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This article presents a deep learning model for three-dimensional (3D) transient mixed convection in a horizontal
channel with a heated bottom surface. Using Conditional Generative Adversarial Networks (cGAN), we suc-
cessfully approximate temperature maps at arbitrary channel locations and time steps. The model is specifically
designed for mixed convection at Reynolds number 100, Rayleigh number 3.9 x 10°, and Richardson number
88.8. To investigate the impact of the discriminator network architecture on model accuracy, we compare
Convolutional Neural Network (CNN) based classifiers with PatchGAN classifiers, both with and without strided
convolutions. Remarkably, the cGAN with PatchGAN based classifier (without strided convolutions) yields the
highest clarity and accuracy in inferring temperature maps. Additionally, other factors such as image contrast,
spatiotemporal variation rate of temperature, and the number of channels in the temperature image significantly
influence ¢cGAN accuracy. This work highlights the potential of deep learning in efficiently modeling complex

transport processes.

1. Introduction

Recently, there has been a surge in interest in utilizing deep learning
approaches for modeling transport processes, a domain that has tradi-
tionally relied heavily on computational fluid dynamics (CFD). Deep
learning algorithms offer the advantage of being able to effectively
identify features within unstructured data, such as images, texts, and
signals. This eliminates the need for separate feature extraction pro-
cesses in data-driven modeling, streamlining the overall workflow.

While CFD techniques are well-established and powerful, they often
demand substantial computational resources and time to tackle large-
scale spatiotemporal dynamic problems. This can be a significant
drawback in practical applications. However, with access to simulation
and/or experimental data for transport processes, deep learning models
can be trained to address complex transport problems without incurring
significant computational costs. In essence, these models can act as
efficient reduced-order models. By leveraging the data-driven capabil-
ities of deep learning, researchers and practitioners can explore novel
avenues for modeling transport processes and potentially unlock new
insights. The ability to reduce reliance on extensive computational re-
sources makes deep learning an attractive option for tackling real-world
transport challenges.
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Numerous deep learning techniques have been employed in
modeling heat transfer processes, including the pioneering use of con-
ditional generative adversarial networks (cGAN). In one early applica-
tion [1], cGANs were utilized to infer steady-state temperature fields
within a two-dimensional (2D) domain where conduction served as the
sole heat transfer mechanism. The training dataset for this work was
prepared using a finite volume method. The cGAN model effectively
generated temperature fields based on 2D images representing initial
temperature distributions.

Expanding on this success, the cGAN model was further trained to
approximate temperature, velocity, and pressure fields for a natural
convection process in a 2D square cavity [2]. Here, the model inputs
consisted of five-channel 2D images, incorporating initial and boundary
conditions. In another recent application [3], the cGAN technique was
employed to infer 2D distributions of temperature, Nusselt number, and
friction factor within a heated channel, considering a wide range of
Reynolds numbers from 100 to 27750. Notably, when combined with a
data augmentation technique, the cGAN model demonstrated excep-
tional predictive capabilities for unseen fluid channel geometries,
including narrowed, widened, and rotated channels, highlighting the
technique’s nonlinear interpolation and extrapolation capabilities.
Traditionally, convolutional neural networks (CNN) have been widely
used for image processing and analysis. However, CNNs necessitate a
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Nomenclature

s specific heat, J/kg-K

H channel height, m

k thermal conductivity of fluid, W/m-K

L channel length, m

Pr Prandtl number, dimensionless

AP pressure drop between the channel inlet and outlet, Pa

R? coefficient of determination, dimensionless

Ra Rayleigh number, dimensionless

Re Reynolds number based on channel diameter,
dimensionless

Ri Richardson number, dimensionless

t time, (s)

