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Abstract: We derive the Weil-Petersson measure on the moduli space of hyper-

bolic surfaces with defects of arbitrary opening angles and use this to compute its

volume. We conjecture a matrix integral computing the corresponding volumes and

confirm agreement in simple cases. We combine this mathematical result with the

equivariant localization approach to Jackiw-Teitelboim gravity to justify a proposed

exact solution of pure 2d dilaton gravity for a large class of dilaton potentials.
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1 Introduction

Theories of two dimensional dilaton gravity coupled to matter appear naturally when

describing the low energy dynamics of near extremal black holes in higher dimensions.

These two dimensional theories have been a very fruitful theoretical laboratory to

explore the structure and general properties of the gravitational path integral. Due

to its solvability, an emphasis has been put in Jackiw-Teitelboim (JT) gravity which

consists of pure gravity with a linear dilaton potential, see [1] for a recent review.
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To construct models describing higher dimensional black holes, one has to move

away from pure gravity and add propagating matter degrees of freedom. This is a

very difficult problem and some progress was made in [2]. Instead, in this paper

we address a different issue: in realistic models described by 2d dilaton gravity the

dilaton potential is not linear. It would be interesting therefore to have a solvable

model of 2d pure dilaton gravity with a generic dilaton potential, that one could

eventually couple to matter.

Leveraging on the techniques developed to solve JT gravity, [3] and [4] proposed

to model a modification of the dilaton potential by deforming JT gravity by a gas of

defects. The weight of the defect in the path integral, and the deficit angle, appear as

parameters of the new dilaton potential. In those references the theory was solved in

a regime involving sharp defects, with deficit angles bigger than π. This restriction

does not allow to study a semiclassical limit, where one could hope to see the sum

over gas of defects turn into a smooth geometry. This requires considering blunt

defects with deficit angles close to 0.

In [5] a conjecture was made for what the gravitational path integral should

be when deforming JT by a gas of defects with arbitrary angles. The result was

motivated by taking a limit of the minimal string theory, but no prescription about

how to compute it from first principles was given. The purpose of this paper is to

fill this gap. On the way, we also clarify some connections between Weil-Petersson

volumes of moduli space of hyperbolic surfaces with conical defects, and the minimal

string.

The paper has two parts. In the first part, presented in section 2, we prove

new mathematical results regarding the Weil-Petersson measure on the moduli space

of hyperbolic surfaces with conical deficits of arbitrary angles from 0 to 2π. In

the second part, section 3, we apply this to elucidate the meaning of the solution

proposed by [5]. In the rest of this introduction we summarize the results in some

detail.

Mathematical results: Weil-Petersson volumes with conical defects

The moduli space of hyperbolic surfaces of genus g with n geodesic boundaries and

its volume have been intensely studied in both the math and physics literature, see

e.g. [6–10]. From a physics point of view, it mainly appeared in the path-integral

formulation of JT gravity for which the partition function is given by the Weil-

Petersson volume of surfaces with the given topology.

JT gravity appears as the large p limit of (2, 2p+1) minimal string theory when

considered as a 2d theory of gravity [11], see also [12, Appendix F]. In the minimal

string, it is natural to also consider vertex operators. They are labelled by primary

fields of the (2, 2p + 1) Virasoro minimal model, which we can take to run from

0 ≤ k ≤ p − 1 with k ∈ Z. The interpretation of these vertex operators in a large

p limit is that they create a conical defect in the worldsheet and hence the minimal
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Figure 1. The two behaviors of two merging conical singularities.

string correlation functions in a large p limit become the Weil-Petersson volume of

the moduli space of hyperbolic surfaces with conical defects.

Computing the volume of the moduli space of cone surfaces is a surprisingly

subtle problem and has only partially been solved in the literature [4, 13, 14]. The

trouble is that there are various ‘phase transitions’ and the volume is in fact not a

smooth function of the conical defect angles. To see geometrically what is going on

consider Figure 1. It shows a portion of the surface with two conical defects. One of

the moduli of the surface is the relative position of the two defects. Hence we can

consider what happens when the two defects approach each other. Depending on

the precise choice of the defect angle, there are two different scenarios what happens

geometrically. If the defects are sufficiently ‘blunt’, then they can merge to one

conical defect angle as they collide. The new defect angle is now the sum of the

original two defect angles. Since the defect angle can be at most 2π, the two defects

can only merge as long as the sum of their angles is less than 2π. If the sum exceeds

2π, the situation is analogous to the behavior for geodesic boundaries. The two

defects can actually never merge. Instead, there is a geodesic that encircles the two

defects and the geodesic pinches in the appropriate degeneration. As we get closer to

the degeneration, the two original defects protrude further and further from the rest

of the surface. In the limit, they form a three-punctured sphere together with the

node where the geodesic pinched. The surface hence splits into two components that

are connected at the single node. This is the second behavior sketched in Figure 1.

We call such a pair of defects sharp. The same two scenarios can appear in the more

general case where n conical defects approach each other.

– 3 –



Weil-Petersson volumes were computed by Mirzakhani using a geometric re-

cursion relation [7]. A crucial ingredient of this recursion relation is the existence of

geodesics that divide the surface into smaller pieces. For blunt defects such geodesics

do not exist and the logic of the recursion relation breaks down.

We propose a simple solution to compute these volumes in generality in this

paper by following a different route. We make use of the well-developed intersection

theory on moduli space. These techniques were applied to JT gravity in [15, 16].

It is a useful fact that the moduli space of cone surfaces Mg;α1,...,αn
can be given a

natural complex structure for closed surfaces and hence one may invoke the power

of algebraic geometry. For the case with geodesic boundaries or cusps, the moduli

space of hyperbolic surfaces is isomorphic to the Deligne-Mumford compactification

Mg,n of moduli space. For conical defects, this is not quite true. As we already

discussed we allow points to coincide as long as their defect angles are blunt. Hence

the moduli space Mg;α1,...,αn
might correspond to a smaller compactification. The

above discussion implies that the moduli space of cone surface Mg;α1,...,αn
changes

actually discontinuously with the defect angles αi. In more technical terms, Mg,n

is a blow up of Mg;α1,...,αn
. In particular, there is a map Mg,n −→ Mg;α1,...,αn

that

forgets the blow up, i.e. Mg,n is a redundant parametrization of cone surfaces. It is

thus convenient to always work with Mg,n.

The volume of Mg;α1,...,αn
can then be found by computing

Vg,n(α1, . . . , αn) =

∫

Mg;α1,...,αn

eωWP , (1.1)

where ωWP is the Weil-Petersson form. The moduli space has complex dimension

3g− 3+n and only that term in the power series expansion of the exponential func-

tion contributes. We will denote the Weil-Petersson form on Mg,n also by ωWP and

the same formula for the volume also holds on Mg,n. The task of computing the vol-

ume then boils down to identify the correct cohomology class [ωWP] ∈ H2(Mg,n,R)

that represents the Weil-Petersson form on moduli space.1 After that, one can use

standard intersection theory on Mg,n to compute the volumes. The main non-trivial

ingredient in the computation of intersection numbers of Mg,n is Witten’s conjec-

ture/Kontsevich’s theorem [17, 18] to which all other intersection numbers can be

reduced in a rather simple fashion. An introductory account of this is given for

example in [19].

To explain the formula that we derive in this paper, we now recall some basic

constructions in Mg,n. There are n natural holomorphic line bundles L1, . . . ,Ln

over Mg,n whose first Chern classes are traditionally denoted by ψ1, . . . , ψn in the

literature. Somewhat informally, Li is the line bundle whose fiber over the punctured

surface Σ consists of the cotangent space at the i-th marked point zi ∈ Σ, i.e.

1All cohomology in this paper will be taken over the reals and we will hence surpress it in the

following.
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Figure 2. The boundary divisor for the class δ1,{1,3,6} = δ1,{2,4,5} ∈ H2(M2,6).

Li

∣
∣
Σ
= T ∗

zi
Σ.2 There is also a natural class that is usually called κ1 in the literature.

2π2κ1 is known to represent the Weil-Petersson form on moduli space in the case

in which all the marked points are cusps [20, 21]. A more algebraic definition is as

follows. Letting π : Mg,n+1 −→ Mg,n be the forgetful morphism that forgets the

last marked point, we can define κ1 = π∗(ψ2
n+1). Here we recall that pushforward

in cohomology means fiberwise integration. Since the fiber of the map π is complex

one-dimensional and ψ2
n+1 is a 4-form, κ1 is hence indeed a 2-form.3 Finally, further

natural classes in H2(Mg,n) are provided by the Poincaré duals of boundary divisors.

Such classes can informally be written by forms (or more precisely currents) that have

delta-function support on the boundary divisor. In physics language, such a form

will hence correspond to a contact term on the worldsheet that appears when two

or more vertex operators collide or when the surface degenerates in any other way.

We denote these classes by δh,I ∈ H2(Mg,n). Here I ⊂ {1, . . . , n} and 0 ≤ h ≤ g.

This class is the Poincaré dual of the degeneration depicted in Figure 2, where the

surface splits into two parts of genus h and g − h and the first part contains the

marked points I, while the second part contains the remaining marked points Ic.

Obviously we have by construction δh,I = δg−h,Ic. We also have the requirement

|I| ≥ 2 for h = 0 or |Ic| ≥ 2 for h = g, since there is no hyerbolic metric on a sphere

with one or two punctures. There is also a boundary class δirr that corresponds to

the non-separating divisor in Mg,n. It will however not make an appearance in this

paper.

With these preparations, we can now state the main formula that we derive in

this paper. The class [ωWP] for the moduli space Mg;α1,...,αm; b1,...,bn−m
of hyperbolic

surfaces with m conical defects and n−m geodesic boundaries is in general given by

[ωWP]

2π2
= κ1 −

m∑

i=1

α2
iψi +

1

4π2

n∑

i=m+1

b2iψi +
∑

I⊂{1,...,m}
1−∑

i∈I(1−αi)≥0

(

1−
∑

i∈I
(1− αi)

)2

δ0,I . (1.2)

2This definition is not adequate to describe the the behavior of sections near degenerations of

moduli space. A better definition is to define Li in terms of the relative dualizing sheaf of the

universal curve Cg,n. We will not need to work with the actual line bundles Li and will thus not

get into the details of these subtleties.
3To explain the notation, it is useful to note that there is a natural generalization κm =

π∗(ψ
m+1
n+1 ), which are the so-called Mumford-Morita-Muller classes. We will however only need

κ1 in this paper.
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Here we assumed that the firstm marked points are conical defects with deficit angles

2π(1−αi) and the marked points m+1, . . . , n are geodesic boundaries with boundary

lengths bi. Notice that the condition 1 −∑

i∈I(1 − αi) ≥ 0 precisely corresponds to

the condition that the defects labelled by the subset I can merge, i.e. realize the first

scenario in Figure 1. The first three terms in this formula are the ‘naive answer’ that

has appeared before in the literature [4]. It is obtained by noticing that a sharp defect

behaves essentially like a geodesic boundary whose length is formally imaginary. One

can then use the known formula for the case of only geodesic boundaries derived by

Mirzakhani [7]. The last term should hence be understood as a correction term that

is only present when at least some pair of defects is blunt. In physics language it

represents a contact term on the worldsheet.

