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ABSTRACT: We describe a simple gauge-fixing that leads to a construction of a quantum
Hilbert space for quantum gravity in an asymptotically Anti de Sitter spacetime, valid to all
orders of perturbation theory. The construction is motivated by a relationship of the phase
space of gravity in asymptotically Anti de Sitter spacetime to a cotangent bundle. We
describe what is known about this relationship and some extensions that might plausibly
be true. A key fact is that, under certain conditions, the Einstein Hamiltonian constraint
equation can be viewed as a way to gauge fix the group of conformal rescalings of the
metric of a Cauchy hypersurface. An analog of the procedure that we follow for Anti de
Sitter gravity leads to standard results for a Klein-Gordon particle.
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1 Introduction

In this article, we will re-examine the canonical formalism for quantum gravity [1], focusing
on the case of an asymptotically Anti de Sitter (AAdS) spacetime X. One advantage
of the AAdS case is that, because of holographic duality, it is possible to explain in a
straightforward way what problem the canonical formalism is supposed to solve, thereby
circumventing questions like what observables to consider and what is a good notion of
“time.” In holographic duality, there is a straightforward notion of boundary time, and
there is no difficulty in defining local boundary observables.

It is natural in holographic duality to study the matrix elements of a product of
local boundary operators O, between given initial and final states. A typical example is
(OO (¢, 7)O(t, ©)|x), with boundary insertions of local operators O'; O at points labeled
by time ¢ and spatial coordinates ¥, and with states y, W that are defined by initial and
final conditions. For simplicity, in this article we restrict to ¢ > ¢, to avoid having to
discuss “timefolds.” In the canonical formalism of the boundary theory, one constructs for
any Cauchy hypersurface S, in the boundary of X a Hilbert space H of quantum states
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Figure 1. (a) The boundary X, of Anti de Sitter space, drawn as a cylinder, with boundary
insertions @ and O’ to the past and future of a Cauchy hypersurface S, C Xo. In this setup,
one can compute a matrix element (¥|0’(t',Z')O(¢, )| x) as a sum over physical states defined on
the hypersurface So,. In the canonical formalism for gravity, one aims to find a similar formula in
terms of a sum over states on a bulk Cauchy hypersurface S with boundary S... (b) The “cutting”
procedure of (a) can be iterated, with successive cuts on successive hypersurfaces.

with the property that if some set Z labels a basis |i) of H, then an amplitude can be
factored by inserting a sum over these states (fig. 1(a)):

(W|O'(¢',7)O(t, B)|x) = Y _(¥|O'(¢, &)]i) (i|O(t, F)|x)- (1.1)
1€T
This factorization is most naturally described in path integrals if O is to the past of Sy, and
(@' is to the future. Such factorization can be iterated; for example, given two boundary
Cauchy hypersurfaces So, and S’ with S’_ to the future of S, and insertions on the
boundary arranged in time in a suitable way, one has (fig. 1(b))

WO, VO, )OLHN) = S (WO W& IO, 7)i) GO ) )
J'EeT i€l
(1.2)
where the states |i) are defined on Sy, and the states |j’) are defined on S’_. In writing the
formula this way, we allow for the use of different bases Z on So, and Z’ on S’_. The initial
and final states x and V¥ in these formulas are themselves Hilbert space states defined in
the far past and the far future.

The main result of the present article is a conceptually simple way to reproduce such
factorization laws from a bulk point of view, to all orders of perturbation theory. The main
idea is to exploit a relationship between Weyl invariance of a (D — 1)-geometry and the
Hamiltonian constraint equation of General Relativity.

Conformal approaches to quantization of gravity have a very long history [2], and the
conformal approach to the constraint equations, which gives particularly simple results



in the case of an AAdS spacetime, has been much developed [3-8]. As we will see, the
conformal approach is particularly powerful when it can be combined with existence and
uniqueness results for maximal volume hypersurfaces, as was done for three-dimensional
pure gravity in [9-12].

In section 2, we explain a bare minimum of this classical picture to motivate the
approach that we will take to the canonical formalism of gravity. Then we go on to
describe, by a simple gauge-fixing, a construction of a Hilbert space that is valid to all
orders of perturbation theory. In section 3, we explain the underlying classical picture
more thoroughly.

In early investigations of the canonical formalism for gravity [1], it was observed that
the Hamiltonian constraint of General Relativity is a family of second order differential
operators, somewhat analogous to a Klein-Gordon operator. This suggested that the inner
product for grav(i;cy might be defined by analogy with a Klein-Gordon bilinear pairing

(f,9) = J. S d¥# f9,g, which does not depend on the choice of the hypersurface S on which
it is evaluated. The analogy has always seemed problematical, because the Klein-Gordon
pairing is not positive-definite, and also because the Hamiltonian constraint is a whole
infinite family of second order operators, not just one. We will see that the procedure we
follow for gravity, though it leads to a positive inner product, is closely analogous to a
procedure which for a Klein-Gordon particle leads to the Klein-Gordon pairing.

Our analysis is restricted to perturbation theory for technical reasons, and it may be
that this is inherent in assuming that H can be constructed as a space of functions of fields
— the metric tensor and possibly other fields — on a spacetime manifold. However, the result
we get for the Klein-Gordon particle is exact, even though the derivation appears to be valid
only in perturbation theory. In addition, the classical picture that motivates the present
work is valid far beyond what is needed for perturbation theory. These facts suggest that
in some admittedly unclear sense, the description of canonical quantization given in the
present article might extend beyond perturbation theory. This possibility has motivated
the writing of section 3 of the present article. Much of that section is an explanation of
the conformal approach to the classical constraint equations, largely following the useful
review article [7].

An early version of this work, but without the gauge-fixing construction of section 2.4,
was presented in a lecture at the Princeton Center for Theoretical Science [13].

As already noted, the main idea in this article is to exploit a relationship between the
Hamiltonian constraint equation of gravity and the group of Weyl rescalings of a Cauchy
hypersurface. Another and arguably much deeper relationship between the Hamiltonian
constraint and Weyl invariance has been developed in recent years. The 77T deformation
is a deformation of a two-dimensional quantum field theory that is irrelevant in the renor-
malization group sense and for which no ultraviolet completion is understood but that
nonetheless leads to unexpected exact results [14-16]. The Wheeler-DeWitt equation (or
the Hamiltonian constraint equation) of three-dimensional gravity without matter fields
can be interpreted in terms of the TT deformation of two-dimensional conformal field the-
ory [17]. This striking insight has been refined and generalized to higher dimensions, where



Figure 2. The bulk domain of dependence (2 of a Cauchy hypersurface S, in the boundary of an
AAdS spacetime X. In this picture, for simplicity, X is two-dimensional so its boundary X, is
one-dimensional and S, consists of two points. €2 is the domain of dependence of any bulk Cauchy
hypersurface S with boundary S, or equivalently the set of bulk points that are not timelike
separated from S.o.

the TT deformation becomes a T? deformation [18-22]. More recently and remarkably, it
has been extended to include matter fields [23]. In the present article, the T2 deformation
plays no role in the input, but in a sense we run into the 72 deformation in the output,
since the formula that we get for the Hilbert space inner product of a theory with gravity
involves a sort of T2-deformed ghost determinant.

The approach in the present article is limited to perturbation theory because we will
use a gauge-fixing condition that is only valid perturbatively. The approach via the 72
deformation is, at the present time, limited to perturbation theory because a nonpertur-
bative completion of the T? deformation is not known. As already noted, a limitation to
perturbation theory may well be unavoidable in any description based on fields in space-
time.

2 Path Integrals and Physical States

2.1 The Phase Space As A Cotangent Bundle

We will defer a detailed discussion of the classical phase space of asymptotically Anti de
Sitter (AAdS) gravity to section 3. Here we will explain a bare minimum to motivate an
approach to the problem of describing a quantum Hilbert space.

The classical phase space of AAdS gravity is well understood in the case of pure gravity
in three dimensions. Let X be an AAdS three-manifold, globally hyperbolic in the AAdS
sense, that satisfies Einstein’s equations with negative cosmological constant. Its conformal
boundary X, consists of one or more copies of R x S! (where the R and S* directions are
respectively timelike and spacelike). Let S be any Cauchy hypersurface in Xo,. There



are many possible choices of bulk Cauchy hypersurface S with boundary S, all homotopic
to each other.! The bulk domain of dependence of Ss, which we will call §2, can be defined
as the domain of dependence of any S. An alternative definition of 2 which makes it
obvious that {2 does not depend on the choice of S is that €2 consists of points in X that
are not timelike separated from S, (fig. 2). Thus Q is a pseudo-Riemannian manifold
with boundary. €2 is the part of the spacetime that can be constructed, given initial data
on S, just using Einstein’s equations, without using the AAdS boundary conditions along
Xeo-

By the phase space @ of AAdS gravity in this situation, we mean the space of possible
geometries of the bulk domain of dependence €, for a given choice of Sy. It is known (in
the three-dimensional case) that @ is actually a cotangent bundle,? & = T*(Conf/Diff),
where Conf parametrizes conformal structures on S (metrics modulo Weyl transformations
h — €2¢h with ¢|s,. = 0) and Diff is the group of diffeomorphisms of S that are trivial
along So. Thus Conf/Diff is the space of metrics on S up to diffeomorphism and Weyl
transformation. That ¢ = T(Conf/Diff) is proved as follows [9-12].

In one direction, one makes use of the renormalized volume of a hypersurface. In an
A AdS spacetime, a Cauchy hypersurface S has infinite volume, but it is possible to define a
renormalized volume Vi (.S). In three dimensions, one shows that, for any given Sy, C Xoo
and any choice of the bulk spacetime X, there exists a unique bulk Cauchy hypersurface .S C
X with boundary Sy that maximizes Vg(S). (See section 3.1 for a qualitative discussion
of this existence and uniqueness.) S has a Riemannian metric h and a second fundamental
form K; extremality of Vz(S) implies that K is traceless, K = 0 where K = h% K;j. Now,
“forget” the metric h and remember only the associated conformal structure, which we will
call ho (thus, knowing ho means knowing h up to a Weyl transformation h — €2#h). Then
ho, up to diffeomorphism, defines a point in Conf/Diff. On the other hand, in General
Relativity, K is canonically conjugate to h. To be precise, the momentum conjugate to h;;
is

. 1 . .
I = m\/E (K9 — hKT). (2.1)

The traceless part of this equation shows that the traceless part of K is conjugate to the
conformal structure hy (the trace K = K is conjugate to the volume density v/det h,
which we abbreviate as \/E) So the pair K, hg, with K being traceless, defines a point
in T*Conf. To take diffeomorphisms into account, we have to divide by the group Diff,
but we also have to set to zero the Hamiltonian function on T*Diff that generates the
action of Diff. Dividing by Diff removes from the phase space some modes of h and setting
the Hamiltonian function to zero removes the conjugate modes of K. For K traceless,

'In the definition of S, we include the conformal boundary points in Se.. This makes S compact and
generally enables simpler statements. Similarly, S is included in the definition of the bulk domain of
dependence ).

2This is also true in the case of a closed universe with A < 0, though in this article, we mainly consider
AAdS spacetimes. In both cases, the same phase space @ has another description as a product of two copies
of Teichmiiller space [24]. This description, which is suggested by the relation of three-dimensional gravity
to Chern-Simons theory [25, 26], does not generalize above three dimensions or in the presence of matter
fields, so it is less relevant for a general understanding of gravity.



the Hamiltonian function that generates Diff is D;K%. Setting the Hamiltonian function
to zero is the momentum constraint of General Relativity. These matters are explained
in sections 2.2 and 3.3. The combined operation of setting the Hamiltonian function to
zero and dividing by Diff replaces T*Conf with 7 (Conf/Diff). So if K and hy come from
a solution of Einstein’s equations, they define a point in 7%(Conf/Diff). The map that
associates the pair K, hy to a given solution of the Einstein field equations therefore gives
a map from the phase space @ to T*(Conf /Diff).

To get a map in the opposite direction, one shows that given a point in 7*(Conf /Diff),
that is, a pair K, hg with D; K% = 0, one can in a unique fashion make a Weyl transfor-
mation to a pair that satisfies the Einstein constraint equations and thereby gives initial
conditions for a solution of the full Einstein equations, defining a point in ¢. The proof
is explained in detail in section 3. The two maps are inverses, so the gravitational phase
space can be identified as ¢ = T™(Conf/Diff).

Are such ideas relevant to a general understanding of gravity? For this, something
similar should be true in higher dimensions, and also in the presence of matter fields. The
full story of what is known to be true and what is likely to be true under reasonable
assumptions is somewhat involved, and is deferred to section 3. For now, we just remark
that in the context of perturbation theory, in General Relativity on AdSp or on AdSp x W
for some compact manifold W, possibly with matter fields, an analysis similar to what was
just sketched is always applicable. At least for purposes of perturbation theory, the phase
space of such a theory can always be represented by a cotangent bundle T*Q, where now
Q parametrizes the conformal structure of .S together with the matter fields on S, modulo
diffeomorphisms that are trivial at infinity (along with gauge transformations that are
trivial at infinity if some of the matter fields are gauge fields). That is true because both
steps in the construction — existence of a unique S of maximal volume, and existence of a
unique Weyl transformation that ensures that the constraint equation is satisfied — are valid
if one is sufficiently close to AdSp or AdSp x W. As we will discuss in section 3, to extend
these results beyond perturbation theory, one requires a strong energy condition and a
condition on singularities somewhat analogous to cosmic censorship. But such assumptions
are not necessary in perturbation theory around AdSp or AdSp x W. Likewise, as we will
also see in section 3, beyond perturbation theory one can make much stronger statements
for AdSp than for AdSp x W, but the difference is not relevant in perturbation theory.

2.2 The Constraint Equations

The Einstein constraint equations are equations for a metric h;; on an initial value surface
S and a symmetric tensor field K;; on S. These equations are the condition under which A
and K are initial data for a spacetime X that satisfies Einstein’s equations, with A (whose
scalar curvature will be denoted R(h)) and K understood as the induced metric and second
fundamental form of S C X. For General Relativity with cosmological constant A and no
matter fields, the equations read

PI(&) = H(Z) = 0, (2.2)



with

Pi(Z) = D;KY — DIK}
H(&) = R(h) — KV K;; + K/KJ — 2A. (2.3)

The equation P7(Z) = 0 is called the momentum constraint and the equation H(Z) = 0 is
called the Hamiltonian constraint. Importantly, these are gauge constraints, which must
be satisfied independently at each point £ € S. Quantum mechanically, K is conjugate to
h asin eqn. (2.1), so P/ (%) and H(T), for each ¥ € S, become differential operators acting
on the space Met of metrics on S. P!(Z) is linear in K so it becomes a first order differential
operator which is simply the generator of diffeomorphisms of S; to be precise, if v’ is a
vector field on S then the generator of the symmetry® 8z’ = v is [ dP1avVho' (Z) P (Z).
H(Z) is quadratic in K, so it becomes a second order differential operator.

In the most basic version of the canonical approach to quantum gravity, the quantum
wavefunction is a function W(h) of the metric of S (and possibly other variables). The
traditional interpretation of the constraint is that the operators obtained by quantizing
the constraints should annihilate ¥ (h):

PUE)W(h) = H(z)T(h) = 0. (2.4)

Since P(&) is the generator of diffeomorphisms, the constraint P*(Z)¥ = 0 merely says
that W(h) should be invariant under diffeomorphisms of S (or more precisely, under those
diffeomorphisms that are connected to the identity; it is generally assumed that this con-
dition should be extended to all diffeomorphisms). With this constraint imposed, W(h)
becomes a function on the space Met/Diff of metrics modulo diffeomorphisms. The Hamil-
tonian constraint H(Z)¥(h) = 0 is more vexing and more difficult to interpret. Because
H(Z) is a second order differential operator for each &, the constraint H(Z)¥(h) = 0 is an
infinite system of second order differential equations that should be satisfied by the quan-
tum wavefunction. This infinite system of equations (or sometimes the combined system
PUZ)¥ = H(Z)¥ = 0) is known as the Wheeler-DeWitt equation. In the traditional ap-
proach to the canonical theory of gravity, a quantum wavefunction is a function on Met/Diff
that satisfies the Hamiltonian constraint equation, or equivalently a function on Met that
satisfies the combined system P*(F)¥ = H(Z)¥ = 0.

A basic difficulty of canonical quantum gravity is that it is very difficult to solve
the Wheeler-DeWitt equation, or to gain any qualitative understanding of the solutions.
However, the fact that the phase space of General Relativity is a cotangent bundle ¢ =
T*(Conf/Diff) suggests a simple answer. In general, a cotangent bundle 7*Y can be quan-
tized by saying that a physical state is a square integrable function® on the base space Y.
So one is led to hope that the state space of General Relativity can be interpreted as a
space of functions on Conf/Diff, with no constraints.

