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Abstract: We describe a simple gauge-fixing that leads to a construction of a quantum

Hilbert space for quantum gravity in an asymptotically Anti de Sitter spacetime, valid to all

orders of perturbation theory. The construction is motivated by a relationship of the phase

space of gravity in asymptotically Anti de Sitter spacetime to a cotangent bundle. We

describe what is known about this relationship and some extensions that might plausibly

be true. A key fact is that, under certain conditions, the Einstein Hamiltonian constraint

equation can be viewed as a way to gauge fix the group of conformal rescalings of the

metric of a Cauchy hypersurface. An analog of the procedure that we follow for Anti de

Sitter gravity leads to standard results for a Klein-Gordon particle.
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1 Introduction

In this article, we will re-examine the canonical formalism for quantum gravity [1], focusing

on the case of an asymptotically Anti de Sitter (AAdS) spacetime X. One advantage

of the AAdS case is that, because of holographic duality, it is possible to explain in a

straightforward way what problem the canonical formalism is supposed to solve, thereby

circumventing questions like what observables to consider and what is a good notion of

“time.” In holographic duality, there is a straightforward notion of boundary time, and

there is no difficulty in defining local boundary observables.

It is natural in holographic duality to study the matrix elements of a product of

local boundary operators Oα between given initial and final states. A typical example is

⟨Ψ|O′(t′, x⃗′)O(t, x⃗)|χ⟩, with boundary insertions of local operators O′, O at points labeled

by time t and spatial coordinates x⃗, and with states χ, Ψ that are defined by initial and

final conditions. For simplicity, in this article we restrict to t′ > t, to avoid having to

discuss “timefolds.” In the canonical formalism of the boundary theory, one constructs for

any Cauchy hypersurface S∞ in the boundary of X a Hilbert space H of quantum states

– 1 –



a) b)

Figure 1. (a) The boundary X∞ of Anti de Sitter space, drawn as a cylinder, with boundary

insertions O and O′ to the past and future of a Cauchy hypersurface S∞ ⊂ X∞. In this setup,

one can compute a matrix element ⟨Ψ|O′(t′, x⃗′)O(t, x⃗)|χ⟩ as a sum over physical states defined on

the hypersurface S∞. In the canonical formalism for gravity, one aims to find a similar formula in

terms of a sum over states on a bulk Cauchy hypersurface S with boundary S∞. (b) The “cutting”

procedure of (a) can be iterated, with successive cuts on successive hypersurfaces.

with the property that if some set I labels a basis |i⟩ of H, then an amplitude can be

factored by inserting a sum over these states (fig. 1(a)):

⟨Ψ|O′(t′, x⃗′)O(t, x⃗)|χ⟩ =
∑
i∈I

⟨Ψ|O′(t′, x⃗′)|i⟩⟨i|O(t, x⃗)|χ⟩. (1.1)

This factorization is most naturally described in path integrals if O is to the past of S∞ and

O′ is to the future. Such factorization can be iterated; for example, given two boundary

Cauchy hypersurfaces S∞ and S′
∞ with S′

∞ to the future of S∞, and insertions on the

boundary arranged in time in a suitable way, one has (fig. 1(b))

⟨Ψ|O′′(t′′, x⃗′′)O′(t′, x⃗′)O(t, x⃗)|χ⟩ =
∑

j′∈I′, i∈I
⟨Ψ|O′′(t′′, x⃗′′)|j′⟩⟨j′|O′(t′, x⃗′)|i⟩⟨i|O(t, x⃗)|χ⟩

(1.2)

where the states |i⟩ are defined on S∞ and the states |j′⟩ are defined on S′
∞. In writing the

formula this way, we allow for the use of different bases I on S∞ and I ′ on S′
∞. The initial

and final states χ and Ψ in these formulas are themselves Hilbert space states defined in

the far past and the far future.

The main result of the present article is a conceptually simple way to reproduce such

factorization laws from a bulk point of view, to all orders of perturbation theory. The main

idea is to exploit a relationship between Weyl invariance of a (D − 1)-geometry and the

Hamiltonian constraint equation of General Relativity.