We will show that (1.2) is uniquely fixed by requiring natural properties that we

will explain in detail in Section 2. We also show that the volumes defined in this way

satisfy analogues of the string and dilaton equation. They deal with the behavior

of the volumes when one of the defect angles approaches 0 and hence the surface

becomes completely regular at the puncture. These two identities read

Vg,m+1,n−m(α, αm+1; b)
∣
∣
∣
αm+1=1

=
n−m∑

i=1

∫

dbi bi Vg,m,n−m(α; b) , (1.3a)

dVg,m+1,n−m(α, αm+1; b)

dαm+1

∣
∣
∣
αm+1=1

= 2χ(Σg,α;b)Vg,m,n−m(α; b) . (1.3b)

The integral on the right hand side is a shortcut for
∫ bi
0
db′i. Here,

χ(Σg,α;b) = 2− 2g −
m∑

i=1

(1− αi)− (n−m) (1.4)

is the natural generalization of the Euler characteristic to the case of cone surfaces.

In particular, it is the quantity that the integral over the curvature computes in

this case via the Gauss-Bonnet theorem. Since the curvature is constant negative,

−χ(Σg,α;b) is the area of the cone surface. For the case of only one conical defect,

these identities were derived in [14].

Application to 2d dilaton gravity

As explained above, we defined a measure to compute volumes on the moduli space

of hyperbolic surfaces with cone points of arbitrary angles. We apply this to the

problem of solving 2d pure dilaton gravity with an arbitrary dilaton potential. These

are theories involving a two dimensional metric gµν on a surface M and dilaton φ

with an action in Euclidean signature given by

I[g, φ] = −S0χ− 1

2

∫

M

√
g(φR + U(φ))−

∮

∂M

√
hφ(K − 1). (1.5)
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The first term is proportional to the Euler characteristic of the space, S0 is a parame-

ter of the theory, and U(φ) is an a priori arbitrary function of the dilaton φ called the

dilaton potential. The last term includes the Gibbons-Hawking-York piece, to make

the variational problem well-defined for Dirichlet boundary conditions on the metric,

and a holographic counterterm to make the action finite on the hyperbolic disk. A

connected geometry with a number of handles g and n boundaries is suppressed by

a factor of (e−S0)2g+n−2, and therefore the large S0 limit organizes the path integral

into sectors of fixed topology.

Let us recapitulate what we know about 2d dilaton gravity. First, it was proven

by Saad, Shenker and Stanford (SSS) that the gravitational path integral of pure

JT gravity is dual to a random matrix integral with a specific spectral curve [10],

derived from a leading order in S0 density of states eS0ρJT(E) with

ρJT(E) =
sinh(2π

√
E)

4π2
, E > 0 . (1.6)

We denote by E the eigenvalues of the matrix, since they correspond to energy

eigenvalues in the holographic dual interpretation. This corresponds to a specific

choice of the dilaton potential

UJT(φ) = 2φ . (1.7)

In this case the path integral over the dilaton localizes the gravity path integral into

geometries with constant negative curvature, which are asymptotically nearly-AdS2

[22–24]. To prove this, SSS evaluates the partition function with a fixed number

of boundaries and handles and relates it to the Weil-Petersson volumes of smooth

hyperbolic surfaces. This relies crucially on the existence of geodesics separating

the asymptotically AdS2 boundaries from the handles present in the interior of the

geometry. The remain of the proof then follows from the known connection between

these volumes and random matrices [7, 25].

In [3] and [4] this duality was extended to deformations of JT gravity, where one

performs the gravity path integral including a gas of sharp defects with a deficit angle

between π and 2π. Given a fixed number of boundaries, the partition function is a

double expansion in the number of handles and the number of defects. It is argued

that adding a single defect species is equivalent to shifting the dilaton potential by

U(φ) → U(φ) + λe−2π(1−α)φ. (1.8)

The proof of this duality relies on the fact that the WP volumes with sharp defects

are simply related to the original WP volumes with geodesic boundaries Mirzakhani

computed [13, 14].

At each order in λ, the geometry in the bulk is singular due to the presence of

defects. It is a non-trivial expectation that the resummation over the gas of defects

generates a smooth new geometry, not necessarily hyperbolic. This analysis is only

– 7 –



relevant when quantum corrections are small. Looking at (1.6) for pure JT gravity,

one sees that quantum corrections are small at large energies E ≫ 1. The high

energy part of the spectrum can be associated to regions in the bulk with large

dilaton. If α < 1 we see that the modification of the dilaton potential does not affect

the high energy sector. To test whether the sum over defects really gives rise to a

new geometry we need to take the limit of small 1− α, and therefore consider blunt

defects.

A proposal was made in [5] that relates the path integral of JT gravity deformed

by a gas of generic defects, with arbitrary deficit angles from 0 to 2π, with a matrix

integral. The integral is over hermitian matrices with a matrix potential such that,

after a double scaling limit, the leading order density of state is eS0ρdJT(E) with

ρdJT(E) =
1

2π

∫

C

dy

2πi
e2πy tanh−1

(√

E −E0

y2 − 2W (y)−E0

)

, E > E0 . (1.9)

The dependence on the deficit parameters appears through the function W (y) =
∑

i λie
−2π(1−αi)y. The value E0 is found by demanding the density of states vanishes

at E0 with a square-root edge, and implicitly depends on W (y) in a complicated way.

The contour C is along the imaginary y-axis to the right of all singularities. This

coincides with the solution of [3, 4] when all defects are sharp. This proposal was

motivated by a conjectural connection between JT gravity and the minimal string

theory, but the analysis of [5] gave no clue of how to perform the gravity calculation.

Using the mathematical results described before, we show in some examples

how the gravitational path integral of theories with blunt defects matches with the

matrix model derived from (1.9). More concretely, the genus expansion of a matrix

model with density of states (1.9) is a generating function when expanded in λ of

the WP volumes at fixed genus and number of defects, introduced in section 2. We

should study two cases separately. First, consider the path integral over surfaces

with handles and defects such that there are geodesics separating the structure in

the interior to the AdS2 boundaries. In this case we propose that the result in [5]

computes precisely the Weil-Petersson volumes defined in section 2. Second, there

are some simple cases where there are no geodesics. This happens when we have a

small number of defects inside the hyperbolic disk. We argue how the path integral

on such spaces can be computed using the equivariant localization approach of [26],

and match it with the results from the matrix integral of [5]. These two cases exhaust

all the possibilities.

Proving the duality between the matrix integral with spectral curve derived from

(1.9) and the Weil-Petersson volumes with conical deficits derived from (1.2) is an

open mathematical problem. The spectral curve is complicated enough that a simple

extension of the methods in [25] does not seem viable.
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2 The Weil-Petersson form on the moduli space of cone sur-

faces

Mirzakhani showed in [8] that the cohomology class of the Weil-Petersson form on

the moduli space of surfaces with n geodesic boundaries of length b1, . . . , bn is given

by

[ωWP] = 2π2κ1 +
1

2

∑

i

b2iψi . (2.1)

The definition of the κ- and ψ-classes was explained in the Introduction, see also

[19]. The special case of bi = 0, i.e. a surface with only cusp singularities is a result

due to Wolpert [20, 21].

The Weil-Petersson form on moduli space descends from the Weil-Petersson form

on Teichmuller space, which in turn can be identified with a component of the moduli

space of flat PSL(2,R)-bundles on the Riemann surface. Thus there is a simple

gauge-theory formula for the Weil-Petersson form [27, 28],

ωWP(δA, δA
′) ≡ 1

4π

∫

Σ

tr (δA ∧ δA′) , (2.2)

where δA and δA′ are small perturbations of a connection on Σ and hence represent

tangent vectors on the space of all PSL(2,R) connections. Via symplectic reduc-

tion this formula descends to a non-degenerate symplectic form on the space of flat

PSL(2,R) connections up to gauge redundancy. From this point of view, one speci-

fies the monodromy of the gauge field around the punctures of the surface. Geodesic

boundaries correspond to a monodromy in hyperbolic conjugacy classes of PSL(2,R),

while conical defects correspond to monodromies in elliptic conjugacy classes. More

precisely, the monodromy matrices in the two cases take the form4

M ∼
(

e
b
2 0

0 e−
b
2

)

, M ∼
(

cos(πα) sin(πα)

− sin(πα) cos(πα)

)

. (2.3)

The parameter α ∈ [0, 1] characterizes the conical defect as in the Introduction. The

defect angle is related to α as θ = 2π(1 − α). Hence α = 0 corresponds to a cusp

and α = 1 corresponds to no defect at all. Since the eigenvalues of the two matrices

are related by

b ∼ 2πiα , (2.4)

one concludes that a geodesic boundary with imaginary length is formally equivalent

to a conical defect, at least for the purpose of computing volumes of moduli spaces.

4Strictly speaking these monodromies should be interpreted as monodromies of the universal

cover of PSL(2,R) so that e.g. the monodromy with α = 0 and α = 1 becomes inequivalent.
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(ℓ1, θ1)

(ℓ2, θ2)
(ℓ3, θ3)

(ℓ4, θ4)

Figure 3. Pair of pants decomposition of a genus 2 hyperbolic surface with a cusp.

The trace in (2.2) is invariant under conjugations, including complex ones. One may

hence be tempted to think that (2.1) implies that

[ωWP]

2π2

?
= κ1 −

∑

i

α2
iψi (2.5)

for the cohomology class of the Weil-Petersson form for a surface with n conical

defects.

This identification is in general incorrect. To see a simple example where this

fails, consider a four-punctured sphere. The generalized Gauss-Bonnet theorem im-

plies that the four-punctured sphere carries a hyperbolic metric under condition that

4∑

i=1

αi < 2 . (2.6)

Assuming validity of (2.5), we would conclude with the help of the intersection

numbers 〈κ1〉 = 〈ψi〉 = 1 that

V0,4,0(α1, α2, α3, α4)
?
= 2π2

(

1−
4∑

i=1

α2
i

)

. (2.7)

However even when obeying the constraint (2.6), it is easy to get a negative answer,

e.g. for α1 = α2 = 0, α3 = α4 >
1√
2
. Hence (2.5) cannot be correct.

2.1 Sharp and blunt defects

The reason that (2.6) fails is our cavalier treatment of the boundary divisors. We

have tacitly assumed that the Riemann surface under consideration is not nodal and

all boundary cone points are well-separated. In fact, the gauge theory argument

shows that it is true that

[ωWP]

2π2
= κ1 −

∑

i

α2
iψi on Mg,n , (2.8)

but is incorrect on Mg,n.
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Let us first recall the situation when all defects are geodesic boundaries (or

sufficiently sharp defects). The relevant moduli space possesses a natural compactifi-

cation that is constructed as follows. Every such hyperbolic surface admits a decom-

position in (3g − 3 + n) pair of pants, see Figure 3 for an example. The lengths and

twists (bi, ̺i) of this decomposition yield a natural coordinate system on (a patch of)

the corresponding moduli space. Boundaries divisors of the moduli space correspond

to surfaces with pinched geodesics bi → 0. This compactification precisely realizes

the Deligne-Mumford compactification of moduli space. Wolpert’s magic formula

gives an explicit formula for the Weil-Petersson form in terms of Fenchel-Nielsen

coordinates,

ωWP =
∑

i

dbi ∧ d̺i. (2.9)

This formula makes it manifest that the Weil-Petersson form extends to the com-

pactification of moduli space, which as we already mentioned is isomorphic to the

standard Deligne-Mumford compactification in the complex framework. Moreover

it behaves regularly at the boundary divisors and hence the formula (2.1) does not

feature any boundary classes.