3The symbol & will denote a symmetry generator or the variation of a field, while § will represent a
Kronecker delta or the Dirac delta function.

4More canonically, since Y may not have a natural measure, the wavefunction should be a half-density on
Y rather than a function on Y. To avoid an inessential distraction, we will not always make this distinction.



The original suggestion along these lines was actually made by York half a century
ago [2], for somewhat similar reasons to what was just explained, and motivated by even
earlier results that pointed in this direction. For example,® Kuchar had shown [27] that in
asymptotically flat spacetime, to lowest nontrivial order, a solution W(h) of the Wheeler-
DeWitt equation depends only on the transverse traceless part of h. To be precise, here we
perturb around the case that S is a flat hypersurface RP~! in D-dimensional Minkowski
space RP~11 The metric of S is thus taken to be hij = 6;5 + h’ij, where d;; is the Eu-
clidean metric on RP~! and héj is the perturbation. Kuchar showed that to first order
in i/, the Wheeler-DeWitt equations assert that the quantum wavefunction ¥(h) is com-
pletely determined by an arbitrary function of the transverse traceless part of h’. In lowest
order, the space of transverse traceless metric perturbations is the same as the space of
deformations of the conformal structure up to diffeomorphism, so Kuchar’s result can be
restated by saying that to first non-trivial order, solutions of the Wheeler-DeWitt equation
on Met/Diff are in natural correspondence with functions on Conf/Diff. These arguments
were recently reworked in the AAdS case, with a similar result [28].

The relation of the Wheeler-DeWitt equation to the TT deformation and its gen-
eralizations [17-23] actually gives a way to generalize such statements to all orders in
perturbation theory. In explaining this, we will just consider the original example [17] of
three-dimensional pure gravity with A < 0 and the original 7T deformation [14-16]. The
Wheeler-DeWitt equation of three-dimensional pure gravity reads

(K”’Kij — KIK] — R(h) + 2A) T(h) = 0. (2.5)

Setting A = —1/¢% and using eqn. (2.1) to express K in terms of IT1¥(x) = —iﬁ, the
ij
equation becomes

(W (Hinij _ (lei)2> — R(h) — ;2) W(h) = 0. (2.6)

Now conjugate the constraint operator by exp (ﬁ J g d%\/ﬁ) or equivalently define

873(; ; /S d%\/ﬁ) . (2.7)

The effect of this change of variables is to shift II% — II% — w\/ﬁh” . The equation
satisfied by the new wavefunction W is®

\Il:exp<

i 8rGY i Y .
<\/MHI’2 * deth (H M = (Hlly) - Wﬂ@) v =0. (2.8)

The term %ﬁf (Hij IL;; — (H,’:)Q) is irrelevant in the renormalization group sense; by power
counting, it is negligible at long distances. The leading long distance approximation to the

®The background to York’s proposal also included parts of the story that will be described in section 3.
SHere one throws away some terms formally proportional to 6(0) that come from %\/det h(y) ~

§(x,y)? = 5(x,y)8(0). One can think of this step as a normal-ordering recipe. The §(0) terms are subleading
in G/¢.



equation is therefore simply

i l ~
Iy — Rh)\lfhzo. 2.9
(Tt = o)) B0 (2.9
This equation is familiar in two-dimensional conformal field theory (CFT). The operator
iH],j is the generator of Weyl transformations of the metric, and so eqn. (2.9) describes
violation of conformal invariance by the usual c-number anomaly proportional to R(h).
In fact, eqn. (2.9) is the usual anomalous Ward identity of a two-dimensional CFT with

central charge
3¢

2G’
which is the Brown-Henneaux formula for the central charge of the boundary stress tensor in
three-dimensional gravity [29]. Eqn. (2.8) differs from the usual CF'T Ward identity by the
I12 terms. Since II¥ = _iéfij i
boundary CFT, eqn. (2.8) actually describes the combined violation of conformal invariance

(2.10)

CcC =

T in an amplitude of the

by the CFT anomaly along with a TT deformation. This was the main observation in [17]
é

If we factor the metric h as h = e?#hg, with some fixed choice of hg,” then we get 1'[Z = _55
and eqn. (2.9) becomes the usual CFT Ward identity that determines the dependence of v
on . In eqn. (2.8), the I1? terms are of relative order e=2¥ compared to the other terms.
So for large ¢, eqn. (2.8) reduces to the usual CFT Ward identity (2.9). Any solution T,
of that CFT Ward identity can be promoted as follows to a solution U of the TT-deformed
equation (2.8). Let us denote the operators on the left hand sides of eqns. (2.8) and (2.9)
as D and Dy, respectively. We expand U = \Tlo + \f/l + \Tlg + ---, and stipulate that for

large ¢, each ‘ilk is of order e~2¥% relative to \Tlo and that

DoWj, = —D (\Tfo + 0y \Tfk_l) + O(e 2P, (2.11)

Order by order in e =2, \le is uniquely determined and eqn. (2.8) is satisfied. The expansion
in powers of e=2% is equlvalently an expansion in powers of G. Thus, order by order in
perturbation theory in G, U is uniquely determined in terms of \Ifo Every U arises in
this way from some T (which can be found from the large ¢ behavior of \Il) Since the
usual CFT Ward identity determines the dependence of \/IDO on ¢, this means that order by
order in perturbation theory, solutions T of the Wheeler-DeWitt equation are in natural
correspondence with wavefunctions that depend on hg only, or in other words, functions
on Conf/Diff. One can view this as a generalization of the result of [27, 28] to all orders,
in AAdS spacetime.

Knowing this correspondence does not immediate tell us the correct form of the Hilbert
space inner product on the space of solutions of the Wheeler-DeWitt equation. One can for-

"We will learn in section 3 that each Weyl orbit of metrics has a unique representative that satisfies the
Hamiltonian constraint equation, so one could make this factorization by choosing ho to be that represen-
tative. A much more elementary way is to pick a smooth measure p on S and require v/det ho = p
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mally define a natural inner product for functions® on Conf /Diff by (¥’, ¥) = fccnf/Diff U,
A more general inner product would be

(V) = (V'|Z2|W), (2.12)

for some positive self-adjoint operator =. In section 2.4, we will show how a simple gauge-
fixing leads to a description of the perturbative Hilbert space H of quantum gravity, roughly
along these lines (but in a BRST formulation with ghost fields included), with a relatively
simple and relatively explicit formula for = as a ghost determinant. The derivation will
also lead directly to formulas such as eqns. (1.1) and (1.2), with transition amplitudes
expressed in terms of sums over contributions of intermediate states in H. Such formulas
are after all the goal of having a Hilbert space of physical states. However, first we will say
more in section 2.3 about old and new approaches to the Wheeler-DeWitt equation and
how the procedure in section 2.4 relates to them.

2.3 The Wheeler-DeWitt Equation And The BRST Operator

The traditional interpretation of the Wheeler-DeWitt equation, going back to its origins,
was as described in section 2.2: a quantum state was taken to be a function W(h) of a
(D — 1)-geometry h, satisfying P*(Z)¥(h) = H(Z)¥(h) = 0.

At least at a formal level, there is a specific problem in which a wavefunction of this
type actually arises.

We consider some sort of initial conditions that, physically, should suffice to create
a specific quantum state. For example, in the AAdS context, in Lorentz signature, we
can do the following. From a boundary point of view (fig. 3(a)), we specify a Lorentz
signature manifold X, of dimension D — 1 that starts at time ¢ = —oo in the past and has
a spacelike future boundary S... The boundary theory on X, with initial condition at
t = —oo corresponding to some chosen state, and specified operator insertions to the past
of S, will produce a quantum state ¥, on So,. One can also make a similar construction
in Euclidean signature (fig. 3(b)).

To recover the state V., from the gravitational path integral, one considers a bulk
spacetime X with conformal boundary X, at spatial infinity, and terminating in the future
on a spacelike hypersurface S whose boundary is S.,. We write g for the metric of X and
h = g|s for the induced metric on S. Now we do a bulk path integral, with initial conditions
and boundary insertions as before, and with Dirichlet boundary conditions keeping fixed
the metric h of S. The output of the path integral is a function W(h). This function is
supposed to define the state on S created by the gravitational path integral under the given
conditions.

The main virtue of this construction is that one can argue formally that W(h) sat-
isfies the Wheeler-DeWitt equation. As the construction is manifestly invariant under
diffeomorphisms of S, it is evident that P!(#)¥(h) = 0, and one can argue formally that

8Rather than functions on Conf/Diff, it is more natural to use half-densities, and really one needs a more
precise language that takes account of the conformal anomaly. We will not go in that direction, because
such issues will not arise in the approach to constructing a Hilbert space that we actually follow in section
2.4.

~10 -



a)

Figure 3. (a) Here X, is a Lorentz signature boundary manifold with a future boundary S.,. In
the boundary theory, initial conditions in the far past, and possible boundary insertions, determine
a quantum state U, on S,. The bulk is an AAdS manifold X with future boundary S. The
metric h of S is fixed and the path integral on X defines a function ¥(h) which one hopes has
the same physical content as ¥o,. One can argue formally that U(h) satisfies the Wheeler-DeWitt
equation. (b) A similar picture to (a) in Euclidean signature. The main difference is that X, has
operator insertions but no past boundary. (c¢) The picture of (a) is continued into the future and
some final state is specified. In the boundary one gets nice formulas for the transition amplitude
between specified initial and final states involving a sum over states on S, but in bulk, there is
a problem if the states are supposed to be solutions W(h) of the Wheeler-DeWitt equation. If one
picks a particular bulk Cauchy hypersurface S on which to cut, the Wheeler-DeWitt equation is
not satisfied, but integrating over all S gives a massive overcounting.

H(Z)W(h) = 0 (see for example [30-33]). One can conjecture that W(h) is a bulk dual of
the boundary state U.

This construction has two drawbacks. The first is that the problem that was solved
is not really the problem that one wanted to solve. The reason for wanting to construct
a Hilbert space of quantum states is that one wants to be able to factorize transition
amplitudes in terms of sums over intermediate states, as in eqns. (1.1) and (1.2). After all,
this is what quantum states are good for in ordinary quantum mechanics. Although one
can argue at a formal level that the wavefunction W(h) created by the gravitational path
integral satisfies the Wheeler-DeWitt equation, there is no argument even formally that
such wavefunctions participate in the desired “sum over states” formulas. The reason is that
when we compute a path integral that we want to evaluate by summing over intermediate
states, there is no natural way in the context of Dirichlet boundary conditions to find
the bulk hypersurface S whose metric h we should be summing over (fig. 3(c)). General
covariance would force us to integrate over all choices of S, which involves a massive
overcounting.

The second drawback is that the gravitational path integral that is supposed to com-
pute ¥(h) is actually not well-defined even in perturbation theory (and even after regular-
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izing ultraviolet divergences), because the Dirichlet boundary condition that was assumed
is not elliptic [34-36]. This lack of ellipticity means that, with Dirichlet boundary condi-
tions, the operator L that arises by linearizing the gauge-fixed Einstein equations about a
classical solution does not have a well-defined determinant or propagator.’

One might be inclined to dismiss the second problem as a technicality. However, if
one actually tries to actually compute ¥(h) in perturbation theory in a specific situation,
one will soon need the determinant and propagator of the operator L, and one will run
into difficulties. There is actually another reason to believe that the non-ellipticity of the
Dirichlet boundary condition on L should not be dismissed lightly. This non-ellipticity
can be straightforwardly proved, with a little linear algebra, starting from the definition
of an elliptic boundary condition [34, 36]. However, there is a more abstract proof that
is quite instructive [35]. In this proof, the only real input is the form of the Hamiltonian
constraint equation for gravity and specifically the fact that it involves second derivatives of
h along the boundary (which appear in the scalar curvature R(h)) but only first derivatives
in the normal direction to the boundary (which are present in the definition of H(Z) in
eqn. (2.3) because K is linear in the normal derivative of h). The Hamiltonian constraint
equation is the cause of the difficulty in understanding the canonical formalism for gravity,
so in trying to understand that canonical formalism, we probably should not ignore a
mathematical problem associated to the form of the constraint equation.

The problem involving the lack of ellipticity has a simple fix. Instead of Dirichlet

0 one can consider

boundary conditions for gravity in which one fixes the boundary metric,'
a mixed Dirichlet-Neumann boundary condition in which one specifies not the boundary
metric h, but rather the conformal structure hy of the boundary (in other words, the
boundary metric up to a Weyl transformation) and the trace K = Kf of the second fun-
damental form K;;. This mixed Dirichlet-Neumann boundary condition is elliptic [35, 36],
so in the situation of fig. 3(a), it should be possible in perturbation theory, after regular-
izing ultraviolet divergences, to use this boundary condition to compute a wavefunction
U (hg, K).

One drawback of this is that the Wheeler-DeWitt equation in a dual version with
K treated as a coordinate and vk as a conjugate momentum appears to be, at best, no
simpler than the original. Another and possibly more serious problem is that, again,
this construction seems to solve the wrong problem. It formally gives a way to solve
the problem described in fig. 3(a), but the problem of fig. 3(c) remains. There is no
argument even formally that a gravitational path integral can be evaluated by “cutting”
on an intermediate hypersurface S and summing over states on S of the form W(hg, K) that
satisfy the constraint equations.

There is, however, also a standard fix for this difficulty. So far we have described what

9An exception is that if, classically, the universe is everywhere expanding or everywhere contracting
along the boundary (and more generally if the canonical momentum is everywhere a positive- or negative-
definite matrix along the boundary), the determinant and propagator may be well-defined even though the
boundary condition is not elliptic. This is explained in [36], following [37].

ONeumann boundary condtions, in which one fixes the second fundamental form K of the boundary
rather than the boundary metric h, are again not elliptic [35].
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Figure 4. An AAdS spacetime X with four asymptotic regions in which asymptotic states might be
specified. Such an X cannot have a metric everywhere of Lorentz signature; it may have Euclidean
signature or possibly a complex metric. Overlapping “cuts” of such an X can be made, as sketched
here, on homotopically inequivalent surfaces such as v; and 2. No one canonical formalism is well
adapted to all of the possible cuts.

might be called the “traditional” Wheeler-DeWitt formalism. There is also a “revised”
Wheeler-DeWitt formalism in which one constructs states that are better candidates for
appearing in a factorization formula [38-44] (see [23] and Appendix B of [45] for recent
discussions). In the revised Wheeler-DeWitt formalism, sometimes called refined algebraic
quantization or group averaging, one still considers a wavefunction ¥(h), and one still
imposes the momentum constraint equation P*W(h) = 0. However, the constraint HV¥ = 0
is replaced by an equivalence relation

W(h) = ¥(h) + ZH(:@-)xi(h) (2.13)

for an arbitrary set of points #; € S and arbitrary functions x;(h). (The discrete sum over
points &; € S can also be replaced by a continuous integral.) In other words, the sense in
which #H (%) vanishes is not that it annihilates a physical state, but that its action is trivial,
since any state H(Z)y is considered trivial. In this approach, any state ¥(h) that satisfies
the momentum constraint is considered physical; two such states are considered equivalent
if their difference is of the form ), H(Z;)x:(h).

In this revised Wheeler-DeWitt approach, the inner product of two states is defined
formally as

(V| D) :/ Dh T (k) T 6(H(@)¥(h). (2.14)
Met/Diff iy

Here Dh represents formally an integral over the space Met/Diff of metrics on S up to
diffeomorphism. The product of delta functions [[z.qd(H(Z)) formally annihilates any
state of the form H(Z)x, ensuring invariance of the inner product under the equivalence
relation.
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With this revised interpretation of the constraint operators, it is possible to give a
formal argument that leads to the desired formulas involving cutting and summing over
intermediate states, as in eqn. (1.1). For this, one goes to a canonical ADM formulation of
the path integral in the region in which cutting is supposed to happen. In that formulation,
the action contains a term [¢dP~1Z N(Z)H(Z), where N is called the lapse and does not
appear elsewhere in the action. The path integral therefore contains a factor

/DNexp (i/SlefN(a":’)H(.f)) : (2.15)

Assuming that N (&) is supposed to be integrated from —oo to 400, the integral over N
gives formally the desired [].d(#H(Z)).

A possible criticism of this approach — the status of this issue is not clear to the
author — is that in replacing the covariant version of the Einstein path integral with a
canonical version in which N is allowed to have either sign, we may have changed the
path integral in a way that was adapted to the specific cutting formula we were trying to
get. In the covariant path integral (or classically), it looks natural for N to be positive.
We really want to know how to evaluate the original covariant form of the path integral
by a cutting formula. This issue is particularly sharp in a Euclidean signature context in
which the boundary theory may satisfy many different formulas that result from cutting
on topologically inequivalent hypersurfaces (fig. 4). No one canonical version of the bulk
path integral can reproduce all of those different cutting formulas, so if one is going to use
canonical versions of the path integral to deduce cutting formulas, it is essential to know
that these canonical versions are all equivalent to the underlying covariant version of the
path integral.