Tp base plate temperature, K

T; inlet temperature of the fluid, K

Tinin minimum temperature of fluid, K

Tinax maximum temperature of fluid, K

AT mean temperature difference between the ground truth
and generated images, K

ATnee ~ maximum temperature difference between the ground
truth and generated images, K

w channel width, m

Greek symbol

a thermal diffusivity, m?/s

p density, kg/m®

A weight parameter, dimensionless

U dynamic viscosity, Pa-s

Acronyms

ADAM  adaptive moment estimation

AE autoencoder

cGAN conditional generative adversarial network
CNN convolutional neural network

CFD computational fluid dynamics

DNN deep neural networks

DN discriminator network

DCGAN deep convolutional generative adversarial network
FVM finite volume model

GAN generative adversarial network

GN generator network

MAE mean absolute error

ReLU rectified linear unit

carefully designed loss function to achieve satisfactory performance [4].
To address this challenge and enhance accuracy, the concept of Gener-
ative Adversarial Networks (GAN) was introduced [5]. GANs automat-
ically adapt the loss function to the data, making them well-suited for
deep learning-based image generation tasks. As a result, GANs have
gained popularity in the field.

In addition to the cGAN technique, various other deep learning
methods have been employed for heat transfer modeling. CNN [6] and
autoencoder (AE) [7] were utilized to predict steady-state temperature
distributions within a 2D domain with conduction as the sole heat
transfer mechanism. Similar to GAN, both models effectively recon-
structed output images from input images containing boundary condi-
tions. In these studies, the CNN model utilized a 2D heat equation as its
loss function [6], while the autoencoder model employed mean squared
errors or mean of maximum squared errors as its loss function [7]. In
another demonstration, CNN was trained to predict the 2D distribution
of local heat flux in a fully developed turbulent channel flow, using 2D
images of wall-shear stresses and pressure fluctuations as inputs [8]. The
loss function in this work was defined as the sum of mean squared error
and regularization loss. Recently, physics-informed neural networks
(PINN) were reported for one-dimensional (1D) and 2D heat conduction
problems [9]. By defining the loss function to incorporate errors in the
conduction heat transfer equation, boundary and initial conditions, deep
neural networks (DNN) were able to predict temperature distributions in
a 2D domain without requiring a pre-generated training dataset. DNNs
are also commonly used for regressing discrete numeric outputs from
discrete numeric inputs. In a previous work [10], two-layer artificial
neural networks learned to predict the fouling resistances of a cross-flow
heat exchanger when six operating condition parameters were provided.

Despite the considerable progress made in deep learning techniques
for modeling heat transfer processes, there remains uncertainty about
their effectiveness in inferring complex phenomena, such as transient,
multi-mode conjugate, or various turbulent-flow heat transfer processes.
The question arises whether deep learning models can outperform nu-
merical simulations in solving these complex heat transfer processes,
particularly in terms of speed. If deep learning models can achieve faster
results while maintaining accuracy, they would be invaluable in
designing and optimizing 2D or three-dimensional (3D) transport sys-
tems. This study aims to explore the potential of deep learning by
investigating deep conditional generative adversarial networks capable

of predicting 3D transient laminar mixed convection phenomena.

Mixed convection involves comparable effects of free and forced
convection, resulting in buoyancy-driven secondary flows and unstable,
inhomogeneous property fields. The flow characteristics of mixed con-
vection are known to enhance heat transfer up to 4 to 5 times compared
to pure forced convection [11-15], making it an area of substantial in-
terest in engineering and scientific applications, such as heat exchangers
[16-18], radiation energy collectors [19,20], plants [21], and ground-
water and geothermal systems [22,23]. By studying deep learning
models in the context of mixed convection, this research seeks to explore
their applicability and potential benefits in tackling such challenging
and important heat transfer scenarios.

