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Abstract

Von Neumann entropy has a natural extension to the case of an arbitrary semifinite
von Neumann algebra, as was considered by I. E. Segal. We relate this entropy to the
relative entropy and show that the entropy increase for an inclusion of von Neumann
factors is bounded by the logarithm of the Jones index. The bound is optimal if the
factors are infinite dimensional.
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1 Introduction

In recent years, there has been much interest in applications of entropy to quantum field
theory. For example, a novel argument [2] for the Zamolodchikov c-theorem concerning
the irreversibility of renormalization group flow in 2 spacetime dimensions made use of
the formal notion of the von Neumann entropy of the density matrix of a quantum field
reduced to a local region in spacetime, a double cone. It is difficult to put this argument
on a rigorous basis because in quantum field theory the algebra of a double cone region is
actually a von Neumann algebra of Type III, and notions such as density matrix and von
Neumann entropy are not available for such algebras.

In the physics literature, the non-existence of a notion of entropy for an algebra of Type
III is described by saying that in quantum field theory, the entropy of a double cone region
(or of any local region in spacetime) is ultraviolet divergent. The nature of the ultravio-
let divergence depends on the spacetime dimension. In two dimensions, the divergence
is only logarithmic. The argument in [2] relies on this and involves considering linear
combinations of entropies for different double cone regions from which the divergences
cancel. Defining rigorously finite linear combination of entropies might be one way to put
the argument in [2], and others somewhat like it, on a rigorous basis. This would require
considerations beyond the von Neumann algebra structure, since the assertion that the
ultraviolet divergence of the entropy is logarithmic is special to 2 spacetime dimensions.

Here we will consider a somewhat similar but much simpler situation in which a renor-
malized notion of entropy is available. Entropy for an algebra A of Type II1 was first dis-
cussed long ago by I. E. Segal [19]. Segal noted that for a state of A, a fairly natural notion
of entropy can be defined, with the unusual property that there is a (normalized) state ofA
with maximum entropy, namely the tracial state τ, and no state of minimum entropy. En-
tropy is then defined to vanish for the tracial state, and therefore, to be negative (or equal
to −∞ in some cases) for other states. To see the interpretation of this entropy in terms of
renormalization, consider a hyperfinite Type II1 algebra A, which is the large i limit of a
family of matrix algebrasMi of dimension n2i . The maximum entropy state ofMi is the
tracial state τi , with von Neumann entropy SvN(τi ) = logni . In the limit i→∞, τi converges
to τ. If ϕi is a family of states ofMi that converge for large i to a state ϕ of A, the Type II1
entropy S(ϕ) can be defined as limi→∞(SvN(ϕi)− SvN(τi)) = limi→∞(SvN(ϕi)− logni). With
this definition, it is clear that τ is the maximum entropy state of A and has entropy 0.
The subtraction of the divergent part logni is necessary to ensure the existence of a large
i limit, and makes clear the analogy with renormalized entropy as studied in the physics
literature.

A renormalized entropy can also be defined for an algebra A of Type II∞, with the dif-
ference that in this case, because there is no canonical normalization of a tracial weight
of A, entropy is really only naturally defined up to an additive constant, the same for all
states. At first sight, one might think that because the algebras of local regions in quantum
field theory are of Type III, entropy of a Type II algebra would have little application in
physics. In fact, this thought is probably one reason that entropy of an algebra of Type
II has been relatively little-studied. However, Type II algebras can appear in black hole
physics [24] and also in certain randommatrix models [21], so there is indeed some physi-
cal motivation to study entropy for Type II.

In this article, we observe that entropy for a state ϕ of a Type II algebra can be inter-
preted as a relative entropy S(ϕ||τ). This implies that in a trace-preserving inclusion of
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Type II algebras B ⊂ A, the entropy of any state increases, cf. [19]. Our main result is a
bound on the entropy increase in terms of the Jones index [A : B].

Vaughan Jones made fundamental contributions in multiple areas of mathematics and
mathematical physics. He always was extremely interested in applications of operator
algebras to physics. The Jones index of a subfactor was an important tool in his discoveries
in von Neumann algebra theory, mathematical physics, and knot theory. We hope therefore
that the modest contribution to the theory of the Jones index that wemake here would have
pleased Vaughan, and we are happy to dedicate this article to his memory.

2 Noncommutative probability spaces

Let (X,µ) be a probability space and f ∈ L1(X,µ), with f > 0 almost everywhere, and∫
X
f dµ = 1. Define the entropy S(f ) of the random variable f by

S(f ) = −

∫

X
f log f dµ =

∫

X
f log f −1dµ.

Lemma 2.1. S(f ) ≤ 0.

Proof. Note that − log is a convex function, thus

− log
(∫

X
f −1dν

)
≤ −

∫

X
log f −1dν

by Jensen inequality, for every probability measure ν on X. Therefore, setting dν = f dµ,
we have

S(f ) =

∫

X
f log f −1dµ =

∫

X
log f −1dν ≤ log

(∫

X
f −1dν

)
= log

(∫

X
1dµ

)
= 0 . (1)

�

Note that
S(f ) = −S(ν ||µ)

where S(ν ||µ) is the relative entropy of the between the states µ and ν on the von Neumann
algebra L∞(X,µ), indeed

S(ν ||µ) =

∫
(log f − log1)dν =

∫
f log f dµ .

Let now A be a finite von Neumann algebra, thus there exists a normal faithful trace τ (τ
is unique if A is a factor once τ is normalised with τ(1) = 1). If ϕ is a normal faithful state
of A, there exists a positive, non singular operator ρ affiliated with A such that

ϕ(x) = τ(ρx) , x ∈ A , (2)

thus τ(ρ) = 1.
We define the entropy Sτ(ϕ) of ϕ w.r.t. τ as

Sτ(ϕ) = −τ(ρ logρ) .