The situation is very different when blunt conical defects are present, since in

general there is no pair of pants decomposition. For two conical defects with deficits

α1 and α2, there is only a geodesic that surrounds them when α1 + α2 < 1, i.e.

when the pair of defects is sharp. Thus when all pairs of defects are sharp, (2.5) still

holds. When a pair of blunt defects is present, the structure of the compactification

is different, as we already mentioned in the Introduction. The two defects will merge

to a sharper conical defect with

α = 1− (1− α1)− (1− α2) . (2.10)

It is useful to generalize this scenario as follows. Recall first that there are sepa-

rating degenerating divisors Dh,I inMg,n whose Poincaré dual cohomology classes we

denote by δh,I . Consider now the boundary divisorD0,I ofMg,n where I ⊂ {1, . . . , n}.
A point in Mg,n close to D0,I describes a surface in which the defects defects αi with

i ∈ I come close to each other. If α = 1 − ∑

i∈I(1 − αi) < 0, then there is a

geodesic surrounding all of the conical defects in I. Consequently the surface will

split into two components, one spherical component containing all the conical defects

in I and one containing all the handles and other punctures of the surface. The two

are connected at a cusp. If on the other hand α = 1 − ∑

i∈I(1 − αi) > 0, then all

the conical defects can just merge into one sharper conical defect characterized by

α. As we already mentioned, this means that the Deligne-Mumford compactification

is actually not the natural compactification in the present case, since it treats all

conical defects as sharp. Instead, the compactification of the moduli space depends

on α = (α1, . . . , αn) and we denote it by Mg;α.
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However, we can of course still give a formula for the Weil-Petersson form on

all of Mg,n, since the Deligne-Mumford compactification is more general than the

partial compactification that is adapted to the problem.

In formulas, these basic observations translate to the following. The divisor D0,I

in Mg,n is isomorphic to M0,|I|+1 ×Mg,n−|I|+1, with the two factors describing the

left and right part of the nodal surface. Let

ξI : D0,I = M0,|I|+1 ×Mg,n−|I|+1 −→ Mg,n (2.11)

be the natural inclusion. Then we can consider the pullback (ξI)
∗([ωWP]) of the

Weil-Petersson class to this boundary divisor. In less fancy terms, this just means

that we are restricting the symplectic form to this boundary divisor. In cohomology,

this gives

(ξI)
∗([ωWP]) ∈ H2(M0,|I|+1)⊕ H2(Mg,n−|I|+1,R) . (2.12)

We can then consider the projection on the first and second factor, which we denote

by πL and πR. The structure of the compactification means then

πL((ξI)
∗([ωWP])) =

{

[ωWP] , 1−∑

i∈I(1− αi) < 0 ,

0 , 1−∑

i∈I(1− αi) ≥ 0 ,
(2.13a)

πR((ξI)
∗([ωWP])) = [ωWP] , (2.13b)

where ωWP always denoted the Weil-Petersson form on the respective space. Together

with the explicit form of the Weil-Petersson form on the interior of moduli space (2.5),

we now show that this property fixes the cohomology class of the Weil-Petersson form

on Mg,n uniquely.

2.2 The cohomology class of the Weil-Petersson form

Using the two properties (2.5) and (2.13) we shall now demonstrate that the coho-

mology class of the Weil-Petersson form is completely fixed and takes the form (1.2)

when pulled back from Mg;α;b to Mg,|α|+|b|.

Uniqueness. The presence of the geodesic boundaries will never influence the fol-

lowing proof and we can set m = n. Throughout we keep α1, . . . , αn fixed. The

discussion so far immediately yields

[ωWP]

2π2
= κ1 −

m∑

i=1

α2
iψi +

∑

I⊂{1,...,m}
1−∑

i∈I(1−αi)≥0

βI δ0,I , (2.14)

since (2.5) is only modified near the boundary divisors D0,I with 1−∑

i∈I(1−αi) ≥ 0.

It remains to determine the constants βI . For this we use the pullback property
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(2.13). With the help of the relations in Appendix A, we can compute the pullbacks

of [ωWP] to the divisor

D0,I
∼= M0,|I|+1 ×Mg,n−|I|+1 . (2.15)

Let’s consider in particular the pullback to the projection to the second factor and

denote the new marked point on Mg,n−|I|+1 by •. Then ψ• can only come from the

pullback of the class δ0,I itself, see eq. (A.8). Using the ansatz (2.14), we thus have

πR

(

ξ∗I

(
[ωWP]

2π2

))

= −βIψ• + . . . , (2.16)

where the dots contain other linearly independent classes from ψ•. From our previous

geometric discussion, we need this to equal the corresponding Weil-Petersson form

on Mg,n−|I|+1, see eq. (2.13). There are now two cases.

1. 1 − ∑

i∈I(1 − αi) < 0. In this case, the genus g part of the surface has a

cusp at the node •. Since the coefficient of the ψ-class should vanish for a

cusp, we conclude that βI = 0. This is of course consistent with the fact that

the Weil-Petersson form shouldn’t be modified near these boundaries and we

indeed haven’t included those boundary classes in the ansatz (2.14).

2. 1 − ∑

i∈I(1 − αi) ≥ 0. In this case, the conical defects can merge to a new

conical defect with deficit angle characterized by α = 1−∑

i∈I(1− αi). Thus

the coefficient in front of ψ• has to be −α2, which fixes

βI = α2 =

(

1−
∑

i∈I
(1− αi)

)2

. (2.17)

This finishes the uniqueness part of the proof.

Check of properties. We still have to demonstrate that the formula (1.2) satisfies

(2.13). Thus let us consider again the degeneration corresponding to the divisor

D0,I . Without loss of generality, we can reorder the αi’s and assume for notational

convenience that I = {1, . . . , ℓ} with ℓ ≤ m. Let us distinguish again the two cases.

1. 1−∑ℓ
i=1(1− αi) < 0. In this case, the boundary class δ0,I itself is absent and

there is in particular no self-intersection. κ1 pulls back to the sum of the κ1-

classes on M0,ℓ+1×Mg,n−ℓ+1. The first ℓ ψ-classes pullback to the correspond-

ing ψ-classes on M0,ℓ+1 (with the ψ-class at the cusp absent) and similarly the

other ψ-classes pullback to the corresponding ψ-classes on Mg,n−ℓ+1. Finally,

the δ-classes δ0,J with J ( I pullback to the corresponding δ-classes on M0,ℓ+1

and the δ-classes with J ∩ I = ∅ pull back to the corresponding δ-classes on

Mg,n−ℓ+1. δ-classes with I ( J do not appear because of our assumption that
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1−∑

i∈J(1− αi) < 0. All other δ-classes have zero pullback. These properties

make it obvious that the pullbacks to both components lead to the correct

Weil-Petersson class as predicted from the equation (1.2).

2. 1−∑ℓ
i=1(1− αi) ≥ 0. Let us denote the new ψ-classes at the node for the left

(i.e. M0,ℓ+1) and right (i.e. Mg,n−ℓ+1) component by ψ◦ and ψ•. The pullbacks

of κ1 and the ψ-classes are unchanged from the previous case, but there are

new contributions from the δ-classes. We first have the contribution from the

self-pullback of δ0,I which gives (see eq. (A.8))
(

1−
ℓ∑

i=1

(1− αi)

)2

(−ψ◦ − ψ•) . (2.18)

There are also new contributions of pullbacks from δ-classes to the right com-

ponent. We have

πR(ξ∗0,I(δ0,J)) = δ0,{•}∪J\I (2.19)

when I ( J . These terms are precisely needed to make the projection to the

right factor work, since they supply the δ-classes needed for when the new

merged conical defect collides with other conical defects, which can happen

when 1 − ∑

i∈J(1 − αi) ≥ 0 with I ( J . Thus these two additional terms

precisely make the pullback to the right component work.

It remains to show that the pullback to the left component is in fact zero. From

our discussion so far, it equals

πL

(

ξ∗I

(
[ωWP]

2π2

))

= κ1 −
ℓ∑

i=1

α2
iψi −

(

1−
ℓ∑

i=1

(1− αi)

)2

ψ◦

+
∑

J(I

(

1−
∑

i∈J
(1− αi)

)2

δ0,J . (2.20)

To show that this is in fact zero, we can use the additional relations for these

classes in H2(M0,ℓ+1,R), which we spelled out in Appendix A. Let’s proceed

coefficient by coefficient. To simplify the notation, we always assume that sums

over subsets J run over strict subsets J ( {1, . . . , ℓ}.
Using eq. (A.2a), the coefficient of α2

i equals

−ψi + ψ◦ +
∑

J, i∈J
δ0,J = −

∑

J, i∈J, j 6∈J
δ0,J −

∑

J, i, j 6∈J
δ0,J∪{◦} +

∑

J, i∈J
δ0,J , (2.21)

where j is an index not equal to i and ◦. We can replace the second sum with

the sum over its complement in {1, . . . , ℓ, ◦}, which combines with the first

term to cancel the third term. Next, the coefficient of αiαj equals

−2ψ◦ + 2
∑

J, i, j∈J
δ0,J . (2.22)
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We can again use eq. (A.2a) to express in ψ◦ in terms of boundary classes.

After replacing the sum with the corresponding sum over the complement, it

precisely cancels the second term in this expression. The coefficient of αi equals

−2(ℓ− 1)ψ◦ + 2
∑

J, i∈J
(|J | − 1) δ0,J . (2.23)

This is the same as summing (2.22) over j ∈ I = {1, . . . , ℓ} and hence also

vanishes. Finally, the coefficient of the constant term equals

κ1 − (ℓ− 1)2ψ◦ +
∑

J

(|J | − 1)2 δ0,J . (2.24)

We use (A.2b) with j = ◦ to express κ1 in terms of boundary classes,

κ1 =
∑

J, i6∈J
(|J | − 1) δ0,J . (2.25)

Since this identity is valid for any choice of i ∈ {1, . . . , ℓ}, we can sum over the

choice of i, which gives

ℓκ1 =
∑

J

(|J | − 1)(ℓ− |J |) δ0,J . (2.26)

Similarly, we can use that (2.23) vanishes and sum over the choice of i ∈
{1, . . . , ℓ}, which gives

ℓ(ℓ− 1)ψ◦ =
∑

J

|J |(|J | − 1) δ0,J . (2.27)

We thus get for the coefficient of the constant term (2.24)

1

ℓ

∑

J

(
(|J | − 1)(ℓ− |J |)− (|J | − 1)|J |(ℓ− 1) + ℓ(|J | − 1)2

)
δ0,J = 0 . (2.28)

This finishes the demonstration that [ωWP] as given by (1.2) satisfies the desired

pullback properties (2.13).

2.3 The dilaton operator

We now establish some further properties of our formula for the cohomology class of

the Weil-Petersson form. The two equations that we derive are the generalizations of

the string and the dilaton equation and are stated in (1.3a) and (1.3b). We assume

again that punctures 1, . . . , m are conical defects and punctures m + 1, . . . , n are

geodesic boundaries.

Let us start by computing the pullback of [ωWP] under the forgetful morphism

π : Mg,n+1 −→ Mg,n , (2.29)
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that forgets the (m+ 1)-st puncture. With the help of the equations (A.4), we get

π∗
(
[ωWP]

2π2

)

= κ1 − ψm+1 −
m∑

i=1

α2
iψi +

1

4π2

n−m∑

i=1

b2iψm+i+1 +
m∑

i=1

α2
i δ0,{i,m+1}

+
∑

I⊂{1,...,m}
1−∑

i∈I(1−αi)≥0

(

1−
∑

i∈I
(1− αi)

)2
(
δ0,I + δ0,I∪{m+1}

)

− 1

4π2

n−m∑

i=1

b2i δ0,{i+m+1,m+1} . (2.30)

Apart from the term in the last line, we recognize this to be the Weil-Petersson form

with one additional conical defect with zero defect angle (i.e. αm+1 = 1) inserted.