2. Mixed convection problem and data generation

We investigate a mixed convection flow in a three-dimensional (3D)
channel with dimensions: width (W) of 60 mm, height (H) of 15 mm, and
length (L) of 130 mm, as depicted in Fig. 1. The flow is driven by water
entering the channel at 35 °C (T;) through the inlet with a uniform ve-
locity distribution, resulting in a Reynolds number (Re) of 100, based on
the channel hydraulic diameter. The bottom wall temperature (T}) is set
to 43 °C, while the other walls are thermally insulated. The prescribed
boundary conditions yield a Rayleigh number (Ra) of 3.9 x 10° and a
Richardson number (Ri) of 88.8.

To analyze the transient flow and temperature fields, we employ a
finite volume model (FVM) implemented in commercial CFD software
(ANSYS Fluent). To reduce computational cost, the simulation considers
only half-section of the channel, utilizing the yz-plane at x = 0 as a
symmetric plane. The convergence criteria for the continuity equation
are set at 10, and for the momentum and energy equations, it is set at
1075, The time step size for the simulation model is 0.05 s, and the total
number of time steps is 7200. In our model, we determine the density (p)
and dynamic viscosity () of water as functions of temperature without
employing the Boussinesq approximation. Other water properties, such
as specific heat (C,), Prandtl number (Pr), and thermal conductivity (k),
are assumed to be constant at the mean temperature of the water inlet
and bottom wall.

Fig. 1 depicts the temperature distribution at select yz-planes. Near
the channel entrance (z < 2H), only the fluid near the bottom wall is
heated, while most of the fluid maintains a temperature close to the inlet
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Fig. 1. Temperature distribution at selected cross-sections in a rectangular channel induced by mixed convection heat transfer.

temperature. Along the x-direction, thermal plumes develop at regular
intervals, representing concentrated hot fluid penetrating into the colder
region above. At this stage, there is a high temperature gradient from the
heated wall toward the unheated fluid region. As z increases along the
channel, the thermal plumes grow in size, reach the top wall, and
circulate around the channel, contributing to the homogenization of
fluid temperature. Beyond the middle region of the channel (z > L/2),
the temperature gradient in the fluid significantly reduces due to hy-
draulic and thermal mixing.

The solutions obtained from the FVM represent temperature distri-
butions in the simulation domain at discrete time steps. These results are
then used to create training and testing datasets for the cGAN model.
The datasets consist of 4320 two-dimensional (2D) temperature images
with a resolution of 64 x 128, obtained from xy-planes at 360 different
time steps. Two approaches are considered for generating the temper-
ature images: (1) RGB images with three channels and (2) grayscale
images with a single channel. For this study, we opted to use 16-bit
grayscale images due to their advantages in achieving higher accuracy
with significantly fewer training parameters. Each pixel of a 16-bit
grayscale image can contain a value between 0 and 65535. The gray-
scale pixel intensity corresponds to the absolute temperature multiplied
by a scaling factor, which is 100 in this work. Due to the temperature
range relevant to our problem, the pixel values range from 30,800 to
31600. For numerical stability during training, we offset the pixel values
by half of 65,535 and normalize them so that each pixel may have a
value between —1 and 1. However, for visualization purposes, the
subsequent temperature maps obtained from the cGAN model are pre-
sented in RGB scales accompanied by color bars. The single-channel
image-based training required only a few hundred parameters for the
generator training, whereas the three-channel image-based training
demanded thousands of parameters. For our problem, there was no
significant difference in training duration between the single-channel
and three-channel image-based training.

In the training process, 90 % of the images from the dataset are
selected to train the cGAN model, while the remaining 10 % are reserved
for testing the model’s performance. Specifically, we sampled the test
data with a uniform distribution in both the spatial and temporal do-
mains. The temperature images were collected at a constant time step
interval of 10 s and a constant step distance along the z-direction, i.e., a
10 mm interval. Uniform data sampling enabled our model to be trained
and tested without specific biases at particular time steps or channel
locations.