The traditional and revised Wheeler-DeWitt theories can be viewed as two special
cases of what one can do with BRST quantization. In BRST quantization, one introduces
ghost fields, of ghost number 1, that transform like the generators of the gauge symmetries,
but with opposite statistics. In the case of gravity, the ghost fields are an anticommuting
vector field ¢#(Z,t). One also introduces additional multiplets consisting of antighost fields
and auxiliary fields; this part of the construction is nonuniversal and depends on what
gauge condition one wishes to impose. The BRST operator, in the context of gravity, is
46]

Q- /S AP VR (@H(E) + E@PiE) + - ) | (2.16)

where the omitted terms do not affect the following remarks. This operator obeys Q% = 0,
so one can define its cohomology. As usual, the cohomology of () is defined to consist
of states U that satisfy Q¥ = 0, modulo the equivalence ¥ = ¥ 4+ Qy for any yx. In
BRST quantization, the cohomology at one particular (theory-dependent) value of the
ghost number is defined as the Hilbert space of physical states. In the case of gravity, if we
assume that we are interested in states that are not annihilated by any modes of ¢ and ¢!
(and that therefore are annihilated by all modes of the conjugate antighosts), the condition
QY = 0 gives H(Z)¥ = P;(Z)¥ = 0, the traditional Wheeler-DeWitt constraints. On the
other hand, we could assume that we are interested in states that are annihilated by all
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modes of ¢ but not by any modes of ¢!. Then the condition Q¥ = 0 gives the momentum
constraint P;(Z)¥ = 0, but not the Hamiltonian constraint H(Z)¥ = 0. Instead, the
equivalence ¥ = U + @Qy leads to the equivalence relation (2.14) of the revised Wheeler-
DeWitt approach.

Thus the traditional and revised Wheeler-DeWitt theories are special cases of what
one can do in the BRST framework. Neither of these corresponds closely to the way
that BRST quantization is usually carried out in ordinary gauge theory or in perturbative
string theory. Usually, the starting point is a relatively standard Fock space of ghost and
antighost fields, with a basis of states that are annihilated by roughly half of the ghost
modes and half of the antighost modes. In other words, in setting up the BRST machinery
and using it to define the physical Hilbert space, ghosts and antighosts are usually treated
rather similarly to other fields.

In the next section, we will describe a simple gauge-fixing that can be used to construct
a Hilbert space for gravity. The construction is valid to all orders of perturbation theory,
but not beyond, at least not in the present formulation. A factorization formula is manifest.
The states that appear in the factorization formula are functions on Conf/Diff, the answer
that is suggested by the relation of the gravitational phase space to T*(Conf/Diff). The
boundary condition that is used in defining these states is the elliptic Dirichlet-Neumann
boundary condition. The BRST approach to quantization is used, but not in the way
that leads to either the traditional or the revised Wheeler-DeWitt theory. A fairly explicit
formula for the inner product will emerge.

2.4 A Simple Gauge-Fixing To Construct A Perturbative Hilbert Space
The part of the BRST formalism for gravity that is universal involves the metric tensor
g and the ghost field ¢. They transform as

dguw = Dyucy + Dycy,  dct = c0uc, (2.17)

where 0 represents the infinitesimal deformation generated by the BRST charge Q. These
formulas satisfy 5?2 = 0, which corresponds to Q2 = 0; since 5% =0, any expression of the
general form A is BRST-invariant, for any A.

The rest of the BRST formalism depends on what gauge-fixing condition one wishes
to impose. In general the desired gauge condition may be defined by a family of equations

Pr(g) =0, (2.18)

where we do not specify the nature of the labels Y carried by these equations. (More
generally, the Py could depend on matter fields as well as on the metric.) To impose such
a gauge condition, we add a family of antighost fields ¢y and auxiliary fields ¢y with

dcy = ¢r, dor =0, (2.19)
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consistent with 8% = 0. A simple way to implement a gauge-fixing that will impose the
condition Py(g) = 0 is to add to the action a gauge-fixing term

Igf =0 <Z CTPT> = Z (quPY — E’réPT)

T T

= Z <¢TPT —Cy /X dDa:%(Dﬂcy(x) + Dl,c#(x))> : (2.20)
Y p

Thus, if we add to the action no other terms'! that involve ¢, then ¢y will behave as a
Lagrange multiplier, imposing a gauge condition Py = 0.

This procedure can be used to impose quantum mechanically any gauge condition that
would be correct classically. A gauge condition is correct classically if on the diffeomor-
phism orbit of g,,, there is a unique representative with Py = 0. In practice, one usually
has to content oneself with a gauge condition that is correct classically in the context of
perturbation theory — in other words, a gauge condition that is correct on gauge orbits
that are sufficiently close to some starting point. For topological reasons, it is usually not
possible to find a gauge condition that is uniformly valid on all gauge orbits.

In the case of gravity, assuming that one is constructing perturbation theory in an
expansion around a classical solution gy of Einstein’s equations, one can write the full
metric as ¢ = go + g1, and impose a gauge condition on the perturbation g;. A simple and
convenient gauge condition (which goes by names such as harmonic, de Donder, or Bianchi
gauge) is to require T#(x) = 0 with

|
TH(xz) = Dugl" — 5D”g’fw (2.21)

where covariant derivatives are taken with respect to the background metric gg, and indices
are also raised and lowered with that metric. Thus with this choice, the label T of the
general discussion corresponds to a point x € X and an index pu.

Here we will modify the gauge-fixing procedure so that it will help us in solving the
problem identified in fig. 3(c). Given a Cauchy hypersurface S, in the boundary X, of
an AAdS spacetime X, from a boundary point of view, a transition amplitude between
initial and final states can be factored as a sum over contributions of quantum states on
Seo- We want to obtain a similar description from a bulk point of view.

If X is actually AdSp for some D, then it is shown in [11] that any boundary Cauchy
hypersurface S is the conformal boundary of a unique bulk Cauchy hypersurface .S of max-
imal renormalized volume Vg(S). A similar result has been obtained much more recently
[47] in a spacetime that is asymptotic to AdSp, provided the bulk domain of dependence
is compact. The role of this assumption is explained in section 3.1.2; for D = 3, the
assumption is not necessary [9-12]. For a spacetime asymptotic to AdSp x W for some
W, as discussed in section 3.1.2, we expect the maximal volume hypersurface S to exist

"In practice, it is often convenient to add to the action another term —% > 8(¢ror) = —2 S dF +. ..
(where the omitted terms involve fermions). Then one can perform a Gaussian integral over ¢, leaving
a contribution %ZT P$ to the action for the metric. This can be more convenient than a delta function
constraint Py = 0.
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whenever the bulk domain of dependence is compact, but rigorous results along these lines
are not available at present.'?> However, to construct perturbation theory, one does not
need such strong results. In perturbation theory, we expand around some sort of classical
limit. Typically this classical limit involves a spacetime X and a boundary Cauchy hyper-
surface Sy, such that the bulk Cauchy hypersurface S of maximal volume does exist and is
unique. For example, if X = AdSp x W for some W, then with a standard choice of S,
the unique maximal volume hypersurface is S = AdSp_1 x W, and we can take this as the
starting point of perturbation theory. In any such case, the elliptic nature of the equation
for a Cauchy hypersurface to have maximal volume ensures that after any sufficiently small
perturbation of X and/or S, a volume-maximizing S that is asymptotic to Se, still exists
and is unique. Under such conditions, this existence and uniqueness can be assumed to all
orders of perturbation theory.

In perturbation theory, we integrate over different possible metrics on X, and until a
metric is given, of course we do not know which hypersurface S of boundary S is the
Cauchy hypersurface of maximal Vi(S). However, we can proceed as follows. Pick an
arbitrary hypersurface Sy C X with boundary S, that topologically is a potential Cauchy
hypersurface. Without loss of generality, we can pick a “time” coordinate ¢ on X such
that Sp is defined by ¢ = 0. (Unless a special choice was made of S, this coordinate ¢
does not restrict to anything standard on X..) Now suppose given an AAdS metric g on
X, sufficiently close to the standard one. For this AAdS metric, there will be some bulk
Cauchy hypersurface S that maximizes Vg(S). Since Sy is a potential Cauchy hypersurface
and S is another, there is some diffeomorphism of X that maps S isomorphically onto Sj.

This suggests the following strategy for gauge-fixing of quantum gravity on X. As
a first step in the gauge-fixing, we fix a small part of the diffecomorphism symmetry by
requiring S = Sp. Then we perform gauge-fixing to the past and future of Sy in any
standard fashion, for instance via the harmonic gauge condition. How one does that will
not be important in what follows. All that is important is that one of the gauge conditions
is S = S().

The condition for a hypersurface Sy with second fundamental form Kj; to extremize
the renormalized volume is K = 0, where K = K is the trace of K. (This standard fact
will be verified shortly.) So the gauge condition that we want is that the surface Sy, which
is defined by ¢t = 0, has K = 0.

To impose the gauge condition that K = 0 on the hypersurface Sy, we introduce a
BRST multiplet consisting of a pair of scalar fields b, ¢ that are defined only on that
hypersurface, and satisfy the usual BRST transformation laws of antighost multiplets:

§b=¢, 6¢=0. (2.22)

Here b is a fermion with ghost number —1 and ¢ is a boson with ghost number zero. We

then introduce the partial gauge-fixing action

5 /S Az vVhbK = /S dxvh ($K - b6K>, (2.23)

12The condition on the bulk domain of dependence is necessary; see section 3.6.
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with ¢ = ¢ + (8v/h)b/v/h. The field ¢ behaves as a Lagrange multiplier setting K = 0 on
S.

In eqn. (2.23), 6K is the BRST variation of K on the hypersurface ¢ = 0. This
BRST variation comes from the variation of the metric g which enters the definition of K:
dguy = Dyucy + Dycy. The ghost field ¢ has components ¢ associated to vector fields that
generate diffeomorphisms of the ¢ = 0 hypersurface Sy, and a component ¢ that generates
shifts of t. Since the condition K = 0 is invariant under diffeomorphisms of Sy, 0K is
actually independent of ¢! if K = 0 and is —Zc° for some linear operator —=Z. So

- / d%zvh bSK = / A%z vh b= (2.24)
S S

A convenient way to identify = is as follows. We can pick local coordinates ¢ and

Z=uz!,---, 2% near Sy such that Sy is defined by the condition t = 0, and the metric near
So has the form'3
d
ds? = —dt? + Z 9i;(Z, t)dz'da’. (2.25)
i,j=1

We expand ¢ around € = 0 and write just h, h, h for the coefficients:
. 1 -
g(Z,€) = h(Z) + eh(Z) + 562/1(95) +O(e%). (2.26)

It is convenient to define the volume density v(z, €) = y/det g(Z, €). The second fundamen-
tal form of Sy is

~hij (2.27)

and its trace is )
v

1 ...

e=0
Now consider a general nearby Cauchy hypersurface S defined by ¢ = €(Z). To first
order in e, its volume is just

V(S):/S dda:«/detg(a_:’,e):V(So)—F/g dzvheK + O(€2). (2.29)

So the condition for Sp to have extremal volume is K = 0. We have written eqn. (2.29)
naively in terms of the ordinary volumes, ignoring the fact that in the AAdS context, these
volumes are divergent. One actually wants to express formulas such as eqn. (2.29) in terms
of the renormalized volume. To define the renormalized volume Vz(S), one restricts the
integral over Sy in the definition of the volume to a large compact region, and then one
subtracts some locally defined counterterms near the boundary and removes the cutoff. If
€(Z) vanishes sufficiently rapidly at infinity, the counterterms are the same for S and Sy
and we can rewrite eqn. (2.29) in terms of renormalized volumes:

Vr(S) = Vr(So) + /S d4zVheK + O(€2). (2.30)

130ne uses the orthogonal geodesics to the hypersurface So to put the metric locally in this form. See
for example section 4.3 of [53].
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The shows that a necessary condition for Sy to have maximal, or even extremal, renor-
malized volume is that it satisfies K = 0. However, to identify the operator =, we need
to compute K not for the hypersurface Sy, but for a nearby hypersurface S with ¢t = €(Z).
Since we have learned that K is the derivative of the renormalized volume with respect to
€, one way to compute the O(e) contribution to K is to compute the renormalized volume
including terms of order €2. Differentiating the resulting formula with respect to € will then
give K including terms of first order.

A straightforward calculation gives the volume of S including terms of order €?:
d?zvh 9+§ 0 2+£8 9) ~ Loigen, +0(e%). (2.31)
x S O 5o\ 5 590 dieDje €’). (2.

To put this in a convenient form, we use Raychaudhuri’s equation for the ¢t component of
the Ricci tensor,' which says that at ¢t = 0,

VR(S) = VR(50)+/S

O y
Ry = —0; <) — K K", (2.32)
v
Using also Einstein’s equation Ry = SWGﬁt, where T, is the matter stress tensor (in-
cluding a contribution from the cosmological constant) and 7}, = T}, — ﬁ 9w TS, we see
that if Sy is an extremal surface, with ;=g = 0, then the renormalized volume of S to
quadratic order in € is

Vr(S) = Vr(So) — /S dzvh <;hij8ie(f)8je(f) + %e(f)Q (87TGftt + K]KJ)> + O(e3).
’ (2.33)

Let A = ¥ D;D; be the Laplacian of the hypersurface Sy, acting on scalar fields. Varying
Vr(S) with respect to €, we get

SVi(S) = — / dle/h e (~A -+ 87GTy + KiK' ) e (2.34)
So
Comparing to eqn. (2.30), we can read off the term in K that is linear in e:
K=— (—A +87GTy + K@'J'Kij) c. (2.35)

For our application, we simply take € to be the time component ” of the ghost field.
The infinitesimal diffeomorphism generated by this field maps the hypersurface ¢ = 0 to
the hypersurface t = c?. So the BRST variation 8K of K is obtained by substituting e = "
in eqn. (2.33). Thus

0K = -2, E=—-A+81GTy + KKy, (2.36)

and the action (2.23) associated to the partial gauge-fixing that makes Sy the maximal
volume hypersurface is

/S 0 d4zvh ($K + bEcO) . (2.37)

"This is the original timelike version of Raychaudhuri’s equation [48], not the null version [49] that
governs causal structures.
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In putting the gauge-fixing action in this form, we made use of Einstein’s equations for
Ry:. Quantum mechanically, this means that a field redefinition is involved in putting the
gauge-fixing action in this form.

The partial gauge-fixing condition that we have used is only satisfactory if the operator
= has no zero-mode. Otherwise, there is a mode of b that decouples from the action, the
path integral will vanish, and the assumed gauge-fixing is not correct. In fact, in the context
of perturbation theory, there is no difficulty. The operator —A (acting on functions that

15 If we assume a

vanish at infinity) is strictly positive, and the K? term is nonnegative.
strong energy condition, then the ftt term is also positive, and this fact will be important
in section 3. But even if we do not assume a strong energy condition, because of an explicit
factor of G, the T’tt term is perturbatively small and does not affect the positivity of = in
perturbation theory.

Now let us discuss the path integral [ db exp( . S b=c?) for the antighost field b. To do
this integral, first recall that if b and ¢ are odd variables and A is a complex number, then
[ db exp(bAc) = Ac = Ad(c), since ¢ = §(c) for an odd variable. Applying this principle
on a mode-by-mode basis, we get

/ Db exp < /S 0 dzvh b5c0> = det(Z)0("|s,). (2.38)

The delta function of c°|g, has a simple meaning. Since we have fixed Sy to be the Cauchy
hypersurface with maximal Vg, the remaining gauge transformations that still have to be
fixed are those that leave Sy fixed (not necessarily pointwise, but as a set). The restriction
on the ghost field ¢* so that it generates a diffeomorphism that leaves Sy fixed is precisely
P|s, = 0.

To define the path integral in perturbation theory, one still needs a gauge-fixing con-
dition for the remaining diffeomorphism group Gg,. There is an unbroken subgroup Gpast
of diffeomorphisms that are nontrivial only to the past of Sy (and in particular leave Sy
fixed pointwise); there is an analogous subgroup G, consisting of diffeomorphisms that
are nontrivial only to the future of Sy. Gg, is an extension of Gpast X Grye by the group
diff Sy of diffeomorphisms of Sp:

1 — diff So = Gg, = Gpast X Gaur — 1. (2.39)

One may use any fairly standard gauge condition to fix Gg,. One detail is that since we
already have fixed the diffeomorphisms that do not leave Sy fixed, we do not need to fix
those gauge symmetries again, and therefore we need a slightly smaller set of antighost
fields and gauge conditions than usual. A convenient choice is to restrict the antighosts ¢
by @|s, = 0. Then c? and & are restricted in the same way, which makes possible a more
natural-looking gauge-fixed action. The details will not be important, however.

