summing up the mass balances of the solid (5), and of the binary
fluid (7) yields the mass balance of the mixture:

bV -v,+V -w=0. (8

Finally, for later use, it will be helpful to have at hand some alternative expressions of the fluid mass balances. A superposed
circle (e.g., a), is used to denote the material time derivative following the binary fluid, which travels at velocity v, (3). The mass
balances of each fluid component and of the resulting binary fluid can thus be rewritten as

o

$S,+ ¢S,V v, ==V - he,

o 9
b+¢V v, =0.
3.5. Force balances
The macro-force balances of the solid and binary fluid read
V.o'+ /5 =0, 10

V.ol + 5 =0,

where ¢° and 6/ denote the partial solid and fluid Cauchy stresses, respectively, while f/* and f°/ are the forces exerted by the fluid
upon the solid and vice-versa. The effects of external body forces like gravity have been neglected. The forces satisfy the reciprocity
relationship f/* + f°/ = 0. They are also referred to as momentum productions in Ehlers and Luo’s work (Ehlers and Luo, 2017).
They result from the superimposition of the continua formed by the solid and the binary fluid.

The above form of the force balance for the binary fluid stems from neglecting the relative momenta of the constituents, as in
Gurtin et al.’s derivation (Gurtin et al., 1995). In particular, recall that neglecting capillary effects, the pore pressure is assumed to
be the same in both phases. As a result, the force balance for the mixture, described by the total stress ¢ = ¢°* + 6/, reads

V-o=0. amn

A derivation similar to that in Gurtin et al. (1995) would also show that the symmetry of ¢° and ¢/ follows from the corresponding

balances of angular momentum. The fluid stress tensor can be written in terms of its shear component = and the pore pressure p as
/= ¢z - pI)

o T — pl).

1 In this work, consistent with the work of Coussy (2004), the term “skeleton” denotes the continuum formed by the solid matrix and the connected pore
space, emptied of fluid. With reference to the experiments described in Section 2, the skeleton consists of the aggregate comprised by the collection of beads,
the cement and the empty pores, whereas the “matrix” consists solely of the bead material.
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Finally, following the configurational theory of Fried and Gurtin (Fried and Gurtin, 1994; Gurtin, 1996), the phase fields .S and
d are governed by the following microforce balances:
V&, +m;=0,
V. ég+rmg=0,

12)

where & denotes the microstress that is energetically conjugate to the gradient of the respective phase field, and = the microforce
that is conjugate to the phase field.

3.6. Dissipation inequality

Within the framework of continuum thermodynamics, constitutive restrictions for the governing equations are now invoked. In
addition to the quantities introduced previously, the partial Helmholtz free energies per unit mass for the solid and binary fluid are
denoted by y* and w/, respectively. The chemical potential of constituent « associated with the flux h* is denoted by u,. Since
these fluxes are complementary, in this section attention is restricted to constituent 1 and h is used in place of h' and u is used to
denote the difference in chemical potentials, i.e. 4 = p; — y, (see Gurtin et al. (1995)). Similarly, .S is used in place of S;.

The second law expressed in the form of the dissipation inequality requires that (see Gurtin et al. (1995)), for an arbitrary spatial
region , of the mixture (in the current configuration), the rate at which the energy of @, increases (following the Theory of Porous
Media (Ehlers, 2002) and neglecting the kinetic energy),

/ pSys dV + / plyl dv (13)
‘QI T
is limited by the external work on £,,
/ asn-udi+/ d§d~ndA+/ o-fn~vfdA+/ S&g - n dA, 14
20, 20, 02, 20,

t

plus the rate at which energy is transported to €, by diffusion (Gurtin et al., 1995),

—/ ,uah"-ndA=—/ uh - n dA. (15)
02, 02,

In the first line of the dissipation inequality (13), the Reynolds transport theorem yields:

/ Py dV:/ (pfip%pswsV’vs) dav
Ql Ql‘

=/ ((0° +p°V - vy + p°ys) dV (16)
Q!

= / Py dv,
Ql‘

where the solid mass balance (4); has applied. A similar result is obtained for the fluid energy term in (13).

In the second line of the dissipation inequality (14), the first and third terms are the mechanical power expended by the
macroforces responsible for deforming the solid and binary fluid, respectively. The second and fourth terms are the mechanical
power developed by the configurational microforces responsible for changes in the phase fields d and S, respectively.

For the third line, the reader is referred to the book by Gurtin et al. (2010) for a treatment of constituents transport through
continuum thermodynamics (see part 12 therein).

Using the divergence theorem, the local form of the dissipation inequality is then obtained as follows:

Pt +plyl <6t Vo tu Vo +E, Vd+dV-E 40l 1V,

o o a7)
+v, Vool +EG- VS+ SV -Eg—uV-h—h-Vp.
Using the force balances (10) and (12), and the mass balance of the invading fluid (9), one obtains
ot +plyl <6® Vo, —v, - fI+ €, Vd —ryd + 07 Vv, (18)

—v; [ +Eg VS —mgS+upS—h-Vpu.

In particular, the derivation uses the relationship ¢S = —V - h, which can be obtained by multiplying (9), by S and subtracting (9),
(particularized for fluid constituent 1) from it. The familiar poromechanical concept of effective stress can be obtained by adding
the null term (6 - 6* — 6/) : Vo, to (18), yielding

' + oy <o Vo, + & Vd —nyd +0 i Vo,
Pt +ply) <o Vo + & z:d c v:r/A a0
—v T+ Es VS +(u—n5)S—h- V.

7
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Following the derivation by Ehlers and Luo (2017), the pore pressure is then employed as a Lagrange multiplier, multiplying (8) by
p and adding it to the previous inequality to obtain:

ot +plwl <6’ Vo, + &, Vd —ngd + ¢ Vo, +posss -V 20)

o o
vy [+ Es VS +(Pu—7x5)S —h-Vp,
where ¢’ = 6+ bpI denotes the effective stress. The last step consists in identifying the energy-conjugates, which are the products of
forces and rates of state variables. For that, one must carefully commute gradients and time derivatives, especially when the former

are spatial quantities whereas the latter are material quantities, as here, in which case one must employ the following commutator
identity (see e.g. Gurtin et al. (1995)):

oy _d r
V< T )_ o (Vo) +(Vu,) V. 1)

Thereupon,
Vd =Vd + (Vo,)'Vd ~ Vd,

Vi, = V_us + (Vo) Vu, ~ V_us, (22)

VS =VS+(Vv)'Vs,

where the approximations in the two first equations stem from the linear poroelasticity assumption that second-order terms in
deformation are negligible (see e.g. section 3 in MacMinn et al. (2016)). In particular, assume that d varies like ¢ since their
evolution is tightly coupled, as the simulations in this work will indicate. The local dissipation inequality (20) then reads:

P+ y! < (0! +VS®Eg) : Vu, + &, Vd — nyd
+(PT+VS Q&) 1 Vo i+ (Vh— ) vy (23)

+Eg-VS+(pu—mg)S—h-Vyp.