3



Setting τ0 =
1

τ(1)
τ, we have ϕ = τ0(ρ0·) with ρ0 = τ(1)ρ, therefore

Sτ0(ϕ) = −τ0(ρ0 logρ0) = Sτ(ρ)− τ(1) logτ(1)

so we can assume that τ is normalised with τ(1) = 1.

Proposition 2.2. If τ is normalised, we have

Sτ(ϕ) ≤ 0 ,

possibly Sτ(ϕ) = −∞, and Sτ(ϕ) = 0 iff ϕ = τ.

Proof. By considering the von Neumann algebra generated by ρ, the statement follows by
(1). Alternatively, the statement is a consequence of the following proposition. �

LetA be an arbitrary von Neumann algebra and ϕ,ψ normal, positive, faithful linear func-
tionals on A. Araki’s relative entropy [1] is defined by

S(ϕ||ψ) = −(ξϕ, log∆ξψ ,ξϕξϕ) , (3)

where ξϕ ,ξψ are any cyclic vector representatives of ϕ,ψ on the underlying Hilbert space
H (we may assume that A is in a standard form). Here ∆ξϕ ,ξψ is the relative modular

operator between ϕ and ψ [20], i.e. ∆ξϕ ,ξψ = S∗ξϕ ,ξψSξϕ ,ξψ with Sξϕ ,ξψ the closure of the map

xξψ 7→ x∗ξϕ , x ∈ A. The right hand side of (3) is well defined for all ϕ,ψ by

S(ϕ||ψ) =

∫ ∞

0
logs d(ξϕ , esξϕ)

with ∆ξψ ,ξϕ =
∫ ∞
0

s des the spectral resolution of ∆ξψ ,ξϕ . Indeed

S(ϕ||ψ) ≥ ϕ(1)
(
logϕ(1)− logψ(1)

)
,

possibly S(ϕ||ψ) = +∞. Recall also that, if ϕ is a state, then

S(ϕ||λψ) = S(ϕ||ψ)− logλ, λ > 0 . (4)

Note that S(ϕ||ψ) can be easily defined also if ϕ,ψ are not faithful, see [17]; for simplicity
we mostly consider the faithful case.

Proposition 2.3. Let τ be a normal faithful trace on A. Then

Sτ(ϕ) = −S(ϕ||τ) ,

where S(ϕ||τ) is Araki’s relative entropy (3) between τ and ϕ on A.

Proof. The relative modular operator ∆ξτξϕ (w.r.t. vector representatives ξϕ ,ξτ of ϕ,τ in

the natural cone) is equal to ρ−1. Therefore

S(ϕ||τ) = −(ξϕ, log∆ξτ ,ξϕξϕ) = (ξϕ , logρξϕ) = ϕ(logρ) = τ(ρ logρ) = −Sτ(ϕ) .

�
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Due to the above proposition, the entropy Sτ depends on the choice of the tracial state τ.
However, if A is a type II1 factor, the tracial state is unique.

Since the relative entropy is monotone, we infer that the Sτ is monotone.

Corollary 2.4. If B ⊂ A is a von Neumann subalgebra and τ a normal faithful trace onA. Then

Sτ(ϕ|B) ≥ Sτ(ϕ) ,

where Sτ(ϕ|B) is the entropy of the restriction of ϕ to B w.r.t. τ|B .

Proof.

Sτ(ϕ|B) = −S(ϕ|B ||τ|B ) ≥ −S(ϕ||τ) = Sτ(ϕ) .

�

We have the additivity of Sτ .

Proposition 2.5. LetAi be von Neumann algebras with tracial normal faithful states τi , i = 1,2,
and τ = τ1 ⊗ τ2 the trace on A =A1 ⊗A2. Then

Sτ(ϕ1 ⊗ϕ2) = Sτ1(ϕ1) + Sτ2(ϕ2)

for any normal faithful states ϕi on Ai .

Proof.

Sτ(ϕ1 ⊗ϕ2) = S(ϕ1 ⊗ϕ2||τ1 ⊗ τ2) = S(ϕ1||τ1) + S(ϕ2||τ2) = Sτ1(ϕ1) + Sτ2(ϕ2) .

�

Suppose now Mn is type In factor, namelyMn is the n × n matrix algebra. Let Tr be the
trace onMn, thus Tr(1) = n and

Tr = nτ ,

with τ the normalised trace. With ϕ a state on Mn, the von Neumann entropy of ϕ is
defined by

SvN(ϕ) = −Tr(σ logσ) ,

with σ the density matrix associated with ϕ, namely

ϕ(x) = Tr(σx) , x ∈Mn , (5)

Note that the von Neumann entropy on type I factor is not monotone.
We now compare Sτ(ϕ) with SvN(ϕ). With ρ and σ as in (2) and (5), clearly we have

nσ = ρ

thus the following holds as particular case of (4).

Proposition 2.6. If τ is normalised, we have

Sτ(ϕ) = SvN(ϕ)− logn .

5



Proof. We have

SvN(ϕ) = −Tr(σ logσ) = −nτ
(
ρ

n
log

ρ

n

)
= −τ

(
ρ log

ρ

n

)

= −τ(ρ logρ) + logn = Sτ(ϕ) + logn .