The term in the last line is absent on a surface without geodesic boundaries. This

is geometrically of course completely obvious; when adding a further marked point

to the surface without geodesic boundaries nothing special happens there and it

corresponds to a further ‘defect’ with zero deficit angle, i.e. no defect at all. The

correction with geodesic boundaries roughly has the interpretation of accounting for

the possibility that the geodesic boundaries introduce a hole in the surface of finite

size and the ‘defect’ is not allowed to end up in the hole, i.e. outside the surface.

We thus have

π∗([ωWP]) = [ωWP]−
1

2

n−m∑

i=1

b2i δ0,{i+m+1,m+1} , (2.31)

where the Weil-Petersson form on the right has a zero defect angle ‘defect’ angle

inserted. With the preparations, we can now derive (1.3a) and (1.3b).

String equation. The left-hand side of (1.3a) is computed by

Vg,m+1,n−m(α, 1; b) =

〈

exp

(

π∗([ωWP]) +
1

2

n−m∑

i=1

b2i δ0,{i+m+1,m+1}

)〉

, (2.32)

where we adopted the standard convention that the angle bracket denotes the in-

tegral over the respective moduli space. We can now expand the second term in

the exponential as a power series. Since δ0,{i+m+1,m+1}δ0,{j+m+1,m+1} = 0 for i 6= j

because the corresponding divisors don’t intersect, we do not have to keep any cross

terms in the expansion. We also don’t have to keep the zeroth order term because
〈
(π∗([ωWP]))

3g−2+n
〉
=

〈
π∗ ([ωWP]

3g−2+n
)〉

= 0 , (2.33)

since [ωWP]
3g−2+n vanishes for dimensional reasons. We thus get

Vg,m+1,n−m(α, 1; b) =
n−m∑

i=1

∑

k≥1

1

k!

(
b2i
2

)k
〈
δk0,{i+m+1,m+1} exp (π

∗([ωWP]))
〉
. (2.34)
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We can evaluate the relevant intersection numbers with the boundary classes by

pulling them back to the boundary divisor. Let ξ0,{i+m+1,m+1} be again the inclusion

of the boundary divisor D0,{i+m+1,m+1} →֒ Mg,n+1. For k = 1, we have

〈
δ0,{i+m+1,m+1} exp (π

∗([ωWP]))
〉
=

〈
ξ∗0,{i+m+1,m+1}π

∗ exp ([ωWP])
〉

(2.35)

= 〈exp ([ωWP])〉 , (2.36)

where used that π ◦ ξ0,{i+m+1,m+1} is the identity map on Mg,n and hence the com-

position ξ∗0,{i+m+1,m+1}π
∗ is also the identity in cohomology. For higher k, we have

〈
δk0,{i+m+1,m+1} exp (π

∗([ωWP]))
〉
=

〈

ξ∗0,{i+m+1,m+1}

(

δk−1
0,{i+m+1,m+1}π

∗ exp ([ωWP])
)〉

(2.37)

=
〈
(−ψi+m+1)

k−1 exp ([ωWP])
〉
, (2.38)

where we used (A.8) for the relevant pullback. We thus have

Vg,m+1,n−m(α, 1; b) =
n−m∑

i=1

∑

k≥1

1

k!

(
b2i
2

)k
〈
(−ψi+m+1)

k−1 exp ([ωWP])
〉

(2.39)

=

n−m∑

i=1

〈

1− e−
1
2
b2iψi+m+1

ψi+m+1
exp ([ωWP])

〉

. (2.40)

Noting that
1− e−

1
2
b2iψi+m+1

ψi+m+1
e

1
2
b2iψi+m+1 =

∫

dbi bi e
1
2
b2iψi+m+1 , (2.41)

the string equation now follows.

Dilaton equation. The dilaton equation is similar to demonstrate. We can com-

pute

dVg,m+1,n−m(α, αm+1; b)

dαm+1

∣
∣
∣
αm+1=1

=

〈

exp

(

π∗([ωWP]) +
1

2

n−m∑

i=1

b2i δ0,{i+m+1,m+1}

)

d[ωWP]

dαm+1

∣
∣
∣
αm+1=1

〉

. (2.42)

We can integrate over the fiber by applying the pushforward π∗ and using the basic

property π∗ (π∗α β) = απ∗(β) of the pushforward. This gives

dVg,m+1,n−m(α, αm+1; b)

dαm+1

∣
∣
∣
αm+1=1

=

〈

exp ([ωWP]) π∗

(

exp

(

1

2

n−m∑

i=1

b2i δ0,{i+m+1,m+1}

)

d[ωWP]

dαm+1

∣
∣
∣
αm+1=1

)〉

. (2.43)
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Let us compute the relevant pushforward. Notice first that

d[ωWP]

dαm+1

∣
∣
∣
αm+1=1

= −2ψm+1 + 2
∑

I⊂{1,...,m+1}, m+1∈I

(

1−
∑

i∈I
(1− αi)

)

δ0,I . (2.44)

All the appearing classes vanish when multiplied with δ0,{i+m+1,m+1}. For the bound-

ary classes, this is geometrically obvious because the divisors D0,{i+m+1,m+1} and

D0,I with I ⊂ {1, . . . , m} do not intersect. For the ψm+1-class, this follows because

the defining line bundle Lm+1 is trivial when restricted to D0,{i+m+1,m+1}. Thus,

we may omit the exponential factor and it remains to compute the pushforward of
d[ωWP]
dαm+1

∣
∣
∣
αm+1=1

. This can be done with the help of the pushforwards given in Ap-

pendix A,

π∗

(
d[ωWP]

dαm+1

∣
∣
∣
αm+1=1

)

= 2

(

−2g + 2− n+

m∑

i=1

αi

)

≡ 2χ(Σg,α,b) . (2.45)

This proves the dilaton equation.

2.4 Some simple examples

Let us list some WP-volumes with conical defects. We restrict ourselves to only

defects and no geodesic boundaries. We always assume that they are ordered such

that α1 ≤ α2 ≤ · · · ≤ αn.

g = 0, n = 4. Let us denote

θ(x) = x2Θ(x) , (2.46)

where Θ(x) is the Heaviside theta function. Using 〈κ1〉 = 〈ψi〉 = 1 on M0,4, we get

V0,4,0(α)

2π2
= 1−

4∑

i=1

α2
i +

∑

1≤i<j≤4

θ(αi + αj − 1) (2.47)

=







1− α2
1 − α2

2 − α2
3 − α2

4 ,

−α2
1 − α2

2 + 2(1− α3)(1− α4) , α3 + α4 > 1 ,

−α2
1 + (1− α4)(3− 2α2 − 2α3 − α4) , α2 + α4 > 1 ,

−α2
1 + (2− α2 − α3 − α4)

2 , α2 + α3 > 1 ,

2(1− α4)(2− α1 − α2 − α3 − α4) , α1 + α4 > 1 .

(2.48)

It is of course understood that the Gauss-Bonnet constraint (2.6) is satisfied. The

conditions are not mutually exclusive. In order to not write too many conditions, it

is also understood that these conditions are to be read sequentially and one should

pick the last condition in the list that applies.
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Geometrically, these conditions mean the following. In the first case, all pairs

of defects are sharp. In the second case, there is exactly one pair of blunt defects,

namely 3 and 4. In the third case, there is a ‘chain’ of three defects that can merge,

i.e. the first can merge with the second and the second can merge with the third,

but not the first with the third. Since the αi’s are assumed to be ordered, defects

2, 3 and 4 form this chain. In the fourth case, there is a triangle of defects that can

merge and in the fifth case, the pairs (1, 4), (2, 4) and (3, 4) are blunt. We could

graphically denote the second through fifth case by the graphs

3 4 , 2 4 3 ,

2 3

4

, 4
1

2

3

, (2.49)

where a line connecting two nodes means that this pair of indices is blunt.

Contrary to the naive answer (2.7), it is easy to check that this answer is always

positive. Note also that the last case in (2.48) is consistent and completely specified

by the string and dilaton equations (1.3).

g = 0, n = 5. In the presence of five defects, there are many cases. We can denote

them again graphically. There are 16 basic cases, which correspond to the graphs

∅ , 4 5 , 3 5 4 , 5
2

3

4

,

3 4

5

, 5

1

2

3

4

,

5

3

4
2

,
5

3

42

3
,

5

23

4

, 4

2

3

1

5 ,

5

4

3

2

,

5

4

1

3

2

,
1

3

2

4

5 ,

5

4

1

3

2

,

1

3

2

5

4 , 1

2

3

4

5

. (2.50)
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Additionally, most of these cases have further subcases. For five defects it is some-

times also allowed that three of them merge simultaneously and hence a boundary

class of the form δ0,{i,j,k} is present. We can denote this by shading the corresponding

face of the graph. For example, the fifth case above has two subcases, which are

3 4

5

and

3 4

5

. (2.51)

In total there are 66 cases that arise from shading the above diagrams (2.50) appro-

priately. For a subset I ⊂ {1, 2, 3, 4, 5}, let us write

θI(α) = θ

(

1−
∑

i∈I
(1− αi)

)

. (2.52)

Then the class of the Weil-Petersson form can be written as

[ωWP]

2π2
= κ1 −

∑

i

α2
iψi +

∑

I⊂{1,2,3,4,5}, |I|=2

(
θI(α) + θIc(α)

)
δ0,I . (2.53)

With the help of the identities in Appendix B, we then compute

V0,5,0(α)

(2π2)2
=

〈κ2
1〉
2

+
1

2

∑

i

α4
i 〈ψ2

i 〉+
∑

i<j

α2
iα

2
j〈ψiψj〉 −

∑

i

α2
i 〈κ1ψi〉

+
∑

I

(
θI(α) + θIc(α)

)
〈δ0,Iκ1〉 −

∑

i

∑

I

α2
i

(
θI(α) + θIc(α)

)
〈ψiδ0,I〉

+
1

2

∑

I,J

(
θI(α) + θIc(α)

)(
θJ (α) + θJc(α)

)
〈δ0,Iδ0,J〉 (2.54)

=
5

2
+

1

2

∑

i

α4
i + 2

∑

i<j

α2
iα

2
j − 3

∑

i

α2
i +

∑

I

(
θI(α) + θIc(α)

)

−
∑

I

∑

j 6∈I
α2
j

(
θI(α) + θIc(α)

)
− 1

2

∑

I

(
θI(α) + θIc(α)

)2

+
1

2

∑

I,J, I∩J=∅

(
θI(α) + θIc(α)

)(
θJ(α) + θJc(α)

)
. (2.55)

Here sums over subset I are always understood to be over subsets I ⊂ {1, 2, 3, 4, 5}
with |I| = 2. One can also check that this formula is consistent with the string and

dilaton equations and always gives a positive result.

