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Abstract

Von Neumann entropy has a natural extension to the case of an arbitrary semifinite
von Neumann algebra, as was considered by I. E. Segal. We relate this entropy to the
relative entropy and show that the entropy increase for an inclusion of von Neumann
factors is bounded by the logarithm of the Jones index. The bound is optimal if the
factors are infinite dimensional.
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1 Introduction

In recent years, there has been much interest in applications of entropy to quantum field
theory. For example, a novel argument [2] for the Zamolodchikov c-theorem concerning
the irreversibility of renormalization group flow in 2 spacetime dimensions made use of
the formal notion of the von Neumann entropy of the density matrix of a quantum field
reduced to a local region in spacetime, a double cone. It is difficult to put this argument
on a rigorous basis because in quantum field theory the algebra of a double cone region is
actually a von Neumann algebra of Type III, and notions such as density matrix and von
Neumann entropy are not available for such algebras.

In the physics literature, the non-existence of a notion of entropy for an algebra of Type
IIT is described by saying that in quantum field theory, the entropy of a double cone region
(or of any local region in spacetime) is ultraviolet divergent. The nature of the ultravio-
let divergence depends on the spacetime dimension. In two dimensions, the divergence
is only logarithmic. The argument in [2] relies on this and involves considering linear
combinations of entropies for different double cone regions from which the divergences
cancel. Defining rigorously finite linear combination of entropies might be one way to put
the argument in [2], and others somewhat like it, on a rigorous basis. This would require
considerations beyond the von Neumann algebra structure, since the assertion that the
ultraviolet divergence of the entropy is logarithmic is special to 2 spacetime dimensions.

Here we will consider a somewhat similar but much simpler situation in which a renor-
malized notion of entropy is available. Entropy for an algebra A of Type II; was first dis-
cussed long ago by I. E. Segal [19]. Segal noted that for a state of A, a fairly natural notion
of entropy can be defined, with the unusual property that there is a (normalized) state of A
with maximum entropy, namely the tracial state 7, and no state of minimum entropy. En-
tropy is then defined to vanish for the tracial state, and therefore, to be negative (or equal
to —oco in some cases) for other states. To see the interpretation of this entropy in terms of
renormalization, consider a hyperfinite Type II; algebra A, which is the large i limit of a
family of matrix algebras M; of dimension n?. The maximum entropy state of M; is the
tracial state 7;, with von Neumann entropy Syn(7;) = logn;. In the limit i — oo, T; converges
to 7. If @; is a family of states of M; that converge for large i to a state ¢ of A, the Type II;
entropy S(¢) can be defined as lim;_, ,(Syn(@;) — Syn(7;)) = lim; o (Syn(@;) —logn;). With
this definition, it is clear that 7 is the maximum entropy state of .4 and has entropy 0.
The subtraction of the divergent part logn; is necessary to ensure the existence of a large
i limit, and makes clear the analogy with renormalized entropy as studied in the physics
literature.

A renormalized entropy can also be defined for an algebra A of Type II,, with the dif-
ference that in this case, because there is no canonical normalization of a tracial weight
of A, entropy is really only naturally defined up to an additive constant, the same for all
states. At first sight, one might think that because the algebras of local regions in quantum
field theory are of Type III, entropy of a Type II algebra would have little application in
physics. In fact, this thought is probably one reason that entropy of an algebra of Type
IT has been relatively little-studied. However, Type II algebras can appear in black hole
physics [24] and also in certain random matrix models [21], so there is indeed some physi-
cal motivation to study entropy for Type II.

In this article, we observe that entropy for a state ¢ of a Type II algebra can be inter-
preted as a relative entropy S(¢|7). This implies that in a trace-preserving inclusion of



Type II algebras B C A, the entropy of any state increases, cf. [19]. Our main result is a
bound on the entropy increase in terms of the Jones index [A: B].

Vaughan Jones made fundamental contributions in multiple areas of mathematics and
mathematical physics. He always was extremely interested in applications of operator
algebras to physics. The Jones index of a subfactor was an important tool in his discoveries
in von Neumann algebra theory, mathematical physics, and knot theory. We hope therefore
that the modest contribution to the theory of the Jones index that we make here would have
pleased Vaughan, and we are happy to dedicate this article to his memory.

2 Noncommutative probability spaces

Let (X, u) be a probability space and f € L'(X,u), with f > 0 almost everywhere, and
jX fdpu = 1. Define the entropy S(f) of the random variable f by

S(f)= —Lflogfdﬂ= Lflogf‘ldu-
Lemma 2.1. S(f)<0.