Conformal approaches to quantization of gravity have a very long history [2], and the

conformal approach to the constraint equations, which gives particularly simple results
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in the case of an AAdS spacetime, has been much developed [3–8]. As we will see, the

conformal approach is particularly powerful when it can be combined with existence and

uniqueness results for maximal volume hypersurfaces, as was done for three-dimensional

pure gravity in [9–12].

In section 2, we explain a bare minimum of this classical picture to motivate the

approach that we will take to the canonical formalism of gravity. Then we go on to

describe, by a simple gauge-fixing, a construction of a Hilbert space that is valid to all

orders of perturbation theory. In section 3, we explain the underlying classical picture

more thoroughly.

In early investigations of the canonical formalism for gravity [1], it was observed that

the Hamiltonian constraint of General Relativity is a family of second order differential

operators, somewhat analogous to a Klein-Gordon operator. This suggested that the inner

product for gravity might be defined by analogy with a Klein-Gordon bilinear pairing

(f, g) =
∫
S dΣµf

↔
∂µg, which does not depend on the choice of the hypersurface S on which

it is evaluated. The analogy has always seemed problematical, because the Klein-Gordon

pairing is not positive-definite, and also because the Hamiltonian constraint is a whole

infinite family of second order operators, not just one. We will see that the procedure we

follow for gravity, though it leads to a positive inner product, is closely analogous to a

procedure which for a Klein-Gordon particle leads to the Klein-Gordon pairing.

Our analysis is restricted to perturbation theory for technical reasons, and it may be

that this is inherent in assuming that H can be constructed as a space of functions of fields

– the metric tensor and possibly other fields – on a spacetime manifold. However, the result

we get for the Klein-Gordon particle is exact, even though the derivation appears to be valid

only in perturbation theory. In addition, the classical picture that motivates the present

work is valid far beyond what is needed for perturbation theory. These facts suggest that

in some admittedly unclear sense, the description of canonical quantization given in the

present article might extend beyond perturbation theory. This possibility has motivated

the writing of section 3 of the present article. Much of that section is an explanation of

the conformal approach to the classical constraint equations, largely following the useful

review article [7].

An early version of this work, but without the gauge-fixing construction of section 2.4,

was presented in a lecture at the Princeton Center for Theoretical Science [13].

As already noted, the main idea in this article is to exploit a relationship between the

Hamiltonian constraint equation of gravity and the group of Weyl rescalings of a Cauchy

hypersurface. Another and arguably much deeper relationship between the Hamiltonian

constraint and Weyl invariance has been developed in recent years. The TT deformation

is a deformation of a two-dimensional quantum field theory that is irrelevant in the renor-

malization group sense and for which no ultraviolet completion is understood but that

nonetheless leads to unexpected exact results [14–16]. The Wheeler-DeWitt equation (or

the Hamiltonian constraint equation) of three-dimensional gravity without matter fields

can be interpreted in terms of the TT deformation of two-dimensional conformal field the-

ory [17]. This striking insight has been refined and generalized to higher dimensions, where
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Figure 2. The bulk domain of dependence Ω of a Cauchy hypersurface S∞ in the boundary of an

AAdS spacetime X. In this picture, for simplicity, X is two-dimensional so its boundary X∞ is

one-dimensional and S∞ consists of two points. Ω is the domain of dependence of any bulk Cauchy

hypersurface S with boundary S∞, or equivalently the set of bulk points that are not timelike

separated from S∞.

the TT deformation becomes a T 2 deformation [18–22]. More recently and remarkably, it

has been extended to include matter fields [23]. In the present article, the T 2 deformation

plays no role in the input, but in a sense we run into the T 2 deformation in the output,

since the formula that we get for the Hilbert space inner product of a theory with gravity

involves a sort of T 2-deformed ghost determinant.

The approach in the present article is limited to perturbation theory because we will

use a gauge-fixing condition that is only valid perturbatively. The approach via the T 2

deformation is, at the present time, limited to perturbation theory because a nonpertur-

bative completion of the T 2 deformation is not known. As already noted, a limitation to

perturbation theory may well be unavoidable in any description based on fields in space-

time.