We can simplify this result as follows. Let us collect all the θIc together and

sum over the complement instead. Notice that θI(α)θIc(α) = 0 because of the

Gauss-Bonnet constraint. Notice also that
∑

I,J,|I|=2,|J |=2,I∩J=∅
θIc(α)θJ(α) =

∑

I,|I|=3

∑

j,k∈I,j<k

(αj + αk − 1)2θI(α) (2.56)

– 20 –



These terms are

∑

I,|I|=3

[
(

1−
∑

i∈I
α2
i

)

θI(α)− 1

2
θI(α)2 +

∑

j,k∈I,j<k

(αj + αk − 1)2θI(α)

]

=
1

2

∑

I,|I|=3

θI(α)2 . (2.57)

Thus we obtain

V0,5,0(α)

(2π2)2
=

5

2
+

1

2

∑

i

α4
i + 2

∑

i<j

α2
iα

2
j − 3

∑

i

α2
i +

∑

I,|I|=2

θI(α)

−
∑

I,|I|=2

∑

j 6∈I
α2
jθI(α)− 1

2

∑

I,|I|=2

θI(α)2

+
1

2

∑

I,J,|I|=|J |=2, I∩J=∅
θI(α)θJ(α) +

1

2

∑

I,|I|=3

θI(α)2 . (2.58)

g = 1, n = 2. This is the first non-trivial case at higher genus and we obtain with

the help of the intersection numbers on M1,2 listed in Appendix B

V1,2,0(α)

(2π2)2
=

1

48

((
α2
1 + α2

2 − 2
)2 − (θ(α1 + α2 − 1)− 1)2

)

(2.59)

=
1

48

{

(1− α2
1 − α2

2)(3− α2
1 − α2

2) , α1 + α2 < 1 ,
∏

i(1− αi) (1−
∑

i αi(αi − 1)− α1α2) , α1 + α2 ≥ 1 .
(2.60)

One again checks that this is consistent with the string and dilaton equation, as well

as with positivity of the volume.

3 Two dimensional gravity and random matrices

We begin with a brief review of the duality between pure JT gravity and matrix

integrals, and the proposal of [5] for the matrix integral computing the gravity path

integral for deformations of JT gravity with a gas of defects. Then, we describe a

way to perform the explicit gravitational path integrals using the mathematical tools

developed in the previous section, and show in some simple examples it matches with

the matrix integral.

3.1 JT gravity and matrix integrals

The following type of matrix integrals will be relevant

Z =

∫

dH e−LTr V (H) , (3.1)
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where H is an L × L Hermitian matrix acting on an L-dimensional Hilbert space.

The measure dH is a product over the real components of the matrix, and V (H)

is an arbitrary function: the matrix potential. In the large L limit, keeping the

matrix potential fixed, the Feynman diagrams of this matrix integral triangulate a

two dimensional surface and the partition function has a topological expansion.

We will need a generalization to surfaces with boundaries, and we consider ex-

pectation values of resolvant insertions defined by

R(E1, . . . , En) =
1

Z

∫

dH e−LTrV (H)Tr
1

E1 −H
· · · Tr 1

En −H
, (3.2)

where the parameters Ei for i = 1, . . . , n can be complex numbers. This expression

has contributions from disconnected diagrams and we define Rconn.(E1, . . . , En) to be

the connected part of this correlator. In the large L limit these correlators have a

topological expansion alluded above

Rconn.(E1, . . . , En) ≃
∞∑

g=0

Rg,n(E1, . . . , En)

L2g+n−2
, (3.3)

where we emphasize that this expansion is only asymptotic. It is also convenient

to define a ’t Hooft expansion for the density of states ρ(E) =
〈∑L

i=1 δ(E − Ei)
〉
.

The sum is over the eigenvalues of a matrix realization H and the bracket denotes

a normalized expectation value over the matrix ensemble. This quantity also has an

expansion in terms of ρ(E) ≃ ∑

g L
1−2gρg(E). Importantly, the leading order term

ρ0(E) is uniquely specified in terms of the matrix potential, and therefore either

quantity gives a specification of the matrix integral.

The application to Weil-Petersson volumes, and to JT gravity, requires a fur-

ther limit: the double-scaling limit. At finite but large L, the leading order den-

sity of states has a compact support and the normalization of ρ0 is fixed through
∫
dE ρ(E) = L. In the double scaling limit we scale L together with a fine-tuning in

the matrix potential such that ρ0(E) has a non-compact support but remains finite.

There is now a new topological expansion in terms of the overall scale of the leading

order density of states, which we call eS0 , and is given by5

Rconn.(E1, . . . , En) ≃
∞∑

g=0

Rg,n(E1, . . . , En)

(eS0)2g+n−2
, ρ(E) ≃

∞∑

g=0

ρg(E)

(eS0)2g−1
. (3.4)

This is a topological expansion in the new parameter eS0 . In this case the Feynman

diagrams triangulating two dimensional surfaces become continuous. In the appli-

cation to NAdS2/NCFT1 holography the matrix is interpreted as the disordered

5In the rest of this paper all matrix integrals will be double-scaled and therefore we do not

introduce new notation to distinguish Rg,n(E1, . . . , En) and ρg(E) from the analogous parameters

in the ’t Hooft limit.

– 22 –



boundary hamiltonian H of the quantum system dual to the black hole described by

pure JT gravity [10].

The matrix model relevant to the Weil-Petersson volumes is a Hermitian ensem-

ble in the double-scaling limit with the following leading order density of states

ρJT(E) =
sinh(2π

√
E)

4π2
, E > 0 , (3.5)

and vanishes otherwise. At each order in the genus expansion, the WP volumes are

related to the matrix model resolvant in the following way

Vg,n(b1, . . . , bn) = (−1)n
∫

C
Rg,n(−z21 , . . . ,−z2n)

n∏

j=1

dzj
2πi

2zj
bj

ebjzj . (3.6)

The contour C runs along the imaginary axis with a large enough real part appropri-

ate for an inverse Laplace transform. It was shown by Eynard and Orantin [25] that

precisely the quantities Vg,n(b1, . . . , bn) constructed from this matrix integral repro-

duce the Weil-Petersson volumes of moduli space of hyperbolic surfaces with geodesic

boundaries. This is proven in a straightforward way by matching the topological re-

cursion relation that these volume satisfy, derived by Mirzakhani [7], with the loop

equations of the matrix integral in the double scaling limit. A nice presentation of

these results can be found in [29].

The matrix model described above also computes the JT gravity path integral

at each order in the genus expansion. First of all, the JT gravity partition function

on the disk, coming from the Schwarzian reparametrization mode, reproduces the

leading spectral density (3.5). Another case that has to be treated separately is the

genus zero contribution to the partition function with two boundaries, which again

matches with the universal matrix model answer. Finally, other than those two cases,

the partition function on any surface with any number of boundaries and handles

can be written as

Zg,n(β1, . . . , βn) =

[
n∏

j=1

∫ ∞

0

bj dbj Ztr(βj, bj)

]

Vg,n(b1, . . . , bn) , (3.7)

where we defined the trumpet contribution as usual

Ztr(β, b) =
e−

b2

4β

2
√
πβ

. (3.8)

In deriving this formula one uses the fact that to each of the n boundaries there is a

homotopically equivalent geodesic closest to it with length bj . The path integral over

the boundary graviton produces the factor of Ztr(β, b) while the path integral in the

interior produces with the WP volumes with geodesic boundaries, since the one-loop

determinants in the bulk are trivial (we only consider orientable surfaces here). The
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measure b db originates from the simple form of the Weil-Petersson volume form in

Fenchel-Nielsen (length-twist) coordinates, see eq. (2.9).

As a simple example, we show the decomposition for g = n = 1:

Z1,1(β) = (3.9)

=

∫ ∞

0

b db β b × b (3.10)

=

∫ ∞

0

b db Ztr(β, b) V1,1(b) . (3.11)

Each boundary in the gravity path integral with Dirichlet boundary conditions

corresponds in the matrix integral to an insertion of Tr(e−βH). This is easily related

to the resolvant by the integral transform R(E) = −
∫∞
0

dβ eβE Tr(e−βH). Applying

this integral transform to (3.7) and comparing with (3.6) proves the equivalence of

JT gravity with the matrix integral with leading density of states (3.5).

The string equation

It will be useful, for the upcoming discussion, to introduce the string equation. A

matrix integral is determined, up to a double-scaling limit, by a choice of a single func-

tion. This can be either the leading order density of states or the matrix potential.

There is yet a third way to specify a matrix integral: through the string equation.

It is determined through couplings tk≥0 assembled in a function F(u) ≡ ∑

k tku
k.

The leading order density of states is related to the string equation by an integral

transform

ρ0(E) =
1

2π

∫ E

E0

du√
E − u

∂uF(u) , (3.12)

where E0 is the largest root of F(E0) = 0.

The string equation arises from the application of the orthogonal polynomial

method to the matrix integral, combined with the double-scaling limit [30, 31]. In

this approach higher-genus corrections are computed by Taylor expanding F(u) in

u, and replacing uk by the Gelfand-Dickii differential operators, which are given by

an expansion in powers of e−S0 , with uk being their leading contribution. There is

a machinery that turns this finite S0 string equation into matrix model partition

functions. We will not explain this procedure, since we will not use it in this article,

but a review on this approach can be found in [32].

Combining (3.12) and (3.5), we conclude the matrix integral computing Weil-

Petersson volumes has a string equation

FJT(u) =

√
u

2π
I1(2π

√
u) . (3.13)
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We will find in the next sections that this is the simplest way to characterize the

matrix integrals relevant for our purposes. Nevertheless, depending on the applica-

tion, for example to compute higher genus corrections, it can be more convenient to

extract the leading order spectral curve from (3.12) and apply the loop equations.

3.2 Deformations of JT gravity and matrix integrals

In this section we present the matrix model that we conjecture computes the generat-

ing function of volumes of moduli space of surfaces with cone points, with the volume

measure derived in section 2.2. Equivalently, it is the matrix model computing the

gravitational path integral of JT gravity deformed by a gas of generic defects.

Before doing so, it is useful to introduce the defect generating function, which

depends on a complex variable y, and encodes the defects couplings λ and deficit

angles α as

W (y) =
∑

i

λi e
−2π(1−αi)y . (3.14)

The sum can be over an arbitrary number of defects (although if we want to compute

a volume with n defects we need at least n terms in the sum).

Lets begin by describing the sharp defect case, corresponding to all 0 ≤ αi ≤ 1/2.

To compute the gravitational path integral of JT gravity deformed by this type of

defects we need to sum over the number of handles, but also over the number of

defects. Lets focus first on a single defect species. At fixed genus g the partition

function is given by

Zg,n(β1, . . . , βn) =

∞∑

k=0

λk

k!

[
n∏

j=1

∫ ∞

0

bj dbj Ztr(βj , bj)

]

Vg,k,n(α, . . . , α
︸ ︷︷ ︸

k−terms

; b1, . . . , bn) .

(3.15)

The integer k labels the number of defects. When the defect is sharp a geodesic

homotopic to the boundary still exists and therefore we integrate over its length

including the boundary graviton partition function Ztr(β, b). The path integral in

the interior is given by the WP volume with k defects divided by k! since in the

gravitational path integral the defects are indistinguishable. Finally the factor of

λk gives the weight of each defect insertion. The generalization to an arbitrary

number of defect species s is straightfoward: the sum is over s non-negative integers

{k1, . . . , ks} labeling the number of defects of type 1 to s. Each species comes with

a factor of λki
i /ki! and the WP volume now has ki defects of type i.

From this point of view, the function W (y) is a particular way to package the

information of the defect couplings and angles. When the addition of the gas of

defects is modeled by a change in the dilaton potential, the shift in U(φ) is related

to W (y) identifying y with the dilaton. See section 4, and also [5] for a discussion

on this identification.
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The case with sharp defects simplified the gravitational path integral in two ways.

First, it allows to write the answer in terms of WP volumes with geodesic boundaries.