Proof. Note that —log is a convex function, thus

—log(JXf_ldv) < —Llogf_ldv

by Jensen inequality, for every probability measure v on X. Therefore, setting dv = fdpy,
we have

S(f) = Lflogf‘ldp - Llogf‘ldv < log(Lf_ldv) - log(L 1d/,t) —0. (1)
O
Note that

S(f)=-S(lp)

where S(v|p) is the relative entropy of the between the states y and v on the von Neumann
algebra L*(X, u), indeed

(vl = | log s ~log1)dv = | flog fay.

Let now A be a finite von Neumann algebra, thus there exists a normal faithful trace 7 (7
is unique if A is a factor once 7 is normalised with 7(1) = 1). If ¢ is a normal faithful state
of A, there exists a positive, non singular operator p affiliated with A such that

p(x)=1(px), x€A, (2)

thus 7(p) = 1.
We define the entropy S, (@) of ¢ w.r.t. T as

Se(p) =-1(plogp).



Setting 7( = ﬁn we have ¢ = 7y(pg-) with pg = 7(1)p, therefore

S4(¢) = ~7o(pologpo) = S«(p) —7(1)log (1)
so we can assume that 7 is normalised with (1) = 1.
Proposition 2.2. If 7 is normalised, we have
S:(p) <0,
possibly S (@) = —co, and S () =0 iff p = 7.
Proof. By considering the von Neumann algebra generated by p, the statement follows by

(1). Alternatively, the statement is a consequence of the following proposition. O

Let A be an arbitrary von Neumann algebra and ¢, 1) normal, positive, faithful linear func-
tionals on A. Araki’s relative entropy [1] is defined by

S((P"’P) = —(5(p,10gA.5¢,.5W5(p): (3)

where &, &, are any cyclic vector representatives of ¢, on the underlying Hilbert space
H (we may assume that A is in a standard form). Here Aéwéw is the relative modular
operator between ¢ and ¢ [20], i.e. Ag, e, = S’éw’EU/SgW,gw with S¢ ¢ the closure of the map

x&y > x*Ey, x € A. The right hand side of (3) is well defined for all ¢, by

(o]

S(ply) = J logs d(é(p: eséfp)
0
with Ag, .z, = fooosdes the spectral resolution of Ag,c,- Indeed

S(elp) = p(1)(logp(1) - log (1)),
possibly S(¢@|i) = +c0. Recall also that, if ¢ is a state, then
S(plAp) =S(plp)—log, A>0. (4)

Note that S(¢|¢) can be easily defined also if ¢, are not faithful, see [17]; for simplicity
we mostly consider the faithful case.

Proposition 2.3. Let T be a normal faithful trace on A. Then

Se(p)==S(¢|7),

where S(@|t) is Araki’s relative entropy (3) between T and ¢ on A.

Proof. The relative modular operator Ag ¢ (w.r.t. vector representatives £y, &, of ¢, 7 in

the natural cone) is equal to p~!. Therefore

S(@lt) == (g logAs ¢ Eo) = (S logp&y) = @(logp) = T(plogp) = =S(¢).



Due to the above proposition, the entropy S, depends on the choice of the tracial state 7.
However, if A is a type II; factor, the tracial state is unique.
Since the relative entropy is monotone, we infer that the S; is monotone.

Corollary 2.4. If B C A is a von Neumann subalgebra and © a normal faithful trace on A. Then
ST((Pl[D’) 2 ST((p)l
where S (@|p) is the entropy of the restriction of ¢ to B w.r.t. T|g.

Proof.
Se(plg) = =S(@lsltlg) = =S(p|T) = S (¢).

We have the additivity of S;.

Proposition 2.5. Let A; be von Neumann algebras with tracial normal faithful states t;,i=1,2,
and T = 1, ® T, the trace on A= A; ® A,. Then

Se(P1®@2) =S, (1) + Sr, (P2)

for any normal faithful states @; on A,.

Proof.

Se(P1®@2) = S(@1 @ P2lT1 ®75) = S(p1lT1) + S(p2lT2) = St (P1) + So, (@2).
O
Suppose now M, is type I, factor, namely M,, is the n x n matrix algebra. Let Tr be the

trace on M,,, thus Tr(1) = n and
Tr = nt,

with 7 the normalised trace. With ¢ a state on M,, the von Neumann entropy of ¢ is
defined by

Sun(p) = ~Tr(o log o),

with ¢ the density matrix associated with ¢, namely
@(x)=Tr(ox), xeM,, (5)

Note that the von Neumann entropy on type I factor is not monotone.
We now compare S, (@) with Syn(¢). With p and o as in (2) and (5), clearly we have

no =p
thus the following holds as particular case of (4).

Proposition 2.6. If T is normalised, we have

Se(@) = Syn(g) —logn.