�

As a consequence, the entropy Sτ(ϕ) onMn satisfies the bound

− logn ≤ Sτ(ϕ) ≤ 0; (6)

Sτ(ϕ) = 0 iff ϕ is the tracial state τ, while Sτ(ϕ) = − logn iff ϕ is a pure state.
Now, the von Neumann entropy is additive:

SvN(ϕ1 ⊗ϕ2) = SvN(ϕ1) + SvN(ϕ2)

therefore, if ϕ1 is a state on A and ϕ2 is a state onMn, we have

Sτ(ϕ1 ⊗ϕ2) = Sτ(ϕ1) + Sτ(ϕ2) = Sτ(ϕ1) + SvN(ϕ2)− logn .

Let A1,A2 be von Neumann algebras ϕ a normal faithful state on A = A1 ⊗ A2 and ψk

a faithful normal state on Ak , k = 1,2. Recall the subadditivity property of the relative
entropy [17, Cor. 5.21]:

S(ϕ||ψ1 ⊗ψ2) ≥ S(ϕ|A1
||ψ1) + S(ϕ|A2

||ψ2) .

Proposition 2.7. Let A be a finite von Neumann algebra with faithful normal tracial state τ. If
ϕ is a faithful state on A⊗Mn, then

Sτ(ϕ|A) + SvN(ϕ|Mn
)− Sτ(ϕ) ≥ logn .

The equality occurs iff ϕ = ϕ|A ⊗ϕ|Mn
.

Proof. We have

Sτ(ϕ) = −S(ϕ||τ) = −S(ϕ||τA ⊗ τMn
) ≤ −S(ϕ|A||τA)− S(ϕ|Mn

||τMn
) =

Sτ(ϕ|A) + Sτ(ϕ|Mn
) = Sτ(ϕ|A) + SvN(ϕ|Mn

)− logn .

�

3 A bound for the entropy increase

Let B ⊂ A be an inclusion of von Neumann algebras and let τ be a faithful normal tracial
state onA. In caseA, B are factors, V. Jones defined the index [A : B] as the ratio of Murray
and von Neumann’s coupling constants. In the more general non factor case, Pimsner and
Popa [18] gave a probabilistic definition of the index [A : B]ε, with ε : A → B the trace
preserving expectation:

[A : B]ε = λ−1 , (7)
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with λ ≥ 0 the best constant such that

ε(x) ≥ λx (8)

for all positive x ∈ A. The above inequality is called the Pimsner-Popa inequality.
If A and B are II1 factors and ε is the unique trace preserving conditional expectation

ε :A→B, then
[A : B]ε = Jones index of B ⊂ A .

We shall later comment on the case A is not of type II1.
Let now B ⊂ A be an arbitrary inclusion of von Neumann algebras with a normal faith-

ful conditional expectation ε : A → B. Given normal states ϕ and ψ on A, recall the
formula [17, Thm. 5.15] for the relative entropy

S(ϕ||ψ · ε) = S(ϕ|B ||ψ|B) + S(ϕ||ϕ · ε) . (9)

Lemma 3.1. Let B ⊂ A be an inclusion of von Neumann algebras and ε : A→ B a finite index
normal conditional expectation. Then

S(ϕ||ϕ · ε) ≤ log[A : B]ε

for every faithful normal state of A.

Proof. As ε(x) ≥ λx, for all positive x ∈ A, with λ the inverse of the index, we have

ϕ · ε ≥ λϕ

and this implies
S(ϕ||ϕ · ε) ≤ S(ϕ||λϕ) = − logλ, (10)

where the first inequality follows by Corollary 4.3 and the equality S(ϕ||λϕ) = − logλ is a
particular case of (4). �

Proposition 3.2. Let B ⊂ A be an inclusion of von Neumann algebras, τ a finite normal faithful
trace on A and ε :A→B the trace preserving expectation. For every normal faithful state ϕ on
A, we have

Sτ|B (ϕ|B)− Sτ(ϕ) ≤ log[A : B]ε , (11)

where [A : B]ε is the index w.r.t. ε.

Proof. Taking ψ = τ in formula (9), we have

S(ϕ||τ) = S(ϕ|B ||τ|B ) + S(ϕ||ϕ · ε) , (12)

namely
Sτ|B (ϕ|B)− Sτ(ϕ) = S(ϕ||ϕ · ε) .

As by Lemma 3.1
S(ϕ||ϕ · ε) ≤ S(ϕ||λϕ) = − logλ = log[A : B]ε ,

the bound (11) follows. �
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It is known that if A is infinite-dimensional, then the quantity [A : B]ε as we have defined
is equal to the Jones index [A : B]. For finite-dimensional A, this is actually not the case.
For example, ifA =Mn, B = C, then [A : B] = n2 but [A : B]ε = n . The definition of [A : B]ε
can be modified as follows to coincide with the Jones index [A : B] in all cases: [A : B] is
the inverse of the largest constant λ such that ε − λ · id is completely positive. However,
except in the case that A is finite-dimensional, ε−λ·id is completely positive if and only if
it is positive, and this refinement is unnecessary.

We conclude by providing a bound as in Prop. 3.2 for the increase of S(τ||ϕ). Note that,
with A, τ, ϕ as in (2), we have

S(τ||ϕ) = −τ(logρ) ≥ 0 ,

similarly as in (1).

Proposition 3.3. With the notations in Prop. 3.2, we hav

S(τ||ϕ)− S(τ|B ||ϕ|B) ≤ log[A : B]ε .

Proof. Clearly

ϕ|B = τ
(
ε(ρ) ·

)
,

and ε(ρ) ≥ λρ by the Pimsner-Popa inequality. So

log
(
ε(ρ)

)
≥ log(λρ) = logρ + logλ

because the logarithm is an operator monotone function. Therefore

S(τ||ϕ)− S(τ|B ||ϕ|B) = −τ
(
log(ε(ρ)

)
+ τ(logρ) ≤ − logλ = log[A : B]ε .