In quantum field theory in general, there is a standard strategy to factorize a transition
amplitude on a spacetime X by “cutting” on a Cauchy hypersurface S C X, as in fig. 1.

15For a general choice of S, the maximal volume Cauchy hypersurface has K # 0, so it is not necessarily
true that the K? term is perturbatively small.
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The goal of the cutting is to express a path integral on X in terms of states in a Hilbert
space H that consists of functions of the fields ¢g on S. Schematically, let &g be the space
of all possible values of the fields ¢g. And for a given choice of ¢g, let ®paq; be the set
of all fields to the past of S and Py, the set of all fields to the future of S. The integral
over ®p,qt, keeping fixed the fields ¢g in S, determines a “ket” vector |Wpasi(¢s)) € H.
Similarly, the integral over @, keeping fixed ¢g, determines a corresponding “bra” vector
(Ytut(¢s)|. Finally, one integrates over ®g to compute the inner product (Ve Wpast). This
inner product gives the full path integral Zx over X, since by the time one integrates over
¢g, one has integrated over all fields to the past or future of S or on S:

ZX - <\ijut|\11past> = ® DQSS @fut(ng)‘l}past(ng)' (240)
S

Let us discuss how to implement this strategy in the present context, with the above-
described gauge-fixing which ensures that Sy = S is the maximal volume hypersurface.
First of all, in the gauge-fixing, we have ensured that K = 0 on .S, so we cannot also fix the
variable that is conjugate to K. This variable is the volume density v/h. However, we are
free to specify the conformal class of the metric on S. Let us write hg for this conformal
class; specifying hg is the same as specifying h up to a Weyl transformation h — e*?h.
Thus hg defines a point in Conf, the space of conformal structures. So a function of hg
is a function on Conf, and we formally denote the space of such functions as Hcons. If
matter fields are present, we can also specify the values of the matter fields on S, and we
write Hpatt for the Hilbert space of functions of the matter fields. Finally, we also have
to consider the ghosts. The fields ¢ and @ vanish along S, because of the conditions
@|s = @|s that were described earlier. However, we do have fields ¢! and & on S. The
functions of those fields make up a ghost Hilbert space Hgyy,. The combined Hilbert space
is then Hy = Hconf ® Hpatt @ Hgn. (In a general situation, the definition of the ghosts
and matter fields might depend on hg, and then a more precise statement is that Hy is the
combined Hilbert space of functions of hg, the matter fields, and the ghosts.)

In computing W, we perform a path integral to the past of S with a boundary
condition along S that specifies the conformal structure hg of S, and also specifies that S
has K = 0. This is the mixed Dirichlet-Neumann boundary condition that was mentioned
in section 2.3 (now specialized to K = 0). It is elliptic, so the path integral that computes
Upast Will be well-defined in perturbation theory. The same is true for the path integral
that computes Wyys.

The inner product on Hj is not the obvious one that would come from an integral over
the fields hg, ¢!, @ and possible matter fields. Rather, an extra factor det = comes from the
integral over b in eqn. (2.38). Thus the inner product is formally

(U] W) = /Dho Dc' D@ Wy (det Z)Ws. (2.41)
In the absence of the ghosts, this formula would define a positive-definite inner product on

Hcont @ Hpatt, since the operator = is strictly positive and its determinant is therefore also
positive. However, the inner product on Hgy, is not positive-definite.
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At this point, we have to remember the BRST symmetry. The whole gauge-fixing
construction is BRST-invariant and leads to the existence of a BRST charge @ that acts
on Hy. The physical Hilbert space Hppys is defined as the cohomology of @ acting on
Hy. In the context of perturbation theory, passing to the BRST cohomology eliminates
¢ and @ and also eliminates “pure gauge” modes of hg. Here pure gauge modes are the
modes that are induced by diffeomorphisms of S. The positivity of the underlying inner
product on Hconf ® Haty leads to positivity of the inner product on Hpyys. In the context
of perturbation theory, to verify this one really only needs to know that positivity holds
in the limit G — 0 in which all fields, including the ghosts, are treated as free fields.
Perturbative corrections will then not spoil this positivity.

In the BRST formalism, the momentum constraint equation is satisfied because the
generator of the momentum constraint is a BRST commutator, P!(z) = {Q,A%(z)} for
some operator A’(z), This implies that P’(z) acts trivially on the BRST cohomology
Hppys, since if QU = 0 then P'(z)¥ = Q(A*(z)¥) vanishes as an element of Hppys. We
do not have to consider the Hamiltonian constraint, because we have eliminated it by con-
sidering a canonically determined Cauchy hypersurface Sy = S, the one that has maximal
renormalized volume.

In terms of the decomposition (2.39) of the residual gauge symmetry, the gauge-fixing
of Gpast is a step in computing W, , the gauge-fixing of Gpy is a step in computing Wy,
and the gauge-fixing of diff Sy is involved in constructing the BRST operator (Q whose
cohomology ultimately defines Hys. In the context of perturbation theory, instead of
relying on the BRST machinery, one could deal with the diff Sy symmetry by imposing
gauge conditions that explicitly remove the longitudinal modes of the metric h of S. This
would be analogous to axial gauge in gauge theory, and is one way to make manifest the
positivity of the inner product on Hpjys.

In short, and modulo some subtleties that are discussed later, we have arrived at a
more precise version of the picture that was suggested heuristically in section 2.2 based on
facts about the classical phase space: in constructing a Hilbert space for AAdS gravity, at
least in the context of perturbation theory, one can forget the troublesome Hamiltonian
constraint if one considers the quantum wavefunction to depend only on the conformal
class hg of the metric, and not on the volume form. We also now know that to proceed
in this way, one must include a non-classical factor det = in the definition of the inner
product.

In AAdS gravity, this analysis enables us, at least in perturbation theory, to get a
formula like that of eqn. (1.1) or fig. 1(a) in which a transition amplitude is factored in
terms of a sum over intermediate states on a Cauchy hypersurface. The intermediate states
are simply labeled by fields on the maximal volume Cauchy hypersurface S.

In a similar fashion, one can get a formula like that of eqn. (1.2) or fig. 1(b) in which
an amplitude is written as a sum over states on a Cauchy hypersurface Sy, in X, and
also on another Cauchy hypersurface S/ to the future of So. The bulk Hilbert spaces are
defined on the maximal volume Cauchy hypersurfaces S and S’ with respective boundaries
in So, and S/_. To extend the previous analysis to this case, we just need to know that if on
the boundary S’ is everywhere to the future of S, then likewise in bulk S’ is everywhere
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to the future of S. A simple argument for this is given in Appendix A of [50].16 Given
this, perturbative gauge-fixing such that two predetermined bulk hypersurfaces Sy and S,
(with S{) to the future of S) both satisfy K = 0 (ensuring Sp = S, S, = S’) will lead to the
desired factorization formula.

Another generalization is as follows.!” Instead of gauge-fixing to require that K = 0
along Sy, we could pick an arbitrary real number A and gauge fix to require K+ A = 0
along Sy. This is also a valid gauge condition, in the context of perturbation theory. The
analysis goes through much as before. Instead of being orthogonal to the boundary, as
is the case if A = 0, Sy will now meet the boundary at a A-dependent angle. Since this
introduces an asymmetry between future and past, it is most natural to now view W
and Wy, as vectors in dual, A-dependent spaces Hy and H_). These spaces are not Hilbert
spaces in a natural way, but there is a natural sesquilinear pairing (, ) : Hy x H_y — C,
and the path integral can be expressed in terms of this pairing, Zx = (V| Vpast). From
a classical point of view, as A varies from —oo to oo, S sweeps through the whole bulk
domain of dependence §2 of Sy, from its past boundary to its future boundary. It is not
clear what is a useful quantum counterpart of this statement.

Now we will describe some subtleties concerning the definition of det =. To begin with,
we discuss the dependence on K and hg. First consider the limit G — 0. We assume that
the perturbation expansion is based on an expansion around some classical solution that
is determined by asymptotic conditions. In this solution, K is a c-number. Moreover, the
classical solution determines an actual metric on S, not just a conformal class of metrics,
so in the starting point of perturbation theory, there is a distinguished representative
of the conformal class of metrics and we will write hg for this representative. Having
a distinguished representative is important because the operator A is not conformally
invariant. In the classical limit, with K and hy being given by the classical solution, the
operator = = —A + K% K;; is a standard sort of second order differential operator, and its
determinant det = is a fairly conventional functional determinant.

This determinant arose in our derivation as the partition function of a theory with a
pair of fermi fields b and ¢ = ¢ on S with action

1 .. ~
he = / dloVb(—A + KUK + 87GTy)c. (242)
S

We think of I. as the action of an auxiliary quantum field theory. Of course, in this
limit, det = is a highly nontrivial function of ¢ and K. But as soon as we turn on G-
dependent corrections, det = becomes something more interesting. To explain this as
simply as possible, consider a model without matter fields, and suppose that S is such

16 Another proof can be deduced from positivity properties of the operator Z. Although there is no
solution of Ze = 0 that vanishes at infinity, if one specifies a real-valued function f on S, then there is a
unique solution of Ze = 0 on S with € — f at infinity. Moreover, if f is positive, representing a first order
displacement of So, into the future, then e is also positive, representing a first order displacement of S into
the future. As So moves into the future, at a rate determined by f, S moves into the future, at a rate
determined by e.

17 This generalization, for suitable \, might enable one to circumvent the obstruction described in section
3.6.
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that the maximal volume hypersurface S, classically, has K;; = 0. Then at G = 0, 2
reduces to —A. But as soon as we turn on perturbative corrections in G, the picture
changes. According to eqn. (2.1), Kj; is canonically conjugate to the metric tensor h;j,
K;j = 1677Gihﬂi]- if K = 0. 1I;; acts as a derivative with respect to h;;, and in the auxiliary
quantum field theory with action Ij., this will give an insertion of the stress tensor Tj;.
Therefore, in first order, K;; K 4 becomes an insertion of G2TijTij. Thus the auxiliary
quantum field theory undergoes a T? deformation, similar to the deformation considered
in [17-22]. In a more general case, if K is nonzero in the classical limit, we would interpret
K;; as the sum of —167iG % plus a classical contribution. Inclusion of the matter fields in
= gives a further deformation, as in [23], and there are also further corrections, as described
shortly.

As usual, it is possible in principle to express the partition function in the deformed
theory, to any finite order in perturbation theory, in terms of ordinary correlation functions
in the undeformed theory. In the present case, this would be done by expanding the
determinant in terms of the propagator of the operator —A and insertions of the stress
tensor. However, because the perturbation is irrelevant in the renormalization group sense,
as one goes to higher and higher orders, one will encounter integrals that potentially have a
very high degree of divergence and which require careful treatment. Beyond perturbation
theory, a definition of the deformed theory is unknown. This assertion is one aspect of the
fact that the construction that we have given of a Hilbert space for AAdS gravity is, in its
present form, only valid in perturbation theory.

An important point here is that since we are specifying hg along S, the conjugate
variable K is not continuous along S except in the classical limit, and will fluctuate inde-
pendently in the past and future of S. The formula K;; = IGWGﬁHZ-j holds both to the
past and the future of S; to the past of S, we interpret II;; as a differential operator that
acts on the ket |Ws) in the inner product (V;|Ws) that we are trying to calculate, while
to the future of S, we interpret II;; as a differential operator that acts on the bra (¥].
This raises the question of how to interpret Kj;; when it appears in the operator = and
seemingly must be evaluated precisely on S. The same question will arise in section 2.5 in
the context of a Klein-Gordon particle, and there, since exact formulas are available, we
can confirm that the obvious guess is correct: Kj;; along S should be interpreted as the
average of the values to the past and future of S. Presumably something similar is true
for gravity, though it would be harder to give a really convincing argument in the case of
gravity.

Yet another question concerns the dependence of det = on the conformal factor that
appears in the metric h = e*#hg. Since det = is not conformally invariant, this dependence
is nontrivial. As explained earlier, in the classical limit, we take for hy the actual metric
determined by an underlying classical solution. Then the combined data consisting of hg
and the classical values of K and the matter fields satisfy the Einstein equations and in
particular satisfy the Hamiltonian constraint equation. Quantum mechanically, everything
fluctuates, including the conformal factor ¢ of the metric. The fluctuation in ¢ is discon-
tinuous across S, since we are fixing the conjugate variable K to vanish along S. However,
if it is correct to assume that the fluctuations satisfy the Hamiltonian constraint equation,

— 24 —



then (on both sides of S) that equation determines the fluctuations in ¢ in terms of the
fluctuations in the conformal class of hg and K. Differently put, the Hamiltonian con-
straint, if valid, determines a unique representative on each Weyl orbit. Explaining this
point is one of the main goals of section 3. Roughly speaking, we expect that on each
side of .S, the Hamiltonian constraint equation remains valid and determines ¢ in terms
of hg and K. Since we understand hy and K as operators that act on the bra and ket
wavefunctions, this makes it possible to interpret ¢ as such an operator (giving a further
correction to the T? deformation that was described earlier). Why does the Hamiltonian
constraint remain valid when the fields fluctuate? If it is possible to put the path integral
in canonical form near S, then the manipulation described in eqn. (2.15) shows that the
Hamiltonian constraint equation can be imposed near S. But even if we do not assume
that this manipulation is valid, the vanishing of the Hamiltonian constraint operator H(Z)
is the classical equation of motion for the metric component g4 that is “normal” to S. So
a multiple of H(Z) appearing in the functional integral — for instance in det = — can be
eliminated by redefining g;;, and hence the Hamiltonian constraint can be used to eliminate
o in favor of hg and K, and thus to replace ¢ with a differential operator acting on the
wavefunction.

The approach to constructing a canonical formalism that we have described is concep-
tually simple, as it is based on a simple gauge-fixing, but it has led to a variety of thorny
technical questions, mostly concerning the understanding of the operator det =. The best
that we can say is that hopefully maintaining the BRST invariance of the construction
determines unique answers to all these questions.

2.5 Analogy With A Klein-Gordon Particle

Long ago, it was noted that the Hamiltonian constraint operator of gravity is formally a
second order differential operator, somewhat like a Klein-Gordon operator [1]. This moti-
vated the suggestion that the inner product on solutions of the Wheeler-DeWitt equation
might be analogous to a Klein-Gordon pairing.

For wavefunctions @1, ®, that satisfy the Klein-Gordon equation (—g"” DuD,,+m2)<I> =
0 in a Lorentz signature spacetime M, the Klein-Gordon pairing is defined by

1 .
(1, D) = ;/ dXH B0, D, (2.43)
U

where U is any Cauchy hypersurface in M and 615;@2 = 618/}1)2 — 8u$1 D,.

One obvious problem with the analogy between gravity and Klein-Gordon theory is
that the Klein-Gordon pairing is indefinite, while the Hilbert space inner product for grav-
ity is supposed to be positive-definite. Another obvious point is that the Hamiltonian
constraint equation, which says that H(Z) = 0 for each point # in a Cauchy hypersurface
S, is more similar to an infinite family of Klein-Gordon operators than to a single Klein-
Gordon operator. For the Klein-Gordon particle, the Klein-Gordon pairing is defined on a
codimension 1 hypersurface U, so an analog of the Klein-Gordon pairing for gravity should
be defined on a submanifold of infinite codimension, with one constraint for each point in

S.
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That is essentially what we have done in defining the inner product (2.41). In gravity,
it is often assumed that the wavefunction should be a function ¥(h) of the metric h of
an initial value surface S. Thus such a wavefunction is a function on Met, the space of
metrics on S. As explained in section 2.3, a drawback of such an approach is that the path
integral that would formally compute a wavefunction ¥(h) (from given initial conditions
and sources) is actually ill-defined, even in perturbation theory, since the requisite boundary
condition is not elliptic. One may instead consider a wavefunction W(hg, K) that depends
on a conformal structure hg on S along with a scalar function K on S (interpreted classically
as the trace of the second fundamental form of S in a spacetime X). The path integrals
that compute wavefunctions W (hg, K) are well-defined in perturbation theory.

The wavefunctions Wy, Wy in the inner product that was defined in eqn. (2.41) could
be naturally defined as functions of K and hg, but in the definition of the inner product,
they are not integrated over K and hg, but only over hg, at K = 0. This is analogous to
the restriction from M to U in the Klein-Gordon pairing (2.43): in the gravity case, as
expected, one places a condition at each point in S, namely K = 0.