The change of variable i = ¢u is applied and the hat notation is dropped thereafter for clarity. Identifying as state variables
{Vu,,d,Vd,d, Visss DS, VS, 1, Vi, where D = (Vog/+ va/ST)/Z denotes the strain rate tensor for the binary fluid (Gurtin et al.,
1995), and invoking Ehlers’ principle of phase separation (Ehlers and Luo, 2017), consider the constitutive dependencies:

w' =y (Vu,d,Vd,d) = y*(...),,

v =y @ DS VS Vi) =y ()

o' =6'(..),,

Ei=8,0.)

g =%4(.. )5

T=1(.), (24)

p=p(..) 1o
h=h(.).
In addition, from the barotropic flow assumption in Section 3.4 and the definition p/ = ¢p 7> where p is constant, the constitutive

dependencies p° = 5°(¢, p) and p/ = j/(¢) hold. This hereby-defined constitutive model satisfies the dissipation inequality (23) if
and only if

N ops(... ), —_
(6’<...)S+VS®§S<...)f—ﬁxu> : Vu,

oVug
. Lo = (L AR
+ <§d(...)s—p W) Vd - <7rd(...)s+p o >d
o . ;
—ﬁf%:ﬂ(¢%(...)f+VS®§S(...)f) iD+A(VS®E(..),) 1 A

oyl o ot s 25)
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where the tensor Vv, has been decomposed into its symmetric D and antisymmetric part A. Noting A(T) = (T - T7T)/2 the
antisymmetric part of a tensor T and recalling that = is symmetric, the term containing A was obtained using the fact that the
double contraction of a symmetrlc tensor and an antlsymmetrlc tensor vanishes.

Now, since Vu Vd d, A, v 150 D VS S B ;4 and V/4 appear linearly in (25), employing the Coleman-Noll procedure (Coleman
and Noll, 1963) y1e1ds the following constitutive restrictions:

el oy oy' oy oy/
Vo —o, Yoo, o Yo ¥,
dd o oD ou oV

A(VS@&S('”)f) =0,

60, + VS ®Eg(y, = L)

6Vus ’
; DY) (26)
5d(~~~)s—W’
N 0p il ()
*sCr =55
) op ! ()
71'5(~--)f=ll—T,

leaving the following reduced dissipation inequality:

ad
+ (. V=) vps—h(.)p - Vu>0.

In (26) and (27), the densities p* and p/ have been included inside the partial derivatives since their respective constitutive
dependencies are disjoint from (...); and (...),. From (26),, one can deduce that VS ® &g = &5 ® V.S, which implies that
(VS®E&g)Es = (Es ®VS) Eg, i (VS Eg) Eg = (Es - Eg) VS. Therefore, the vectors £ and V.S are collinear. The corresponding
collinearity coefficient « is introduced and chosen constant for simplicity, so that

R ) 5
—(::d(...)s —>d+(¢r(...)f+vs®§s(...)f):D 27

Eg=kVS = . (28)

The reasoning behind deducing this collinearity is similar to that invoked by Abels et al. (2012) (see p.12 therein). Furthermore,
Gurtin’s invariance argument (Gurtin, 1996) implies that the constitutive functions can depend on Vu, only through the strain tensor
of the solid € = (Vu, +Vul')/2, so that Vu, can be replaced here above by e. Finally, a sufficient condition to satisfy (27) is to require
that each term be non-negative:

ﬁd:V apsws : apst

ovd od
¢t +kVS® VS =Cg, D, (29)
PV — fxf = CDavf/S’

h=-MVyu,

where g > 0 is the damage viscosity, Cg, > 0 is a Stokes coefficient proportional to the binary fluid viscosity coefficient (in keeping
with Newtonian fluids’ rheological law (Abels et al., 2012; Gurtin et al., 1995)), Cp, > 0 is a Darcy coefficient inversely proportional
to the binary fluid mobility, and M > 0 is the Cahn-Hilliard mobility. These quantities need not be constant, and their dependencies
will be specified later.

3.7. Specification of the free energy

Following the previous thermodynamic analysis, the solid free energy is of the form (e, d, Vd) and is expressed in the following
well-established form (see, e.g., Geelen et al. (2019), Hu et al. (2020, 2021)):

P9 (e.d, Vd) = g(d)w}(€) + v, (e) + G h(d, Vd), (30)

where g(d) is a stiffness degradation function, with g(0) = 1 and g(1) = 0, and V/f and "’e] denote the active (tensile) and inactive
(compressive) parts of the elastic energy, respectively. The critical fracture energy is denoted by G., and A is the crack density
function defined by

h(d, Vd) = ﬁ (w(d) + 2|Vd]?), 31
0fd

where ¢, > 0 is a normalization constant, w(d) is the local dissipation function (Marigo et al., 2016), and /, is the regularization
length for the phase field d.
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The fluid free energy is of the form y/ (S, V.S) and is expressed following Cogswell and Szulczewski’s formulation (Cogswell and
Szulczewski, 2017) as:

12
o (5,98) = 122 <f(S) + %IVSF), (32)
S

where y is the surface tension between the two fluid constituents, /¢ is the regularization length for the phase field .S, and
f(S) = S?(1-5)? is chosen as a double-well potential. Thereby, the gradient coefficient x discovered in the thermodynamic analysis
(28) is given by k = 3ylg/2.

3.8. Fracture phase-field model

Different choices of the functions g(d) and w(d) lead to different fracture phase-field models. Here, we adopt a cohesive fracture
model (Geelen et al., 2019; Hu et al., 2020, 2021) so as to control both crack nucleation and propagation. The former is controlled
by a nucleation energy ., acting as a damage threshold, and the latter by the critical fracture energy G.. Note that such a model
allows the regularization length /, to be prescribed independently of the fracture properties, provided it satisfies an upper bound.
Following Hu et al. (2021), the functions g(d) and w(d) are taken to be

(1—d)?
(A =d)? +md(l+d)’ (33)
w(d)=d,

gd)=

where m = G, /cylw, and ¢, = 4 fo1 yw(d)dd = 8/3. To ensure the aforementioned advantageous properties of the cohesive model,
the condition m > 1 should be satisfied (Geelen et al., 2019), which yields the following upper bound for the regularization length:

3G,
8y,
The fracture phase-field evolution equation is then obtained from (29),, (30) and (34):

(34

1, <

. G
pd = —= (215 ad - uw'(d) - g'(d.y v,
coly (35)

3G,
=< (20 ad-1)-gWd.y w2
81,

where the dependence of the degradation function g on the nucleation energy y, has been emphasized. The term fd accounts for the
overall rate-dependency of fracture. A source of this rate-dependency is the viscous effect experimentally observed during fracturing
(see Fig. 5b), due to the latent cement that slows down the separation of the beads. A second potential source is the frictional contact
between the beads and the two plates of the Hele-Shaw cell.