�

It would be to interesting estimate supϕ S(ϕ · ε||ϕ) too.
Note that, by the argument in the proof of Theorem 5.4, if Ai and Bi are increasing

sequences of matrix subalgebras of dimension n2i and m2
i such that ∪iAi , ∪iBi are weakly

dense in A, B, then

Sτ|B (ϕ|B)− Sτ(ϕ) = lim
i

(
Sτi |Bi

(ϕi |Bi )− Sτi (ϕi)
)
= lim

i

(
SvN(ϕi |Bi )− SvN(ϕi) + log(ni /mi )

)
.

Furthermore, if Bi ⊂ Ai and εBi+1εAi
= εBi , where εAi

, εBi denote the trace preserving ex-
pectations onto Ai , Bi , then by [18, Prop. 2.6] we have

[A : B]ε = lim
i
[Ai : Bi] = lim

i
n2i /m

2
i ,

therefore

Sτ|B (ϕ|B)− Sτ(ϕ) = lim
i

(
SvN(ϕi |Bi )− SvN(ϕi)

)
+
1

2
log[A : B]ε .
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4 State/weight relative entropy

Let A be a von Neumann algebra and ϕ,ψ positive, normal, linear functionals on A. We
recall Kosaki’s variational formula [11]. Fix any ∗-strongly dense linear subspace V of A
containing the identity. Then

S(ϕ||ψ) = sup
n∈N

sup
x∈V

{
ϕ(1) logn−

∫ ∞

1/n

(
ϕ(y(t)∗y(t)) + t−1ψ(x(t)x(t)∗)

)
dt

t

}
, (13)

where V is the set of all step functions x : (1/n,∞)→ V with finite range, and x(t)+y(t) = 1.
The advantage of Kosaki’s formula is that it has all main properties built in it.

Let now ϕ be a positive, normal, faithful linear functional on A and ψ a normal, faith-
ful, semifinite weight on A, see [20, Chapter VII] (semifinite means that the definition
domain of ψ is weakly dense in A). We may assume that A acts standardly on the GNS
Hilbert space Hϕ of ϕ. Let ϕ′ be the normal, faithful, positive linear functional on the
commutant A′ of A given by

ϕ′ = (ξϕ , ·ξϕ) , (14)

where ξϕ ∈ Hϕ is the GNS vector. Let dψ/dϕ′ be Connes’ spatial derivative between ψ and
ϕ′ [3].

We define the relative entropy between ϕ and ψ by

S(ϕ||ψ) = −(ξϕ, log(dψ/dϕ
′)ξϕ) , (15)

provided the above formula is well defined; this is the case, in particular, if ξϕ belongs to

the domain of log(dψ/dϕ′). More generally, let dψ/dϕ′ =
∫ ∞
0

s des be the spectral resolution
of dψ/dϕ′, then

S(ϕ||ψ) = −

∫ ∞

0
logs d(ξϕ , esξϕ) (16)

provided either the positive or the negative part of logs belongs to L1(R+,d(ξϕ , esξϕ)). If
S(ϕ||ψ) is well defined, then S(ϕ||ψ) can take any real value or S(ϕ||ψ) = ±∞. We shall say
that S(ϕ||ψ) is finite if S(ϕ||ψ) is well defined and S(ϕ||ψ) , ±∞.

If ψ is bounded, then dψ/dϕ′ is equal to the relative modular operator ∆ξψ ,ξϕ , where ξψ
is a cyclic vector representative of ψ in Hϕ , so S(ϕ||ψ) is Araki’s relative entropy (3) and is
well defined for every normal faithful state ϕ.

If ψ = τ is tracial, it follows, similarly as in Proposition 2.3, that dτ/dϕ′ = ρ−1 with ρ
the density matrix of ϕ as in (19), so

S(ϕ||τ) = −Sτ(ϕ) = τ(ρ logρ) (17)

and S(ϕ||τ) is finite iff τ(|ρ logρ|) <∞ (see Section 5).
In particular, if A is a type I factor and τ is the usual trace Tr on A, we have

S(ϕ||Tr) = − von Neumann entropy of ϕ .

Note that S(ϕ||ψ) can be defined also if the weight ψ is not semifinite by restricting both ϕ
and ψ to the weak closure of the definition domain of ψ. Still (13) holds.

In the following, we shall use following elementary integral formula for the logarithm
function:

− logλ =

∫ ∞

0

(
(t +1)−1 −λ(t +λ)−1

)dt
t
, λ > 0 . (18)
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Lemma 4.1. Let A be a von Neumann algebra, ϕ a positive, normal, faithful linear functional
on A and ψ1,ψ2 normal, faithful, semifinite weights on A. If S(ϕ||ψ1) and S(ϕ||ψ2) are well
defined, then

ψ1 ≤ ψ2 =⇒ S(ϕ||ψ1) ≥ S(ϕ||ψ2) .

