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Deep learning model for rapid temperature map prediction in transient 
convection process using conditional generative adversarial networks 
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A B S T R A C T   

This article presents a deep learning model for three-dimensional (3D) transient mixed convection in a horizontal 
channel with a heated bottom surface. Using Conditional Generative Adversarial Networks (cGAN), we suc-
cessfully approximate temperature maps at arbitrary channel locations and time steps. The model is specifically 
designed for mixed convection at Reynolds number 100, Rayleigh number 3.9 × 106, and Richardson number 
88.8. To investigate the impact of the discriminator network architecture on model accuracy, we compare 
Convolutional Neural Network (CNN) based classifiers with PatchGAN classifiers, both with and without strided 
convolutions. Remarkably, the cGAN with PatchGAN based classifier (without strided convolutions) yields the 
highest clarity and accuracy in inferring temperature maps. Additionally, other factors such as image contrast, 
spatiotemporal variation rate of temperature, and the number of channels in the temperature image significantly 
influence cGAN accuracy. This work highlights the potential of deep learning in efficiently modeling complex 
transport processes.   

1. Introduction 

Recently, there has been a surge in interest in utilizing deep learning 
approaches for modeling transport processes, a domain that has tradi-
tionally relied heavily on computational fluid dynamics (CFD). Deep 
learning algorithms offer the advantage of being able to effectively 
identify features within unstructured data, such as images, texts, and 
signals. This eliminates the need for separate feature extraction pro-
cesses in data-driven modeling, streamlining the overall workflow. 

While CFD techniques are well-established and powerful, they often 
demand substantial computational resources and time to tackle large- 
scale spatiotemporal dynamic problems. This can be a significant 
drawback in practical applications. However, with access to simulation 
and/or experimental data for transport processes, deep learning models 
can be trained to address complex transport problems without incurring 
significant computational costs. In essence, these models can act as 
efficient reduced-order models. By leveraging the data-driven capabil-
ities of deep learning, researchers and practitioners can explore novel 
avenues for modeling transport processes and potentially unlock new 
insights. The ability to reduce reliance on extensive computational re-
sources makes deep learning an attractive option for tackling real-world 
transport challenges. 

Numerous deep learning techniques have been employed in 
modeling heat transfer processes, including the pioneering use of con-
ditional generative adversarial networks (cGAN). In one early applica-
tion [1], cGANs were utilized to infer steady-state temperature fields 
within a two-dimensional (2D) domain where conduction served as the 
sole heat transfer mechanism. The training dataset for this work was 
prepared using a finite volume method. The cGAN model effectively 
generated temperature fields based on 2D images representing initial 
temperature distributions. 

Expanding on this success, the cGAN model was further trained to 
approximate temperature, velocity, and pressure fields for a natural 
convection process in a 2D square cavity [2]. Here, the model inputs 
consisted of five-channel 2D images, incorporating initial and boundary 
conditions. In another recent application [3], the cGAN technique was 
employed to infer 2D distributions of temperature, Nusselt number, and 
friction factor within a heated channel, considering a wide range of 
Reynolds numbers from 100 to 27750. Notably, when combined with a 
data augmentation technique, the cGAN model demonstrated excep-
tional predictive capabilities for unseen fluid channel geometries, 
including narrowed, widened, and rotated channels, highlighting the 
technique’s nonlinear interpolation and extrapolation capabilities. 
Traditionally, convolutional neural networks (CNN) have been widely 
used for image processing and analysis. However, CNNs necessitate a 

* Corresponding author. 
E-mail address: kwon@asu.edu (B. Kwon).  

Contents lists available at ScienceDirect 

Thermal Science and Engineering Progress 

journal homepage: www.sciencedirect.com/journal/thermal-science-and-engineering-progress 

https://doi.org/10.1016/j.tsep.2024.102477 
Received 10 October 2023; Received in revised form 23 January 2024; Accepted 19 February 2024   

mailto:kwon@asu.edu
www.sciencedirect.com/science/journal/24519049
https://www.sciencedirect.com/journal/thermal-science-and-engineering-progress
https://doi.org/10.1016/j.tsep.2024.102477
https://doi.org/10.1016/j.tsep.2024.102477
https://doi.org/10.1016/j.tsep.2024.102477


Thermal Science and Engineering Progress 49 (2024) 102477

2

carefully designed loss function to achieve satisfactory performance [4]. 
To address this challenge and enhance accuracy, the concept of Gener-
ative Adversarial Networks (GAN) was introduced [5]. GANs automat-
ically adapt the loss function to the data, making them well-suited for 
deep learning-based image generation tasks. As a result, GANs have 
gained popularity in the field. 