Another detail is that the symmetry under diffeomorphisms of S is taken into account
in eqn. (2.41) not by asking for U1 and W5 to be invariant under the group Diff of dif-
feomorphisms of S, but via the ghosts and the BRST formalism. The difference is mainly
important technically. A Hilbert space of square-integrable functions or half-densities on
an infinite-dimensional space such as Met is a vague notion unless one can describe exactly
what class of functions one is interested in. In the BRST framework, the appropriate de-
scription is straightforward, at least in perturbation theory. The BRST framework is not
necessarily the only way to make perturbation theory explicit — for example, one could try
to fix the pure gauge modes in Met by a sort of axial gauge — but certainly the BRST
machinery provides a simple framework for perturbation theory.

The last and crucial point about eqn. (2.41) that requires some elucidation is the factor

det =. In fact, we will now explain that this factor is quite analogous to the factor 5,: in
the Klein-Gordon pairing. In doing so, for brevity, we will take M to be Minkowski space
with metric ds? = 1, dX*dX" = —dT? + dX2, and we will take S to be the hypersurface
T =T, for some T,. Generalizations are straightforward.

The action for a Klein-Gordon particle in this spacetime can be described by a generally
covariant theory on a one-dimensional worldline A. The metric of the worldline is taken
to be g(t)dt?, g(t) > 0, and we define e(t) as the positive square root of g(t). The Klein-
Gordon particle can then be described by the action

1 dX*dX¥
I== [ dt|—etn,— —em? |, 2.44
2//\<€m’“dtdt em) (244)
which is invariant under reparametrizations of A\. The Hamiltonian constraint is the
Euler-Lagrange equation for the field e; in other words, it is H = 0 with H = —g—é =
% (e%nwdé(—t“déy + m2). Since the momentum conjugate to X* is II, = %nﬁw%, and
upon quantization, IT, = —ia)%, we have
1 1 o 0
H = - (p"T,I0, + m?) = = [ - 2). 2.45
5 (1Tl + m7) 2(” 8XN8XV+m) (2.45)
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We now want to define states by conditions to the past and future of S, and define an
inner product between them by some sort of integral on S. In the spirit of eqn. (1.1) or
fig. 1(a), it would be natural to define initial and final states by conditions at 7' = —oc0
and T' = +oo. However, a much shorter derivation is possible if one is willing to define the
states by means of sources at finite points to the past and future of S. So we introduce
points Xg and X respectively to the past and future of S, at which states will be created
and annihilated. We can assume that Xy has coordinates X} = (T; O,XO), Ty < T, and
similarly X; has coordinates X! = (Tl,fl), T > Ty.

Now we want to perform a path integral for the case that A is an interval, with boundary
conditions such that one end of the interval maps to Xy and the other to X7. After
evaluating this path integral, we will explore how it can be factored in terms of states
passing through the hypersurface S.

Because of reparametrization invariance, there is no loss of generality in assuming that
A is the unit interval 0 < t < 1 with the endpoint ¢ = 0 mapped to X = X and the endpoint
t = 1 mapped to X = X;. The technique to do the path integral is well-known. First of
all, the length of the interval 7 = fol dte(t) can be any positive number. One can fix the
reparametrization invariance of the interval by setting e = 7. The ghosts that are involved
in this gauge-fixing decouple. For fixed 7, the path integral over X* is just an ordinary
quantum mechanical path integral on an interval of length 7, with the Hamiltonian H. So
the value of the path integral is (X1|e 7| Xy). To evaluate the path integral, one has to
integrate this matrix element over the remaining variable 7 that is not determined by the
gauge-fixing. This integral is only conditionally convergent. To define it precisely, one can
include a convergence factor exp(—er) where € is taken to 0 at the end of the calculation.
The output of the path integral is then

G(Xl;Xo) = / d’T<X1‘€_iHT_€T|X0> = <X1
0

—i
Xo ). 2.4
H — ie’ 0> (2.46)
This obeys
HG(X1; Xo) = —i6? (X1 — Xo), (2.47)

where one can consider H to act either on X7 or on Xj.

Assuming that m is large enough that m(Ty — 1), m(Tx — Tp) >> 1, G(X1, Xy) can
also be computed in a perturbative expansion in which the starting point is a solution of
the classical equations of motion of this theory with the boundary conditions that X = X

at one endpoint and X = X at the other. There is a unique solution,

namely a straight
line trajectory from Xy to Xi. Such a trajectory, of course, intersects the hypersurface U
defined by T' = T} in precisely one point. Expanding around this orbit, we learn that to all
orders in an expansion in 1/m, we can assume that a trajectory intersects U in a unique
point.

This means that, from the standpoint of perturbation theory in 1/m, we can partially

gauge fix the theory by requiring that some specified point on the interval A\ is mapped

18The proper time elapsed in this solution is real if X; and Xo are timelike separated, and imaginary if
they are spacelike separated. For an interesting analysis of the implications of this in the context of what
in section 2.3 was called the revised Wheeler-DeWitt formalism, see [41].
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to U. This step is analogous to the main step in section 2.4, where we made a partial
gauge-fixing to specify that a pre-chosen hypersurface Sy is the Cauchy hypersurface with
K=0.

To implement this idea in the present context, we can take A to be the interval —1 <
t < 1, with boundary conditions X(—1) = Xy, X(1) = X;, and a partial gauge-fixing
condition 7'(0) = Ti. To impose this condition, we use the BRST formalism. The BRST
transformation of the field X#(t) is 0 XH(t) = chd‘;(t), where ¢ is the ghost field associated
to an infinitesimal reparametrization of the worldline K. To implement the partial gauge-

fixing, we introduce a BRST multiplet consisting of an antighost variable b and a bosonic
variable ¢ with BRST transformations

Sb=¢, 8¢ =0. (2.48)

(b and ¢ are defined only at ¢ = 0, so they are variables, not fields.) The gauge-fixing
action is dT(0

S (b(T(0) —Ty)) = ¢(T(0) — Ty) — bcdg). (2.49)

The integral over these variables is'”

/ d;’:f exp (iqb(T(O) ) - ibc(O)deio)) — _5(T(0) - T*)O%O)(S(C(O)). (2.50)
The delta function 6(c(0)) means that c(t) effectively splits up as two different fields,
one of which is supported for ¢ < 0 and is associated to reparametrizations of the interval
—1 <t <0, and one of which is supported for ¢ > 0 and is associated to reparametrizations
of the interval 0 < ¢ < 1.

For a fixed value of X (0), the path integral for ¢ < 0 gives G(T, X (0); Xo) and the path
integral over ¢ > 0 gives G(X1; Tk, )?(0)) Integrating (2.50) over X (0), we get the full path
integral, which is supposed to equal G(X7; Xj), since we have merely analyzed the same
path integral that led to eqn. (2.46) with a different parametrization and gauge-fixing. So

we expect
da7(0)

G(X1; Xo) = —/le)Z(O) G(Xl;T*,X(O))TG(T*,X(O);Xo). (2.51)

Here dﬂ—@ can act as —idp, on G(T, X(0); Xo), or as +idp, on G(Xy; Ty, X(0)). The
reason for the relative minus sign is that the normal vector 9; at ¢t = 0 is outward directed
for the interval —1 < ¢ < 0 and inward directed for the interval 0 < ¢ < 1. The derivation

that we are giving here is not precise enough to directly show whether dﬂgo) should be

taken to act to the right or the left, but the symmetry of the construction under exchange
of the future and past shows that we presumably should take a symmetric combination of
the two choices. Thus we interpret the formula to be

<~

G(Xl;XO):—;/UdD1X(O)G(Xl;T*,X(O))£G(T*,X(O);XO). (2.52)

1976 properly justify the numerical factor 1 /2mi that we assume here in the measure would require a
more precise derivation, possibly with a discretization of the path integral.
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In this formula, we see the Klein-Gordon inner product on the hypersurface U. The
formula says that a transition amplitude between states created to the past and future of
the hypersurface can be evaluated in terms of a sum over states on S, using the Klein-
Gordon inner product.

To verify that this formula is in fact correct, let ©(T, — 7'(0)) be the function that is
1 for T\ —T'(0) > 0 and otherwise 0. By using d7(yO(Tx —T(0)) = —(T%x — T(0)), we can
replace the integral over U in eqn. (2.52) with an integral over all of M:

<~

5 [ 47RO G X (0) 5 GO0 T Xo) (2:53)
—5 [ APIRO)AT(0) (5 O ~ TO)) ) G T0), K (0) 5775 GIK(0). T0) Xo)

Now we integrate by parts with respect to T'(0) and observe that for any functions A, B
<~
01, (A0, B) = 2 (A(HB) — (HA)B) + Y _ 0x,(Ad x,B). (2.54)

When we use this in eqn. (2.53), the terms Ox,(---) can be dropped because we are
integrating over X and nothing else depends on X. So the formula (2.53) becomes

G(X1; Xo) = i/ dPX(0)0(T.~T(0))(G(X1; X(0)) HG(X (0); Xo)—(HG(X1; X(0)))G(X (0); Xo)),

M
(2.55)

where H acts on X (0). Finally, from (2.47), we have HG(X(0); Xo) = —ié” (X (0) — Xo)
and HG(X1; X(0)) = —i6” (X1 — X(0)). Of these two delta functions, only the first is in
the support of the function ©(T, — T'(0)), and upon doing the integral, we confirm that
eqn. (2.55) is valid.

One surprise here is that although the derivation of eqn. (2.52) suggested that this
formula is valid only in perturbation theory in 1/m, the formula actually turned out to be

exact. It is not clear to what extent there is a general lesson here.
<>

The derivation shows that the factor &% that makes the Klein-Gordon inner prod-
uct indefinite can be interpreted as coming from a ghost determinant. For gravity, the
analogous ghost determinant is det =, and is positive in perturbation theory.

3 The Classical Phase Space

In section 2.1, we explained just enough about the relation of the classical phase space @
of AAdS gravity to a cotangent bundle 7™ (Conf/Diff) to motivate the quantum treatment
in section 2.4. Here we will give a more complete explanation and also a more general one,
including matter fields.

In this discussion, Conf is the space of conformal structures on a Cauchy hypersurface
S in a spacetime X, and Diff is the group of diffeomorphisms of S. If X is asymptotically
Anti de Sitter, which is our main focus, the conformal structure on S is required to be
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asymptotic to a specified conformal structure on the boundary S, and diffeomorphisms
of S are required to be trivial at infinity. However, some of the considerations can be
adapted to a closed universe — that is, to the case that S is compact.

To establish an equivalence of @ to T (Conf /Diff), or a generalization of this to include
matter fields, one finds maps in both directions that are inverses of each other. The
map from @ to T%(Conf/Diff) is made by finding a maximal volume hypersurface with
specified asymptotic behavior, and the map in the opposite direction is made by solving the
Lichnerowicz equation to find a Weyl factor by means of which the Hamiltonian constraint
equation is satisfied. The two maps are inverses of each other, under appropriate conditions,
and this establishes the isomorphism between @ and 7™ (Conf /Diff). We begin by discussing
the maximal hypersurfaces and then we consider the Lichnerowicz equation.

3.1 Maximal Hypersurfaces
3.1.1 Extremal Hypersurfaces and Maximal Ones

The first important fact is that in pure gravity with negative cosmological constant, and
also in the presence of matter fields that satisfy the strong energy condition, a hypersurface
of extremal volume is automatically a local maximum of the volume. To be more precise,
we consider a Cauchy hypersurface S C X that is asymptotic at infinity to some given
Cauchy hypersurface S C Xoo, and we assume that S has extremal renormalized volume
among all Cauchy hypersurfaces that are asymptotic to Ss. The claim is that, in a large
class of theories, the renormalized volume Vg (S) is actually a local maximum among this
class of hypersurfaces.
As in section 2.4, we can pick local coordinates t, Z near S so that S is defined by ¢t =0
and the metric near S takes the form
d
ds? = —dt* + Z (%, t)dx'da’. (3.1)

3,j=1

Consider a nearby hypersurface S’ defined by ¢ = €(Z) for some function e. We require that
€(¥) vanishes at infinity so that S and S’ are asymptotic to the same boundary hypersurface
Soo-

If S is an extremum of the renormalized volume, then the renormalized volume of S’
coincides with that of S in order ¢, and the €2 term was identified in eqn. (2.33):

Va(S') = Va(S) — /S Az <;hij&-e(f)8je(f) + %e(ff (87T + KJK])> L O,

(3.2)

where fw =T — ﬁ 9w Ty, with T}, the matter stress tensor (including a contribution
from the cosmological constant). We see that if Tj; > 0, then the €2 term in Vz(S') is
negative (the condition that ¢ — 0 at infinity ensures that the —(Ve)? on the right hand
side of eqn. (3.2) is strictly negative for any e # 0). This shows that in this AAdS context,
assuming that ftt > 0, an extremum of the renormalized volume is always a local maximum.
The condition that ftt > 0 at each point and in each local Lorentz frame is called

the strong energy condition. Partly because of its role in the argument just sketched, the
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strong energy condition is important in relating the phase space of AAdS gravity to a
cotangent bundle.?’ In what theories does it hold? It holds for pure gravity with negative
cosmological constant, and it holds in any dimension for gravity coupled to p-form fields,
p > 1, and to scalar fields with a non-positive potential. For example, the strong energy
condition holds in all of the usual 10 and 11 dimensional supergravity theories with the
exception of the massive Type ITA supergravity theory, which was constructed in [51].
These facts are explained in section 3.5. The outstanding example of a theory that does
not satisfy the strong energy condition is gravity with a positive cosmological constant,
and more generally, any theory that contains scalar fields in which the scalar potential is
not negative semi-definite.

In a model that satisfies the strong energy condition, the fact that any extremum of the
renormalized volume is a local maximum suggests that the extremum of the renormalized
volume is unique: viewing the renormalized volume as a function on the space of Cauchy
hypersurfaces with specified asymptotics, between two local maxima one would expect to
find a saddle point, contradicting the fact that every extremum is a local maximum. A proof
of this uniqueness was given in Appendix A of [50] by use of the Raychaudhuri equation.?!
For completeness, we will summarize the argument (the details are not needed for the rest
of this article). Let S be an extremal Cauchy surface whose uniqueness we wish to prove,
and let S” be some other Cauchy surface with the same asymptotic behavior. Given a point
p € S, let vy, be the geodesic through p that is normal to S. By global hyperbolicity, v,
intersects S’ at a unique point p’; let Vip,p/] be the segment of ~;, from p to p’. Then Vipp']
may or may not be the causal path from p to p’ that has the greatest possible elapsed
proper time. Let Sy be the subset of S consisting of points p such that 7y, ) is proper time
maximizing. Define ¢q : Sy — S’ by ¢o(p) =p' if p’ = v, N S". A standard argument (see
for example [52, 53]) using global hyperbolicity and compactness of spaces of causal paths
shows that every point p’ € S’ can be reached from S by a causal path that maximizes
the elapsed proper time; moreover, this path is a geodesic orthogonal to S at some point
p € S. So the map ¢ : Sy — S’ is surjective. Moreover, if ftt is everywhere strictly positive,
Raychaudhuri’s equation implies that ¢ is everywhere volume-reducing. Hence the volume
of S’ is strictly less than the volume of Sy, and this in turn is no greater than the volume of
S. So S has greater volume than any other Cauchy hypersurface. So any extremal Cauchy
hypersurface is a strict maximum of the renormalized volume, and is therefore unique.

3.1.2 Existence of a Local Maximum

The next step is to discuss the existence of a local maximum of Vg, in the AAdS setting, for
hypersurfaces with specified asymptotic behavior. Here what is known is actually incom-
plete. A detailed discussion leads almost inevitably to questions about cosmic censorship
and the singularities of classical solutions of Einstein’s equations.

20WWe will see that the same condition is also important in analyzing the Lichnerowicz equation.

2'For X = AdS3, another proof of uniqueness is given in [11]. This proof is valid even if the conformal
boundary Se of S is highly nonsmooth (which complicates the definition and analysis of Vz). That case is
important for some applications (for example, see [12]), but for our purposes in the present article, we can
assume that S is smooth.
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For the case X = AdSp, for any dimension D, and any choice of S,,, a proof of
existence of an extremal Cauchy hypersurface S C X with boundary S, was given in [11].22
More recently [47], existence of such a hypersurface was shown in any AAdS spacetime
under the hypothesis that the bulk domain of dependence of Sy, is compact. One goal
of the following qualitative remarks is to explain the role of that assumption; the other
goal is to explain that under the same assumption, one should expect a similar result for
AdSp compactifications, that is, for spacetimes that are asymptotic to AdSp x W for some
compact W.