Proof. We have

= — _nt(P1oeP) = _¢ [

Syn(@p) =-Tr(ologo) =-n ( log ) (plog )
=—-1(plogp) +logn =S, (¢)+logn.

O

As a consequence, the entropy S;(¢) on M, satisfies the bound
—logn < S;(p)<0; (6)

St(@) = 0 iff ¢ is the tracial state 7, while S;(¢) = —logn iff ¢ is a pure state.
Now, the von Neumann entropy is additive:

SoN(P1 ® @2) = Sun( 1) + Sun(@2)

therefore, if ¢, is a state on A and ¢, is a state on M,,, we have

Se(@1®@2) = Se(P1) + Se(@2) = Se(@1) + Syn(p2) —logn.

Let Ay, A; be von Neumann algebras ¢ a normal faithful state on A = A; ® A, and iy
a faithful normal state on A, k = 1,2. Recall the subadditivity property of the relative
entropy [17, Cor. 5.21]:

S(plpr ®2) 2 S(@la, Ip1) + S(pla,lip2).

Proposition 2.7. Let A be a finite von Neumann algebra with faithful normal tracial state T. If
@ is a faithful state on A® M,,, then

Sc(@la) + Sun(@lm,) = Sc(p) = logn.
The equality occurs iff @ = @4 ® @,
Proof. We have

Se(@) ==S(@lt) = =S(plta®Tp7,) < =S(PlalTa) = S(Plm, ITMm,) =
Se(@la) + Se(@lm,) = Se(Pla) + Sunl@ln,) —logn.

O

3 A bound for the entropy increase

Let B C A be an inclusion of von Neumann algebras and let 7 be a faithful normal tracial
state on A. In case A, B are factors, V. Jones defined the index [A : B] as the ratio of Murray
and von Neumann’s coupling constants. In the more general non factor case, Pimsner and
Popa [18] gave a probabilistic definition of the index [A : B],, with ¢ : A — B the trace
preserving expectation:

[A:Bl.=A7", (7)



with A > 0 the best constant such that
e(x) > Ax (8)

for all positive x € A. The above inequality is called the Pimsner-Popa inequality.
If A and B are II; factors and ¢ is the unique trace preserving conditional expectation
e: A— B, then
[A:B]. =Jones index of B C A.

We shall later comment on the case A is not of type II;.

Let now B C A be an arbitrary inclusion of von Neumann algebras with a normal faith-
ful conditional expectation ¢ : A — B. Given normal states ¢ and i on A, recall the
formula [17, Thm. 5.15] for the relative entropy

S(elp-e) = S(elslplr) + S(ele - ). (9)

Lemma 3.1. Let B C A be an inclusion of von Neumann algebras and ¢ : A — B a finite index
normal conditional expectation. Then

S(@lg-¢) <log[A: Bl
for every faithful normal state of A.

Proof. As ¢(x) > Ax, for all positive x € A, with A the inverse of the index, we have

Qp-e>Ap
and this implies
S(elp-€) < S(plre) = -log 4, (10)
where the first inequality follows by Corollary 4.3 and the equality S(@|Ap) = —log A is a
particular case of (4). 0

Proposition 3.2. Let B C A be an inclusion of von Neumann algebras, T a finite normal faithful
trace on A and € : A — B the trace preserving expectation. For every normal faithful state ¢ on
A, we have

Se5(@lB) = St () <log[A: B],, (11)

where [ A : B], is the index w.r.t. €.

Proof. Taking ¢ = 7 in formula (9), we have

S(plt) = S(@lsltls) + S(elp - €), (12)
namely
Sts(@lB) = Se(@) = S(plp - €).

As by Lemma 3.1
S(plp-€) < S(plrgp) =-log A =log[A: B,

the bound (11) follows. 0



It is known that if A is infinite-dimensional, then the quantity [.A : B]. as we have defined
is equal to the Jones index [A : B]. For finite-dimensional A, this is actually not the case.
For example, if A = M,,, B =C, then [A: B] = n® but [A: B], = n. The definition of [A: B],
can be modified as follows to coincide with the Jones index [A : B] in all cases: [A : B] is
the inverse of the largest constant A such that ¢ — A-id is completely positive. However,
except in the case that A is finite-dimensional, ¢ — A-id is completely positive if and only if
it is positive, and this refinement is unnecessary.

We conclude by providing a bound as in Prop. 3.2 for the increase of S(7|¢). Note that,
with A, 7, ¢ as in (2), we have

S(tlg) = —t(logp) > 0,

similarly as in (1).
Proposition 3.3. With the notations in Prop. 3.2, we hav

S(tle) - S(rlslels) < log[A: B],.
Proof. Clearly

¢ls =(e(p) - ),

and ¢(p) > Ap by the Pimsner-Popa inequality. So

log(s(p)) >log(Ap) =logp +log A

because the logarithm is an operator monotone function. Therefore

S(tlp) - S(zlslels) = —7(log(e(p)) + T(logp) < ~log A = log[A: Bl .