Proof. We have ψ1 ≤ ψ2 =⇒ dψ1/dϕ
′ ≤ dψ2/dϕ

′ [20, Prop. 3.10]. On the other hand,
dψk/dϕ

′ = (dϕ′/dψk)
−1, so

ψ1 ≤ ψ2 =⇒ dϕ′/dψ1 ≥ dϕ′/dψ2 =⇒ log(dϕ′/dψ1) ≥ log(dϕ′/dψ2)

because the logarithm is an operator monotone function. The right hand inequality means
that (ξ, log(dϕ′/dψ1ξ) ≥ (ξ, log(dϕ′/dψ2ξ) for all ξ in the common domain of log(dϕ′/dψ1)
and log(dϕ′/dψ2) and follows by (18). So we have

ψ1 ≤ ψ2 =⇒ −(ξϕ , log(dψ1/dϕ
′)ξϕ) ≥ −(ξϕ , log(dψ2/dϕ

′)ξϕ)

if ξϕ is in the common domain. The more general case follows by the spectral theorem.
�

We shall say that ψ has a bounded entropy approximation w.r.t. ϕ if S(ϕ||ψ) is well defined
and there exists a sequence of positive, normal, faithful linear functionals on A such that
ψk(x)ր ψ(x) for every positive x ∈ A, and S(ϕ||ψk) is finite for some k, hence for all larger
k.

Lemma 4.2. LetA be a von Neumann algebra, ϕ a positive, normal, faithful linear functional on
A and ψ a normal, faithful, semifinite weight on A. If ψ has a bounded entropy approximation
w.r.t. ϕ with the ψk’s as above, then S(ϕ||ψk)ց S(ϕ||ψ).

Proof. By [20, Cor. 3.13], we have dψk /dϕ
′ ց dψ/dϕ′. By formula (18) and Lebesgue

monotone convergence theorem, we then have −(ξϕ , log(dψk/dϕ
′)ξϕ, )ց−(ξϕ , log(dψ/dϕ

′)ξϕ),
where the expectation values are understood by the spectral theorem as in eq. (16). So the
Lemma is proved. �

Corollary 4.3. LetA be a von Neumann algebra, ϕ a normal, faithful, positive linear functional
on A and ψ a normal, faithful, semifinite weight on A with bounded entropy approximation
w.r.t. ϕ.

If B is a von Neumann algebra and α : B →A a completely positive, normal, faithful, unital
map such that ψ ·α is semifinite. Then S(ϕ ·α||ψ ·α) ≤ S(ϕ||ψ) .

Proof. Let ψk be a bounded entropy approximation sequence as above. For k large enough,

S(ϕ ·α||ψ ·α) ≤ S(ϕ ·α||ψk ·α) ≤ S(ϕ||ψk) ,

where the first inequality also means that S(ϕ · α||ψ · α) is well defined, and follows by
Lemma 4.1. The second inequality follows by Kosaki’s , see also [23]. Then the corollary is
a consequence of Lemma 4.2 by letting k→∞. �
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Lemma 4.4. Let A be a von Neumann algebra, ϕ,ψ faithful normal positive linear functional
onA with S(ϕ||ψ) <∞ and ε :A→B a normal faithful conditional expectation. If ϕ(1) = 1 and
ψ · ε = ψ, we have

S(ϕ||ψ)− S(ϕ|B ||ψ|B) ≤ log[A : B]ε .

Proof. Of course, we may assume that [A : B]ε <∞. By eq. (4), we may also assume that
ψ(1) = 1. We then immediately get

S(ϕ||ψ)− S(ϕ|B ||ψ|B) = S(ϕ||ϕ · ε) ≤ log[A : B]ε ,

where the equality is given by (9) and the inequality by Lemma 3.1. �

5 The bound in the semifinite case

Let A be a von Neumann algebra and τ a normal, faithful, semifinite trace on A. With
ϕ a faithful, normal state on A, there exists a positive, non-singular, selfadjoint operator
ρ affiliated to A (density matrix) such that ϕ = τ(ρ ·); namely ϕ(x) = τ(ρ1/2xρ1/2) for all
positive x ∈ A. The entropy Sτ(ϕ) is defined by

Sτ(ϕ) = −τ(ρ logρ) , (19)

provided τ(x) is well defined with x ≡ ρ logρ, namely either τ(x+) <∞ or −τ(x−) <∞, where
x± is the positive/negative part of x. So Sτ(ϕ) is not defined for every normal state ϕ. We
shall say that Sτ(f ) is finite if both τ(x+) and τ(x−) are finite, namely τ(|ρ logρ|) <∞.

Note that, even if A is a type II∞ factor, Sτ depends on the choice of the trace τ, as
the trace is unique only up to rescaling. However, the difference of entropies between two
states is independent of the chosen trace τ, due to the relation

Sλτ(ϕ) = Sτ(ϕ) + logλ, λ > 0 . (20)

The case τ is unbounded shows important differences with the case τ is bounded and the
notion of entropy Sτ(ϕ) needs care. If A = L∞(R,dt) and τ is the Lebesgue integral, the
state ϕ is given by the integral with a positive density function f ∈ L1(R,dt) and

∫
f log f dt = −Sτ(ϕ)

is the differential entropy of f introduced by Shannon. The differential entropy is neither
positive nor negative definite. Moreover, it is not the limit of the discrete entropy under a
discrete approximation, indeed one needs a logarithmic rescaling, see [4, Chapter 8].

Lemma 5.1. LetA be a von Neumann algebra, τ a normal, faithful, semifinite trace onA and ϕ
a normal, faithful, positive linear functional onAwith finite entropy (19). Then τ has a bounded
entropy approximation w.r.t. ϕ.

Proof. Let ρ be the density matrix of ϕ w.r.t. τ. By assumptions τ(ρ) <∞, τ(|ρ logρ|) <∞.
Let gk be a sequence of positive Borel functions on (0,∞) such that gk ր 1 pointwise and
τ(|ρk logρk |) < ∞, with ρk = ρgk(ρ). Thus τ(ρk) < ∞, ρk ր ρ. With ψk = τ(ρk ·), by the
relation (17) the ψk ’s give a bounded entropy approximation for S(ϕ||τ). �
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As shown in [19], Sτ is monotone, provided the entropies are finite.