3. Deep learning methodology

We utilize the cGAN [24] to achieve rapid prediction of flow tem-
perature distribution. Among various deep learning algorithms for
image processing, such as CNN [25] and variational autoencoder (VAE)
[26], we specifically select cGAN due to its superior capability in image
generation. CNN is a popular class of artificial neural networks used for
tasks like classifying, recognizing, analyzing, or segmenting images.
However, generating high-quality target images using CNN alone
without designing sophisticated loss functions can be challenging. On
the other hand, VAE is an artificial neural network that maps input

image characteristics into a latent space and reconstructs images from
vectors in that space. While VAE training is stable, the generated outputs
may not be as close to the ground truth images as those produced by
cGAN.

The generator network (GN) of the cGAN learns to create images that
closely resemble the ground truth images, tricking the discriminator
network (DN). In Fig. 2(a), we present the architecture of the GN. The
input to GN is a 1 x 8 conditional vector that describes the channel
geometry, thermal and hydraulic boundary conditions, fluid properties,
time (¢), and the z location in the channel, i.e., input (¢) = [channel
aspect ratio (AR), Re, Pr, Ri, T;, Ty, t, z]. The fully connected layer (G1)
feeds and reshapes the input vector into an input layer with a shape of 1
x 1 x 512 array. Subsequently, the input layer goes through seven
blocks (from G2 to G8), each comprising three layers, including trans-
pose convolutional, batch normalization, and ReLU (Rectified Linear
Unit) [27] activation layers. The transpose convolutional layer performs
an inverse convolution operation, generating an output feature map
with greater dimensions than the input. The batch normalization [28]
layer transforms the means and variances of the layer inputs to ensure a
stable and fast learning process. In this work, G1 does not include a
batch normalization layer, as GN performs well without it. Finally, the
output layer (G9) uses the Tanh activation function, generating a flow
temperature image with a desired size of 64 x 128.

The discriminator network (DN) learns to distinguish ground truth
images from the fake images generated by GN. Several common types of
DN have been developed for GANs. In the original GAN [5], DN is
defined by multilayer perceptrons, providing a classifier with a scalar
probability that the input image belongs to the ground truth group
rather than being from GN. In recent GANs, multilayer perceptrons have
been replaced by CNNs to enhance training stability. In the deep con-
volutional GAN (DCGAN) [29], DN uses a modified CNN that replaces
pooling layers with strided convolutions and incorporates batch
normalization. In PatchGAN [4], the classifier receives small patches of
images and classifies them, requiring a smaller number of parameters in
DN compared to the traditional GAN classifier.

Fig. 2(b) illustrates the DN architecture, which reduces the input
image into an output array. Our DN is based on a PatchGAN, which
produces a 64 x 64 image (D7) with each pixel representing the pre-
diction for a 64 x 128 patch of the input image. The DN does not employ
strided convolutions to maintain the feature map size after D1. Our se-
lection of DN architecture is through the comparison between CNN and
PatchGAN architectures, which is described in our supplementary
material.

The objective of a cGAN combines the goals of both the GN and the
DN. The GN aims to generate a flow temperature map (Y) from a given
input vector (c) that closely resembles the CFD simulation result (X)
while trying to deceive the DN. Conversely, the DN’s objective is to
distinguish between the real CFD simulation result (X) and the generated
flow temperature map (Y). The cGAN’s objectives are formulated as
follows:

LccaM(GN.DN) = E x[1ogDN(c,X)] + E,y[log{1-DN(c.)}] @

where DN(c, X) represents the probability that the DN receives input
c and real image X and classifies it as X, and DN(c, Y) represents the
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Fig. 2. cGAN architectures: (a) generator and (b) discriminator.

probability that the DN receives input ¢ and generated image Y, and
classifies it as X. The DN aims to maximize the expectation values of DN
(¢, X) and 1 - DN(c, Y), while the GN seeks to minimize these values as
per Equation (1).