In addition to the cGAN technique, various other deep learning 
methods have been employed for heat transfer modeling. CNN [6] and 
autoencoder (AE) [7] were utilized to predict steady-state temperature 
distributions within a 2D domain with conduction as the sole heat 
transfer mechanism. Similar to GAN, both models effectively recon-
structed output images from input images containing boundary condi-
tions. In these studies, the CNN model utilized a 2D heat equation as its 
loss function [6], while the autoencoder model employed mean squared 
errors or mean of maximum squared errors as its loss function [7]. In 
another demonstration, CNN was trained to predict the 2D distribution 
of local heat flux in a fully developed turbulent channel flow, using 2D 
images of wall-shear stresses and pressure fluctuations as inputs [8]. The 
loss function in this work was defined as the sum of mean squared error 
and regularization loss. Recently, physics-informed neural networks 
(PINN) were reported for one-dimensional (1D) and 2D heat conduction 
problems [9]. By defining the loss function to incorporate errors in the 
conduction heat transfer equation, boundary and initial conditions, deep 
neural networks (DNN) were able to predict temperature distributions in 
a 2D domain without requiring a pre-generated training dataset. DNNs 
are also commonly used for regressing discrete numeric outputs from 
discrete numeric inputs. In a previous work [10], two-layer artificial 
neural networks learned to predict the fouling resistances of a cross-flow 
heat exchanger when six operating condition parameters were provided. 

Despite the considerable progress made in deep learning techniques 
for modeling heat transfer processes, there remains uncertainty about 
their effectiveness in inferring complex phenomena, such as transient, 
multi-mode conjugate, or various turbulent-flow heat transfer processes. 
The question arises whether deep learning models can outperform nu-
merical simulations in solving these complex heat transfer processes, 
particularly in terms of speed. If deep learning models can achieve faster 
results while maintaining accuracy, they would be invaluable in 
designing and optimizing 2D or three-dimensional (3D) transport sys-
tems. This study aims to explore the potential of deep learning by 
investigating deep conditional generative adversarial networks capable 

of predicting 3D transient laminar mixed convection phenomena. 
Mixed convection involves comparable effects of free and forced 

convection, resulting in buoyancy-driven secondary flows and unstable, 
inhomogeneous property fields. The flow characteristics of mixed con-
vection are known to enhance heat transfer up to 4 to 5 times compared 
to pure forced convection [11–15], making it an area of substantial in-
terest in engineering and scientific applications, such as heat exchangers 
[16–18], radiation energy collectors [19,20], plants [21], and ground-
water and geothermal systems [22,23]. By studying deep learning 
models in the context of mixed convection, this research seeks to explore 
their applicability and potential benefits in tackling such challenging 
and important heat transfer scenarios. 

2. Mixed convection problem and data generation 

We investigate a mixed convection flow in a three-dimensional (3D) 
channel with dimensions: width (W) of 60 mm, height (H) of 15 mm, and 
length (L) of 130 mm, as depicted in Fig. 1. The flow is driven by water 
entering the channel at 35 ◦C (Ti) through the inlet with a uniform ve-
locity distribution, resulting in a Reynolds number (Re) of 100, based on 
the channel hydraulic diameter. The bottom wall temperature (Tb) is set 
to 43 ◦C, while the other walls are thermally insulated. The prescribed 
boundary conditions yield a Rayleigh number (Ra) of 3.9 × 106 and a 
Richardson number (Ri) of 88.8. 