To complete the phase-field for the fracture part of the model, the irreversibility condition d > 0 is enforced. Finally, the spectral
decomposition of the elastic energy, as described in the work of Miehe et al. (2010), is invoked:

2 3
vl(e)=SHe) + u ;<e,~>2,
B (36)
A
vl @) == (=€) —n ;<—ef>2,

where (-) denotes the Macaulay brackets, ¢, the volumetric strain, ¢; the principal strains, and A, and y, denote the first and second
Lamé moduli.

3.9. Binary fluid evolution equations

Substituting (29), ; into the fluid force balance (10), yields:
Cpalyss =—¢Vp—V - (kVS ® VS) + V.(Cy, D). (37)

Note that if Cp, > 0 and Cg, = 0, then (37) reduces to a general form of Darcy’s law. Conversely, if Cp, = 0 and Cg, > 0, then
(37) reduces to a general form of Stokes’ law. To enforce Darcy’s law in the porous medium and Stokes’ law in the cracks, one can
follow the strategy employed by Wilson and Landis (2016) or Ehlers and Luo (2017), and choose Cp, and Cj, as functions of the
phase-field damage d to activate these terms when d = 0 and d = 1, respectively. In light of the experimental conditions examined in
this work, the flow in the cracks is assumed to take the simpler form of a Poiseuille flow between the Hele-Shaw cell plates, which
are maintained at a constant separation, whereas the flow in the intact porous medium is assumed to take the form of a Darcy flow.
Thereupon, Cg, = 0 and Cp, = ¢*/(4; + Ay), where A, denote the fluid mobilities. Finally, recalling that w = ¢v, /s =W tw,y, a
sufficient condition to describe the flow of the two constituents within the current thermodynamic framework is

w,=-4 (Vp+¢'V-kVS®VS)), (38)

10
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which is Darcy’s law augmented by a capillary (or Korteweg) stress (Gurtin et al., 1995). More specifically, the fluid mobilities are
given by

1= k(¢)km(Sa)’

Ny

where k denotes the absolute permeability, k,, the relative permeability of phase a, and 75, the dynamic viscosity of phase a. The
absolute permeability is expressed as a function of ¢ following Kozeny—Carman’s formula (see, e.g., Coussy (2004)), through

¢’ 3
(1-¢)?
where k is the intrinsic permeability. Importantly for the coupling between poromechanics and fracturing, the porosity is expected
to reach ¢ = 1 in the cracks, whereby the permeability k is expected to diverge. This potential issue is circumvented by imposing
an upper bound k,,,, = H?/12, where H denotes the height of the Hele-Shaw cell, in line with the aforementioned assumption of
Poiseuille flow within the crack. Thereby, the combination of Darcy flow in the intact porous skeleton and Poiseuille flow in the
cracks is obtained through imposing k = min(k(¢), k,,45)-

As for the relative permeabilities, the model of Fourar and Lenormand (1998) (also used in Cueto-Felgueroso and Juanes’s
model (Cueto-Felgueroso and Juanes, 2014) in a Hele-Shaw cell setting) derived for viscous coupling in fractures is employed in
this work:

(39)

a

k(¢) = (40)

3
kg =S+ S S0 = S0+ 5,
1 (41)
k= §S§(3 -5,

where constituent 1 is chosen to be the non-wetting (invading) phase and constituent 2 is chosen to be the wetting (defending)
phase, and M = #,/n, is the viscosity ratio.

The Cahn-Hilliard mobility M in (29), is then specified following Cogswell and Szulczewski’s model (Cogswell and Szulczewski,
2017):

M==, (42)

Nk

where 7 = 2n,1,/(n, + 1) is the harmonic average of the viscosities of the two fluid constituents.
3.10. Model summary

To conclude this theoretical section, a summary of the evolution equations in the model that will be discretized is provided
below (43). Since the two constituents are directly related through S, + S, = 1 and k' + k> = 0, only the evolution of constituent
1 (the invading fluid) is described; recall the notation S = S;. The model therefore consists of the mass balance for the invading
fluid, the total mass balance for the binary fluid, the solid mass balance, the total macro-force balance, and the damage evolution
(through the damage micro-force balance), which are respectively given by

BS +V-w,(p,§) + $Sé, = V - MGVu(S),
b+ V- w(p, )+ pé, =0,

1_
b=y + (1 - dole, + %o

V- (o'(e,S) = bpI) =0,

ps (43)

. 3G .
pd = 81; (22 ad-1)-gdww!, dx=0.

The porosity evolution Eq. (43); derives from integrating the solid mass balance (5); (also see equation (3.34) in Borja (2006))
and linearizing the resulting exponential function around the reference state {¢, = 0,p/K, = 0}. This system of Egs. (43) will be
solved for u, p, ¢, u, and d, respectively. It is closed with initial and boundary conditions, and the following system of constitutive
equations, given by (38), (26)g, (12),, (32), (26)3, and (30), as:

w,=-4 (Vp+¢7'V-kVS®VS)),

2
127’ / lS
= — S)—-—=a85]),
"= (f( -5 A )
oyt oyl
o' =gld)—= + —= -kVS®VS.
de de

Note that the third terms in the mass balance Egs. (43); and (43), are of second order in terms of the deformation, in contrast to the
linear strain—-displacement relationship employed for the deformation. Through extensive testing, the retention of these higher order
terms in the mass balance equations was found to significantly improve the calibration of simulations to experimental observations.
In particular, these terms permit the model to better represent the apparent coupling between the evolution of the saturation front
and fracture propagation.

11
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3.11. Dimensionless form

The governing equations can be rendered dimensionless with the assistance of a characteristic length /), velocity v, fluid viscosity
Ny = 1, permeability k,, and surface tension y, = y. It is also useful to define the characteristic pressure p, = vyny/ly, fluid mobility
Ay = ky/ny, Cahn-Hilliard mobility M, = ky/ny = Ay, and chemical potential y, = y,//,. In the following, dimensionless quantities
are noted with an asterisk. The previous system (43) then becomes

U ——* L, 1 . M,
295 +l—°v*4wj+l—°¢sle‘:=—‘;yov*-M*v* ’,
0 0 0 lO
Uy ; U0 o« % Vo, .
D6+ v w4 Dger o,
10¢ Iy ly !
1 — ¢
¢ = o + (1 = oe, + ———pop”, (45)

poK;
’Iﬁv (o’ = bpT) =0,
0

voB .. 3G, [ )
0P o 3G (57 pe g —gd,wwt, d*>o0.
I 81, \"12 e

Similarly, the dimensionless forms of the secondary Egs. (44) read:

A p
wh = <—°p° v+ —0; ¢V (VS ® VS)),

a UOIO Uy o
12 2
y_oﬂ*zﬂ (-2 as), (46)
Iy lg 815
A% I*
poc’” =p0g(d)% +p0ﬁ - I%V S®V*S.
0

The final system of equations in dimensionless form is then given by:

PS+V-w, +dSé, =Pe IV - MV,
¢+ V- -w+¢gé, =0,
1 — ¢y
¢ =+ (1 —gle, + =P (47)

s

V- (¢’ —bpI) =0,
Bd=2L2ad-1-g¢'(d,y.)D;, d>0,

along with

w, = —A,Da (Vp + %Ca’lqub‘lV (VS ® VS)) ,

2
2/(., Ls
== S)- = as),
H Is (f () 3 > 48)
oyl o/
o' =gld)——+ —=-KVS®VS,
oe Jde
where we have dropped the asterisk notation for clarity. The dimensionless groups employed in the above are given by
volg v k
Pe = O, Ca=”0—0, Da=—0,
Myyo Yo I
/
K=, M=% Lg=-5, (49)
Poly m ly
8108 8l Ll
TR =736, 4T

denoting the Péclet number, the capillary number, the Darcy number, the Korteweg number, the viscosity ratio (appearing indirectly
through (41)), the normalized saturation regularization length, the damage viscosity number, the fracture driving force, and the
normalized damage regularization length, respectively. The two first rows represent groups associated with fluid fields, whereas
the third row represents the groups associated with solid fields. Note that there are only five independent fluid groups since
Pe = 4Da‘]Ca/3. The expression for the Péclet number matches the one obtained by Abels et al. (2012) for instance. Recall that
Kk =3ylg/4.

In practice, it is also useful to define a modified capillary number Ca* introduced by Holtzman et al. (2012) and employed in
the experiments (Meng et al., 2023) considered in this work. This number is the ratio of the driving force (i.e., the viscous pressure

12
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drop &p,;,) to the capillary pressure force 6p,,,. The former can be estimated as

nowil() - r]oql()

ko Hoky
where w; is the injection Darcy flux of water, g is the corresponding volumetric flow rate, which scales as ¢ ~ w;hé, H is the height
of the Hele-Shaw cell, § is a characteristic grain size, which will be the diameter of the beads used in the experiments studied in
this work, and the characteristic length /, is taken as the radius r, of the Hele-Shaw cell. The capillary pressure drop is estimated
as

SPyis ~ (50)

Peap ~ % (51)

Thereby, the modified capillary number reads

o 6pvis ~ quolO ~ Ca@ (52)

Ca* .
épcap yhk, ko

Given the assumption of viscous-dominated flow, Ca~! < 1, and therefore Pe~! < 1, but also K < 1, so that one can anticipate
that the terms containing these numbers should not play a significant role. That said, the Cahn-Hilliard term on the right side of
(47) plays an important interface regularization role, as mentioned by Cogswell and Szulczewski (2017).

4. Numerical study

In this section, the ability of the model to reproduce the salient aspects of recent experimental observations, and in particular,
to recover a phase diagram distinguishing two flow regimes is examined. Simulations are then employed to make predictions for
system responses corresponding to regions of parameter space that are beyond recent experimental observations.

4.1. Numerical implementation

The system of Eqs. (43), (44) is discretized through the finite-element method and implemented within the Multiphysics Object
Oriented Simulation Environment (MOOSE) (Permann et al., 2020). For the coupling with phase-field fracture, the RACCOON
extension https://github.com/hugary1995/raccoon is used. The resulting system of equations is solved in a staggered fashion,
whereby the poromechanical Egs. (43),_, and the damage Eq. (43)5 are solved iteratively at each time step until convergence
is reached. For the damage equation, the irreversibility constraint d > 0 is enforced with a primal-dual active set strategy (Hu et al.,
2020). Each of the two sub-systems of nonlinear equations are solved with the Newton—-Raphson method. Therein, the rate terms
are integrated in time using an implicit backward Euler approximation. Finally, the matrix inversions are obtained through an LU
decomposition, using the preconditioner MUMPS (Multifrontal Massively Parallel sparse direct Solver) https://mooseframework.inl.
gov/modules/porous_flow/solvers.html available within the PETSc library.

4.2. Boundary-value problem and initial conditions

Consider the two-dimensional annular domain defined by an inner and outer radius, as shown in Fig. 2. The boundary conditions
are prescribed on the inner and outer surfaces in a manner meant to approximate the aforementioned experimental setup. The values
of all model parameters contained within the boundary conditions are provided in Table B.1.

For the mechanical fields, boundary conditions that approximate fluid injection at a constant flow rate at the inner boundary
and constrained outflow conditions at the outer boundary are prescribed. In particular, at the inner boundary, the Darcy flux of the
invading fluid is fixed at a value w; chosen to match the experimental injection pressure curve. The pressure is then calculated at each
time step by taking the average of its values at every node of the inner boundary https://mooseframework.inl.gov/modules/porous_
flow/thm_example.html, denoted by p;, and applied to the total stress as a boundary condition at the subsequent step (Rehbinder,
1995).

At the outer boundary, the pressure is fixed to 0 (the air pressure in the laboratory, used as a reference pressure) and the
displacement field is held fixed, consistently with the mechanical constraint on the cemented bead network in this region. Finally,
zero Neumann boundary conditions on the damage field are imposed at both boundaries, as is standard in phase-field models of
fracture.

For the saturation field S, Dirichlet conditions of .S = 1 and S = 0 are prescribed at the inner and outer boundaries, respectively.
These conditions reflect the fact that the invading fluid enters at the inner boundary, while the defending fluid exits the domain
at the outer boundary. The latter boundary condition obviously limits the applicability of the model to the point in time when the
leading edge of the invading fluid just reaches the outer boundary.

The boundary conditions on the chemical potential are inspired by the work of Dong (2014). At the inner boundary, the chemical
potential is fixed to a small value y; > 0 to facilitate the incoming flow of fluid. On the outer boundary, Dong’s zero-flux condition
is replaced by a Dirichlet boundary condition y, > 0, since a zero-flux condition on the chemical potential was found to lead to
spurious nucleation of the invading fluid phase. In the calibration of the simulations against the experimental observations, the
point in time when the injection pressure peaks is observed to be sensitive to y,. Accordingly, the magnitude of 4, is adjusted to
obtain the best match between the simulated and experimental injection curves.
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Inner BC: T = 53mm Outer BC:
s w,(r=r) n=w;>0 s u(r=n€r)=0
« o(r=r) n;=p;(0) * pr=7)=0
e Sr=r)=1 * Str=1)=0
s ulr=r)=p>0 s ulr=r)=p,>0
* Vd-n;=0 * Vd-n,=

Initial conditions:

S(t=0)=0
dit=0)=0
pt=0)=0

¢t = 0) = ¢o(x)

Fig. 2. Schematic of the boundary-value problem along with boundary and initial conditions. For the boundary conditions, n, and n, denote the inward normal
and outward normal at the inner and outer boundaries, respectively.