Let us say that a Cauchy hypersurface®® in a spacetime X that is asymptotic to
AdSp or AdSp x W is “allowed” if it is asymptotic to some chosen boundary Cauchy
hypersurface Soo C Xo. Any allowed Cauchy hypersurface is contained in the bulk domain
of dependence?®? of S, which we will call 2. We assume that 2 is compact; this assumption
will be discussed critically later. Now let Si1,5%, -+ be a sequence of allowed Cauchy
hypersurfaces. The S; cannot go to infinity in spacetime, since they are all contained in
the compact set €2. The condition that they all are everywhere spacelike or null means that
they also cannot go to infinity in momentum space. More specifically, if a hypersurface S
is described locally by specifying a function ¢ = f(&) where Z and ¢ are local space and
time coordinates, then the condition for S to be spacelike or null is |V f| < 1, which is
a sort of momentum space bound. Because the S; are bounded in both position space
and momentum space, the sequence S; has a (pointwise) convergent subsequence.?> The
renormalized volume is bounded above?® as a function on the space of allowed Cauchy

221 addition, using this result, existence and uniqueness of an extremal Cauchy hypersurface was shown
in [12] for a spacetime that is locally (not just asymptotically) AdSs, in other words, for any classical
solution of pure Einstein gravity in D = 3 with A < 0. This result holds for arbitrary topology of the initial
value surface; in particular, the boundary may have any number of connected components.

ZWe are about to make an argument that involves limits. A sequence of spacelike hypersurfaces can
develop null portions in a limit. So technically, in the following argument, it is best to define a Cauchy
hypersurface to be a complete achronal, but not necessarily spacelike, hypersurface on which initial data
can be formulated; it may have null portions. The null portions have zero volume so a volume-maximizing
hypersurface will not have null portions.

24The bulk domain of dependence of Ss is the domain of dependence of any allowed bulk hypersurface
S; alternatively, it is the set of points in X that are not timelike separated from S.. Technically, in the
following argument, it is convenient to include the points of S in S and in the bulk domain of dependence
Q; this ensures that S is compact, and makes it possible for 2 to be compact (as we wll see, this happens
if X is geodesically complete).

ZFor a fuller explanation of this type of argument about sequences of hypersurfaces, see the proof of
Theorem 10 in [54]. An important detail is that the renormalized volume is only upper semicontinuous
on the space of Cauchy hypersurfaces that are asymptotic to Soo, meaning that in a limit, it can jump
upward but cannot jump downward. However, since we are trying to maximize the renormalized volume,
upward jumps are not a problem. (To see why upward jumps in volume are possible, consider a sequence
of spacelike hypersurfaces that look locally like ¢t = %e cos(z/¢€), where x is a space coordinate and ¢ << 1.
This family of hypersurfaces has a limit for ¢ — 0, namely the hypersurface ¢ = 0, and the volume jumps
upward at € = 0.)

26 Although Vg is bounded above on the space of allowed Cauchy hypersurfaces, it is actually not bounded
below. If S is asymptotic to Se but is not orthogonal to Xo, then Vg(S) = —oco. That is because the
unsubtracted volume V(S) is always 400, so an infinite subtraction has been made to define Vz(S). A
hypersurface that is not orthogonal to the boundary has a less divergent volume than an orthogonal one,
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hypersurfaces, since a sequence Si, S, -+ with Vz(S;) tending to 400 could not have a
convergent subsequence. Let V. be the least upper bound on Vgz(S) among allowed
Cauchy hypersurfaces .S, and consider a sequence 51, Ss, ... of allowed hypersurfaces with
lim; 00 VR(S;) = Vinax. The limit S of a convergent subsequence of the sequence Sy, So, - - -
will have Vi(S) = Vinax and will be a maximal volume hypersurface.

A key assumption in this argument was that the bulk domain of dependence ) is
compact. This is true if X = AdSp, but in a general spacetime that is asymptotic to
AdSp, Q may fail to be compact, because singularities may form in the evolution of X
from initial data on S. For example, if a Schwarzschild black hole forms to the past or
future of S, the domain of dependence of S may not be compact. However, the presence of a
Schwarzschild singularity does not spoil the existence of a volume-maximizing hypersurface,
for the following reason. A Schwarzschild singularity is a special case of a more general
type of singularity known as a Kasner singularity. A Kasner singularity is a solution of

Einstein’s equations of the form?7

d d d
ds? = —dt® + Zt2pf (dz?)?, Zpi = Zp? =1. (3.3)
=1 i=1

j=1

The volume form of a hypersurface t = ¢y vanishes as tg approaches the singularity at t = 0,
so a volume-maximizing hypersurface is repelled from a Kasner singularity. (Essentially
this point is discussed in [54] in the proof of Theorem 11.) Therefore, noncompactness
of € due to formation of a Kasner singularity poses no problem for the existence of a
volume-maximizing hypersurface. A Schwarzschild singularity is the special case of a Kas-
ner singularity with one of the p; equal to —(d — 2)/d and the others equal to 2/d, so
it causes no difficulty. Formation of a Kerr black hole causes no difficulty because the
singularity of a Kerr black hole is timelike and would not be contained in the domain
of dependence (). Belinski-Khalatnikov-Lifshitz (BKL) singularities are similar to Kasner
singularities but, roughly, with repeated jumps in the exponents as t — 0", so one would
expect them to cause no difficulty.

It is conjectured that generic spacelike singularities in General Relativity are of BKL
type [55]. Under this assumption, we can hope that a maximal volume hypersurface S
with specified asymptotic behavior always exists in any asymptotically AdSp spacetime,
for any D. In a theory in which the strong energy condition holds, S would be unique.

We should caution the reader, however, that compactifications to AdSp are different.
In a spacetime X asymptotic not to AdSp but to AdSp x W for some compact manifold
W, we will in section 3.6 explain a simple argument showing in some cases that a maximal
volume hypersurface cannot exist. This will actually motivate a conjecture that non-BKL
singularities form generically in such compactifications.

so its renormalized volume is —oo. An allowed hypersurface that is orthogonal to the boundary has a finite
renormalized volume, but the renormalized volume of such hypersurfaces can be arbitrarily negative, since
a sequence Si,S2,--- of allowed hypersurfaces that are orthogonal to X, might have a limit that is not
orthogonal to X ; in that case lim; oo Vr(S;) = —o0.

2TThis is a solution of Einstein’s equations with zero cosmological constant; however, the cosmological
constant is not important near the singularity.
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We will now show that assuming the null energy condition,?® if X is free of singularity,
or more precisely if it is geodesically complete, then €2 is compact. (This argument is
not needed in the rest of the article.) First we show that if X is geodesically complete,
then the future boundary of €2, which we will denote as 0,2, is compact; similarly the
past boundary 9_€) is compact. The reasoning involved is similar to that in the proof
of Penrose’s singularity theorem; see for example [52] or [53]. Any point p € 9+ can
be reached from S,, by an orthogonal null geodesic without a focal point. The future-
going inward orthogonal null geodesics that originate on S, are initially converging, and
assuming the null energy condition (which holds in reasonable classical field theories),
Raychaudhuri’s equation implies that if X is geodesically complete, they all reach focal
points, beyond which they are not contained in 0,€). The segment of any such geodesic
that is contained in 01 (including its initial point on Sy) is therefore compact, and as
S 1s also compact, it follows that 9,1 is compact. Similarly 0_2 is compact. Given
this, to show that 2 is compact, we can for example use the fact that a globally hyperbolic
manifold X with Cauchy hypersurface S can be put in the form S x R where the set p x R
is timelike for any p € S, and R is parametrized by a variable u that, for each p € S, runs
over the full range —0co < u < co. Compactness of 942 and J_§2 implies that the function
u is bounded on 04+ and on 9_Q. For p € S, let uy(p) be the least upper bound of u on
(p x R)NQ, and similarly let u_(p) be the greatest lower bound of u on (p x R) N Q2. Then
Q consists of points p x u € S x R with u_(p) < u < wuy(p), and so is compact.

3.2 The Phase Space and the Constraint Equations

The existence and uniqueness of a maximal volume hypersurface S, discussed in section
3.1, is one ingredient in relating the phase space of AAdS gravity to a cotangent bundle
T*(Conf/Diff). The other ingredient, as developed in [9-12] for the case D = 3, involves
analyzing the Einstein constraint equations and in particular showing that the Hamiltonian
constraint equation can be viewed as a condition that fixes the Weyl factor in the metric of
a Cauchy hypersurface S. Here, we will explain this argument for the case of pure gravity
with negative cosmological constant. Matter fields will be included in section 3.4.
Suppose that S is a Cauchy hypersurface in a spacetime X of dimension D = d + 1
that satisfies Einstein’s equations with negative cosmological constant A. The metric h and
second fundamental form K of S automatically satisfy the Einstein constraint equations:

D;KY — DK} =0
R(h) = KYK;; — KZKJJ + 2A, (3.4)
where R(h) is the scalar curvature of the metric h. These equations were introduced
previously in section 2.2; the first is called the momentum constraint and the second is the
Hamiltonian constraint. Any pair h, K satisfying these constraint equations on a manifold

S provides initial data that determines a spacetime X that satisfies Einstein’s equations
and has S as a Cauchy hypersurface.

28The null energy condition states that at each point ¢ € X and for each null vector n, the stress tensor
T satisfies n®n” Tas(x) > 0. This condition holds rather generally in physically sensible relativistic field
theories (in theories with scalar fields, it holds in Einstein frame).
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Given suitable assumptions about singularities as discussed in section 3.1.2, we expect
that if X is an AAdS solution of Einstein’s equations, there is a unique volume-maximizing
Cauchy hypersurface S C X asymptotic to any given boundary Cauchy hypersurface Su.
The metric h and second fundamental form K of S satisfy the Einstein constraint equations
(with K! = 0, since S is volume-maximizing), and the spacetime X can be recovered from
S by solving Einstein’s equations with initial data h, K. Since S is unique, two spacetimes
obtained this way are equivalent if and only if they are equivalent via a diffeomorphism
of S. So in short, under the given assumption about singularities, the phase space @ of
solutions of the Einstein equations in the domain of dependence of a boundary Cauchy
hypersurface S, is the same as the space of solutions of the constraint equations (3.4)
with KZ = 0 and S asymptotic to S, up to diffeomorphism of S. Our goal here is to show
that this space is 7" (Conf /Diff), implying that & = T (Conf /Diff), under our assumptions.

As a first step, observe that once we set KZz = 0, which reduces the momentum con-
straint to D; K% = 0, the momentum constraint becomes Weyl-invariant. To be precise, if
we introduce a Weyl-rescaled metric

h=¢'h, (3.5)
with a positive function ¢, and similarly rescale the second fundamental form, setting
K = ¢~ t0+d/2) ij. (3.6)
then the momentum constraint simply becomes
D;K" =0, (3.7)

where 5, is the covariant derivative computed with the new metric h. Though this assertion
is easily verified, it may seem mysterious at first sight, since the Weyl rescaling in question
is certainly not a symmetry of General Relativity. In section 3.3, we will give a more
conceptual explanation of this Weyl invariance, but here we explain why it is useful.

The point is that if we are given a pair h, K that satisfies the momentum constraint
equation (and the AAdS boundary condition at infinity), then there is a unique Weyl trans-
form of this pair that satisfies the Hamiltonian constraint equation. Thus for the purposes
of describing the phase space, we can simply replace the Einstein constraint equation with
the operation of dividing by the group Weyl of Weyl transformations. Therefore, the only
constraint equation that we have to discuss explicitly is the momentum constraint; the
Hamiltonian constraint can be replaced by the group of Weyl transformations. This is a
substantial simplification, because the momentum constraint is linear in K, and is much
easier to understand than the Hamiltonian constraint equation.

Thus, the key fact is that given a pair 7L, K that satisfies the momentum constraint
equation, there is a unique positive function ¢ such that the Weyl rescaled metric and
second fundamental form h = qS_ZlNz, K = ¢t(+d/ 2K satisfy the Hamiltonian constraint
equation. In sketching the proof, we will follow the very useful explanation in section 3 of
[7]. For convenience, we use the notation of that paper. See also, for example, [3-6, 8].
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Setting ¢ = —4/(d — 2), the scalar curvatures R(h) and R(h) are related by

4 ~  4(d-1)

R(h)¢pa—2 = R(h) — MAEQL (3.8)
where Ay = hid 15@53 is the Laplacian for the metric h. An important preliminary point
is that in an AAdS spacetime, this equation can be used to show that, by a Weyl trans-
formation that is trivial at infinity, we can set R(h) = 2A everywhere (not just at infinity)
[57]. Actually, in the following argument, it suffices for R(h) to be negative-definite, and
knowing that this suffices is important background for understanding what happens when
matter fields are included. So we will retain R(h) in the formulas and assume only that it
is negative, and approaches 2A at infinity. Since we want also R(h) — 2A at infinity, we
can assume that the function ¢ approaches 1 at infinity.

We perhaps should stress at this point that the ability to make a Weyl rescaling to set
R(Aﬁ) < 0 is special to an AAdS spacetime. There are potential obstructions to this in a
closed universe, and the statement also has no equally simple analog for gravity with zero
or positive cosmological constant. That is one of the reasons that the conformal approach
to the constraint equations, which we are describing here, is particularly powerful in an
AAdS spacetime. Another reason is that the arguments of section 3.1.2 concerning maximal
hypersurfaces in AAdS spacetimes do not have equally satisfactory analogs in other cases.

Let us define |K \% = KK i/j’ﬁii/ﬁjj/. (Similar notation will be used later for other
tensors.) Making use of eqn. (3.8), we find that the Hamiltonian constraint equation in
(3.4) becomes

(d—2) .~ (d—2)  ~9 0-3d)/d-2) , Md—2)  (a49)/a-2)
A-dh— n Y K2 — = = 0. :
In this form, the Hamiltonian constraint is called the Lichnerowicz equation. It can be
written
with

F($,z) = 4((dd__21))R(%)¢ — 4((dd_—21))|[~(’2~1¢(2_3d)/(d_2) _ [;((;1:12))¢(d+2)/(d—2). (3.11)

Here x denotes a point in S, and the explicit z-dependence of F(¢,z) comes from the
z-dependence of R(h) and \K]%
To complete the description of the phase space, we want to show that, with R(h) and A

both negative, there is a unique positive function ¢ that satisfies the Lichnerowicz equation
and approaches 1 at infinity. The main tool is the following. A positive function ¢_ is
called a subsolution if the left hand side of eqn. (3.10) is nonnegative,

Ay — F(p—,x) >0, (3.12)
and a positive function ¢4 is called a supersolution if the right hand side is nonpositive,

Azéy — F(éy,x) <0, (3.13)
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If there is a subsolution ¢_ and a supersolution ¢4 with ¢_ < ¢, then we will prove that
there exists a solution ¢ of the Lichnerowicz equation with

¢- << Py (3.14)

For small ¢, the dominant term in F'(¢,x) is the |I~(|% term wherever K # 0, and the

R(h) term wherever K = 0. Both of these contributions to F(¢,z) are negative, since we
have assumed R(ﬁ) < 0. So an example of a subsolution is any sufficiently small constant
C. For large ¢, the dominant term in F(¢,z) is the term proportional to —A. We have
assumed A < 0, so this term is positive. Hence an example of a supersolution is any
sufficiently large constant D. On a compact manifold S, these choices of subsolution and
supersolution are satisfactory. However, in the AAdS context, we want a solution of the
Lichnerowicz equation such that ¢ — 1 at infinity. Eqn. (3.14) will guarantee this if ¢_
and ¢4 both approach 1 at infinity. So we want a subsolution and a supersolution with

that property. These can be found as follows. Write the AAdS metric in the familiar form

d
1
ds? = 2 dp? + Z gap(z, p)dztdab | | (3.15)
a,b=1

where the conformal boundary S is at p = 0. For a suitably small constant €, take ¢_ to
equal 1 at p =0 and C for p > €, with a smooth monotonic interpolation in between, and
similarly take ¢ to interpolate from 1 at p =0 to D for p > e. With a suitable choice of
the interpolations, this gives a subsolution and a supersolution with ¢_ < ¢4 everywhere
and ¢_,¢p4 — 1 at p = 0. See section 5 of [58] for a more detailed explanation of this
point.

The proof of existence of a solution of the Lichnerowicz equation, given ¢_ and ¢,
is simpler on a compact manifold, so we begin with that case. For a sufficiently large
constant ¢, the function F.(¢,z) = F(¢,z) — c¢ is (for any x) monotone decreasing for ¢
in the interval?® [C, D]. The operator As; — c is negative-definite, so for any function f,
the equation (A,~Z — ¢)¢ = f has a unique solution for ¢. So we can inductively define a
sequence of functions ¢q, ¢1, -+ with ¢g = ¢4 and for n > 1,

(Aﬁ - C)qbn = Fc(ﬁbnfla $) (316)

Suppose that for all n > 0,

¢— S ¢n S ¢+
Pn+1 < On. (3.17)

In this case ¢,, is monotonically decreasing with n and bounded below by ¢_, and so must
have a limit for n — oo. The limiting function ¢ = lim, .. ¢, is clearly bounded by

29This statement is also true in the AAdS case, because natural AAdS boundary conditions ensure that
all coefficients in F'(¢, z) are bounded at infinity; indeed, R(h) is asymptotically constant, and |K|% — 0 at
infinity.
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¢ < ¢ < ¢4, and satisfies the Lichnerowicz equation, since eqn. (3.16) converges for large
n to (A; —c)¢p = Fe(9, ).