It would be to interesting estimate sup, S(¢ - €|¢) too.

Note that, by the argument in the proof of Theorem 5.4, if A; and B; are increasing
sequences of matrix subalgebras of dimension nl.z and ml2 such that U; A;, U;B; are weakly
dense in A, B, then

Sl (@ls) = Se(p) = lim (S, (¢ils,) = St (1)) = Lim (Sun(@ils,) — Sunlpi) +log(mi/m;) ).

Furthermore, if B; C A; and g €4 = €p, where €4, e denote the trace preserving ex-
pectations onto A;, B;, then by [18, Prop. 2.6] we have

[A:B], =lim[A;: B;] = limnf/ml-z,

therefore .
Sty (Pls) = Se() = Lim (Sun(@ils,) ~ Senc(@i)) + 5 log[A: Bl...



4 State/weight relative entropy

Let A be a von Neumann algebra and ¢, ¢ positive, normal, linear functionals on A. We
recall Kosaki’s variational formula [11]. Fix any *-strongly dense linear subspace V of A
containing the identity. Then

S(gly) = sup sup{<p<1>logn —f (P@(ty () + t‘lzp(x(t)x(t)*))?} . (3)
neN xel) 1/n

where U is the set of all step functions x : (1/n,00) — V with finite range, and x(¢)+y(t) = 1.

The advantage of Kosaki’s formula is that it has all main properties built in it.

Let now @ be a positive, normal, faithful linear functional on A and ¥ a normal, faith-
ful, semifinite weight on A, see [20, Chapter VII] (semifinite means that the definition
domain of ¢ is weakly dense in .A). We may assume that A acts standardly on the GNS
Hilbert space H,, of ¢. Let ¢’ be the normal, faithful, positive linear functional on the
commutant A’ of A given by

(P,: (é(pl'é(p)r (14)
where &, € H,, is the GNS vector. Let dy/d¢’ be Connes’ spatial derivative between i and
¢ [3]-

We define the relative entropy between ¢ and 1p by

S(plp) = (&g, log(dp/dp’) &), (15)

provided the above formula is well defined; this is the case, in particular, if & belongs to

the domain of log(dy/d¢’). More generally, let dip/d¢p’ = JOOO sdeg be the spectral resolution
of dip/d¢’, then

s<<p||4)>=—f0 logs (&, e.,) (16)

provided either the positive or the negative part of logs belongs to Ll(R+,d(£(P,eS£(P)). If
S(@ly) is well defined, then S(¢@[y) can take any real value or S(¢|¢) = +oo. We shall say
that S(@|y) is finite if S(@|y) is well defined and S(¢|¢) # +oo.

If ¢ is bounded, then dip/d ¢’ is equal to the relative modular operator A¢ &, Where &y
is a cyclic vector representative of ¢ in H,,, so S(¢[t) is Araki’s relative entropy (3) and is
well defined for every normal faithful state .

If 1 = 7 is tracial, it follows, similarly as in Proposition 2.3, that dt/d¢’ = p~! with p
the density matrix of ¢ as in (19), so

S(plt) = =S.(¢) = t(plogp) (17)

and S(¢|) is finite iff 7(|plogpl|) < co (see Section 5).
In particular, if A is a type I factor and 7 is the usual trace Tr on A, we have

S(@| Tr) = — von Neumann entropy of ¢.

Note that S(@]y) can be defined also if the weight ¢ is not semifinite by restricting both ¢
and 1 to the weak closure of the definition domain of ¢. Still (13) holds.
In the following, we shall use following elementary integral formula for the logarithm

function: - p
—log/\:J ((t+l)_1—/\(t+/\)_1)7t, 1>0. (18)
0

9



Lemma 4.1. Let A be a von Neumann algebra, ¢ a positive, normal, faithful linear functional
on A and 1,1, normal, faithful, semifinite weights on A. If S(ply) and S(@|p,) are well
defined, then

P1 <Py = S(@lP1) = S(els).