1.0
0.8
0.6
-0.4

Fig. 3. Initial porosity fields used in this work. (a) Random porosity field with mean value ¢ = 0.4. (b) Constant porosity field with existing porosity pockets
near the inner boundary employed in the mesh convergence study.

The initial conditions, as indicated in Fig. 2, consist in setting all variables to 0, except the porosity field. In this work, the
influence of the microstructure stemming from the arrangement of the beads is not examined in detail. Instead, a continuum
perspective and focus on the influence of the hydro-mechanical parameters is adopted. However, some heterogeneity in the initial
conditions is required to break the inherent symmetry of the problem and facilitate localization. To effect this, the initial porosity
field is assumed to be uniformly random. More precisely, a porosity value, varying between 0.2 and 0.6, is randomly assigned to each
mesh element (see Fig. 3a). This ensures that the mean porosity value is 0.4, which corresponds to the measured experimental value.
This particular range is motivated by what results from the use of a moving window approach to upscale the porosity, as described
in Peco et al. (2019). In that approach, a continuum approximation to the initial porosity is obtained by explicitly calculating the
volume fraction of beads within a small, circular window centered at each point in the domain. Such a wide range was also found
to be necessary to sufficiently break the symmetry of the response in the resulting simulations.

In addition, to establish spatial convergence with the discretization, a different porosity field that does not vary with mesh
refinement is considered. To construct such a field, a constant porosity field is used with three small circular regions of high porosity
near the inner boundary, giving rise to the initial porosity field shown in Fig. 3b.

14



A. Guével et al. Journal of the Mechanics and Physics of Solids 181 (2023) 105427

8.2¢
800| 8.17
o)
= 600" S 80
5 =)
x g
& 400} N E§ 7.9
200+ 2h 780
7 4h
o ‘ ‘ ‘ ‘ ‘ : : : : : :
0.0 0.5 1.0 15 2.0 2.5 0.5 0.6 0.7 0.8 0.9 1.0
t(s) A7 (mm™)

Fig. 4. Graphs of the injection pressure over time and of the maximum hoop stress for different mesh refinements, with reference element size 4 = 1.0 mm.

4.3. Spatial convergence study

The ability of the model and accompanying discretization to obtain spatial convergence in selected quantities of interest is first
established. A series of simulations with increasing mesh refinement for the initial boundary-value problem described in Fig. 2 using
the initial porosity field shown in Fig. 3b are performed. Fig. 4 shows plots of the evolution of the injection pressure over time and
of the maximum hoop stress for a reference mesh with uniform spacing A~ = 1.0mm (20,672 elements) and coarser meshes. The
results indicate that the reference mesh satisfies the requirement of mesh convergence. Accordingly, subsequent studies reported in
this manuscript use unstructured meshes of linear triangular elements with mesh spacing 4 = 1 mm. This level of spatial resolution
is sufficient to capture the regularization lengths indicated in Table B.1. More precisely, the phase field interfaces for .S and d span
approximately four elements.

4.4. Reproduction of a given experiment

The extent to which the model can reproduce qualitative aspects of a given Hele-Shaw experiment is now examined. In particular,
consider an experiment in which the cement fraction is 1.2%, the oil viscosity is 0.29 kPas, and the injection flow rate is 100 mL/min.
In line with the provided experimental parameters, the simulation parameters for this problem are summarized in Table B.1
in Appendix. The random field shown in Fig. 3a is used as an initial condition for the porosity.

The Hele-Shaw cell is represented in the simulations by an annulus of inner radius r, = 5mm and outer radius r, = 53 mm,
as indicated in Fig. 2. The inner radius is estimated by measuring the average initial radius of the inner cavity delimited by the
beads in the experiment. Within the experimental estimated range of values for the initial average permeability, a value toward
the lower end of this range is found to work best in the simulations, namely 0.0015 mm?. More precisely, this value for the average
permeability was found to yield the best match with the experiments for the velocity of the invasion front in the intact porous
medium. The elastic moduli of the porous skeleton are estimated from experimental measurements (Meng et al., 2022b).

The simulation results are obtained with fracture parameters that scales with the cement volume ratio C as follows. For the
fracture toughness, the experimentally-determined relationship (1) is adopted. The nucleation energy y, governs damage initiation.
Assuming that crack nucleation occurs at a critical value p, of the injection pressure, a simple estimate of the critical fracture energy
is given by (see equation 24 in Geelen et al. (2019))

_ p.(C)?

Ve = 2E .

From the experimental measurements, the critical injection pressure p, that corresponded to crack initiation appears to scale linearly

with the cement volume ratio, such that p, = aC. A magnitude of « = 1kPa is found to provide a good match with the experimental

observations for crack initiation as a function of cement volume ratio. Finally, the damage viscosity # in (43)s is also set to be

an increasing function of the cement ratio. The precise relationship is given in the next section, when the simulation results are
calibrated against experimental observations.

Fig. 5 provides snapshots of the experimental results at the start of the experiment and at t = 2.0s, along with simulation results
of the damage and porosity fields at the corresponding times. All simulation results are shown in the reference configuration. The
time ¢t = 2.0 s corresponds to the moment in the experiment when the injection pressure reaches a plateau of approximately 470 kPa
(see Fig. 7). To facilitate comparisons between the experimental and simulation results at r = 2.0s, the water front is indicated with
white contour lines. For the experiment, this contour was extracted manually based on the color of the fluid (blue for water vs.
gray for oil). The fractured surfaces are also sketched on the experimental image as blue contours. In the simulation results, the
white contour corresponds to the saturation level .S = 0.5. For reference, the full saturation field at the start of the simulation and
at t =2.0s is shown in Fig. 6.

An inspection of the results in Fig. 5 indicates that the model is able to replicate the main salient features of the water invasion.
First, there are three main cracks, corresponding to regions of porosity equal to 1 in the simulations, preceded by partially damaged

(53)
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Fig. 5. Comparison of the experimental results (a,b) with the simulation results (c, d, e, f). The left and right columns correspond to + = 0 and 7 = 2.0s,
respectively. The second row shows the porosity field, while the third row shows the damage field. In the images on the right, the white contours indicate the
leading edge of the invading fluid front and the blue contour in (b) indicates the border of fully fractured zones.

zones. At 1 = 2.0s, in the reference configuration, the cracks obtained in the simulations measure around 11 mm on average, similar
to the experiment. Secondly, at r = 2.0s, the saturation front from the simulation lies ahead of the cracks at a distance of 45 mm
from the center, calculated from an average of the distance of the three main invasion branches. The analogous distance in the
experiment is found to be approximately 44 mm. Both the experimental and simulation results indicate three types of fluid invasion:
(1) into fully intact regions; (2) into partially open regions; and (3) into fully open regions (where the porosity ¢ = 1.0). Note that a
fully open region (where ¢ = 1) does not necessarily coincide with a fully damaged region (where d = 1). This is due to the damage
viscosity term fd. In other words, fully open regions can still bear some tensile loading. This is justified by the presence of residual
strands of glue observed in the experiment (see Fig. 5b), which are assumed sufficiently small so as not to impede flow but large
enough to still allow the skeleton to transmit tractions. As a result, particularly in the present setting with viscous damage, it is
important to interpret hydraulic cracks through the assessment of the porosity field and not the damage field.
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a)

Fig. 6. Saturation field corresponding to the white contour shown in Fig. 5 at =0 (a) and 7 =2.0s (b).
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Fig. 7. Injection pressure curve obtained from the experiment and matched in the simulation.