2 Path Integrals and Physical States

2.1 The Phase Space As A Cotangent Bundle

We will defer a detailed discussion of the classical phase space of asymptotically Anti de

Sitter (AAdS) gravity to section 3. Here we will explain a bare minimum to motivate an

approach to the problem of describing a quantum Hilbert space.

The classical phase space of AAdS gravity is well understood in the case of pure gravity

in three dimensions. Let X be an AAdS three-manifold, globally hyperbolic in the AAdS

sense, that satisfies Einstein’s equations with negative cosmological constant. Its conformal

boundary X∞ consists of one or more copies of R×S1 (where the R and S1 directions are

respectively timelike and spacelike). Let S∞ be any Cauchy hypersurface in X∞. There
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are many possible choices of bulk Cauchy hypersurface S with boundary S∞, all homotopic

to each other.1 The bulk domain of dependence of S∞, which we will call Ω, can be defined

as the domain of dependence of any S. An alternative definition of Ω which makes it

obvious that Ω does not depend on the choice of S is that Ω consists of points in X that

are not timelike separated from S∞ (fig. 2). Thus Ω is a pseudo-Riemannian manifold

with boundary. Ω is the part of the spacetime that can be constructed, given initial data

on S, just using Einstein’s equations, without using the AAdS boundary conditions along

X∞.

By the phase space Φ of AAdS gravity in this situation, we mean the space of possible

geometries of the bulk domain of dependence Ω, for a given choice of S∞. It is known (in

the three-dimensional case) that Φ is actually a cotangent bundle,2 Φ = T ∗(Conf/Diff),

where Conf parametrizes conformal structures on S (metrics modulo Weyl transformations

h → e2φh with φ|S∞ = 0) and Diff is the group of diffeomorphisms of S that are trivial

along S∞. Thus Conf/Diff is the space of metrics on S up to diffeomorphism and Weyl

transformation. That Φ = T ∗(Conf/Diff) is proved as follows [9–12].

In one direction, one makes use of the renormalized volume of a hypersurface. In an

AAdS spacetime, a Cauchy hypersurface S has infinite volume, but it is possible to define a

renormalized volume VR(S). In three dimensions, one shows that, for any given S∞ ⊂ X∞
and any choice of the bulk spacetimeX, there exists a unique bulk Cauchy hypersurface S ⊂
X with boundary S∞ that maximizes VR(S). (See section 3.1 for a qualitative discussion

of this existence and uniqueness.) S has a Riemannian metric h and a second fundamental

form K; extremality of VR(S) implies that K is traceless, K = 0 where K = hijKij . Now,

“forget” the metric h and remember only the associated conformal structure, which we will

call h0 (thus, knowing h0 means knowing h up to a Weyl transformation h → e2φh). Then

h0, up to diffeomorphism, defines a point in Conf/Diff. On the other hand, in General

Relativity, K is canonically conjugate to h. To be precise, the momentum conjugate to hij
is

Πij =
1

16πG

√
h
(
Kij − hijKr

r

)
. (2.1)

The traceless part of this equation shows that the traceless part of K is conjugate to the

conformal structure h0 (the trace K = Kr
r is conjugate to the volume density

√
deth,

which we abbreviate as
√
h). So the pair K,h0, with K being traceless, defines a point

in T ∗Conf. To take diffeomorphisms into account, we have to divide by the group Diff,

but we also have to set to zero the Hamiltonian function on T ∗Diff that generates the

action of Diff. Dividing by Diff removes from the phase space some modes of h and setting

the Hamiltonian function to zero removes the conjugate modes of K. For K traceless,

1In the definition of S, we include the conformal boundary points in S∞. This makes S compact and

generally enables simpler statements. Similarly, S∞ is included in the definition of the bulk domain of

dependence Ω.
2This is also true in the case of a closed universe with Λ < 0, though in this article, we mainly consider

AAdS spacetimes. In both cases, the same phase space Φ has another description as a product of two copies

of Teichmüller space [24]. This description, which is suggested by the relation of three-dimensional gravity

to Chern-Simons theory [25, 26], does not generalize above three dimensions or in the presence of matter

fields, so it is less relevant for a general understanding of gravity.
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the Hamiltonian function that generates Diff is DiK
ij . Setting the Hamiltonian function

to zero is the momentum constraint of General Relativity. These matters are explained

in sections 2.2 and 3.3. The combined operation of setting the Hamiltonian function to

zero and dividing by Diff replaces T ∗Conf with T ∗(Conf/Diff). So if K and h0 come from

a solution of Einstein’s equations, they define a point in T ∗(Conf/Diff). The map that

associates the pair K,h0 to a given solution of the Einstein field equations therefore gives

a map from the phase space Φ to T ∗(Conf/Diff).