Proposition 5.2. Let B ⊂ A be an inclusion of von Neumann algebras and τ a normal, faithful,
semifinite, trace τ on A such that τ|B is semifinite. If Sτ(ϕ) is finite, then Sτ|B (ϕ|B) is well
defined and

Sτ|B (ϕ|B)− Sτ(ϕ) ≥ 0 .

Proof. By Cor. 4.3, S(ϕ||τ)− S(ϕ|B ||τ|B ) ≥ 0, so the statement follows by eq. (17). �

We shall show that the bound by the logarithm of the index (11) still holds in the II∞
case, by extending the arguments in the previous section. Clearly, the entropy increase
Sτ|B (ϕ|B)− Sτ(ϕ) is independent of rescaling of τ due to (20).

Now, let ε : A → B be a faithful normal conditional expectation. A definition of the
index [A : B]ε for arbitrary inclusions of factors is given by the spatial theory [12], or by
the crossed product [13], and agrees with the Jones index in the II1 case with ε the trace
preserving expectation. If A is a type III factor and B̃ ⊂ Ã is the crossed product inclusion
of von Neumann algebras in Takesaki’s duality, then the index [A : B]ε shows up as the
trace scaling factor

τ ·γ = [A : B]ετ (21)

with γ : Ã → B̃ the canonical endomorphism and τ the canonical trace on Ã [13].
The Pimsner-Popa inequality still holds, cf. [14]. Indeed λ = [A : B]−1ε is the best

constant such that ε − λ · id is (completely) positive. In the non factor case, [A : B]ε is
defined as the inverse of the best constant in the Pimsner-Popa inequality.

Lemma 5.3. Let B ⊂ A be an inclusion of von Neumann algebras and τ a normal, faithful,
semifinite, trace τ on A such that τ|B is semifinite. There exists a type I subfactor F ⊂ B and a
tensor decomposition

B = B0 ⊗F ⊂ A0 ⊗F =A

such that τ = τ0 ⊗Tr, with τ0 a tracial state on A1 and Tr the usual trace on F . If ε :A→ B is
the trace preserving expectation, then we have a corresponding tensor decomposition of ε

ε = ε0 ⊗ id ,

with ε0 :A0→B0 preserving τ0, and

[A : B]ε = [A0 : B0]ε0 .

Proof. The Lemma is essentially Proposition 2.3 of [13]. �

Theorem 5.4. Let A be a von Neumann algebra with a normal, faithful, semifinite trace τ,
B ⊂ A a von Neumann subalgebra such that τ|B is semifinite and ε :A→B the trace preserving
expectation. If ϕ is a normal faithful state on A such that Sτ(ϕ) is finite, then Sτ(ϕ|B) is finite
too and we have

Sτ(ϕ|B)− Sτ(ϕ) ≤ log[A : B]ε , (22)

where [A : B]ε is the index w.r.t. ε and Sτ(ϕ|B) ≡ Sτ|B (ϕ|B).
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Proof. Fix the state ϕ. By Lemma 5.1, there exists a sequence of positive linear functionals
ψk that give a bounded entropy approximation for τ w.r.t. ϕ. Thus S(ϕ||ψk)ց S(ϕ||ψ) and
S(ϕ||ψk) is finite for large k; so S(ϕ|B ||ψk |B) is finite too for large k because the relative
entropy is monotone.

Now, ψk(x) ր τ(x) for all positive x ∈ A, therefore ψk(ε(x)) ր τ(ε(x)) = τ(x) for all
positive x ∈ A. Moreover, S(ϕ||ψk · ε) is finite for large k by formula (9) and Lemma 3.1. So
we can assume that ψk = ψk · ε.

By Lemma 4.4 we have S(ϕ||ψk)− S(ϕ|B ||ψk |B) ≤ log[A : B]ε, therefore by Lemma 4.2 we
get

S(ϕ||τ)− S(ϕ|B ||τ|B ) = lim
k

(
S(ϕ||ψk)− S(ϕ|B ||ψk |B )

)
≤ log[A : B]ε

and the proof is complete due to the relation (17). �

We end up this section by pointing out that the entropy of a state in a semifinite factor A
depends only on the approximate inner equivalence. Namely,

ϕ1 ∼ ϕ2 =⇒ Sτ(ϕ1) = Sτ(ϕ2) ,

where ϕ1 ∼ ϕ2 means that the norm closed orbit by inner automorphisms in the predual
A∗ of A generated by ϕ1 and ϕ2 are the same; namely ϕ2 belongs to the norm closure of
{ϕ1 ·Adu : u unitary ofA}, where Adu denotes the inner automorphism of A implemented
by the unitary u ∈ A. This follows because ϕ1 ∼ ϕ2 iff the trace spectral density on the
spectral family of the density matrices ρi of ϕi coincide, i = 1,2, [9, Lemma 4.3]. Thus, in
this case, if ρi =

∫ ∞
0

λdei,λ is the spectral resolution of ϕi , we have τ(e1,λ) = τ(e2,λ) so that

−τ(ρi logρi) = −

∫ ∞

0
λ logλdτ(ei,λ)

is independent of i (assuming the entropy is well defined).

6 The optimal bound

We now show that the bound given by Theorem 5.4 is optimal for inclusions of infinite
dimensional factors.