Fig. 7(a) provides a comparison of the injection pressure as measured in the experiment to that extracted from the simulation.
Note that the imposed Darcy flux w; was adjusted to obtain a good match with the initial portion of the pressure signal, in particular
over the time period ¢ € [0,1.0]s. A constant value of w; = 50mm/s was found to provide the best match. Interestingly, the
experimental and simulation results compare favorably even after that initial period, with both exhibiting a plateau starting around
t = 1.7s. In both the experiment and the simulation, the injection pressure peaks at approximately 470kPa. The decrease of the
rate of injection pressure coincides with the decrease of the rate of the average damage in the domain, as shown in Fig. C.14 in
Appendix C. The delay between the damage plateau and the injection pressure plateau may be attributable to the damage viscosity.
Fig. 8 compares the volumetric strain response between the simulation and the experiment at 7 = 2.0s. In both cases, three regions
of tensile volumetric strain are observed to develop out of the injection site. For both the simulation and the experimental results,
these regions correspond to zones in which fracturing has occurred. On one hand, the high tensile regions in the experiment are
somewhat larger and more diffuse than those in the simulation. On the other, the transition from regions of tensile volumetric strain
to compressive volumetric strain is more abrupt in the experiment, at least in the areas between the three main branches. Finally,
the outermost boundary is seen to be in a state of compressive volumetric strain with a spatial variation that is more uniform in
the experiment than the simulation. This discrepancy may be due to the fact that the four outer clamps in the experiment are not
explicitly modeled in the simulation. Alternatively, it could also be due to the fact that in the experiments the outer boundary
containing the beads within the domain is not strictly rigid, and therefore allows some release of elastic energy.

Finally, Fig. 9 shows the simulation results for the pressure, hoop stress, permeability, and Darcy flux of water at + = 2.0s. To
facilitate the interpretation of the results, a white contour line is once again used to denote the .S = 0.5 saturation front. The peak
values of the pressure field can be seen to be concentrated within the invading fluid phase, as expected. The hoop stress is observed
to be somewhat similar to the volumetric strain. The permeability is largest within the highly-damaged regions, until it reaches an
upper bound of (1.922/12 = 0.31 mm?). Recall that this upper bound follows from assuming a Poiseuille flow confined by the two
plates of the Hele-Shaw cell. As anticipated, the Darcy flux is maximal in the damaged areas and at the water front.
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Fig. 8. Comparison of the volumetric strain field between the simulation (left) and the experiment (right). A fluid saturation of S = 0.5 is indicated in the
simulation result as a white contour.
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Fig. 9. Simulation results for: (a) the pressure; (b) the hoop stress; (c) the permeability; and (d) the magnitude of the Darcy flux of water.

4.5. Reproduction of an experimental phase diagram

Experiments were conducted using monolayers of cemented beads with varying degrees of cement and a range of injection
rates (Meng et al., 2023). As expected, larger cement volume fractions gave rise to layers with increased fracture resistance. Fig. 10
shows a phase diagram delineating two regimes of response as a function of the modified capillary number Ca* and the cement
volume ratio C. The symbols in the diagram correspond to individual experiments or simulations, with the symbol type and color
indicating the source and the observed flow regime, respectively.

The simulation results appear to replicate the phase diagram reasonably well, as indicated in Fig. 10. The phase diagram can
be interpreted as follows. For a given cement ratio, fluid injection at relatively low capillary numbers gives rise to porous invasion
without any fracturing of the monolayer. As the capillary number is increased, the mechanical loading on the monolayer becomes
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Fig. 10. Phase diagram representing the modified capillary number Ca* vs. the cement volume ratio C. An exponential separatrix (black line) was found to
separate a porous invasion regime from a fracturing regime for both the experimental and numerical results.

large enough to give rise to fracturing. Note that the transition from porous invasion to fracturing regime is progressive, in the
sense that a simulation result labeled as porous invasion may display some small cracks, albeit with little influence on the invasion
pattern. Throughout this work, these two regimes are differentiated by measuring the length of the longest crack. If this length is
larger (resp. smaller) than an arbitrarily small length, then the simulation result is labeled as belonging to the fracturing regime
(resp. porous invasion regime). Following the discussion in Section 4.4 regarding the importance of interpreting hydraulic cracks
through the porosity field, crack lengths are calculated based on the distance from the center of the domain to the end of regions with
porosity ¢ = 1. The outcome of both experiments and simulations is that the threshold separating porous invasion from fracturing
was found to scale exponentially with the cement volume ratio, as indicated by the solid black line in Fig. 10.

It bears emphasis that a key parameter in the model was adjusted to yield the best match between the experimental and
simulation results in this phase diagram. As mentioned in Section 4.4, the damage viscosity f is assumed to be an increasing function
of the cement volume ratio C. A relatively simple relationship that appears to provide a good match with the experimental phase
diagram is # = ¢\/C, with ¢ = 65.7kPas as the damage viscosity coefficient. The physical basis for this particular value for ¢ has
yet to be established, but in principle it could be connected to various sources of rate dependency, such as the viscoelasticity of
the cementing glue. Having sufficiently calibrated the model, in the remainder of this paper, simulations are employed to explore
regions of the parameter space well outside the reach of the experimental setup.

4.6. Effect of the fracture parameters y,, G,, and f

Before examining the influence of the main hydraulic parameters (permeability and viscosity), results illustrating the sensitivity
of the model to the fracture parameters are reported. The fracturing response of the system is governed by 3 parameters in the
model: the nucleation energy y, (crack initiation), the fracture toughness G, (crack propagation), and the damage viscosity g (rate
effects). The sensitivity of the simulation results to variations in each of these parameters is illustrated in Fig. 11. The middle column
in the Figure corresponds to the base state that was used to make the comparisons in Section 4.4. For the sake of comparison, all
simulation results are shown when the saturation front is at a similar distance from the outer boundary.