To get a map in the opposite direction, one shows that given a point in T ∗(Conf/Diff),

that is, a pair K,h0 with DiK
ij = 0, one can in a unique fashion make a Weyl transfor-

mation to a pair that satisfies the Einstein constraint equations and thereby gives initial

conditions for a solution of the full Einstein equations, defining a point in Φ. The proof

is explained in detail in section 3. The two maps are inverses, so the gravitational phase

space can be identified as Φ = T ∗(Conf/Diff).

Are such ideas relevant to a general understanding of gravity? For this, something

similar should be true in higher dimensions, and also in the presence of matter fields. The

full story of what is known to be true and what is likely to be true under reasonable

assumptions is somewhat involved, and is deferred to section 3. For now, we just remark

that in the context of perturbation theory, in General Relativity on AdSD or on AdSD×W

for some compact manifold W , possibly with matter fields, an analysis similar to what was

just sketched is always applicable. At least for purposes of perturbation theory, the phase

space of such a theory can always be represented by a cotangent bundle T ∗Q, where now

Q parametrizes the conformal structure of S together with the matter fields on S, modulo

diffeomorphisms that are trivial at infinity (along with gauge transformations that are

trivial at infinity if some of the matter fields are gauge fields). That is true because both

steps in the construction – existence of a unique S of maximal volume, and existence of a

unique Weyl transformation that ensures that the constraint equation is satisfied – are valid

if one is sufficiently close to AdSD or AdSD×W . As we will discuss in section 3, to extend

these results beyond perturbation theory, one requires a strong energy condition and a

condition on singularities somewhat analogous to cosmic censorship. But such assumptions

are not necessary in perturbation theory around AdSD or AdSD ×W . Likewise, as we will

also see in section 3, beyond perturbation theory one can make much stronger statements

for AdSD than for AdSD ×W , but the difference is not relevant in perturbation theory.

2.2 The Constraint Equations

The Einstein constraint equations are equations for a metric hij on an initial value surface

S and a symmetric tensor field Kij on S. These equations are the condition under which h

and K are initial data for a spacetime X that satisfies Einstein’s equations, with h (whose

scalar curvature will be denoted R(h)) and K understood as the induced metric and second

fundamental form of S ⊂ X. For General Relativity with cosmological constant Λ and no

matter fields, the equations read

Pj(x⃗) = H(x⃗) = 0, (2.2)
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with

Pj(x⃗) = DiK
ij −DjKi

i

H(x⃗) = R(h)−KijKij +Ki
iK

j
j − 2Λ. (2.3)

The equation Pj(x⃗) = 0 is called the momentum constraint and the equation H(x⃗) = 0 is

called the Hamiltonian constraint. Importantly, these are gauge constraints, which must

be satisfied independently at each point x⃗ ∈ S. Quantum mechanically, K is conjugate to

h as in eqn. (2.1), so Pj(x⃗) and H(x⃗), for each x⃗ ∈ S, become differential operators acting

on the space Met of metrics on S. P i(x⃗) is linear in K so it becomes a first order differential

operator which is simply the generator of diffeomorphisms of S; to be precise, if vi is a

vector field on S then the generator of the symmetry3 δxi = vi is
∫
S dD−1x⃗

√
hvi(x⃗)Pi(x⃗).

H(x⃗) is quadratic in K, so it becomes a second order differential operator.