To enhance the ability of the GN further, the L1 loss is often included
as an additional objective. The L1 loss measures the mean absolute pixel
difference between the generated image Y and the real image X,
encouraging the GN to produce clearer results. The L1 loss is formulated
as follows:

Lr;(GN) =
Thus, the final objective of the cGAN is described as

Ec Xy[”Y XN 2)

Ltotat = mingymaxpnLegan(GN,DN) + ALy 1(GN) 3

where the hyperparameter 1 is a weight that determines the relative
importance of the L1 loss in the overall objective.

We carefully optimized the hyperparameters, such as training epochs
and 4, to strike a balance between training quality and computation
duration. A sufficient number of training epochs is essential to reduce
the training losses to desirable levels. We compared the results obtained
with epochs set to 500, 1000, 2000, and 3000. As the number of epochs
increased, the training duration also increased from 1.5 h to 8.8 h, and
the mean temperature difference (AT) between the ground truth and
generated images decreased from 0.22 K to 0.093 K. Note, AT is equiv-
alent to the mean absolute error (MAE) in this work. Considering the
training duration and AT, we conducted all subsequent model training
with an epoch value of 3000. For the model training, we employ the
ADAM (adaptive moment estimation) optimizer [30] with a learning
rate of 0.0002 and p; of 0.5. Detailed information regarding hyper-
parameter optimization is provided in the supplementary material.

The hyperparameter A plays a crucial role in balancing the two ob-
jectives during generator training. As A increases, the GN focuses more
on minimizing the mean absolute difference between the real image (X)
and the generated image (Y), thus improving low-frequency accuracy.

Given that many temperature images in our convection problem include
low-frequency features, such as small temperature gradients across unit
image pixels, we raised 4 to prioritize the L1 loss over L.gay and mini-
mize model errors effectively. We identified an optimal value of 1 as 5 x
10°, since this A made the mean prediction error AT, averaged over all
channel locations and time steps, less than 0.1 K.

4. Model testing

The trained cGAN serves as reduced-order models for mixed con-
vection, enabling the inference of temperature maps at arbitrary channel
locations (z) and time points (t). Fig. 3(a) shows the temperature maps at
an early stage (t = 12 s) of the mixed convection flow for selected 2
locations that were not seen by the model during training. The cGAN
model successfully generates the characteristic development of con-
vection transverse rolls in mixed convection flow. The temperature
maps exhibit similar features arising from buoyancy-driven secondary
flows at this early stage. At t = 12 s, the prediction error AT, averaged
over all channel locations, ranges from merely 0.15 K to 0.24 K.

The accuracy of the models is affected by the image contrast deter-
mined by the temperature gradient. Fig. 3(b) shows the model pre-
dictions during a stable stage (t = 342 s). The trained models can infer
elongated transverse convection rolls and the secondary flow develop-
ment across the entire channel region. However, during this stable stage,
the spatial temperature variation is noticeably reduced compared to the
initial stage due to flow mixing induced by the secondary flows. The
Michelson image contrast, calculated as (Tmax - Tmin)/(Tmax + Tmin)
where Tpox and Tpin are the maximum and minimum temperatures,
decreases from 0.0128 to 0.0113 when comparing the ground truths at ¢
=12 s and 342 s at z = 60 mm. We find that models tend to generate
blurred features, particularly indistinct boundaries of convection rolls at
2z = 60 mm when the Michelson image contrast is approximately below
0.011. At t = 342 s, the prediction error AT, averaged over all channel
locations, is 0.132 K.

The ¢GAN demonstrates higher accuracy in predicting the simpler
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Fig. 3. Temperature distributions at selected cross-sections in a heated channel predicted at (a) t = 12 s and (b) t = 342 s by cGAN model and FVM (denoted as

ground truth).

temperature maps occurring during the stable stage. The coefficient of
determination (RZ), calculated between the predicted and ground truth
temperatures, tends to be greater at smaller z values, particularly near
the channel entrance region, where the image features are simpler and
have higher contrast compared to locations at greater z values. R? also
tends to be greater with a large t, where the time-dependent temperature
variation is less compared to the initial flow development stage at small
t. The time-averaged R? for all time steps at various z locations ranged
between 0.834 and 0.999 as shown in Figure S7. For Fig. 3, Table 1
presents AT and the maximum temperature difference between ground
truth and generated images (ATyqy), Which are also consistent with the
dependence of R? on z and t.