Proof. We have i < ¢, = dip;/de’ < di,/de’ [20, Prop. 3.10]. On the other hand,
dpr/de’ = (do’/dpr)™, so

1 <Py = do’/dipy 2do’/dip, = log(dg’/d,) 2 log(de’/di,)

because the logarithm is an operator monotone function. The right hand inequality means
that (&,log(de’/dy &) > (&,log(de’/dP, &) for all £ in the common domain of log(dg’/d,)
and log(d¢’/dy,) and follows by (18). So we have

1 <Py = (&g, log(dip1/de’) Eg) 2 ~(Eg, log(dipa/de”) &)

if &, is in the common domain. The more general case follows by the spectral theorem.
O

We shall say that ¢ has a bounded entropy approximation w.r.t. ¢ if S(@[y) is well defined
and there exists a sequence of positive, normal, faithful linear functionals on A such that
Pr(x) 7 (x) for every positive x € A, and S(@[iy) is finite for some k, hence for all larger
k.

Lemma 4.2. Let A be a von Neumann algebra, ¢ a positive, normal, faithful linear functional on
A and 1 a normal, faithful, semifinite weight on A. If i has a bounded entropy approximation
w.r.t. @ with the y’s as above, then S(@|gy) \, S(@ly).

Proof. By [20, Cor. 3.13], we have dyy/d@’ \, dip/d¢e’. By formula (18) and Lebesgue
monotone convergence theorem, we then have —(&,,, log(di/d@’)Ey,,) i —(Ey, log(dp/d@’) <),
where the expectation values are understood by the spectral theorem as in eq. (16). So the
Lemma is proved. O

Corollary 4.3. Let A be a von Neumann algebra, ¢ a normal, faithful, positive linear functional
on A and  a normal, faithful, semifinite weight on A with bounded entropy approximation
w.r.t. Q.

If B is a von Neumann algebra and o : B — A a completely positive, normal, faithful, unital
map such that ¢ - a is semifinite. Then S(@-a|¢p-a) < S(@|p).

Proof. Let ¢, be abounded entropy approximation sequence as above. For k large enough,

S(p-alp-a)<S(e-alpr-a) < S(plpi),

where the first inequality also means that S(¢ - a|¢ - @) is well defined, and follows by
Lemma 4.1. The second inequality follows by Kosaki’s , see also [23]. Then the corollary is
a consequence of Lemma 4.2 by letting k — oo. U

10



Lemma 4.4. Let A be a von Neumann algebra, @, faithful normal positive linear functional
on Awith S(¢|y) < coand € : A — B a normal faithful conditional expectation. If (1) =1 and
Y-e =1, we have

S(¢lp) - S(elslpls) < log[A: B]..

Proof. Of course, we may assume that [A: B], < co. By eq. (4), we may also assume that
(1) = 1. We then immediately get

S(@ly) - S(@lslpls) = S(ele - ¢) <log[A: B,
where the equality is given by (9) and the inequality by Lemma 3.1. O

5 The bound in the semifinite case

Let A be a von Neumann algebra and 7 a normal, faithful, semifinite trace on A. With
@ a faithful, normal state on A, there exists a positive, non-singular, selfadjoint operator
p affiliated to A (density matrix) such that ¢ = 7(p-); namely ¢(x) = T(pl/zxpl/z) for all
positive x € A. The entropy S, (¢) is defined by

S:(p)=-t(plogp), (19)

provided 7(x) is well defined with x = plogp, namely either 7(x,) < co or —7(x_) < oo, where
x4 is the positive/negative part of x. So S;(¢) is not defined for every normal state ¢. We
shall say that S;(f) is finite if both 7(x,) and 7(x_) are finite, namely 7(|plogp|) < co.

Note that, even if A is a type I, factor, S; depends on the choice of the trace 7, as
the trace is unique only up to rescaling. However, the difference of entropies between two
states is independent of the chosen trace 7, due to the relation

Sic(@) =Si(p)+logd, A>0. (20)

The case 7 is unbounded shows important differences with the case 7 is bounded and the
notion of entropy S;(¢) needs care. If A = L®(R,dt) and 7 is the Lebesgue integral, the
state ¢ is given by the integral with a positive density function f € L'(R,dt) and

| r108at ==s.t)

is the differential entropy of f introduced by Shannon. The differential entropy is neither
positive nor negative definite. Moreover, it is not the limit of the discrete entropy under a
discrete approximation, indeed one needs a logarithmic rescaling, see [4, Chapter 8].

Lemma 5.1. Let A be a von Neumann algebra, T a normal, faithful, semifinite trace on A and ¢
a normal, faithful, positive linear functional on A with finite entropy (19). Then T has a bounded
entropy approximation w.r.t. ¢.

Proof. Let p be the density matrix of ¢ w.r.t. T. By assumptions 7(p) < o0, 7(|plogp]) < 0.
Let g be a sequence of positive Borel functions on (0, 0) such that g " 1 pointwise and

T(|lpx log px|) < oo, with px = pgx(p). Thus 7(pg) < o0, px /' p. With i = 7(px-), by the
relation (17) the ;s give a bounded entropy approximation for S(¢|t). O

11



As shown in [19], S; is monotone, provided the entropies are finite.