In the most basic version of the canonical approach to quantum gravity, the quantum

wavefunction is a function Ψ(h) of the metric of S (and possibly other variables). The

traditional interpretation of the constraint is that the operators obtained by quantizing

the constraints should annihilate Ψ(h):

P i(x⃗)Ψ(h) = H(x)Ψ(h) = 0. (2.4)

Since P i(x⃗) is the generator of diffeomorphisms, the constraint P i(x⃗)Ψ = 0 merely says

that Ψ(h) should be invariant under diffeomorphisms of S (or more precisely, under those

diffeomorphisms that are connected to the identity; it is generally assumed that this con-

dition should be extended to all diffeomorphisms). With this constraint imposed, Ψ(h)

becomes a function on the space Met/Diff of metrics modulo diffeomorphisms. The Hamil-

tonian constraint H(x⃗)Ψ(h) = 0 is more vexing and more difficult to interpret. Because

H(x⃗) is a second order differential operator for each x⃗, the constraint H(x⃗)Ψ(h) = 0 is an

infinite system of second order differential equations that should be satisfied by the quan-

tum wavefunction. This infinite system of equations (or sometimes the combined system

P i(x⃗)Ψ = H(x⃗)Ψ = 0) is known as the Wheeler-DeWitt equation. In the traditional ap-

proach to the canonical theory of gravity, a quantum wavefunction is a function on Met/Diff

that satisfies the Hamiltonian constraint equation, or equivalently a function on Met that

satisfies the combined system P i(x⃗)Ψ = H(x⃗)Ψ = 0.

A basic difficulty of canonical quantum gravity is that it is very difficult to solve

the Wheeler-DeWitt equation, or to gain any qualitative understanding of the solutions.

However, the fact that the phase space of General Relativity is a cotangent bundle Φ =

T ∗(Conf/Diff) suggests a simple answer. In general, a cotangent bundle T ∗Y can be quan-

tized by saying that a physical state is a square integrable function4 on the base space Y .

So one is led to hope that the state space of General Relativity can be interpreted as a

space of functions on Conf/Diff, with no constraints.

3The symbol δ will denote a symmetry generator or the variation of a field, while δ will represent a

Kronecker delta or the Dirac delta function.
4More canonically, since Y may not have a natural measure, the wavefunction should be a half-density on

Y rather than a function on Y . To avoid an inessential distraction, we will not always make this distinction.
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The original suggestion along these lines was actually made by York half a century

ago [2], for somewhat similar reasons to what was just explained, and motivated by even

earlier results that pointed in this direction. For example,5 Kuchar had shown [27] that in

asymptotically flat spacetime, to lowest nontrivial order, a solution Ψ(h) of the Wheeler-

DeWitt equation depends only on the transverse traceless part of h. To be precise, here we

perturb around the case that S is a flat hypersurface RD−1 in D-dimensional Minkowski

space RD−1,1. The metric of S is thus taken to be hij = δij + h′ij , where δij is the Eu-

clidean metric on RD−1 and h′ij is the perturbation. Kuchar showed that to first order

in h′, the Wheeler-DeWitt equations assert that the quantum wavefunction Ψ(h) is com-

pletely determined by an arbitrary function of the transverse traceless part of h′. In lowest

order, the space of transverse traceless metric perturbations is the same as the space of

deformations of the conformal structure up to diffeomorphism, so Kuchar’s result can be

restated by saying that to first non-trivial order, solutions of the Wheeler-DeWitt equation

on Met/Diff are in natural correspondence with functions on Conf/Diff. These arguments

were recently reworked in the AAdS case, with a similar result [28].

The relation of the Wheeler-DeWitt equation to the TT deformation and its gen-

eralizations [17–23] actually gives a way to generalize such statements to all orders in

perturbation theory. In explaining this, we will just consider the original example [17] of

three-dimensional pure gravity with Λ < 0 and the original TT deformation [14–16]. The

Wheeler-DeWitt equation of three-dimensional pure gravity reads(
KijKij −Ki

iK
j
j −R(h) + 2Λ

)
Ψ(h) = 0. (2.5)

Setting Λ = −1/ℓ2 and using eqn. (2.1) to express K in terms of Πij(x) = −i δ
δhij(x)

, the

equation becomes (
(16πG)2

deth

(
ΠijΠij − (Πk

k)
2
)
−R(h)− 2

ℓ2

)
Ψ(h) = 0. (2.6)