Let B ⊂ A be an inclusion of factors and ε : A → B be a normal faithful expectation.
The index of B ⊂ A w.r.t. ε is finite if Haagerup’s dual operator valued weight ([8], see [20])
is a bounded map ε−1 : B ′ →A′. Then ε−1 is a scalar multiple of a conditional expectation
ε′ : B ′→A′ and Kosaki’s definition of the index [12] is given by

ε−1 = [A : B]εε
′ . (23)

Unless A is finite dimensional, the index [A : B]ε defined in (23) coincides with the index
defined by the inequality (8), so we do not use a different symbol and specify the meaning
of [A : B]ε if necessary.

In the following, we assume that [A : B]ε is finite and thatA acts standardly on a Hilbert
space H. Let ϕ be a faithful normal state on A and ξϕ ∈ H be a cyclic vector inH such that
ϕ = (ξϕ , ·ξϕ) on A. Denote by ϕ′ the state on B ′ given by ϕ′ = (ξϕ , ·ξϕ).
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The following relation has been derived by F. Xu in [22, Prop. 2.4]:

SA(ϕ||ϕ · ε) + SB ′ (ϕ
′||ϕ′ · ε−1) = 0 ,

therefore by (4)
SA(ϕ||ϕ · ε) + SB ′ (ϕ

′||ϕ′ · ε′) = log[A : B]ε , (24)

where SA, SB ′ denote the relative entropy inA, B
′ and [A : B]ε is the index in (23). Here, the

involved states are normal but not necessarily faithful, the relative entropies are defined,
for example, by Kosaki’s formula.

The identity (24) is closely related to the functorial normalisation of themodularHamil-
tonian in [15]. In the finite dimensional case, it has been discussed in [16].

Recall that a von Neumann algebra A is σ-finite iff it admits a faithful normal state;
this is the case if A acts on a separable Hilbert space. For simplicity, the von Neumann
algebras in this sections are σ-finite.

With B ⊂ A be an inclusion of factors on a Hilbert space H, we call A′ ⊂ B ′ the dual
inclusion onH.

Lemma 6.1. A finite index inclusion of factors C ⊂ D is isomorphic to the dual A′ ⊂ B ′ of an
inclusion of factors B ⊂ A, with A acting standardly on a Hilbert space (namely there exists a
cyclic and separating vector for A), iff either D is infinite dimensional or dim(C)2/dim(D) is an
integer.

Proof. Suppose first that D is of type II1. There exists a Jones’ tunnel subalgebra E ⊂ C for
C ⊂ D, namely E is a subfactor of C such that E ⊂ C ⊂ D is Jones’ extension [10]. Let C act
standardly on a Hilbert space H, and let E ⊂ C ⊂ C1 be the Jones’ extension of E ⊂ C on H.
Then C ⊂ D is isomorphic to C ⊂ C1. On the other hand, C ⊂ C1 is dual of C

′
1 ⊂ C

′ and C′ acts
standardly onH. So our lemma is proved in this case.

The case D is an infinite factor is similar; in this situation, E = γ(D) with γ :D→ C the
canonical endomorphisms [13].

If D is finite dimensional, namely D is a matrix algebra, it is easy to see that a tun-
nel subalgebra E ⊂ C for C ⊂ D is a matrix subalgebra E ⊂ C such that dim(D)/dim(C) =
dim(C)/dim(E). Since D is isomorphic to the tensor product C ⊗ (C′ ∩D), a tunnel subal-
gebra E ⊂ C for C ⊂ D exists iff C contains a subalgebra isomorphic to C′ ∩D, namely iff
dim(C′ ∩D) = dim(D)/dim(C) divides dim(C), that is iff dim(D) divides dim(C)2. The rest
of the finite dimensional proof is as in the type II1 case. �

Note that the condition that dim(C)2/dim(D) is an integer in Lemma 6.1 implies that the
inverse of the Jones index [D : C] w.r.t. the trace is the best constant in the Pimsner-Popa
inequality (8) for trace preserving expectation; indeed this holds iff dim(C)2 ≥ dim(D) [18,
6.5 Examples].

By the above lemma, both next Prop. 6.2 and Cor. 6.3 remain true if A is finite dimen-
sional and dim(B)2/dim(A) is an integer. We state them in the infinite dimensional case
for simplicity.

Proposition 6.2. Let B ⊂ A be an inclusion of infinite dimensional factors and ε : A → B an
expectation with finite index. Then

log[A : B]ε = sup
ϕ

SA(ϕ||ϕ · ε) , (25)

where the supremum is taken over all normal states ϕ of A.
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Proof. The inequality SA(ϕ||ϕ · ε) ≤ log[A : B]ε has been shown in Lemma 3.1, and it also
follows from (24). The proposition is going to be proved by using eq. (24).

We may assume that A is in a standard form. We choose a faithful normal state ϕ on A
such that ϕ · ε = ϕ; therefore SA(ϕ||ϕ · ε) = 0. With ξϕ and ϕ′ as above, eq. (24) gives

SB ′ (ϕ
′||ϕ′ · ε′) = log[A : B]ε

showing that the bound log[A : B]ε = log[A′ : B ′]ε′ in (25) is optimal for the dual inclusion
A′ ⊂ B ′ with dual expectation ε′. So the proposition follows by Lemma 6.1. �

In order eq. (24) to hold,A was assumed to be in standard form. IfA is finite dimensional,
(25) does not hold in general with [A : B]ε defined in (23) according to Kosaki. Indeed, we
have SA(ϕ||ϕ · ε) ≤ − logλ, with λ the Pimsner-Popa bound in (8), and in this case λ−1 may
be strictly less than Kosaki’s index.

Let A be a semifinite factor and B ⊂ A a subfactor. If the index B ⊂ A is finite (w.r.t.
some expectation), then B is semifinite too. In this case, the trace τ of A has a semifinite
restriction to B and [A : B]ε <∞, with ε the τ-preserving expectation, see (21) and[14].