Proposition 5.2. Let B C A be an inclusion of von Neumann algebras and © a normal, faithful,
semifinite, trace T on A such that t|g is semifinite. If S.(¢) is finite, then Sy (¢lp) is well
defined and

Sts(®lB) = Sc(@) > 0.

Proof. By Cor. 4.3, S(¢|7) - S(@|sltlz) = 0, so the statement follows by eq. (17). O

We shall show that the bound by the logarithm of the index (11) still holds in the II
case, by extending the arguments in the previous section. Clearly, the entropy increase
Se1;(@lB) = S:(¢) is independent of rescaling of T due to (20).

Now, let ¢ : A — B be a faithful normal conditional expectation. A definition of the
index [A : B], for arbitrary inclusions of factors is given by the spatial theory [12], or by
the crossed product [13], and agrees with the Jones index in the II; case with ¢ the trace
preserving expectation. If A is a type III factor and B C A is the crossed product inclusion
of von Neumann algebras in Takesaki’s duality, then the index [A : ], shows up as the
trace scaling factor

t-y=[A:B].t (21)

with y: A — B the canonical endomorphism and 7 the canonical trace on Z[13].

The Pimsner-Popa inequality still holds, cf. [14]. Indeed A = [A : B];! is the best
constant such that ¢ — A -id is (completely) positive. In the non factor case, [A : B], is
defined as the inverse of the best constant in the Pimsner-Popa inequality.

Lemma 5.3. Let B C A be an inclusion of von Neumann algebras and t a normal, faithful,
semifinite, trace T on A such that t|g is semifinite. There exists a type I subfactor F C B and a
tensor decomposition

BIBo®FCAQ®f=A

such that T = 1y ® Tr, with 1y a tracial state on Ay and Tr the usual traceon F. If e : A — B is
the trace preserving expectation, then we have a corresponding tensor decomposition of &

£=¢p®id,
with €y : Ay — By preserving Ty, and
[A: Bl =[Ag: Bole, -

Proof. The Lemma is essentially Proposition 2.3 of [13]. O

Theorem 5.4. Let A be a von Neumann algebra with a normal, faithful, semifinite trace T,
B c A a von Neumann subalgebra such that t|g is semifinite and ¢ : A — B the trace preserving
expectation. If ¢ is a normal faithful state on A such that S, (@) is finite, then S, (¢@|g) is finite
too and we have

S:(¢lg) = S<(¢p) <log[A: B, (22)
where [A: B], is the index w.r.t. € and S (¢|g) = Sy, (¢|B)-

12



Proof. Fix the state ¢. By Lemma 5.1, there exists a sequence of positive linear functionals
Yy that give a bounded entropy approximation for T w.r.t. ¢. Thus S(@|¢x) \, S(¢|¢) and
S(@lyy) is finite for large k; so S(¢|sl|¢klg) is finite too for large k because the relative
entropy is monotone.

Now, r(x) " t(x) for all positive x € A, therefore Py (e(x)) T(e(x)) = t(x) for all
positive x € A. Moreover, S(¢@|¢y - €) is finite for large k by formula (9) and Lemma 3.1. So
we can assume that ¥y = ¢y - €.

By Lemma 4.4 we have S(@[x) — S(@|sl¢kls) < log[A: B]., therefore by Lemma 4.2 we
get

S(l) = S(@lsltls) =Lim (S(plgx) - S(plslpels)) < log[A: Bl.

and the proof is complete due to the relation (17). O

We end up this section by pointing out that the entropy of a state in a semifinite factor A
depends only on the approximate inner equivalence. Namely,

P1~ @2 = Si(p1) =Se(p2),

where @; ~ ¢, means that the norm closed orbit by inner automorphisms in the predual
A, of A generated by ¢, and ¢, are the same; namely ¢, belongs to the norm closure of
{¢1-Adu : u unitary of A}, where Adu denotes the inner automorphism of A implemented
by the unitary u € A. This follows because @, ~ ¢, iff the trace spectral density on the
spectral family of the density matrices p; of ¢; coincide, i = 1,2, [9, Lemma 4.3]. Thus, in
this case, if p; = JOOO Ade; ) is the spectral resolution of ¢;, we have (e ) = 7(ey,) so that

—t(p;logpy) = —f Alog Adt(ei)
0

is independent of i (assuming the entropy is well defined).

6 The optimal bound

We now show that the bound given by Theorem 5.4 is optimal for inclusions of infinite
dimensional factors.