Now conjugate the constraint operator by exp
(

1
8πGℓ

∫
S d2x

√
h
)
or equivalently define

Ψ = exp

(
1

8πGℓ

∫
S
d2x

√
h

)
Ψ̂. (2.7)

The effect of this change of variables is to shift Πij → Πij − i
16πGℓ

√
hhij . The equation

satisfied by the new wavefunction Ψ̂ is6(
i√

deth
Πk

k +
8πGℓ

deth

(
ΠijΠij − (Πk

k)
2
)
− ℓ

32πG
R(h)

)
Ψ̂ = 0. (2.8)

The term 8ΠGℓ
deth

(
ΠijΠij − (Πk

k)
2
)
is irrelevant in the renormalization group sense; by power

counting, it is negligible at long distances. The leading long distance approximation to the

5The background to York’s proposal also included parts of the story that will be described in section 3.
6Here one throws away some terms formally proportional to δ(0) that come from δ2

δh(x)2

√
deth(y) ∼

δ(x, y)2 = δ(x, y)δ(0). One can think of this step as a normal-ordering recipe. The δ(0) terms are subleading

in G/ℓ.
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equation is therefore simply(
i√

deth
Πk

k −
ℓ

32πG
R(h)

)
Ψ̂(h) = 0. (2.9)

This equation is familiar in two-dimensional conformal field theory (CFT). The operator

iΠk
k is the generator of Weyl transformations of the metric, and so eqn. (2.9) describes

violation of conformal invariance by the usual c-number anomaly proportional to R(h).

In fact, eqn. (2.9) is the usual anomalous Ward identity of a two-dimensional CFT with

central charge

c =
3ℓ

2G
, (2.10)

which is the Brown-Henneaux formula for the central charge of the boundary stress tensor in

three-dimensional gravity [29]. Eqn. (2.8) differs from the usual CFT Ward identity by the

Π2 terms. Since Πij = −i δ
δhij

inserts a factor of the stress tensor T ij in an amplitude of the

boundary CFT, eqn. (2.8) actually describes the combined violation of conformal invariance

by the CFT anomaly along with a TT deformation. This was the main observation in [17].

If we factor the metric h as h = e2φh0, with some fixed choice of h0,
7 then we get Πi

i = − i
2

δ
δφ

and eqn. (2.9) becomes the usual CFT Ward identity that determines the dependence of Ψ̂

on φ. In eqn. (2.8), the Π2 terms are of relative order e−2φ compared to the other terms.

So for large φ, eqn. (2.8) reduces to the usual CFT Ward identity (2.9). Any solution Ψ̂0

of that CFT Ward identity can be promoted as follows to a solution Ψ̂ of the TT -deformed

equation (2.8). Let us denote the operators on the left hand sides of eqns. (2.8) and (2.9)

as D and D0, respectively. We expand Ψ̂ = Ψ̂0 + Ψ̂1 + Ψ̂2 + · · · , and stipulate that for

large φ, each Ψ̂k is of order e−2kφ relative to Ψ̂0 and that

D0Ψ̂k = −D
(
Ψ̂0 + Ψ̂1 + · · ·+ Ψ̂k−1

)
+O(e−2(k+1)φΨ0). (2.11)

Order by order in e−2φ, Ψ̂k is uniquely determined and eqn. (2.8) is satisfied. The expansion

in powers of e−2φ is equivalently an expansion in powers of G. Thus, order by order in

perturbation theory in G, Ψ̂ is uniquely determined in terms of Ψ̂0. Every Ψ̂ arises in

this way from some Ψ̂0 (which can be found from the large φ behavior of Ψ̂). Since the

usual CFT Ward identity determines the dependence of Ψ̂0 on φ, this means that order by

order in perturbation theory, solutions Ψ̂ of the Wheeler-DeWitt equation are in natural

correspondence with wavefunctions that depend on h0 only, or in other words, functions

on Conf/Diff. One can view this as a generalization of the result of [27, 28] to all orders,

in AAdS spacetime.