When defects are blunt, its not always true that a geodesic exists separating the

defect from the NAdS boundary. Second, the WP volumes with sharp cone points

are given by [13, 14]:

Vg,k,n(α1, . . . , αk; b1, . . . , bn) = Vg,n+k(2πiα1, . . . , 2πiαk; b1, . . . , bn). (3.16)

This is again not true for blunt defects, and an improved definition of these volumes

was given in section 2. When these two simplifications occur it is possible to prove an

equivalence between deformations of JT gravity by sharp defects and a double-scaled

matrix integral with (tree level) string equation

FdJT(u) =

√
u

2π
I1(2π

√
u) +

s∑

i=1

λiI0(2παi

√
u) , (for 0 ≤ αi ≤ 1/2) . (3.17)

From this equation we can obtain the location of the edge of the spectrum by finding

the largest root of FdJT(E0) = 0 and then use (3.12) to obtain the density of states.6

The string equation can be rewritten in the following involving W (y), instead of the

defect weights and angles separately:

FdJT(u) =

∫

C

dy

2πi
e2πy

(

y −
√

y2 − u− 2W (y)
)

. (3.18)

The contour is again along the imaginary axis with large enough real part, such that

singularities are to the left. Taylor expanding in λ we can see that the zeroth order

term matches with the JT string equation, the linear terms match with (3.17) and

any higher order term in λ vanish if the defects are sharp. This leads to the following

expression for the density of states

ρdJT(E) =
1

2π

∫

C

dy

2πi
e2πy tanh−1

(√

E − E0

y2 − 2W (y)− E0

)

, (3.19)

The edge of the spectrum E0 depends non-trivially on the defect couplings so it is

important to include it as a parameter. With this information we can compute any

observable by either using the matrix model loop equations, or equivalently the string

equation.

So far we described a theory of gravity we can solve. What happens when we

try to extend the solution to deformations of JT gravity by generic defects with

0 ≤ α ≤ 1? The proposal of [5], motivated by studying the minimal string theory, is

that the matrix model with string equation given by (3.18) is the correct continuation

to a gas of defects with arbitrary deficit angles.

6Its not possible to find E0 analytically but one can compute it in perturbation theory around

λ = 0, or numerically for arbitrary deformations.
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When the defects are blunt 1/2 < α < 1 the tree level string equation (3.18) is

not equal to one derived for sharp defects (3.17), since now higher powers of λ are

non-zero, therefore using (3.17) in this regime gives the wrong answer. For example,

if we used (3.17) in the blunt defect regime we could get negative answers for the

partition function, analogous to the discussion around (2.7), which would not make

sense.

To prove the conjecture of [5] we would need to provide a gravitational calculation

of the partition function, but we run into two troubles already mentioned above.

First, if a geodesic exists in a hyperbolic metric separating the boundaries from the

defects and handles, we cannot use Mirzakhani’s formula (3.16) anymore since the

Weil-Petersson measure is not correct. We will show in the next section how to solve

this issue: the answer from the matrix model with tree level string equation (3.18)

matches the new WP volumes we defined in section 2. Second, there are geometries

with multiple defects that do not have geodesics anywhere. Then the procedure of

SSS of separating into trumpets and interior surfaces bounded by geodesics does not

work. This can be solved using the techniques of equivariant localization developed

in [26, 33]: The configurations with no geodesics only take places without handles

and the path integral localizes into configurations where all the defects merged into

one. The answer reduces to the single defect on the disk with a small modification

of the one-loop determinant. We will show this is also consistent with the results

coming from (3.18).

3.3 Dilaton gravity path integral evaluation

In this section we will explain how to perform the gravitational path integral for

deformations of JT gravity by a gas of generic defects, not necessarily sharp. We will

first work out a simple example and then outline the general procedure.

An example

As a simple example to illustrate the idea we consider the case of JT gravity deformed

by a single defect species with weight λ and opening angle 2πα. We will first write

down the matrix model result and then present the gravity interpretation.

First we compute the partition function ZdJT(β) at genus zero, perturbatively in

λ. The tree-level string equation has the following form:

FdJT(u) =

∫

C

dy

2πi
e2πy

(

y −
√

y2 − u− 2λe−2π(1−α)y
)

,

=

⌊ 1
1−α

⌋
∑

L=0

λL

L!

(
2π(1− L(1− α))√

u

)L−1

IL−1(2π(1− L(1− α))
√
u) . (3.20)

The term with L = 0 is pure JT gravity and the term with L = 1 matches the sharp

defect answer. The higher order terms in λ are new. Order by order in λ, we can
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first compute E0 and then evaluate the leading order ρdJT(E) using (3.12). Using

this density of states we can compute ZdJT(β) =
∫ E

E0
dE e−βEρdJT(E), the partition

function.

Sharp defect Before presenting the result for α > 1/2 let us recall the answer for

sharp defect 0 ≤ α ≤ 1/2. In this case the string equation is

FdJT(u) =

√
u

2π
I1(2π

√
u) + λI0(2πα

√
u) . (3.21)

and the edge of the spectrum is located perturbatively at

E0 = −2λ− 2π2(1− 2α2)λ2 +
2π4

3
(15α4 − 18α2 + 5)λ3 +O(λ4) . (3.22)

The tree-level partition function extracted from this string equation is:

e−S0ZdJT(β) =
e

π2

β

4
√
πβ3/2

+ λ
e

π2α2

β

2
√
πβ

+
λ2

2!

√
β√
π
+

λ3

3!

2
√
β(π2(1− 3α2) + β)√

π
+O(λ4) . (3.23)

The first term, of order λ0, is the pure JT gravity partition function on the disk.

The term of order λ is the partition function of JT gravity on the hyperbolic disk

with a single defect in the bulk, computed in [34]. The second and third terms are

given by the integral of the WP volume with b → 2πiα replacement for defects:

√
β√
π
=

∫ ∞

0

b db Ztr(β, b) V0,3(2πiα, 2πiα, b) , (3.24)

2
√
β
(
π2(1− 3α2) + β

)

√
π

=

∫ ∞

0

b db Ztr(β, b) V0,4(2πiα, 2πiα, 2πiα, b) , (3.25)

and similarly for higher orders in λ. Of course is this guaranteed since one can

actually prove this works to all orders in both genus and defect expansion, see [3].

Defect with 1

2
< α ≤ 2

3
This range is chosen such that the string equation is

supplemented by only a quadratic term in λ. More explicitly,

FdJT(u) =

√
u

2π
I1(2π

√
u) + λI0(2πα

√
u) +

λ2

2

2π(2α− 1)√
u

I1(2π(2α− 1)
√
u) . (3.26)

The position of the edge of the spectrum is located (perturbatively) at

E0 = −2λ− 4π2(1− α)2λ2 +
2π4

3
(57α4 − 120α3 + 72α2 − 8)λ3 +O(λ4) . (3.27)
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For α > 2/3 we can have cubic or higher orders as well and we have jumps in the

highest power for all α = (n − 1)/n with integer n. The matrix integral prediction

from the proposed string equation is now different, given by7

e−S0ZdJT(β) =
e

π2

β

4
√
πβ3/2

+ λ
e

π2α2

β

2
√
πβ

+
λ2

2!

√
β√
π
e

π2(1−2α)2

β +
λ3

3!

2
√
β(π2(2− 3α)2 + β)√

π
+O(λ4) . (3.28)

The two terms in the first line are the same as in the sharp defect case. The first

term in the second line corresponds to two defects, but if α > 1/2 there is no

geodesic separating them from the NAdS boundary. We will explain below how to

reproduce the result using equivariant localization in the next section. The last term

corresponds to three defects in the bulk, but now as long as α < 2/3 there will be a

geodesic separating them from the NAdS boundary. Therefore we should be able to

apply the gluing procedure of SSS

∫ ∞

0

b db Ztr(β, b) V0,3,1(α, α, α; b)
?
=

2
√
β
(
π2(2− 3α)2 + β

)

√
π

. (3.29)

This result can be reproduced by a WP volume given by

V0,3,1(α, α, α; b) = 2π2
(( b

2π

)2

+ (2− 3α)2
)

. (3.30)

We actually already computed this in section 2 using the volume form we derived.

In equation (2.48) we present the WP volume with four defect. In our case, we have

three blunt defects and a geodesic boundary. But this is equal to the fourth case in

(2.48) where α2 = α3 = α4 > 1/2 and after continuing α1 → b
2πi

, then (2.48) matches

with (3.30). Therefore we reproduced the order λ3 term from a gravity calculation.

We can consider the evaluation of matrix model observables, that involve in the

gravity description a defect partition function over geometries with no geodesics. We

already saw one example above, the quadratic term in λ in equation (3.28). These

are easy to compute exactly from the matrix integral. First, this situation only takes

place at genus zero and a single boundary, and therefore we do not need to use the

loop equations. This is a consequence of Gauss-Bonnet theorem. Second, they come

with exponential factors making it easy to identify their origin, see Appendix D of

[5]. Their contribution to the partition function is

ZdJT(β) = eS0

⌊ 1
1−α

⌋
∑

k=0

λk

k!
(2β)k−1e

π2(1−k(1−α))2

β

2
√
πβ

+ . . . , (3.31)

7Notice the right hand side is different than the one in equation (4.17) of [5], which had a mistake

in the calculation.
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where the dots denote all terms that are either higher order in λ or e−S0 and there-

fore can be computed using the WP volumes in section 2 (for example, they are

polynomials in
√
β). The exponential term looks exactly like the one correspond-

ing to the hyperbolic disk with a single defect with an effective opening angle

2παeff = 2π(1 − k(1 − α)), which is precisely the angle that would result from a

merger of k defects. We explain below how to reproduce this terms exactly from a

gravitational path integral argument.

General case with geodesic boundaries

To summarize, except for a few cases at genus zero described in the previous para-

graph, the defects and handles in gravity are separated from the NAdS boundaries

by geodesics. Then the gravity partition function is given by an expression looking

similar to the sharp defect answer, which for simplicity we write in the case of a

single defect species

Zg,n(β1, . . . , βn) =
∞∑

k=0

λk

k!

[
n∏

j=1

∫ ∞

0

bjdbjZtr(βj, bj)

]

Vg,k,n(α, . . . , α
︸ ︷︷ ︸

k terms

; b1, . . . , bn) ,

(3.32)

with a trivial generalization to multiple species. The difference is that now Vg,k,n is

the WP volume with k defects and n boundaries, computed using the WP measure

we derive in section 2. It is not the analytic continuation of the expression with n+k

boundaries.

We leave as an open interesting mathematical problem to find a proof that the

volumes we defined in section 2 match the matrix integral prediction. In this article

we simply verify it in some concrete cases.

Cases without geodesic boundaries

The equation (3.32) covers all cases, except for the genus zero disk with a number

of defects such that
∑

i(1 − αi) < 1. This is precisely the case where no geodesic

is present in the geometry. We shall now explain how to compute (3.31) from a

bulk calculation. This can be done using a version of equivariant localization (a.k.a.

Duisterman-Heckman formula in the symplectic context). The method was explained

in [33] in the case of the disk without defects and generalized to arbitrary surfaces

with geodesic boundaries in [26]. The case explained here has not appeared before in

the literature, but is actually one of the simplest cases, since the integral localizes to

a single point. For that reason, we will be brief in our discussion and refer to [26, 33]

for more details.

Let us denote by M0,k the universal moduli space of the disk with k marked

points including fluctuations of the Schwarzian mode. This includes the simple cases

of the universal Teichmüller space M0,0 = Diff(S1)/PSL(2,R) and a generic Virasoro

coadjoint orbit M0,1 = Diff(S1)/U(1) [35]. For k ≥ 2, the moduli space requires an
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U(1)

Figure 4. The disk moduli space with n marked points (here n = 4). The surface is

unchanged under U(1) rotations when all points coincide at the center of the disk and the

asymptotic cutoff for the Schwarzian mode is round.

appropriate compactification as in the case without boundaries that adds boundary

divisors corresponding to colliding marked points. We denote the compactified mod-

uli spaces byM0,k. These moduli spaces are infinite-dimensional and computing their

volume directly does not make sense. It does make sense however to compute their

equivariant volume, which is a fancy mathematical way to include the temperature

β of the boundary into the computation. It is related to the chemical potential for

the U(1) action on M0,k that rotates the disk.