To analyze the transient flow and temperature fields, we employ a 
finite volume model (FVM) implemented in commercial CFD software 
(ANSYS Fluent). To reduce computational cost, the simulation considers 
only half-section of the channel, utilizing the yz-plane at x  = 0 as a 
symmetric plane. The convergence criteria for the continuity equation 
are set at 10-4, and for the momentum and energy equations, it is set at 
10-5. The time step size for the simulation model is 0.05 s, and the total 
number of time steps is 7200. In our model, we determine the density (ρ) 
and dynamic viscosity (μ) of water as functions of temperature without 
employing the Boussinesq approximation. Other water properties, such 
as specific heat (Cp), Prandtl number (Pr), and thermal conductivity (k), 
are assumed to be constant at the mean temperature of the water inlet 
and bottom wall. 

Fig. 1 depicts the temperature distribution at select yz-planes. Near 
the channel entrance (z < 2H), only the fluid near the bottom wall is 
heated, while most of the fluid maintains a temperature close to the inlet 

Nomenclature 

cp specific heat, J/kg⋅K 
H channel height, m 
k thermal conductivity of fluid, W/m⋅K 
L channel length, m 
Pr Prandtl number, dimensionless 
ΔP pressure drop between the channel inlet and outlet, Pa 
R2 coefficient of determination, dimensionless 
Ra Rayleigh number, dimensionless 
Re Reynolds number based on channel diameter, 

dimensionless 
Ri Richardson number, dimensionless 
t time, (s) 
Tb base plate temperature, K 
Ti inlet temperature of the fluid, K 
Tmin minimum temperature of fluid, K 
Tmax maximum temperature of fluid, K 
ΔT mean temperature difference between the ground truth 

and generated images, K 
ΔTmax maximum temperature difference between the ground 

truth and generated images, K 

W channel width, m 

Greek symbol 
α thermal diffusivity, m2/s 
ρ density, kg/m3 

λ weight parameter, dimensionless 
μ dynamic viscosity, Pa⋅s 

Acronyms 
ADAM adaptive moment estimation 
AE autoencoder 
cGAN conditional generative adversarial network 
CNN convolutional neural network 
CFD computational fluid dynamics 
DNN deep neural networks 
DN discriminator network 
DCGAN deep convolutional generative adversarial network 
FVM finite volume model 
GAN generative adversarial network 
GN generator network 
MAE mean absolute error 
ReLU rectified linear unit  
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temperature. Along the x-direction, thermal plumes develop at regular 
intervals, representing concentrated hot fluid penetrating into the colder 
region above. At this stage, there is a high temperature gradient from the 
heated wall toward the unheated fluid region. As z increases along the 
channel, the thermal plumes grow in size, reach the top wall, and 
circulate around the channel, contributing to the homogenization of 
fluid temperature. Beyond the middle region of the channel (z > L/2), 
the temperature gradient in the fluid significantly reduces due to hy-
draulic and thermal mixing. 

The solutions obtained from the FVM represent temperature distri-
butions in the simulation domain at discrete time steps. These results are 
then used to create training and testing datasets for the cGAN model. 
The datasets consist of 4320 two-dimensional (2D) temperature images 
with a resolution of 64 × 128, obtained from xy-planes at 360 different 
time steps. Two approaches are considered for generating the temper-
ature images: (1) RGB images with three channels and (2) grayscale 
images with a single channel. For this study, we opted to use 16-bit 
grayscale images due to their advantages in achieving higher accuracy 
with significantly fewer training parameters. Each pixel of a 16-bit 
grayscale image can contain a value between 0 and 65535. The gray-
scale pixel intensity corresponds to the absolute temperature multiplied 
by a scaling factor, which is 100 in this work. Due to the temperature 
range relevant to our problem, the pixel values range from 30,800 to 
31600. For numerical stability during training, we offset the pixel values 
by half of 65,535 and normalize them so that each pixel may have a 
value between −1 and 1. However, for visualization purposes, the 
subsequent temperature maps obtained from the cGAN model are pre-
sented in RGB scales accompanied by color bars. The single-channel 
image-based training required only a few hundred parameters for the 
generator training, whereas the three-channel image-based training 
demanded thousands of parameters. For our problem, there was no 
significant difference in training duration between the single-channel 
and three-channel image-based training. 

In the training process, 90 % of the images from the dataset are 
selected to train the cGAN model, while the remaining 10 % are reserved 
for testing the model’s performance. Specifically, we sampled the test 
data with a uniform distribution in both the spatial and temporal do-
mains. The temperature images were collected at a constant time step 
interval of 10 s and a constant step distance along the z-direction, i.e., a 
10 mm interval. Uniform data sampling enabled our model to be trained 
and tested without specific biases at particular time steps or channel 
locations. 