Let B C A be an inclusion of factors and ¢ : A — 3 be a normal faithful expectation.
The index of B C A w.r.t. ¢ is finite if Haagerup’s dual operator valued weight ([8], see [20])
is a bounded map ¢! : B” — A’. Then ¢! is a scalar multiple of a conditional expectation
¢’ :B” — A’ and Kosaki’s definition of the index [12] is given by

el =[A: B¢ (23)

Unless A is finite dimensional, the index [A : B], defined in (23) coincides with the index
defined by the inequality (8), so we do not use a different symbol and specify the meaning
of [A: B], if necessary.

In the following, we assume that [.A : B], is finite and that A acts standardly on a Hilbert
space H. Let ¢ be a faithful normal state on A and &, € H be a cyclic vector in H such that
@ = (&, &p) on A. Denote by ¢’ the state on B’ given by ¢’ = (&, &)-
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The following relation has been derived by F. Xu in [22, Prop. 2.4]:

Sa(elp-e)+Sp(@le’- ™) =0,
therefore by (4)

Salple-€)+Sp(@’le’-€') =log[A: B], (24)
where S 4, S denote the relative entropy in A, B”and [A : B], is the index in (23). Here, the
involved states are normal but not necessarily faithful, the relative entropies are defined,
for example, by Kosaki’s formula.

The identity (24) is closely related to the functorial normalisation of the modular Hamil-
tonian in [15]. In the finite dimensional case, it has been discussed in [16].

Recall that a von Neumann algebra A is o-finite iff it admits a faithful normal state;
this is the case if A acts on a separable Hilbert space. For simplicity, the von Neumann
algebras in this sections are o-finite.

With B C A be an inclusion of factors on a Hilbert space H, we call A’ C B’ the dual
inclusion on H.

Lemma 6.1. A finite index inclusion of factors C C D is isomorphic to the dual A’ C B’ of an
inclusion of factors B C A, with A acting standardly on a Hilbert space (namely there exists a
cyclic and separating vector for A), iff either D is infinite dimensional or dim(C)?/dim(D) is an
integer.

Proof. Suppose first that D is of type II;. There exists a Jones’ tunnel subalgebra £ C C for
C C D, namely €& is a subfactor of C such that £ C C C D is Jones’ extension [10]. Let C act
standardly on a Hilbert space H, and let £ C C C C; be the Jones’ extension of £ C C on H.
Then C C D is isomorphic to C € C;. On the other hand, C ¢ C; is dual of C; c C" and C” acts
standardly on H. So our lemma is proved in this case.

The case D is an infinite factor is similar; in this situation, & = y(D) with y : D — C the
canonical endomorphisms [13].

If D is finite dimensional, namely D is a matrix algebra, it is easy to see that a tun-
nel subalgebra £ c C for C C D is a matrix subalgebra £ C C such that dim(D)/dim(C) =
dim(C)/dim(&). Since D is isomorphic to the tensor product C ® (C’ N D), a tunnel subal-
gebra £ C C for C C D exists iff C contains a subalgebra isomorphic to C’ N D, namely iff
dim(C’ N D) = dim(D)/dim(C) divides dim(C), that is iff dim(D) divides dim(C)?. The rest
of the finite dimensional proof is as in the type II; case. O

Note that the condition that dim(C)?/dim(D) is an integer in Lemma 6.1 implies that the
inverse of the Jones index [D : C] w.r.t. the trace is the best constant in the Pimsner-Popa
inequality (8) for trace preserving expectation; indeed this holds iff dim(C)? > dim(D) [18,
6.5 Examples].

By the above lemma, both next Prop. 6.2 and Cor. 6.3 remain true if A is finite dimen-
sional and dim(B)?/dim(.A) is an integer. We state them in the infinite dimensional case
for simplicity.

Proposition 6.2. Let B C A be an inclusion of infinite dimensional factors and ¢ : A — B an
expectation with finite index. Then

log[A: B, =supSa(gly - ¢), (25)
P

where the supremum is taken over all normal states ¢ of A.
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Proof. The inequality S 4(¢@|@ - €) < log[.A : B]. has been shown in Lemma 3.1, and it also
follows from (24). The proposition is going to be proved by using eq. (24).

We may assume that A is in a standard form. We choose a faithful normal state ¢ on A
such that ¢ - € = ; therefore S 4(p[p - €) = 0. With &, and ¢’ as above, eq. (24) gives

Sp(@’le’- ') =1og[A: B],

showing that the bound log[A : B], =log[A’ : B’]., in (25) is optimal for the dual inclusion
A’ c B’ with dual expectation ¢’. So the proposition follows by Lemma 6.1. O

In order eq. (24) to hold, A was assumed to be in standard form. If A is finite dimensional,
(25) does not hold in general with [ A : B], defined in (23) according to Kosaki. Indeed, we
have S 4(¢| - €) < —log A, with A the Pimsner-Popa bound in (8), and in this case A~! may
be strictly less than Kosaki’s index.