As expected, increasing either the fracture toughness G, or the damage viscosity f is observed to inhibit crack propagation. Less
expected is the effect of the nucleation energy y,.: while increasing its value delays crack initiation, the final cracks are observed to
progress further in the domain. This may be explained by the accumulation of strain energy in the system while crack initiation is
prevented until the energy reaches the higher threshold.

4.7. Phase diagram representing fracturing number vs. branching number

A wide range of the parameter space is now explored to infer the types of possible flow regimes predicted by the model. As
described in the introduction, the model is expected to indicate various types of viscous flows, namely porous invasion, invasive
and non-invasive fracturing, in possible combination with viscous fingering. The primary model parameters determining the type of
flow are found to be, unsurprisingly, the 3 main fluid parameters #,, #,,, and k,, which are therefore widely varied in this section.
Note that the characteristic permeability k is taken as the initial average permeability in this section.

First, to determine whether the flow is of fracturing type or not, the fracturing number, denoted by N, is employed. Taking
inspiration from Holtzman et al. (2012), the fracturing number is defined as the ratio of the driving force to the resisting force. The
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Fig. 11. Effect of the fracture parameters y, (nucleation energy), G, (fracture toughness), f (damage viscosity). The damage field is shown along with the white
contour of the saturation front. The middle column corresponds to a reference simulation common to the three rows, obtained with the fracture parameters
values stemming from the experimental study. The left and right columns are obtained by dividing and multiplying these reference values by 10, respectively.
The simulations results are shown when the saturation front is at a same certain distance from the outer boundary.

driving force is taken to be the viscous pressure drop 6p,;, introduced in (50). The resisting force is the critical injection pressure
5p.,; at which the flow regime transitions from porous invasion to fracturing. The fracture number thus reads:

(54

While the driving force characterizes the invasion and contains only flow parameters, the resisting force characterizes the fracture
resistance of the medium and depends on pertinent strength quantities such as the cement fraction. In this section, the fracture
parameters are held fixed and, therefore, the value of 6p,,; is common for all simulations.

Second, to further characterize the type of flow within the fracturing and porous invasion regimes, a new dimensionless number
is constructed, called the branching number and denoted by N,, given by

”wlg

= ) (55)
nokO

b

Note that the branching number is related to the Darcy number and the mobility ratio defined in (49) through N, = M~'Da~!. For
a fixed fracturing number N, varying the branching number N, was found to give rise to two types of flow. In the porous invasion
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Fig. 12. Plots of the porosity field and saturation front (white contour) illustrating the sensitivity to changes in various flow parameters. Influence on the
branching pattern of permeability (from left to right: k = 5x 1072 mm?, k = 1072mm?, k = 107> mm?, at fixed 5, = 1kPas and #,, = 107> kPas), of invading fluid
viscosity #,, (from left to right: n,, = 10°kPas, 5,, = 10~ kPas, 5, = 1073 kPas, at fixed 5, = 1kPas and k = 107> mm?), and of defending fluid viscosity (from left
to right: 5, = 1073 kPas, 5, = 1072 kPas, 5, = 1 kPas, at fixed #,, = 10~ kPas and k = 1073 mm?).

regime (N, < 1), low values of N, indicate a uniform porous invasion, whereas large values of N, indicate a viscous fingering
instability. The number of branches of this instability was found to increase with N,. In the fracturing regime (N, > 1), low values
of N, indicate invasive fracturing, whereas large values of N, indicate non-invasive fracturing. The number of “crack branches” was
found to increase with N,.

To illustrate these observations, Fig. 12 shows the individual influence of the main parameters of N, on the type of flow. A
first intuitive result is that decreasing the permeability tends to result in the invading fluid flow being more confined to the cracks,
thereby indicating a transition from invasive to non-invasive fracturing. Non-invasive fracturing is characterized by the invading
fluid front being confined to the open channels that form. As for the influence of the fluid viscosities, similar trends are observed
with increasing #,, and #,, as shown in the figure. Note that while &, and #,, play a role that is consistent with the aforementioned
rationale behind the branching number, it is not the case for 7,, at least individually. However, as a group, the branching number
does play the role explained above, for fixed values of the fracturing number. Finally, the left simulation result of the third row of
Fig. 12 displays a new type of flow, which is the combination of the fracturing regime and viscous fingering. However, the branching
number alone is not sufficient to identify the parameter space where this regime dominates; this will be done in combination with
the fracturing number later in this section.
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Fig. 13. Phase diagram of the fracturing number N, vs the branching number N,, mapping the five types of flow regimes. The red rectangle indicates the
region of diagram explored by the experiments. The circular inserts are simulation results representing the porosity field along with the saturation front in white.

During extensive testing, the simulations indicated that although the invading fluid viscosity 5,, has an effect on the branching
pattern, it has a very limited influence on the fracture onset. This is consistent with experimental observations by Zhou et al. (2010)
as well as the results described in Carrillo and Bourg (2021).

To build a phase diagram of the fracturing number N, vs. the branching number N, representing all possible flow regimes, a
large number of simulations are conducted over wide ranges of the parameters 7,, #,,, kj. The resulting phase diagram is shown in
Fig. 13, with each symbol corresponding to an individual simulation and positioned at the corresponding values of N, and N ;. For
the resulting values of N, the characteristic length was chosen as the inner radius of the Hele-Shaw cell (i.e., /[; = r; = 5mm).

The particular flow regime indicated by each simulation is tagged as either a blue circle (uniform invasion), a blue star
(viscous fingering), an orange triangle (invasive fracturing), an orange square (non-invasive fracturing), or an orange cross
(fracturing/fingering). The resulting regions where each type of flow dominates are also colored to help indicate threshold values
for N, or N, that separate various regimes.

Note that N, and N s are inherently different since, unlike the latter, the former is not a conventional dimensionless number since
it is not the ratio of two competing forces. Nevertheless, the phase diagram indicates that both the dimensionless numbers N, and N,
do, in fact, play the role of regime delimiters, with values of N, = 1 and N, = 1 roughly separating fracturing vs. non-fracturing for
the former, and uniform invasion vs. viscous fingering and invasive fracturing vs. non-invasive fracturing for the latter. A new flow
regime, mixing fracturing and fingering is found between the regions of non-invasive fracturing and viscous fingering, for N, > 1
and a certain range of N . Interestingly, in the region N, > 1, sufficiently large values of the fracturing number effectively prohibits
viscous fingering, apparently favoring flow within the fractures over porous invasion. Finally, the red rectangle shown in Fig. 13
represents the region of the diagram explored by the experiments. The latter was obviously able to showcase the two regimes of
invasive fracturing and uniform invasion, while our simulations indicate the possibility of three more regimes that are beyond the
range of conditions studied experimentally.