3. Deep learning methodology 

We utilize the cGAN [24] to achieve rapid prediction of flow tem-
perature distribution. Among various deep learning algorithms for 
image processing, such as CNN [25] and variational autoencoder (VAE) 
[26], we specifically select cGAN due to its superior capability in image 
generation. CNN is a popular class of artificial neural networks used for 
tasks like classifying, recognizing, analyzing, or segmenting images. 
However, generating high-quality target images using CNN alone 
without designing sophisticated loss functions can be challenging. On 
the other hand, VAE is an artificial neural network that maps input 

image characteristics into a latent space and reconstructs images from 
vectors in that space. While VAE training is stable, the generated outputs 
may not be as close to the ground truth images as those produced by 
cGAN. 

The generator network (GN) of the cGAN learns to create images that 
closely resemble the ground truth images, tricking the discriminator 
network (DN). In Fig. 2(a), we present the architecture of the GN. The 
input to GN is a 1 × 8 conditional vector that describes the channel 
geometry, thermal and hydraulic boundary conditions, fluid properties, 
time (t), and the z location in the channel, i.e., input (c) = [channel 
aspect ratio (AR), Re, Pr, Ri, Ti, Tb, t, z]. The fully connected layer (G1) 
feeds and reshapes the input vector into an input layer with a shape of 1 
× 1 × 512 array. Subsequently, the input layer goes through seven 
blocks (from G2 to G8), each comprising three layers, including trans-
pose convolutional, batch normalization, and ReLU (Rectified Linear 
Unit) [27] activation layers. The transpose convolutional layer performs 
an inverse convolution operation, generating an output feature map 
with greater dimensions than the input. The batch normalization [28] 
layer transforms the means and variances of the layer inputs to ensure a 
stable and fast learning process. In this work, G1 does not include a 
batch normalization layer, as GN performs well without it. Finally, the 
output layer (G9) uses the Tanh activation function, generating a flow 
temperature image with a desired size of 64 × 128. 

The discriminator network (DN) learns to distinguish ground truth 
images from the fake images generated by GN. Several common types of 
DN have been developed for GANs. In the original GAN [5], DN is 
defined by multilayer perceptrons, providing a classifier with a scalar 
probability that the input image belongs to the ground truth group 
rather than being from GN. In recent GANs, multilayer perceptrons have 
been replaced by CNNs to enhance training stability. In the deep con-
volutional GAN (DCGAN) [29], DN uses a modified CNN that replaces 
pooling layers with strided convolutions and incorporates batch 
normalization. In PatchGAN [4], the classifier receives small patches of 
images and classifies them, requiring a smaller number of parameters in 
DN compared to the traditional GAN classifier. 

Fig. 2(b) illustrates the DN architecture, which reduces the input 
image into an output array. Our DN is based on a PatchGAN, which 
produces a 64 × 64 image (D7) with each pixel representing the pre-
diction for a 64 × 128 patch of the input image. The DN does not employ 
strided convolutions to maintain the feature map size after D1. Our se-
lection of DN architecture is through the comparison between CNN and 
PatchGAN architectures, which is described in our supplementary 
material. 

The objective of a cGAN combines the goals of both the GN and the 
DN. The GN aims to generate a flow temperature map (Y) from a given 
input vector (c) that closely resembles the CFD simulation result (X) 
while trying to deceive the DN. Conversely, the DN’s objective is to 
distinguish between the real CFD simulation result (X) and the generated 
flow temperature map (Y). The cGAN’s objectives are formulated as 
follows:  

LcGAN(GN,DN) = Ec,X[logDN(c,X)] + Ec,Y[log{1-DN(c,Y)}]                   (1) 

where DN(c, X) represents the probability that the DN receives input 
c and real image X and classifies it as X, and DN(c, Y) represents the 

Fig. 1. Temperature distribution at selected cross-sections in a rectangular channel induced by mixed convection heat transfer.  

M. Kang et al.                                                                                                                                                                                                                                   



Thermal Science and Engineering Progress 49 (2024) 102477

4

probability that the DN receives input c and generated image Y, and 
classifies it as X. The DN aims to maximize the expectation values of DN 
(c, X) and 1 - DN(c, Y), while the GN seeks to minimize these values as 
per Equation (1). 