The inequalities (3.17) are proved by induction in n. For example, suppose that ¢, <
¢4 for some n. Then

(A7, = ) (Snt1 — +) = Feldn, ) — Doy + chdy = Fo(n, z) — F(d4,2) + co+
:FC(¢7M$) _FC(¢+7x) > 0. (318)

The second step holds because ¢4 is a supersolution, and the last step follows from mono-
tonicity of F,.. The maximum principle then implies that ¢,11 — ¢4+ is nonpositive, be-
cause if ¢,41 — ¢4 is positive at the point where it achieves its maximum value, then
(Az — ¢)(Pn+1 — ¢4) is negative at that point, contradicting eqn. (3.18). A similar induc-
tive argument proves that ¢_ < ¢, for all n. Finally, to prove inductively that ¢n4+1 < ¢y

for all n, one observes that

(Aj = ) (Pnt1 — dn) = Fe(bn, x) — Fe(pn-1,2). (3.19)

By the induction hypothesis ¢, < ¢,,_1 along with the monotonicity of F,, the right hand
side of eqn. (3.19) is nonnegative. The same argument as before using the maximum
principle then implies that ¢,4+1 — ¢, is nonpositive.

This completes the existence proof of the solution of the Lichnerowicz equation on a
compact manifold S, assuming R(?L),A < 0. In the AAdS case, one proceeds as follows.
Restrict from S to the compact manifold with boundary S, defined by p > e. The same
argument as before, using Neumann boundary conditions for the operator Ay —c, produces
a solution ¢, of the Lichnerowicz equation on S, satisfing ¢ < ¢ < ¢4 and also satisfying
Neumann boundary conditions on 9S.. In the limit € — 0, ¢. converges to the desired
function ¢ that satisfies the Lichnerowicz equation throughout S and approaches 1 at
infinity.

To show uniqueness of the solution, first observe that since we know that the solution
exists, we can make a Weyl transformation from the initially assumed metric h to some
other metric h that satisfies the Einstein constraint equation. Saying that h obeys the
Finstein constraint equation is equivalent to saying that, with background metric h, the
Lichnerowicz equation is satisfied with ¢ = 1:

F(l,z)=0. (3.20)
Now let us ask whether some other function ¢ satisfies the Lichnerowicz equation:
Apd — F(p,x) =0. (3.21)
If so, then

0=App — F(¢,z) + ¢F(1,7)
(d-2)

Sl T A pld+2)/(d=2) _
e (6 9. (322

=And + KR (o202 — g) +
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This equation implies that ¢ < 1 everywhere, since if the maximum of ¢ is at a point p
at which ¢ > 1, then each term on the right hand side is negative at that p, which is not
possible. Likewise the equation implies that ¢ > 1 everywhere, since if the minimum of ¢
is at a point p at which ¢ < 1, then each term on the right hand side is positive at p, again
not possible. So we must have ¢ = 1 and the solution is unique.

This completes our discussion of the Lichnerowicz equation for pure gravity.

3.3 Symplectic Point Of View

A more conceptual understanding of the Einstein momentum constraint and its Weyl in-
variance requires a few steps.?’ The canonical momentum in General Relativity is
M = 1 Vdeth (K" —Kh¥) . (3.23)
8tG
The canonical commutation relations between the metric A and the canonical momentum
IT can be summarized by the symplectic form

w:/éniﬂ'éhzj, (3.24)
S

where 8 is the exterior derivative acting on the infinite-dimensional space W of pairs II, h
(in finite dimensions, we denote the exterior derivative as d rather than 0). We have

W= 8 (3.25)

with
A:/Hijéhzj. (3.26)
S

In classical mechanics, analogous formulas A = ) pedg®, w = dA hold for any classical
phase space that is a cotangent bundle T*(Q, where @ is parametrized by the ¢® and the
pq parametrize the fiber directions in the cotangent bundle. So in the case of gravity, the
full phase space W, prior to imposing any constraint, is 7*Met, where Met is the space of
metrics h on S.

Two interesting groups act on this phase space, and we will want to construct reduced
phase spaces by imposing these groups as constraints. First we observe that the symplectic
form w and the 1-form A have an obvious Weyl symmetry:

6hij = 2(phij, 6Hij = —24,0Hij- (3'27)

Let Weyl be the group of Weyl transformations, and Conf = Met/Weyl the space of con-
formal structures on S. The Hamiltonian function that generates the Weyl transformation
(3.27) by Poisson brackets is®!

fipg = —2 / oy 119, (3.28)
S

39The following remarks are equally valid in a closed universe or open universe and require no assumption
about the cosmological constant. In the AAdS case, of course, one must place appropriate conditions on
the behavior of the metric and canonical momentum at infinity, and on the allowed behavior at infinity of
a Weyl transformation or diffeomorphism.

31The label “g” in lhe,g is for gravity; later we will consider matter contributions to the Hamiltonian
functions.
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By setting pu, 4, = 0 and dividing by Weyl, one can construct a “reduced phase space,”
called the symplectic quotient of W by Weyl. Setting ji, 4 = 0 means taking hinij =0, so
that IT becomes traceless and the definition (3.23) of II reduces to

HZ] = % V det hKZ'], (329)

with K% now constrained by K = 0. After imposing this condition, we divide by Weyl
transformations, acting as in eqn. (3.27). In terms of h and K, the Weyl transformations

are
Shij = 2phij, OKY = —2(1+d/2)pK"Y. (3.30)

Thus the reduced phase space, denoted T*Met//Weyl, is the space of pairs h, K, with K
traceless, subject to this action of Weyl. What is described in eqn. (3.30), though written at
the Lie algebra level, is the same Weyl transformation law for h and K that was introduced
previously in eqns. (3.5), (3.6). In particular, this derivation gives a better understanding
of the possibly mysterious-looking exponent in eqn. (3.6). Since the action of Weyl on
T*Met comes from an action on the base space Met, the reduced phase space is again a
cotangent bundle T*Met//Weyl = T*(Met/Weyl) = T*Conf.

Another natural group that acts on these spaces is the diffeomorphism group Diff of S.
The Lie algebra of Diff consists of vector fields on S. The transformation of h generated
by a vector field U on S is dh;; = D;Uj + D;U;. The Hamiltonian function that generates
this transformation is

Hug = / Hij(Din + D;U;). (3.31)
S

To construct the symplectic quotient 7*Met/Diff, we set py, = 0 and divide by Diff.
Integrating by parts in eqn. (3.31), we see that the condition that py, = 0 for all U is
satisfied if and only if

| 1 . .
0=DillY = —=Vh (DiKY — D'K) . (3.32)

This is the momentum constraint of General Relativity.

Diffeomorphisms and Weyl transformations together generate a group that is a semidi-
rect product Weyl x Diff. In particular, Diff is a group of outer automorphisms of Weyl.
This group structure implies that a Weyl transformation shifts py4 by a multiple of p4 4
in other words, py,, is Weyl-invariant, once we impose ji4 4, = 0. This gives the promised
conceptual explanation of the fact that the momentum constraint is Weyl-invariant when
restricted to K = 0.

To construct the symplectic quotient 7*Met//Weyl x Diff, we have to set p, = py =0
and divide by Weyl x Diff. In other words T*Met//Weyl x Diff parametrizes pairs K, h,
where K is traceless and obeys the momentum constraint equation, up to equivalence under
diffeomorphisms and Weyl transformations. Since the action of Weyl x Diff on T*Met comes
from an action on Met, the symplectic quotient T*Met//Weyl x Diff is a cotangent bundle
T*P, where P = Met/(Weyl x Diff) = Conf /Diff.

What we learned in section 3.2 is that it is equivalent to impose the Einstein Hamil-
tonian constraint equation on a pair K, h, where K is traceless, or to divide by Weyl
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transformations. So assuming the existence of maximal volume hypersurfaces (so that K
can be assumed traceless), the phase space of General Relativity in an AAdS spacetime is
the cotangent bundle T*P = T™*(Conf/Diff).

3.4 Generalization To Include Matter Fields

It is pleasantly straightforward to generalize what was explained about the Einstein con-
straint equations in section 3.2 to encompass any of the usual models of gravity coupled
to matter fields that satisfy the strong energy condition. The important examples include
scalar fields (possibly forming a nonlinear sigma-model) with a nonpositive potential en-
ergy and p-form gauge fields for p > 1 (possibly generalized to Yang-Mills fields if p = 1).
Incorporation of such fields in the Lichnerowicz equation has been discussed in [6, 7, 58, 59],
among other references.

As a first example, we will consider scalar fields. To simplify the notation, we consider
a single scalar field o; the generalization to several scalar fields does not change anything
essential. Assuming that o is canonically normalized, its stress tensor is

1 1
Tij == 8i06ja — 591-]-8;908% — §g¢jV(O'). (3.33)

Here g is the metric on X its restriction to S will be denoted as h. The cosmological
constant is included in V(o) as an additive constant. The strong energy condition is
satisfied if and only V(o) < 0 for all o.

In studying gravity coupled to a scalar field in AAdS spacetime, we assume that o
has a constant value near infinity. Moreover, we assume that this constant value is an
extremum of V' (o), with a negative value of V, corresponding to an AdS vacuum.

The phase space of the scalar field ¢ can be parametrized by the restriction of o to an
initial value surface S together with a canonical momentum 7. The symplectic form for
this data is

wy = / 5780 = S\, (3.34)
S

with

A = / 0. (3.35)
S

To incorporate these variables in the analysis of the Lichnerowicz equation, the first step
is to decide how Weyl transformations act on m, 0. The only general procedure that makes
sense is to take o to be Weyl-invariant, since in a general model of scalar fields, o is really
the pullback to spacetime of a function on the target space of a nonlinear sigma-model;
in that generality a non-trivial Weyl transformation law for ¢ would not be meaningful.
Once we decide that o is Weyl-invariant, invariance of A\, and w, means that = must be
Weyl-invariant as well.

In a coordinate system that takes the standard form (2.25) near S, the standard
formula for 7 is

7 = Vhé, (3.36)
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where ¢ = 0o /0t. Since we take Weyl transformations to act on h by 0h;; = 2¢h;;, eqn.
(3.36), together with the Weyl-invariance of 7, implies that & must transform as 06 = —dg,
In sum,

S0 =0, 6=—do. (3.37)

The Einstein momentum constraint equation with the field ¢ included and with K
assumed to be traceless is

D;KY = 8rGTY = —81G6dy,0h*. (3.38)

This equation is Weyl-invariant, with Weyl transformations taken to act by eqns. (3.27)
and (3.36). This Weyl invariance may come as a slight surprise, but it has the same
explanation as in section 3.3 in terms of a symplectic quotient. To see this, let ¥ be
the infinite-dimensional space that parametrizes the values of the field ¢ on S. Then
the phase space of o is T*X, where the fiber directions are parametrized by w. So o,
h, and their canonical momenta jointly parametrize T*(Met x X). Let us consider the
symplectic quotient of this phase space by the group Weyl x Diff. First we need to compute
the contributions of o to the Hamiltonian functions pu, and py. The contribution to fu,
vanishes because o and m are Weyl-invariant. So setting p, = 0 will mean setting K = 0,
just as in the absence of . On the other hand, ¢ does contribute to py. The contribution
is32
P / T = — / N (3.39)
S S
So the condition for vanishing of the total Hamiltonian function py = py,g + pu,e is
—D; K" = 87G&ooh’*, (3.40)

which is the Einstein momentum constraint for this coupled system. The same group
theoretic considerations as before imply that the momentum constraint is Weyl-invariant,
once we set K = 0.

To construct the symplectic quotient 7*(Met x X)//Weyl x Diff, we set K = 0, impose
the Einstein momentum constraint, and divide by Weyl x Diff. Since the action of Weyl x Diff
on T*(Met x ¥) is induced in the usual way from an action on Met x X, the result is a
cotangent bundle 7% Ps;, where Py, = (Met x X)/(Weyl x Diff) parametrizes pairs (h,o) up
to diffeomorphism and Weyl transformation.

To construct the phase space of this system, we would follow all of the same steps except
that instead of dividing by Weyl, we would impose the Einstein Hamiltonian constraint
equation

R = K;;K" 4+ 167GTp. (3.41)

However, essentially the same arguments as summarized in section 3.2 shows that it is
equivalent to impose the Hamiltonian constraint or to divide by the group of Weyl trans-
formations, since each orbit of Weyl contains a unique point at which the Hamiltonian
constraint equation is satisfied.

32Here 1y is the operation of contracting the first index of a differential form with a vector field V.

— 492 —



To show this, we consider the orbit of Weyl that contains a set of fields E, K , 0, . This
can be Weyl-transformed to

h= Y (@2,
K — ¢ 2(d+2)/(d=2) i
oc=0
& = ¢ 2/d-2)5 (3.42)

where ¢ is an arbitrary positive function. The energy density is

1., 1 J
1 . 1 ~. .
:§¢74d/(d72)52 n 5¢f4/(d*2)(‘9{(;6].’511” + V(7). (3.43)

Repeating the derivation that led to eqn. (3.9), we get the new form of the Lichnerowicz
equation. This is actually an equation of the same general form as before, but with new

coeflicients:
o, (d-2) (d—=2) . (2-3d)/(d-2) , (d=2)  (ay2)/@d—2) _
with
a = R(h) — 87Gd;50;5h"
B =K +16xG5"
v = 167GV (o). (3.45)

In section 3.2, to prove the existence of a solution of the Lichnerowicz equation, we
needed®? a < 0, v < 0. The proof of uniqueness of the solution required g > 0, v < 0.
Incorporating the scalar field o does not affect the conditions @ < 0 and 8 > 0, and it does
not affect the condition v < 0 in a model that satisfies the strict strong energy condition
V(o) < 0 for all o. Thus, in such a model, the Lichnerowicz equation has a unique positive
solution that approaches 1 at infinity. This assertion is actually Theorem 3.3 in [58].

Under these conditions, solving the Hamiltonian constraint equation has the same
effect as dividing by the group of Weyl transformations, and therefore the part of the phase
space that parametrizes spacetimes that can be described by a solution of the Lichnerowicz
equation with K = 0 is a cotangent bundle T*Ps. We argued in section 3.1.2 that given
reasonable (but optimistic) assumptions about singularities in General Relativity, every
solution has a maximal Cauchy hypersurface and hence can be described by a K = 0

33The definition of a subsolution and a supersolution actually requires these statements to hold uniformly,
so that for example, instead of just saying that @ < 0, we need to have a positive constant € such that
a < —e everywhere. On a noncompact manifold, in general such a uniform inequality might be a stronger
condition than o < 0, but with AAdS boundary conditions (and ¢ assumed to be constant at infinity) the
two statements are equivalent.
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solution of the Lichernowicz equation. Thus under this assumption, the phase space is
T*Ps.

The slightly more general case of a model that satisfies V(o) < 0 everywhere but not
necessarily V(o) < 0 is analyzed in [58], Theorem 7.1.

3.5 p-Form Gauge Fields

In this section, we will generalize from a scalar field to a p-form gauge field3* A with gauge
transformation A — A 4 d\, for a (p — 1)-form A, and with (p + 1)-form field strength
F =dA. Here 0 < p < D — 2. As usual, if S is a Cauchy hypersurface, we can pick local
coordinates such that S is defined by t = 0 and near S the metric takes the form

ds? = —dt?* + hy; (%, t)da'da? . (3.46)

Along S, we decompose F' = B + dt A E, where the “magnetic” field B is a (p + 1)-form
along S, and the “electric” field E is a p-form along S.

We have two goals in studying a p-form gauge field: (1) to show that the standard
theories of a p-form gauge field satisfy the strong energy condition; (2) to incorporate such
a field in the analysis of the Einstein constraint equations.

With the usual normalization, the stress tensor of a minimally coupled p-form gauge
field is

1 1
T;u'V = EFual...apr a1Qp mguyFaoal...apFaoal ap. (347)
From this, we can compute
1 i1-lp 1 1081 p
Too = 2—plEi1...ipE + mBioil"'ipB . (3.48)
Likewise
1 D
T = — (1 — ——— | Fppoooq, FO79P
o p! < 2(p+ 1)) QQ--Qp
1 D e, ioi1-i
= 1- D) (=(p+ 1)Ejy.i) BV + Bigjyiy B (3.49)

Remembering the definition T w = Ty — ﬁguyTaa , we find

Too = (D—lz)p| ((D —p—2)Ejy.i) B + pBjyj i, B0 (3.50)

This is manifestly non-negative in the whole range 0 < p < D — 2, showing that these
theories satisfy the strong energy condition.