For practical purposes, this phase diagram might provide insight on the type of flow regime that can be expected at the field scale.
For instance, it is well known that viscous fingering decreases the efficiency of fluid—fluid displacement in industrial applications
(e.g., enhanced oil recovery (Pinilla et al., 2021)). It is expected that industrial hydraulic fracturing may also suffer from this
efficiency decrease. Indeed, our results suggest the existence of a flow regime combining hydraulic fracturing and viscous fingering,
provided that the branching number N, is sufficiently large. To estimate the latter, consider three types of field applications. First,
in the context of oil recovery, if water (,, ~ 10~ kPas) is used to displace oil (n, ~ 10~3 kPas), through a reservoir of permeability
k ~ 10~ mm?, then N, ~ 10'°. The injection borehole is assumed to have a radius of /, ~ 100mm. Second, in the context of CO,
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sequestration, where brine is displaced for water co-production, one can estimate N, ~ 10'2. The invading fluid, supercritical CO,,
is assumed to have a viscosity of 107 kPas, whereas the defending fluid, brine, is assumed to have the same viscosity as water, and
the permeability is the same as in the first application. Third, in the context of geothermal reinjection, even though the invading
fluid, water, is the same as the defending fluid, the viscosity of the former can be lower than that of the latter when its temperature
is larger (Mcdowell et al., 2016). As in Mcdowell et al. (2016), when the viscosity of the invading and defending fluid is 10~*kPas
and 1073 kPas, respectively, and the permeability is 10~ mm?, then N, ~ 10'°. In all, the branching numbers for field applications
are much larger than the range studied in Fig. 13, so that the type of flow cannot be ascertained for the moment. Note also that in
real reservoirs, the flow regimes are not expected to be as distinguishable as in the simulations shown here. In particular, invasive
fracturing, also called leak-off, can occur through existing natural cracks, even for tight geological formations (Chen et al., 2021).
This means that invasive fracturing could occur for high values of N,. Results that are perhaps more applicable to the kinds of
porous media encountered in the field could be obtained by replacing the random initial porosity field by a more realistic one, for
example, or by incorporating existing fracture networks.

5. Conclusion

In this work, a double phase-field approach regularizing both cracks and fluid-fluid interfaces is introduced. Derived within
the frameworks of continuum thermodynamics and linear poroelasticity, the model behavior is characterized by a tight three-
way coupling between multiphase fluid flow, poromechanics, and fracturing. Through finite-element discretization and numerical
simulations, the model was validated against Hele-Shaw experiments, both directly and via the reconstruction of a phase diagram
discriminating porous invasion from hydraulic fracturing. The parameter space was then explored beyond experimental capabilities
to discover a variety of flow regimes, including a combination of fracturing and viscous fingering.

The model employs many simplifying assumptions that permit relatively low computational cost while satisfyingly reproducing
relatively complex experiments. However, in future works, it will be of interest to explore the influence of higher-fidelity modeling
choices. First, the small strain assumption underpinning linear poroelasticity is at the limit of validity in the present setting and
may be replaced by finite-strain kinematics, as in Ehlers (2018) or Paulin et al. (2022). The model presented in this work was
developed with a view towards subsurface engineering applications, in which the small strain assumption is often valid. Second,
interpreting the packing of the experimental beads as a continuum is at the limit of validity as well. This could be addressed by
resorting to explicitly modeling the microstructure on one hand or by experiments where the microstructural scale is much smaller
than the domain size, on the other. Third, the binary fluid flow description can be enriched by replacing our Darcy-Poisseuille flow
model by a Darcy-Stokes flow model, as introduced by Ehlers and Luo (2017), and Wilson and Landis (2016). Fourth, provided light
modifications such as the introduction of a capillary pressure, our model can accommodate capillary flows in addition to viscous
flows.

Ultimately, the model presented in this contribution could be used to predict and control the type of flows in field applications,
as it bridges laboratory and field scales.
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Table B.1

Summary of the values chosen for the different model parameters.
Name Symbol Unit Exp. value Num. value
height of Hele-Shaw cell H mm 1.96 /
outer radius of Hele-Shaw cell r, mm 53 53

beads diameter d mm 2 /
packing fraction 1=¢y - 0.60 0.60
cement volume ratio C % [0,3] /
oil viscosity 7, kPas [0.029,0.29] [1074, 1]
water viscosity Mo kPas 10-° [107°,1073]
permeability k mm? [(0.02d)2, (0.06d)*] /
permeability coeff k mm? / [1074,1071]
surface tension y kPamm 0.03 0.03
Young’s modulus of granular pack E kPa 331 331
drained bulk modulus of granular pack K kPa 184 184
Poisson ratio of granular pack v kPa 0.2 0.2

bulk modulus of solid grains K, kPa 1600 1600
nucleation energy v, kPa / 0.0015C?
fracture toughness G, kPamm (0.26C + 1.00)? (0.26C + 1.00)?
damage viscosity B kPas / 65.7\/6
regularization length for § Ig mm / 4.0
regularization length for d Iy mm / 4.0
Inner boundary condition for w,, w; mm/s / 50
Inner boundary condition for u Hi kPa / 0.006
Outer boundary condition for p H, kPa / 0.02

Appendix A. Derivation of the equivalent forms of the solid mass balance

In this appendix, the equivalent forms of the solid mass balance (5) are derived, following Borja’s derivation (Borja, 2006). The
assumed constitutive dependency of the partial solid density p; = j,(p) yields

. —_ ~l .
s /.Js(p)p (A1)
=p/ K,
where the matrix bulk modulus K = p;/p’(p) is introduced, and the prime denotes the ordinary derivative.
The left-hand side of the solid mass balance (4), then becomes:
PP +pVeov =1 - dps + (1= P)ps + (1 = P)p,V - v (A2)
=1-¢p,+(1 = P)pp/K+ (1 = P)p,V - vy,
which provides, upon dividing by p,, the result (5),.
For the second form (5),, the second constitutive dependency p = j(¢, p*) is employed, which yields:
. _0p; 0P,
= — S. A.3
p=7 ¢d> + Pl (A.3)
Due to (5); and (4),, and gathering the terms in p and V - v,, this becomes:
1-—¢dp . op 9p
1-—22 ) s=— (-1 -p)== +° Veu,. A4
( K, a¢>” ( ( ¢)a¢+”aps> o a9
Upon introducing the skeleton bulk modulus
op ,0p 1—¢ dp
K=(1-¢)(-(1-p)=L +* 1- £, A5
( ¢)<( (’”aq&”apf)/( K, a¢> (A9
(A.4) becomes:
(1-¢)p=-KV -, (A.6)
Finally, the second result (5), is recovered by combining (5) and (A.6),, and introducing the Biot coefficient:
b=1-K/K,. (A7)

Appendix B. Summary table of the experiment’s and model’s parameters
See Table B.1
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Fig. C.14. Comparison of the injection pressure curve with the average damage curve in the simulation reproducing the experiment.

Appendix C. Comparison injection pressure and average damage
See Fig. C.14
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