To enhance the ability of the GN further, the L1 loss is often included 
as an additional objective. The L1 loss measures the mean absolute pixel 
difference between the generated image Y and the real image X, 
encouraging the GN to produce clearer results. The L1 loss is formulated 
as follows:  

LL1(GN) = Ec,X,Y[||Y – X||]                                                                 (2) 

Thus, the final objective of the cGAN is described as  

LTotal = minGNmaxDNLcGAN(GN,DN) + λLL1(GN)                               (3) 

where the hyperparameter λ is a weight that determines the relative 
importance of the L1 loss in the overall objective. 

We carefully optimized the hyperparameters, such as training epochs 
and λ, to strike a balance between training quality and computation 
duration. A sufficient number of training epochs is essential to reduce 
the training losses to desirable levels. We compared the results obtained 
with epochs set to 500, 1000, 2000, and 3000. As the number of epochs 
increased, the training duration also increased from 1.5 h to 8.8 h, and 
the mean temperature difference (ΔT) between the ground truth and 
generated images decreased from 0.22 K to 0.093 K. Note, ΔT is equiv-
alent to the mean absolute error (MAE) in this work. Considering the 
training duration and ΔT, we conducted all subsequent model training 
with an epoch value of 3000. For the model training, we employ the 
ADAM (adaptive moment estimation) optimizer [30] with a learning 
rate of 0.0002 and β1 of 0.5. Detailed information regarding hyper-
parameter optimization is provided in the supplementary material. 

The hyperparameter λ plays a crucial role in balancing the two ob-
jectives during generator training. As λ increases, the GN focuses more 
on minimizing the mean absolute difference between the real image (X) 
and the generated image (Y), thus improving low-frequency accuracy. 

Given that many temperature images in our convection problem include 
low-frequency features, such as small temperature gradients across unit 
image pixels, we raised λ to prioritize the L1 loss over LcGAN and mini-
mize model errors effectively. We identified an optimal value of λ as 5 ×
105, since this λ made the mean prediction error ΔT, averaged over all 
channel locations and time steps, less than 0.1 K. 

4. Model testing 

The trained cGAN serves as reduced-order models for mixed con-
vection, enabling the inference of temperature maps at arbitrary channel 
locations (z) and time points (t). Fig. 3(a) shows the temperature maps at 
an early stage (t = 12 s) of the mixed convection flow for selected z 
locations that were not seen by the model during training. The cGAN 
model successfully generates the characteristic development of con-
vection transverse rolls in mixed convection flow. The temperature 
maps exhibit similar features arising from buoyancy-driven secondary 
flows at this early stage. At t = 12 s, the prediction error ΔT, averaged 
over all channel locations, ranges from merely 0.15 K to 0.24 K. 

The accuracy of the models is affected by the image contrast deter-
mined by the temperature gradient. Fig. 3(b) shows the model pre-
dictions during a stable stage (t = 342 s). The trained models can infer 
elongated transverse convection rolls and the secondary flow develop-
ment across the entire channel region. However, during this stable stage, 
the spatial temperature variation is noticeably reduced compared to the 
initial stage due to flow mixing induced by the secondary flows. The 
Michelson image contrast, calculated as (Tmax - Tmin)/(Tmax + Tmin) 
where Tmax and Tmin are the maximum and minimum temperatures, 
decreases from 0.0128 to 0.0113 when comparing the ground truths at t 
= 12 s and 342 s at z = 60 mm. We find that models tend to generate 
blurred features, particularly indistinct boundaries of convection rolls at 
z = 60 mm when the Michelson image contrast is approximately below 
0.011. At t = 342 s, the prediction error ΔT, averaged over all channel 
locations, is 0.132 K. 