Knowing this correspondence does not immediate tell us the correct form of the Hilbert

space inner product on the space of solutions of the Wheeler-DeWitt equation. One can for-

7We will learn in section 3 that each Weyl orbit of metrics has a unique representative that satisfies the

Hamiltonian constraint equation, so one could make this factorization by choosing h0 to be that represen-

tative. A much more elementary way is to pick a smooth measure µ on S and require
√
deth0 = µ.
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mally define a natural inner product for functions8 on Conf/Diff by (Ψ′,Ψ) =
∫
Conf/Diff Ψ

′
Ψ.

A more general inner product would be

⟨Ψ′,Ψ⟩ = (Ψ′|Ξ|Ψ), (2.12)

for some positive self-adjoint operator Ξ. In section 2.4, we will show how a simple gauge-

fixing leads to a description of the perturbative Hilbert space H of quantum gravity, roughly

along these lines (but in a BRST formulation with ghost fields included), with a relatively

simple and relatively explicit formula for Ξ as a ghost determinant. The derivation will

also lead directly to formulas such as eqns. (1.1) and (1.2), with transition amplitudes

expressed in terms of sums over contributions of intermediate states in H. Such formulas

are after all the goal of having a Hilbert space of physical states. However, first we will say

more in section 2.3 about old and new approaches to the Wheeler-DeWitt equation and

how the procedure in section 2.4 relates to them.

2.3 The Wheeler-DeWitt Equation And The BRST Operator

The traditional interpretation of the Wheeler-DeWitt equation, going back to its origins,

was as described in section 2.2: a quantum state was taken to be a function Ψ(h) of a

(D − 1)-geometry h, satisfying P i(x⃗)Ψ(h) = H(x⃗)Ψ(h) = 0.

At least at a formal level, there is a specific problem in which a wavefunction of this

type actually arises.

We consider some sort of initial conditions that, physically, should suffice to create

a specific quantum state. For example, in the AAdS context, in Lorentz signature, we

can do the following. From a boundary point of view (fig. 3(a)), we specify a Lorentz

signature manifold X∞ of dimension D− 1 that starts at time t = −∞ in the past and has

a spacelike future boundary S∞. The boundary theory on X∞, with initial condition at

t = −∞ corresponding to some chosen state, and specified operator insertions to the past

of S∞, will produce a quantum state Ψ∞ on S∞. One can also make a similar construction

in Euclidean signature (fig. 3(b)).

To recover the state Ψ∞ from the gravitational path integral, one considers a bulk

spacetime X with conformal boundary X∞ at spatial infinity, and terminating in the future

on a spacelike hypersurface S whose boundary is S∞. We write g for the metric of X and

h = g|S for the induced metric on S. Now we do a bulk path integral, with initial conditions

and boundary insertions as before, and with Dirichlet boundary conditions keeping fixed

the metric h of S. The output of the path integral is a function Ψ(h). This function is

supposed to define the state on S created by the gravitational path integral under the given

conditions.

The main virtue of this construction is that one can argue formally that Ψ(h) sat-

isfies the Wheeler-DeWitt equation. As the construction is manifestly invariant under

diffeomorphisms of S, it is evident that P i(x⃗)Ψ(h) = 0, and one can argue formally that

8Rather than functions on Conf/Diff, it is more natural to use half-densities, and really one needs a more

precise language that takes account of the conformal anomaly. We will not go in that direction, because

such issues will not arise in the approach to constructing a Hilbert space that we actually follow in section

2.4.
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a) b) c)

Figure 3. (a) Here X∞ is a Lorentz signature boundary manifold with a future boundary S∞. In

the boundary theory, initial conditions in the far past, and possible boundary insertions, determine

a quantum state Ψ∞ on S∞. The bulk is an AAdS manifold X with future boundary S. The

metric h of S is fixed and the path integral on X defines a function Ψ(h) which one hopes has

the same physical content as Ψ∞. One can argue formally that Ψ(h) satisfies the Wheeler-DeWitt

equation. (b) A similar picture to (a) in Euclidean signature. The main difference is that X∞ has

operator insertions but no past boundary. (c) The picture of (a) is continued into the future and

some final state is specified. In the boundary one gets nice formulas for the transition amplitude

between specified initial and final states involving a sum over states on S∞, but in bulk, there is

a problem if the states are supposed to be solutions Ψ(h) of the Wheeler-DeWitt equation. If one

picks a particular bulk Cauchy hypersurface S on which to cut, the Wheeler-DeWitt equation is

not satisfied, but integrating over all S gives a massive overcounting.