Let A be a semifinite factor and B C A a subfactor. If the index B C A is finite (w.r.t.
some expectation), then B is semifinite too. In this case, the trace T of A has a semifinite
restriction to B and [A: B], < oo, with ¢ the T-preserving expectation, see (21) and[14].

Corollary 6.3. Let A be a semi-finite, infinite dimensional factor. If B C A is a finite index
subfactor and € : A — B the expectation preserving the trace t, then

sup{S:(ply) = Sc(¢)} = logl4: Bl.,

where the supremum is taken over all normal states ¢ of A such that S;(¢) and S, (@|z) are
finite.

Proof. Suppose first that the trace 7 is bounded. Then eq. (12) in the proof of Prop. 3.2
shows that S (¢|z) — S¢(¢) =log[A : B], if ¢ is a maximum point in eq. (25).

If T is unbounded, we consider again a state ¢ of A such that S 4(¢@|p - €) = log[A : B],.
We take a sequence of bounded entropy approximation functionals ¢y for T w.r.t. ¢ with
Yy - € = Py as in the proof of Theorem 5.4. As S(@|yy) is finite, also S(¢@g|klg) is finite by
Lemma 4.4. Therefore |z is a sequence of bounded entropy approximation for 7|z w.r.t.
Px|p. By Lemma 4.2, we so have

S(plgr) = S(elr),  S(elslrls) = S(@lsltiz).
By eq. (9), we have

S(plr) = S(@lslpils) = S(@lk - €) = S(@lslYilr) = S(ple - €) =log[ A : B],

thus
S(@l0) = S(plsltls) = lim (S(@lx) = S(@lslils)) = loglA: Bl

that is S;(@|g) — S¢(@) =log[.A : B]. due to the identity (17). O

More generally, let B C A be an inclusion of von Neumann algebras with a finite index
expectation ¢ : A — B. We shall say that ¢ has scalar index [A : B], if eq. (23) holds for a
scalar [A : B].. This is the case if the centers of A and B are finite dimensional and have
trivial intersection, with ¢ the minimal expectation [6].

The identity (24) still holds in this case, by the same proof. It follows that Corollary 6.3
remains true if B C A is an inclusion of properly infinite von Neumann algebras which has
finite scalar index [A : B],.
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7 Further comments

Structures in the physical literature (see [5, 7]) suggest to consider the entropy relative to
a linear subspace, not only relative to an algebra. We consider such a notion and a few
comments.

Let A be a von Neumann algebra and ¢, ¢ positive, normal, linear functionals on .A.
Given a linear subspace V C A containing the identity, we set

neN xel /n

Svlply) = supsup{<p<1>logn | (otorson+ t-lzp(x(t)x(t)*))?} . (26)

where U is the set of all step functions x : (0,c0) — V with finite range, and x(¢) + y(¢) = 1.
If V is *strongly dense in A, this is of course Kosaki’s formula (13) for the relative
entropy; namely

Sv(ely) =Salely).

We list the following basic properties of Sy, whose proof is immediate. A is a von Neumann
algebra, @, 9, ¢ normal, positive linear functionals on .A and V C A a unital linear space.

a) ¢ <y implies Sy (p|P) > Sy (p[y).
b) Sy(@ly) = Sy(elp) with V the *strong closure of V.

c) Monotonicity. If W C V is a unital linear subspaces, then Sy (@) < Sy (@[y) .

d) Martingale convergence. Let V; C A be an increasing net of unital linear subspaces
with V = U, V;. Then Sy, (¢l9) / Sy (oly).

If now ¢ is a positive, normal, linear functional and ¢ a normal, semifinite, faithful weight
on A, we set

Sv(plyp)= z;)nbeV((P"(p), (27)

<

where the infimum is taken over the set P, of all positive, normal, linear functionals ¢ on
A such that ¢ <1p. We recall that

P(x) = sup{(j)(x) tpe P,p}, for all positive x € A,

[20, Thm. 1.11].
Suppose that 7 is a semifinite, faithful normal trace on A and p is the density matrix of
@ w.r.t. 7. Recall that

Se(@) ==SalplT), (28)

provided the S;(¢) = —7(plogp) is well defined. We may define S,(¢) for all states by the
above formula with the right hand side given by (27) with V = A.
If V c Ais a linear subspace containing the identity as above, we then set

Sev(p)=-Sv(plT).
If W c V is a unital linear subspace, it follows from c) above that

WcV = Sy(p|r) <Sw(elr),
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therefore the monotonicity property holds for S, v (¢):

ST,V((P) < ST,W((P)’
in particular S; 4(¢) <S¢ v ().
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