The equivariant localization formula states that

∫

M0,k

[eωWP]x =
[eωWP ]x,0(⋆)
∏

j(xmj)
. (3.33)

Here, [eωWP]x is the equivariant completion of the Weil-Petersson measure on moduli

space that we want to integrate. x is the equivariant parameter, which is related to

the boundary temperature as x = 1
2β
.8 There is a unique fixed point of the U(1)-

action corresponding to a surface where all conical defects coincide at the center of the

disk, see Figure 4, since by assumption they are sufficiently blunt to be able to collide.

On the right hand side of (3.33), we need to evaluate the equivariant Weil-Petersson

measure at the fixed point ⋆.9 In physical terms, this is the tree-level contribution

to the ‘path-integral’ on the left hand side. The product
∏

j(xmj) =
∏

j
mj

2β
is the

one-loop piece. Here, mj are the charges of the U(1) action on the tangent space

of the fixed point. The tangent space breaks up into two parts: tangent directions

for the Schwarzian mode and directions that move around the conical defects in the

disk. The former leads to the charges 2, 3, 4, . . . , while the latter lead to the charges

8The proportionality constant in this relation is conventional and is given by the constant γ
α
in

the notation of [10].
9In mathematical terms, this is the pullback of [eωWP ]x under the inclusion map ι : ⋆ −→ M0,k.
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1, 1, . . . , 1 (k times). The result is one-loop exact as was first shown for the disk

partition function in [33].

Thanks to the pull-back property (2.13), the on-shell action on the right hand

side of (3.33) looks like the on-shell action for a single conical defect with defect

angle 2π
∑

i(1 − αi). We have then [ωWP]β,0 = π2

β
(1 −∑

i(1 − αi))
2.10 Putting the

ingredients together leads to the following Weil-Petersson volume:

∫

M0,k

[eωWP ]x = (2β)k−1e
π2

β
(1−∑

i(1−αi))
2

∏∞
n=1(

n
2β
)

= (2β)k−1e
π2

β
(1−∑

i(1−αi))
2

2
√
πβ

, (3.34)

where we used zeta-function regularization for the infinite product. This matches

with the matrix model computation (3.31). In (3.31) we computed the generating

function of defects which is responsible for the extra 1
k!

since defects are treated as

indistinguishable.

3.4 More checks and the minimal string

In the previous section we provides some checks involving the WP volume with four

or five defects. We only required to use some specific cases out of all the possibilities

considered in section 2. In this section we will compute, using the matrix integral,

the sphere partition function with four and five defects and compare the WP volume

computed in equations (2.48) and (2.58), finding again a perfect match.

The matrix model proposed in [5] is the large p limit of the matrix model dual

to deformations of the (2, 2p+1) minimal string. Since the sphere partition function

with defects was already computed in the past at finite p we will review the relation

to the minimal string and then take the large p limit of the final answer. On the

way, we will clarify the following point: the minimal string has two distinct sectors

in the sphere, the odd and the even, depending on the nature of the minimal model

sector of the operator insertions. We find this to be a subtle issue and only the large

p limit of the odd sector has a geometric interpretation. This issue does not arise for

observables with at least one boundary.

3.4.1 The (2, 2p + 1) minimal string

Before considering the proposed matrix model to compute the volumes of moduli

space with defects, we will introduce the minimal string, which was the motivation

of [5] for the proposal.

The minimal string is a theory of two dimensional gravity coupled to a minimal

model CFT. We will be particularly interested in the coupling to the non-unitary

series (2, 2p + 1), labeled by the positive integer p. This theory of two dimensional

10This can be shown mathematically by using the restrictions (for ⋆ ∈ M0,1Diff(S1)/S1) that

[κ1]x,0 = 0 and [ψ1]x,0 = −x = − 1

2β
which is explained in [26]. Plugging in (1.2) gives [ωWP]x,0 =

π2α2

β
for a single defect.
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gravity is conjectured to be dual to a one-matrix integral [36, 37], which was made

more precise in [38] and [39].

When working in conformal gauge, one can rewrite the minimal string as a theory

of Liouville gravity coupled to the minimal model. We can then turn the evaluation

of the partition function on arbitrary surfaces of a given genus (with or without

boundaries) to an integral over moduli space of the product of CFT correlators.

This non-trivial calculation can be reproduced by the genus expansion of the double-

scaled one-matrix integral with KdV couplings extracted from the following string

equation

FMS(u) =
2p+ 1

(4π)2
[Pp+1(uMS)− Pp−1(uMS)] , uMS ≡ 1 +

8π2u

(2p+ 1)2
. (3.35)

Pk(x) denotes the Legendre polynomial of degree k. In writing this expression we

have shifted and rescaled u to remove the dependence on the bulk cosmological

constant. See [5] for the relation to more standard conventions in the minimal string

literature. If boundaries are present, the insertion of Tr
(
e−βH

)
corresponds to fixed-

length boundary conditions, see [12] for an account. Using (3.12) we can obtain the

leading order density of states of the matrix integral which is useful if one wishes to

use the topological recursion

ρMS(E) =
1

4π2
sinh

(
2p+ 1

2
cosh−1

(

1 +
8π2E

(2p+ 1)2

))

. (3.36)

Here we can see the advantage of our conventions, when p → ∞ we recover the

JT gravity density of states computing the WP volumes of moduli space of smooth

hyperbolic surfaces [10]. To derive some of these formulas, the identities presented

in Appendix A of [5] are useful.

So far we reviewed the status of the matrix integral computing the volume of

moduli space of smooth surfaces (related to JT gravity) and its finite p generalization

(the minimal string).11 But what about the matrix integral computing the volume

of surfaces with cone points? This will be related to deformations of the minimal

string where we shift the action by a minimal string tachyon operator.

The (2, 2p+ 1) minimal model has a family of primary operators Φk labeled by

an integer k = 0, . . . , p − 1 with k = 0 corresponding to the identity operator and

k = p− 1 having the lowest dimension. The minimal string “tachyon” operators Ok

are labeled by the same integer. They consist of an integrated minimal model primary

multipled, in the conformal gauge, by a Liouville primary e2αkφ with parameter αk

such that the operator is marginal. The deformed minimal string consist of a gravity

11It is an interesting question to figure out whether the finite p answer has an interpretation as

an integral over moduli space. We will not attempt to do this in this paper and mostly consider

the p → ∞ limit.
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theory with action

I = IMS +

p−1
∑

k=0

λkOk , Ok =

∫

Φke
2αkφ , (3.37)

where I is the total Euclidean action, IMS is the sum of Liouville and minimal model

actions and λk are the couplings of the deformation. In particular the case k = 0

corresponds to a shift of the bulk cosmological constant. We will assume this theory

makes sense to any order in perturbation theory in λ. We will not address whether

this theory makes sense non-perturbatively in the deformation parameters.

In the next section we will review the relation between insertions of the tachyon

operators Ok and the presence of cone points in the large p limit.

The main result of [39] is bootstrap of the possible string equation of the deformed

minimal string. The sphere correlators derived from it have to be consistent with

the minimal model fusion rules. This was a question raised and partially solved in

[38]. The answer is given by the following tree level string equation as a function of

deformation couplings

FdMS(u) = −(p+ 1
2
)2

4π2

∮
dz

2πi

(
1− 2uMSz + z2 − 4π2

(p+ 1
2
)2

∑p−1
k=1 2λkz

k+2
) 1

2

zp+2
. (3.38)

The overall normalization is set to match with (3.35) when the deformation param-

eters are set to zero. This equation is the finite p generalization of (3.18). At large

p, the parameter k of the tachyon is related to the deficit angle by

k = p(1− α) , p → ∞ . (3.39)

The normalization of the tachyon coupling is chosen to match with the defect coupling

at large p. The deformation by the identity k = 0 corresponds to α = 1, a gas of

marked points. The analog of sharp defects corresponds to operators with k > p
2
,

where the contour integral becomes linear in the λ’s.

Even vs odd sector in the matrix integral: On the sphere, correlation numbers

between tachyon operators with label k1, . . . , kn behave very differently depending

on whether k1 + . . . + kn is odd or even. This raises the question of whether the

results in the large p limit depend on whether the limit on k is taken in the even

or odd sector. This is a disctinction not raised before in the context of relating the

minimal string with JT gravity. We will see in the next section that the large p limit

differs in the odd and even sector. Moreover, only the odd sector has a geometric

interpretation connecting the minimal string with JT gravity.

In the rest of this section we will study some specific non-trivial examples that

support our conjecture that the volumes defined in section 2.2 match with the ones

derived from the matrix integral of section 3.2. More specifically, we will reproduce

the expressions (2.48) and (2.58) from the matrix integral.
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3.4.2 Four defects in a sphere

The first case we will match is the volume of a surfaces of genus g = 0 with four

cone points. From the matrix integral point of view this is a subtle case: the genus

zero partition function is not well-defined in the double-scaling limit and the result

is ambiguous. Nevertheless, when taking derivatives with respect to λ to compute

the amplitude with four defects this ambiguity disappears and the result can be

compared with the volume given in (2.48).

Fortunately, the sphere partition function with four insertions was already com-

puted using the minimal string matrix integral, at finite p, in [39] (see also [40–42]).

Since the matrix integral of section 3.2 is nothing else than the large p limit of the

minimal string matrix integral, the calculation is essentially the same.

The expression at finite p depends on four tachyon operators labeled by k1, k2,

k3 and k4. Without loss of generality we assume they are ordered according to

0 ≤ k4 ≤ k3 ≤ k2 ≤ k1 ≤ p− 1.

The odd sector: The sphere four-point function in the odd sector is given by [39]

V p
0,4,0(α) = 2π2

(

F (−2)−
4∑

i=1

F (ki − 1)+F (k43|21) +F (k42|31) +F (k14|23)

)

, (3.40)

where we use the index p to emphasize this is computed with the finite p matrix

integral. Following [41] we introduced kij|lm = min(kij, klm) and kij = ki + kj. The

function appearing in the right hand side is defined as

F (k) =
(p− k − 1)(p− k − 2)

p2
Θ(p− 2− k) . (3.41)

We should emphasize that the normalization of this formula is different than the

one used in the minimal string literature. We used the conventions introduced in [5]

that guarantees that the large p limit matches with the defect result including the

normalization.

In the large p limit, the deficit angles and the tachyon label are related by

k = p(1− α). It is useful to note that in this limit the function becomes

lim
p→∞

F (p− pα) = α2Θ(α) = θ(α) , lim
p→∞

F (x) = 1 , (3.42)

where in the second equality of the first equation we used the notation in (2.48), and

in the second equation we take x any number that does not scale with p. Using this

limits its easy now to write down the large p prediction:

lim
p→∞

V p
0,4,0(α)

2π2
= 1−

4∑

i=1

α2
i +

∑

i≤i<j≤4

θ(αi + αj − 1) =
V0,4,0(α)

2π2
, (3.43)

where V0,4,0 denotes the expression found in (2.48). This verifies our conjecture.
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When all defects are sharp the third term vanishes since for any pair of defects

αi + αj < 1. The fact that this case matches with the sharp defect WP volume was

verified in [41] but follows more generally from the derivation in [3]. Here we verified

the match also for the terms that are important when defects are blunt.

The minimal string expression with four insertions was also reproduced from

the continuum limit integrating the product of the minimal model and Liouville

four-point function over moduli space [43].