The cGAN demonstrates higher accuracy in predicting the simpler 

Fig. 2. cGAN architectures: (a) generator and (b) discriminator.  
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temperature maps occurring during the stable stage. The coefficient of 
determination (R2), calculated between the predicted and ground truth 
temperatures, tends to be greater at smaller z values, particularly near 
the channel entrance region, where the image features are simpler and 
have higher contrast compared to locations at greater z values. R2 also 
tends to be greater with a large t, where the time-dependent temperature 
variation is less compared to the initial flow development stage at small 
t. The time-averaged R2 for all time steps at various z locations ranged 
between 0.834 and 0.999 as shown in Figure S7. For Fig. 3, Table 1 
presents ΔT and the maximum temperature difference between ground 
truth and generated images (ΔTmax), which are also consistent with the 
dependence of R2 on z and t. 

Fig. 4 displays the temperature maps predicted by the cGAN at un-
seen channel locations ranging from z = 5 mm to z = 55 mm. Fig. 4(a) 
and 4(b) show the model predictions during the early unstable stage at t 
= 12 s and the stable stage at t = 342 s, respectively. Remarkably, even 
for the unseen channel locations, the trained cGAN successfully ap-
proximates the development of convection rolls at all time steps. 

Consistent with the previous model test conducted for various time 
points, the model performs better when predicting temperature maps 
with higher contrast. We observe that the Michelson image contrast in 
the ground truth, averaged for all selected channel locations, is 0.0114 
at t = 12 s and 0.0109 at t = 342 s, indicating that the image contrast 
diminishes when the temperature field becomes mixed and homoge-
nized during the stable stage. Consequently, the cGAN exhibits a greater 
location-averaged R2 at t = 12 s (R2 = 0.907) compared to t = 342 s (R2 

= 0.862). Based on our observations regarding the cGAN’s accuracy 
dependence on the image contrast, we can expect improved perfor-
mance if the color range of the temperature maps is adjusted to suit 
different stages of the convection process. This adjustment may enhance 
the cGAN’s ability to predict temperature variations during the stable 
stage when the image contrast is relatively low. 

5. Conclusions 

This study investigates the application of a cGAN model for rapidly 
approximating temperature maps in a 3D transient mixed convection 
process. The trained cGAN effectively infers temperature distributions at 
any channel location and time, provided an input conditional vector 
containing numerical information about the channel geometry, thermal 
and hydraulic boundary conditions, location, and time. 

During cGAN training, we compared four architectures of the 
discriminator network: the PatchGAN classifier and CNN classifier with 
or without strided convolutions. The comparison suggests that the 
PatchGAN classifier without strided convolutions is well-suited for 
generating complex temperature features in unstable mixed convection 
processes. 

We found that cGAN accuracy was influenced by image contrast, 

Fig. 3. Temperature distributions at selected cross-sections in a heated channel predicted at (a) t = 12 s and (b) t = 342 s by cGAN model and FVM (denoted as 
ground truth). 

Table 1 
ΔT and ΔTmax at various values of t and z in Fig. 3.   

t = 12 s t = 342 s 

z (mm) ΔT (K) ΔTmax (K) ΔT (K) ΔTmax (K) 

10 0.033 1.30 0.030 0.49 
20 0.087 1.68 0.13 1.84 
30 0.43 3.67 0.16 2.44 
40 0.51 3.66 0.17 4.44 
50 0.34 4.60 0.20 1.79 
60 0.26 3.74 0.21 2.49  
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spatiotemporal variation rate of temperature, and the number of chan-
nels. When the Michelson image contrast was below 0.011, or when 
temperature features rapidly changed between time steps, the model 
tended to generate blurred features. Training the model with single- 
channel images improved the ability to capture complex image fea-
tures, even for temperature maps with low contrasts. 

This work demonstrates the potential of deep learning as a rapid 
reduced-order model for complex transport processes. The developed 
cGAN model can be extended to cover a wider range of flow conditions 
and channel geometries by providing additional training data. This 
cGAN model will prove valuable for researchers seeking to predict the 
spatiotemporal variation of fields in heat transfer systems without 
relying on expensive and computationally intensive numerical simula-
tions. Enhancing the generalization of deep learning models to un-
trained conditions, such as various flow regimes or geometries, without 
necessitating extensive training data poses a significant challenge. 
Exploring the development of models with increased adaptability 
beyond the training zone emerges as a focal point for future endeavors. 
One promising opportunity is the incorporation of physics laws into 
neural networks, as exemplified by the physics-informed neural network 
framework. This approach holds potential for addressing the need for 
models that can seamlessly navigate diverse conditions outside their 
initial training parameters. 
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