Corollary 6.3. Let A be a semi-finite, infinite dimensional factor. If B ⊂ A is a finite index
subfactor and ε :A→B the expectation preserving the trace τ, then

sup
ϕ

{
Sτ(ϕ|B)− Sτ(ϕ)

}
= log[A : B]ε ,

where the supremum is taken over all normal states ϕ of A such that Sτ(ϕ) and Sτ(ϕ|B) are
finite.

Proof. Suppose first that the trace τ is bounded. Then eq. (12) in the proof of Prop. 3.2
shows that Sτ(ϕ|B)− Sτ(ϕ) = log[A : B]ε if ϕ is a maximum point in eq. (25).

If τ is unbounded, we consider again a state ϕ of A such that SA(ϕ||ϕ · ε) = log[A : B]ε.
We take a sequence of bounded entropy approximation functionals ψk for τ w.r.t. ϕ with
ψk · ε = ψk as in the proof of Theorem 5.4. As S(ϕ||ψk) is finite, also S(ϕB ||ψk |B ) is finite by
Lemma 4.4. Therefore ψk |B is a sequence of bounded entropy approximation for τ|B w.r.t.
ψk |B . By Lemma 4.2, we so have

S(ϕ||ψk)→ S(ϕ||τ) , S(ϕ|B ||ψk |B )→ S(ϕ|B ||τ|B ) .

By eq. (9), we have

S(ϕ||ψk)− S(ϕ|B ||ψk |B ) = S(ϕ||ψk · ε)− S(ϕ|B ||ψk |B ) = S(ϕ||ϕ · ε) = log[A : B]ε ,

thus
S(ϕ||τ)− S(ϕ|B ||τ|B ) = lim

k

(
S(ϕ||ψk)− S(ϕ|B ||ψk |B)

)
= log[A : B]ε ,

that is Sτ(ϕ|B)− Sτ(ϕ) = log[A : B]ε due to the identity (17). �

More generally, let B ⊂ A be an inclusion of von Neumann algebras with a finite index
expectation ε : A→ B. We shall say that ε has scalar index [A : B]ε if eq. (23) holds for a
scalar [A : B]ε. This is the case if the centers of A and B are finite dimensional and have
trivial intersection, with ε the minimal expectation [6].

The identity (24) still holds in this case, by the same proof. It follows that Corollary 6.3
remains true if B ⊂ A is an inclusion of properly infinite von Neumann algebras which has
finite scalar index [A : B]ε.
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7 Further comments

Structures in the physical literature (see [5, 7]) suggest to consider the entropy relative to
a linear subspace, not only relative to an algebra. We consider such a notion and a few
comments.

Let A be a von Neumann algebra and ϕ,ψ positive, normal, linear functionals on A.
Given a linear subspace V ⊂ A containing the identity, we set

SV (ϕ||ψ) = sup
n∈N

sup
x∈V

{
ϕ(1) logn−

∫ ∞

1/n

(
ϕ(y(t)∗y(t)) + t−1ψ(x(t)x(t)∗)

)
dt

t

}
, (26)

where V is the set of all step functions x : (0,∞)→ V with finite range, and x(t) + y(t) = 1.
If V is ∗strongly dense in A, this is of course Kosaki’s formula (13) for the relative

entropy; namely
SV (ϕ||ψ) = SA(ϕ||ψ) .

We list the following basic properties of SV , whose proof is immediate. A is a vonNeumann
algebra, ϕ,ψ,φ normal, positive linear functionals on A and V ⊂ A a unital linear space.

a) φ ≤ ψ implies SV (ϕ||φ) ≥ SV (ϕ||ψ).

b) SV̄ (ϕ||ψ) = SV (ϕ||ψ) with V̄ the ∗strong closure of V .

c) Monotonicity. IfW ⊂ V is a unital linear subspaces, then SW (ϕ||ψ) ≤ SV (ϕ||ψ) .

d) Martingale convergence. Let Vi ⊂ A be an increasing net of unital linear subspaces
with V ≡ ∪iVi . Then SVi

(ϕ||ψ)ր SV (ϕ||ψ) .

If now ϕ is a positive, normal, linear functional and ψ a normal, semifinite, faithful weight
on A, we set

SV (ϕ||ψ) = inf
φ≤ψ

SV (ϕ||φ) , (27)

where the infimum is taken over the set Pψ of all positive, normal, linear functionals φ on
A such that φ ≤ ψ. We recall that

ψ(x) = sup
{
φ(x) : φ ∈ Pψ

}
, for all positive x ∈ A ,

[20, Thm. 1.11].
Suppose that τ is a semifinite, faithful normal trace on A and ρ is the density matrix of

ϕ w.r.t. τ. Recall that
Sτ(ϕ) = −SA(ϕ||τ) , (28)

provided the Sτ(ϕ) = −τ(ρ logρ) is well defined. We may define Sτ(ϕ) for all states by the
above formula with the right hand side given by (27) with V =A.

If V ⊂ A is a linear subspace containing the identity as above, we then set

Sτ,V (ϕ) ≡ −SV (ϕ||τ) .

If W ⊂ V is a unital linear subspace, it follows from c) above that

W ⊂ V =⇒ SV (ϕ||τ) ≤ SW (ϕ||τ) ,
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therefore the monotonicity property holds for Sτ,V (ϕ):

Sτ,V (ϕ) ≤ Sτ,W (ϕ) ,

in particular Sτ,A(ϕ) ≤ Sτ,V (ϕ).
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