Several commonly studied nonminimal couplings of a p-form gauge field do not affect

this analysis. Chern-Simons couplings do not contribute to the stress tensor, so they do

not affect the strong energy condition. A p-form gauge field can couple to a scalar field ¢ in

34For p = 0, a p-form gauge field is the same as a scalar field, already discussed in section 3.4. For p =1,
a p-form gauge field is an abelian gauge field. Abelian gauge theories can be generalized to nonabelian
gauge theories, but this generalization does not affect our considerations here.
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such a way that the action is, for example, [ e?F A «F rather than the minimal J FAXF.
This merely multiplies the stress tensor by e?, without effect on the above analysis. One
can also have Higgsing of a p-form gauge field by a (p — 1)-form gauge field (as a result of
which the p-form gauge field becomes massive). This again does not disturb the analysis.

Bearing in mind these comments, we see that eleven-dimensional supergravity, and
also the Type I, Type IIA, and Type IIB supergravities in ten dimensions, all satisfy the
strong energy condition. However, massive Type ITA supergravity [51] does not satisfy the
strong energy condition, since it has a scalar field with a positive potential.3

Now we will discuss the incorporation of these fields in the Einstein constraint equa-
tions. First, we have to decide how Weyl transformations should act in this theory.

The gauge invariance A — A + dA would not intertwine with a nontrivial Weyl trans-
formation law for A in any reasonable way, so A must be Weyl-invariant. Hence B = dA is
Weyl-invariant. Another way to reach the same conclusion is to observe that the Bianchi
identity satisfied by B, and the quantized Dirac fluxes that it can carry, would not be con-
sistent with any nontrivial Weyl transformation law for B. So B must be Weyl-invariant.

Since A is Weyl-invariant, its canonical momentum II must also be Weyl-invariant.
With the usual normalization, T2 = \/hE12" W So EFii2 i myugt transform as
1/vh, and equivalently Eijiy...i, must transform as hP=4/2_ This tells us the p-form analog
of eqn. (3.42):

h = M,
K — ¢=2d+2)/(d-2) i
Big-.i,,
E;

= By,

= g2/, (3.51)
P

1+ip

Because A and II are Weyl-invariant, the p-form gauge field, just like the scalar field
studied in section 3.4, does not contribute to the Hamiltonian generator 1, of Weyl transfor-
mations. So we remain with p, = K, and imposing Weyl-invariance as a constraint means
setting K = 0 and then dividing by Weyl transformations, exactly as before. Once we set
K = 0, the momentum constraint equation, which now has a contribution proportional to
the momentum density 7% of the p-form gauge field, again becomes Weyl-invariant. The
group theoretic explanation for this fact is exactly as before.

It remains to examine the contribution of the p-form gauge field to the Lichnerowicz
equation. From eqns. (3.48) and (3.51), we find for this field

—4(d—p)/(d=2) _ —4(p+1)/(d=2) _

Too = ¢2P!|E]% + (’52@“)! BI. (3.52)

As a check, note that this is consistent with the usual duality under p <+ d — p — 1 with
exchange of F and B. Following the familiar steps, the Lichnerowicz equation comes out

35Nonetheless, massive Type IIA supergravity does satisfy the Maldacena-Nuiiez no go theorem [60] for
de Sitter compactifications.
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to be

d—2 d— (2-3d Ald — 92) (@+2
56~ gy + g R 4 e
47G(d — 2 1  (=8d+4p+2) ~ 1 (d—4p—2) ~
T (e B + e BR) 0 G

The method of subsolutions and supersolutions applies exactly as before to show the exis-
tence of a solution of this equation with ¢ — 1 at infinity. All that we need to know is that
the |E'|% and |§|% terms that have been added are positive, so they do not change the sign
of the left hand side of the equation if ¢ is small and constant, and they are subdominant
for large ¢, so they also do not Change the sign if ¢ is large and constant.

The functions of ¢ that multiply | E ]2 and \B[~ in eqn. (3.53) are of the form ¢ where
a < 1 for all p in the range 0 < p < d — 1. This bound on the exponent ensures that the
additional terms in the equation do not affect the proof of uniqueness of the solution of
the Lichnerowicz equation, which proceeds as in the discussion of eqn. (3.22).

3.6 AdS Compactifications

The analysis of the Lichnerowicz equation works so nicely for a spacetime that is asymptotic
to AdSp for some D that it perhaps comes as a surprise that compactification to AdSp is
different. In other words, if we consider a spacetime that is asymptotic to AdSp x W for
some compact manifold W of positive dimension, we do not get such a simple picture.

As a typical example, we will consider solutions of ten-dimensional Type IIB super-
gravity that are asymptotic at infinity to AdSs x S°. Type IIB supergravity has a four-form
gauge field A whose five-form field strength F' = dA is self-dual. In the standard AdSs x S°
solution of Type IIB supergravity, F' is everywhere nonzero. Type IIB supergravity has
bosonic fields other than the metric and A, but including them would not qualitatively
change the picture, so for brevity we omit them.

We can find the Lichnerowicz equation appropriate to a Type I1B spacetime X that is
asymptotic to AdSs x S° by setting d = 9, p = 4 in eqn. (3.53). Self-duality of the five-form
F' means that the ]E ]% and |1§ \% terms in the equation are equal, and we actually should
keep only one of them. We also have to set A = 0, since Type IIB supergravity in ten
dimensions has vanishing cosmological constant. So the Lichnerowicz equation becomes

(@-2) .~ (d-2)
wa—1 et 3a

To proceed, we need to take into account one more key fact. In studying the Lichnerow-

AnG(d — 2)
A1)+ 1)

Aj¢— K22+ ¢ T|BE =0. (3.54)

icz equation on a manifold asymptotic to AdSp, we always required R(E) to be negative at
infinity. However, in a spacetime X that is asymptotic to AdSs x S°, we instead want R(}VL)
to be positive near infinity. One way to see this is to observe that the usual AdSs x S°
spacetime actually has zero scalar curvature, since the negative scalar curvature of AdSs
is equal and opposite to the positive scalar curvature of S°. However, if we restrict to a
Cauchy hypersurface S such as AdSy x S°, then as the scalar curvature of AdSy is less
negative than that of AdSs, we see that S actually has positive scalar curvature.
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More directly, we can look at the Hamiltonian constraint equation, which for an ex-
tremal hypersurface S reads

R(h) = KV Kj +161GTy. (3.55)

Since Type IIB supergravity satisfies the strong energy condition, as observed in section
3.5, we will have ﬁt > 0 everywhere in a solution of this theory, and therefore any extremal
hypersurface will always have R(h) > 0 everywhere. Note that this argument is not in any
way special to AdSs x S%; it applies to any AAdS compactification of eleven-dimensional
supergravity or of Type ITA, Type 1IB, or Type I supergravity in ten dimensions, since
these models all satisfy the strong energy condition, as found in section 3.5. Because of this,
what we are explaining here applies to a very wide range of Anti de Sitter compactifications,
though we consider AdSs x S® for illustration.

For the standard extremal Cauchy hypersurface S = AdS; x S° in the standard
AdSs5 x S5 spacetime, B is everywhere nonzero and the scalar curvature R(h) is every-
where positive. Therefore, for any pair E, B sufficiently close to this standard example, B
is everywhere nonzero and R(ﬁ) is everywhere positive. Under this restriction, the analysis
of the Lichnerowicz equation actually proceeds rather as before, with minor differences.
The left hand side of the equation is positive for ¢ a small positive constant and negative
for large constant ¢, though the negativity for large ¢ now comes from the fact that R(}VL)
is assumed positive rather than from having A < 0. Given this property of the equation,
the method of subsolutions and supersolutions applies to prove the existence of a solution
¢ of the equation with ¢ — 1 at infinity. In addition, the various powers of ¢ appearing
in the equation are such that the solution of the Lichnerowicz equation is unique, by the
same argument as in eqn. (3.22).

What happens in the case of a solution that is not close to the standard example?
Of the two assumptions that we made in getting to this point, the assumption that B
is everywhere nonzero is relatively harmless, since B has 9!/4!5! = 126 components, and
generically is everywhere nonzero in nine dimensions. However, the assumption that R(ﬁ)
is everywhere positive is highly problematic. When we studied spacetimes asymptotic to
AdSp, we used the fact that it is always possible, by a Weyl transformation, to find a
starting point with R(E) < 0. But in studying compactifications to Anti de Sitter space,
we would want to make a Weyl transformation to set R(E) > 0. This is not always possible.

In fact, there are strong topological obstructions to the existence on a manifold M
of a metric of positive scalar curvature. The simplest obstruction is as follows. Type
IIB supergravity has fermions, so we can assume that S is a spin manifold. Therefore
it has a Dirac operator ® = iJ). A spin manifold of dimension 8%k + 1 has a topological
invariant known as the “mod 2 index” [61], the number of zero modes of the Dirac operator
mod 2. A nine-dimensional spin manifold M with a nonzero mod 2 index cannot admit
a metric of positive scalar curvature. In fact, the square of the Dirac operator, namely
D? = —D, D" + R/4, is strictly positive if R > 0, so © has no zero-modes on a manifold
of positive scalar curvature [62]. Therefore, on a manifold M on which the ordinary index
of the Dirac operator (if M has dimension 4k) or the mod 2 index (if M has dimension
8k + 1 or 8k + 2) is nonzero, there is no metric of positive scalar curvature. To be more
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precise, such results are usually stated and proved on a compact manifold M, and we are
interested in a noncompact nine-manifold S. However, we want a complete metric on S
such that the scalar curvature approaches a positive constant at infinity (namely the scalar
curvature of AdSy x S°). This, together with the formula ©? = —D,D* + R/4, implies
that the Dirac operator on S has a discrete spectrum near 0. Given this, positivity of R
implies that the index and the mod 2 index must vanish, just as on a compact manifold.

The formula ©? = —D, D" + R/4 also shows that D2 is strictly positive if R > 0
everywhere and R is not identically 0. In our application, we are interested in metrics for
which R is strictly positive near infinity and in particular not identically zero. A nonzero
mod 2 index implies that there is no such metric with R > 0 everywhere.

A simple example of a nine-manifold with a nonzero mod 2 index is provided by a
certain exotic nine-sphere. In general, roughly speaking, half of all nine-dimensional spin
manifolds have a nonzero mod 2 index. Actually, the mod 2 index is only the simplest
example of an obstruction to positive scalar curvature. A more systematic study [63]
shows that, roughly speaking, most manifolds with a large fundamental group do not
admit a metric of positive scalar curvature. On the other hand, for a simply-connected
nine-dimensional spin manifold, the mod 2 index is the only obstruction to having a metric
of positive scalar curvature [64]. Again, such results are most often stated for compact
manifolds but apply equally to, for example, nine-manifolds that are asymptotic to AdSy4 x
S5 with the stipulation that the scalar curvature should approach a positive constant at
infinity.

Now consider a spacetime X that is asymptotic to AdSs x S° and has a Cauchy
hypersurface S that, topologically, does not admit a metric of positive scalar curvature.
The Hamiltonian constraint equation (3.55) implies immediately that if it is possible to
choose S to have K = 0, then the scalar curvature of S is nonnegative. Thus, if X is such
that a Cauchy hypersurface S C X has a nonzero mod 2 index, then it is not possible to
choose such an S to satisfy K = 0.

On the other hand, if S is any nine-manifold asymptotic to AdS, x S°, there is no
problem to find initial data on S that satisfy the Einstein constraint equations if we relax
the assumption K = 0. When K # 0, there is an additional term —K? on the right hand
side of the Hamiltonian constraint equation, and there is no reason to expect that R > 0
everywhere.

Therefore, there are perfectly good spacetimes X asymptotic to AdS5 x S° and com-
pletely generic but not possessing any extremal Cauchy hypersurface. What are we to
make of this? Based on the discussion in section 3.1.2, though the arguments are not
truly bullet-proof, we suspect that in such a spacetime, some sort of unfamiliar, non-BKL
singularity forms generically.

We will speculate in a moment on how this might be interpreted, but first let us note
that in the context of an asymptotically flat spacetime, the obstruction we are discussing
to the existence of an extremal slice was discovered long ago [65]. The original context for
this work was that it had been conjectured that in an asymptotically flat spacetime X, for
any value of the time measured at infinity, there would be an extremal Cauchy slice S in
the interior of X; it was shown by considering topological obstructions to positive scalar
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curvature that this is not the case. On the other hand, it was found that by allowing K # 0,
one can find initial data leading to an asymptotically flat spacetime X with any assumed
topology of S [66, 67].

We have simply pointed out precisely the same topological obstruction in the context
of compactifications to Anti de Sitter space. However, the implications are somewhat
different. In an asymptotically flat spacetime X, the domain of dependence of a Cauchy
hypersurface S is all of X, and is never compact. However, in, for example, a spacetime X
that is asymptotic to AdSs x S°, the domain of dependence € of a Cauchy hypersurface
S is compact in the absence of singularities. This was explained in section 3.1.2. So the
potential connection between the topological obstruction to R > 0 and singularities is
special to AdS compactifications.

What are we to say about these hypothetical non-BKL singularities? We can only make
some speculative remarks. As an example, consider the mod 2 index as an obstruction to
positive scalar curvature. It is an invariant in spin bordism, which means that from the
point of view of classical physics, if one assumes that the relevant spacetime histories
are smooth manifolds (possibly not admitting a metric everywhere of Lorentz signature,
as discussed for example in [68]), the mod 2 index is a conserved quantity. There is no
corresponding Zs gauge field, so this is a candidate as a global conserved Z, charge. On the
other hand, one does not expect global conservation laws in quantum gravity (for the most
precise known argument for this assertion, see [69]), and in particular we do not expect
cobordism invariants to be truly conserved [70]. So we expect that there is some sort of
process in Type IIB superstring theory in which the mod 2 index changes. Perhaps the
non-BKL singularity that is suggested by the arguments we have sketched is a signal of
such topology change. One can imagine a singularity that arises when a topological defect
of some sort that supports the mod 2 index collapses to a point and disappears. There is
certainly no known singularity in General Relativity associated to such a time-dependent
process, so if this type of topology change is associated to a singular classical history, this
is a classical history with a singularity of an unknown and exotic type.

More generally, a nine-dimensional spin manifold S has many possible topologies, but
one expects that most topological distinctions between different initial value surfaces are
not well-defined in the full Type IIB superstring theory — even though only a few special
cases of topology-changing processes are well-understood. It is possible that the non-BKL
singularities that the analysis here suggests play a role in filling in the gaps and providing
missing topology-changing processes.

We conclude with the following remarks. In asymptotically AdSp spacetimes, in mod-
els that satisfy the strong energy condition, we learned from the study of the Lichnerowicz
equation that — with an optimistic but not obviously wrong assumption about the nature
of singularities — the gravitational phase space is a cotangent bundle, with potential impli-
cations for quantization. On the other hand, in the context of a spacetime X asymptotic
to AdSp x W, for some compact W, this is not the case: if a Cauchy hypersurface S C X
is such that positive scalar curvature is topologically obstructed, then there is a perfectly
good phase space of classical solutions of Type IIB supergravity with this S, but there is
no reason for it to be a cotangent bundle.

49 —



In fact, even if S is such that there is no obstruction to positive scalar curvature, we
cannot prove that the phase space is a cotangent bundle, no matter what assumption we
make about possible singularities. The reason is that even if S does admit metrics with
R > 0 and appropriate asymptotic behavior, this does not mean that every metric on .S with
appropriate asymptotic behavior is Weyl-equivalent to one with R > 0 everywhere. For
example, if S is topologically AdSs x S®, we only know a priori that any metric sufficiently
close to the standard one has R > 0. (In fact, it is possible to prove that there are metrics
on S with the desired behavior at infinity that are not conformal to any metric with R > 0
everywhere.)

So in spacetimes asynptotic to AdSp x W, as opposed to AdSp, the phase space is
not going to be a cotangent bundle for each topological choice of initial value surface, even
with optimistic assumptions. However, we know little about the generic singularities in
these spacetimes. At the cost of going rather far out on a limb, we can speculate that
perhaps different classical phase spaces associated to spacetimes with different topologies,
after taking singularities and topology-changing processes and massive stringy modes into
account, do fit together to make a cotangent bundle.

The singularities associated to topology change might conceivably be mild enough that
a hypersurface S can be sensibly continued from one side of the singularity to the other. In
that case, it might be that ultimately the maximal volume hypersurface does always exist,
but in general on a spacetime with a different topology than what we started with.
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