Fig. 4 displays the temperature maps predicted by the cGAN at un-
seen channel locations ranging from z = 5 mm to z = 55 mm. Fig. 4(a)
and 4(b) show the model predictions during the early unstable stage at t
= 12 s and the stable stage at t = 342 s, respectively. Remarkably, even
for the unseen channel locations, the trained ¢cGAN successfully ap-
proximates the development of convection rolls at all time steps.

Table 1
AT and AT,y at various values of t and z in Fig. 3.
t=12s t=2342s
z (mm) AT (K) AT pax (K) AT (K) AT pax (K)
10 0.033 1.30 0.030 0.49
20 0.087 1.68 0.13 1.84
30 0.43 3.67 0.16 2.44
40 0.51 3.66 0.17 4.44
50 0.34 4.60 0.20 1.79
60 0.26 3.74 0.21 2.49

Consistent with the previous model test conducted for various time
points, the model performs better when predicting temperature maps
with higher contrast. We observe that the Michelson image contrast in
the ground truth, averaged for all selected channel locations, is 0.0114
att = 12 s and 0.0109 at t = 342 s, indicating that the image contrast
diminishes when the temperature field becomes mixed and homoge-
nized during the stable stage. Consequently, the cGAN exhibits a greater
location-averaged R%att=12s (R2 = 0.907) compared to t = 342 s (R2
= 0.862). Based on our observations regarding the cGAN’s accuracy
dependence on the image contrast, we can expect improved perfor-
mance if the color range of the temperature maps is adjusted to suit
different stages of the convection process. This adjustment may enhance
the cGAN’s ability to predict temperature variations during the stable
stage when the image contrast is relatively low.

5. Conclusions

This study investigates the application of a cGAN model for rapidly
approximating temperature maps in a 3D transient mixed convection
process. The trained cGAN effectively infers temperature distributions at
any channel location and time, provided an input conditional vector
containing numerical information about the channel geometry, thermal
and hydraulic boundary conditions, location, and time.

During cGAN training, we compared four architectures of the
discriminator network: the PatchGAN classifier and CNN classifier with
or without strided convolutions. The comparison suggests that the
PatchGAN classifier without strided convolutions is well-suited for
generating complex temperature features in unstable mixed convection
processes.

We found that cGAN accuracy was influenced by image contrast,
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Fig. 4. Temperature distributions at unseen cross-sections in a heated channel predicted by cGAN model and FVM (denoted as ground truth).

spatiotemporal variation rate of temperature, and the number of chan-
nels. When the Michelson image contrast was below 0.011, or when
temperature features rapidly changed between time steps, the model
tended to generate blurred features. Training the model with single-
channel images improved the ability to capture complex image fea-
tures, even for temperature maps with low contrasts.

This work demonstrates the potential of deep learning as a rapid
reduced-order model for complex transport processes. The developed
c¢GAN model can be extended to cover a wider range of flow conditions
and channel geometries by providing additional training data. This
c¢GAN model will prove valuable for researchers seeking to predict the
spatiotemporal variation of fields in heat transfer systems without
relying on expensive and computationally intensive numerical simula-
tions. Enhancing the generalization of deep learning models to un-
trained conditions, such as various flow regimes or geometries, without
necessitating extensive training data poses a significant challenge.
Exploring the development of models with increased adaptability
beyond the training zone emerges as a focal point for future endeavors.
One promising opportunity is the incorporation of physics laws into
neural networks, as exemplified by the physics-informed neural network
framework. This approach holds potential for addressing the need for
models that can seamlessly navigate diverse conditions outside their
initial training parameters.
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