The even sector: We verified our conjecture for the odd sector of the minimal

string. What about the even sector? We can compute the answer explicitly for the

sphere with four defects from the minimal string. This is (up to a different choice

of normalization) the large p limit of equation (2.20) in [40]. We find the following

result:

lim
p→∞

V even,p
0,4,0 (α)

2π2
=







1− α2
1 − α2

2 − α2
3 − α2

4 , α34 < 1 ,

2(1− α3)(1− α4)− α2
1 − α2

2 , α34 ≥ 1, α42 ≤ 1 ,

(1− α4)(3− 2α23 − α4)− α2
1 , α42 ≥ 1, α14 ≤ 1, α23 ≤ 1 ,

−α2
1 + (2− α234)

2 , α23 ≥ 1, α14 ≤ α23,

2(1− α4)(2− α1234) , α14 ≥ 1, α14 > α23,

0 , −α1 + α234 ≥ 2 ,

(3.44)

where to simplify the formula we defined αij = αi + αj and α234 = α2 + α3 + α4.

Whenever the volume in the even and odd sectors are simultaneously non-vanishing,

they match. But in the even sector, the volumes automatically vanish when −α1 +

α234 ≥ 2 and can be non-zero when the Gauss-Bonnet constraint is violated. As far

as we know, this inequality in the even sector does not have any geometric meaning.

This confirms the observation that only the odd sector of the matrix model operators

has a large p limit that matches the volume of moduli spaces of hyperbolic surfaces

with cone points.

3.4.3 Five defects in a sphere

We now extend the previous check to the case of four defects in the sphere. We start

again with the minimal string matrix integral result, since it was already computed,

and take the p → ∞ limit.

The minimal string answer was computed using the matrix model in [40] and in

the odd sector is given by:

V p
0,5,0(α)

(2π2)2
=

5∑

i=1

(
H(ki − 2)− 3(1 + p−1)F (ki − 1)

)
+ 2

∑

i<j

F (ki − 1)F (kj − 1)

+
(p+ 1)(5p2 + 5p+ 2)

2p3
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−
∑

I,|I|=2

(

H(kI − 1)− (1 + p−1)F (kI) + F (kI)
∑

ℓ/∈I
F (kℓ − 1)

)

+
∑

I,|I|=3

H(kI) +
1

2

∑

I,J,|I|=|J |=2, I∩J=∅
F (kI)F (kJ) , (3.45)

where we remind the reader that I labels a set out of the 5 arguments and kI =
∑

i∈I ki. We define the function

H(k) =
1

2
F (k)F (k + 2) , lim

p→∞
H(p− pα) =

1

2
θ(α)2 . (3.46)

The equation for V p
0,5,0 has two differences when compared with the expression in [40].

The first is trivial, we picked a different normalization of the tachyon to match with

the defects in the large p limit [5]. More importantly, there is a typo in, for example,

the last term of equation (3.6) of [40]: the sum should not be under unrestricted

four integers but over two pairs of integers I and J with |I| = |J | = 2 with empty

intersection I ∩ J = ∅ and without overcounting choices of the two pairs (in the

equation above in the last term we instead sum over all pairs including repetitions

hence the factor of 1/2 in front).

We are now ready to take the large p limit of the expression above, giving:

V p
0,5,0(α)

(2π2)2
=

5

2
+

1

2

∑

i

α4
i + 2

∑

i<j

α2
iα

2
j − 3

∑

i

α2
i

− 1

2

∑

I,|I|=2

θI(α)2 +
∑

I,|I|=2

θI(α)−
∑

I,|I|=2

∑

ℓ 6=i,j

α2
ℓ θI(α)

+
1

2

∑

I,J,|I|=|J |=2, I∩J=∅
θI(α)θJ(α) +

1

2

∑

I,|I|=3

θI(α)2 . (3.47)

Comparing this expression with (2.58) we conclude once again the matrix model

answer matches (recovered taking p → ∞) matches the WP volume defined in section

2.2:

lim
p→∞

V p
0,5,0(α) = V0,5,0(α), (3.48)

since the left hand side is (by definition) equal to the matrix integral proposed in

section 3.2.

Like the case with four defects, this match was verified in [41] only for sharp

defects. In this case the only term is the first line of the equation above, which is

the analytic continuation of the volume with geodesic boundaries. This is implied

by the argument in [3], but the validity of the rest of the terms here is a non-trivial

check of the conjecture put forward here.

Partial success in reproducing the minimal string expression with five insertions

from the continuum limit integrating the product of the mimimal model and Liouville

five-point function over moduli space was presented in [42].
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We will not write down explicit expressions but we have checked that the analo-

gous formula in the even sector of the minimal string sphere five point function does

not reproduce the full answer when defects are blunt (even though it matches the

sharp regime).

4 Conclusion

We conclude with some comments and open questions raised by our work.

Derivation of WP form. We found the Weil-Petersson measure on the volume of

moduli space of hyperbolic surfaces with conical deficits in equation (1.2). We found

it by solving a set of consistency conditions it should satisfy. It would be interesting

to derive it from first principles, either from defining the moduli space in more detail

in the presence of blunt defects, or from the JT gravity path integral perspective.

Proof of the recursion. Another open question is to prove that the volumes

computed using the measure (1.2) satisfy the matrix integral topological recursion

coming from the spectral curved derived from (3.19). For example, we do not know

currently how to adapt Mirzakhani derivation in the presence of blunt defects.

Other ranges. We have treated only the case of conical deficits. One may wonder

whether these formulas have a further extension to defects outside of the range

0 ≤ α ≤ 1 such as conical excesses. There are no corresponding operators in the

minimal string and thus there is no clear expectation whether this should be possible.

Dilaton gravity. What is the right identification between the defect parameters

and the dilaton potential? It was shown in [44] that for defects with very small deficit

angles, the identification should be

U(φ) = 2φ+

s∑

i=1

(1− αi)λi e
−2π(1−αi)φ , 1− α ≪ 1 . (4.1)

This follows also from the fact that the dilaton equation (1.3b) requires a derivative

which gets rid of the factor 1 − αi. With this result, the defect generating function

W (y) is identified not with the dilaton potential as thought in [3, 4] but with the

prepotential instead, W (y) ∼
∫ y

dφ (U(φ) − 2φ). An interesting physical question

is whether the sum over the gas of defects (where each geometry is singular) is

reproduced by a smooth geometry solving the new equations of motion with the

modified dilaton potential U(φ). Evidence for this was provided in [5] using (4.1)

(even though it was not justified in that reference): the density of states derived

from (3.19) matches the semiclassical calculation of the gravity path integral in the

modified smooth geometry derived from U(φ).

Dilaton gravity and the minimal string. We found that only the odd sector of

the minimal string has a relation to hyperbolic geometry. It would be interesting

to have a worldsheet understanding of this. Conversely it would be interesting to

explore whether the even sector has any geometric meaning as well.
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A Relations of cohomology classes on Mg,n

In this appendix, we collect a number of useful identities between the cohomology

classes κ1, ψ1, . . . , ψn and δh,I on Mg,n. The only generic relation that these classes

satisfy is

δh,I = δg−h,Ic . (A.1)

A.1 Relations for g = 0

The relations at genus 0 play an important role. We have [45]

ψi =
∑

j, k 6∈I, i∈I
δ0,I , (A.2a)

κ1 =
∑

i, j 6∈I
(|I| − 1)δ0,I . (A.2b)

Here i, j and k are all assumed to be distinct, but arbitrary. These relations are

complete and the rank of H2(M0,n,R) is as a consequence 2n−1 −
(
n
2

)
− 1.

A.2 Relations under forgetful pullback and pushforward

Consider the forgetful morphism

π : Mg,n+1 −→ Mg,n . (A.3)

We can then consider the pullback of any of the classes above. This gives

π∗(κ1) = κ1 − ψn+1 , (A.4a)

π∗(ψi) = ψi − δ0,{i,n+1} , (A.4b)

π∗(δh,I) = δh,I + δh,I+1 . (A.4c)

We can also consider the pushforward (fiberwise integration) of these classes. This

yields degree zero classes, i.e. numbers

π∗(κ1) = 2g − 2 + n , (A.5a)

π∗(ψi) = 1 , i = 1, . . . , n , (A.5b)

π∗(ψn+1) = 2g − 2 + n , (A.5c)

π∗(δh,I) =

{

1 , h = 0 and n + 1 ∈ I and |I| = 2 ,

0 , otherwise .
(A.5d)
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A.3 Relations under pullback to separating divisors

A separating divisor Dh,I is isomorphic to Mh,|I|+1×Mg−h,n−|I|+1. Correspondingly

we get pullbacks (ξLh,I)
∗ and (ξRh,I)

∗ in cohomology to the two factors. It suffices

to discuss (ξLh,I)
∗ because (ξRh,I)

∗ can be obtained from it by replacing (h, I) with

(g − h, Ic). By renumbering indices we can also assume without loss of generality

that I = {1, . . . , m}, so that

(ξLh,m)
∗ : H2(Mg,n) −→ H2(Mh,m+1) . (A.6)

We have then

(ξLh,m)
∗(ψi) =

{

ψi , i ≤ m ,

0 , i > m ,
(A.7a)

(ξLh,m)
∗(κ1) = κ1 . (A.7b)

The pullback of the class itself measures the self-intersection of the divisor Dh,I . We

have

(ξLh,m)
∗(δh,{1,...,m}) =

{

−ψm+1 + δ2h−g,{1,...,m+1} , m = n and g
2
≤ h < g ,

−ψm+1 , otherwise .
(A.8)

Assuming that (h′, J) 6= (h, {1, . . . , m}) we have in the other cases

(ξLh,m)
∗(δh′,J) =







δh′,J , h′ ≤ h and J ⊂ {1, . . . , m} ,

δh+h′−g,J\{m+2,...,n} , h′ ≥ g − h and {m+ 1, . . . , n} ⊂ I ,

0 , otherwise .

(A.9)

In the special case with g even and n = 0, the separating divisor Dg/2,∅ is isomorphic

to (M g

2
×M g

2
)/Z2 where the Z2 symmetry exchanges the two copies of M g

2
. In this

case we just get a single map ξ∗h,m = (ξLh,m)
∗ + (ξRh,m)

∗. The previous formulas are

valid, provided that we insert a factor of 2 because the map M g

2
×M g

2
−→ Dg/2,∅

has degree 2.

B Some intersection numbers

B.1 Intersection numbers on M0,5

Let us provide a list of intersection numbers on M0,5 that are needed to compute the

Weil-Petersson volume. We assume that |I| = 2 for the boundary class δ0,I because
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δ0,I = δ0,Ic which gives the case with I = 3.

〈κ2
1〉 = 5 , (B.1a)

〈κ1ψi〉 = 3 , (B.1b)

〈ψiψj〉 =
{

1 , i = j

2 , i 6= j ,
(B.1c)

〈κ1δ0,I〉 = 1 , (B.1d)

〈ψiδ0,I〉 =
{

1 , i 6∈ I ,

0 , otherwise ,
(B.1e)

〈δ0,Iδ0,J〉 =







−1 , I = J ,

1 , I ∩ J = ∅ ,

0 , otherwise .

(B.1f)

B.2 Intersection numbers on M1,2

The nonzero intersection numbers of κ1, ψi and δ0,{1,2} are

〈κ2
1〉 =

1

8
, (B.2a)

〈κ1ψi〉 =
1

12
, (B.2b)

〈ψiψj〉 =
1

24
, (B.2c)

〈κ1δ0,{1,2}〉 =
1

24
, (B.2d)

〈δ20,{1,2}〉 = − 1

24
. (B.2e)
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