H(x⃗)Ψ(h) = 0 (see for example [30–33]). One can conjecture that Ψ(h) is a bulk dual of

the boundary state Ψ∞.

This construction has two drawbacks. The first is that the problem that was solved

is not really the problem that one wanted to solve. The reason for wanting to construct

a Hilbert space of quantum states is that one wants to be able to factorize transition

amplitudes in terms of sums over intermediate states, as in eqns. (1.1) and (1.2). After all,

this is what quantum states are good for in ordinary quantum mechanics. Although one

can argue at a formal level that the wavefunction Ψ(h) created by the gravitational path

integral satisfies the Wheeler-DeWitt equation, there is no argument even formally that

such wavefunctions participate in the desired “sum over states” formulas. The reason is that

when we compute a path integral that we want to evaluate by summing over intermediate

states, there is no natural way in the context of Dirichlet boundary conditions to find

the bulk hypersurface S whose metric h we should be summing over (fig. 3(c)). General

covariance would force us to integrate over all choices of S, which involves a massive

overcounting.

The second drawback is that the gravitational path integral that is supposed to com-

pute Ψ(h) is actually not well-defined even in perturbation theory (and even after regular-
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izing ultraviolet divergences), because the Dirichlet boundary condition that was assumed

is not elliptic [34–36]. This lack of ellipticity means that, with Dirichlet boundary condi-

tions, the operator L that arises by linearizing the gauge-fixed Einstein equations about a

classical solution does not have a well-defined determinant or propagator.9

One might be inclined to dismiss the second problem as a technicality. However, if

one actually tries to actually compute Ψ(h) in perturbation theory in a specific situation,

one will soon need the determinant and propagator of the operator L, and one will run

into difficulties. There is actually another reason to believe that the non-ellipticity of the

Dirichlet boundary condition on L should not be dismissed lightly. This non-ellipticity

can be straightforwardly proved, with a little linear algebra, starting from the definition

of an elliptic boundary condition [34, 36]. However, there is a more abstract proof that

is quite instructive [35]. In this proof, the only real input is the form of the Hamiltonian

constraint equation for gravity and specifically the fact that it involves second derivatives of

h along the boundary (which appear in the scalar curvature R(h)) but only first derivatives

in the normal direction to the boundary (which are present in the definition of H(x⃗) in

eqn. (2.3) because K is linear in the normal derivative of h). The Hamiltonian constraint

equation is the cause of the difficulty in understanding the canonical formalism for gravity,

so in trying to understand that canonical formalism, we probably should not ignore a

mathematical problem associated to the form of the constraint equation.

The problem involving the lack of ellipticity has a simple fix. Instead of Dirichlet

boundary conditions for gravity in which one fixes the boundary metric,10 one can consider

a mixed Dirichlet-Neumann boundary condition in which one specifies not the boundary

metric h, but rather the conformal structure h0 of the boundary (in other words, the

boundary metric up to a Weyl transformation) and the trace K = Ki
i of the second fun-

damental form Kij . This mixed Dirichlet-Neumann boundary condition is elliptic [35, 36],

so in the situation of fig. 3(a), it should be possible in perturbation theory, after regular-

izing ultraviolet divergences, to use this boundary condition to compute a wavefunction

Ψ(h0,K).

One drawback of this is that the Wheeler-DeWitt equation in a dual version with

K treated as a coordinate and
√
h as a conjugate momentum appears to be, at best, no

simpler than the original. Another and possibly more serious problem is that, again,

this construction seems to solve the wrong problem. It formally gives a way to solve

the problem described in fig. 3(a), but the problem of fig. 3(c) remains. There is no

argument even formally that a gravitational path integral can be evaluated by “cutting”

on an intermediate hypersurface S and summing over states on S of the form Ψ(h0,K) that

satisfy the constraint equations.

There is, however, also a standard fix for this difficulty. So far we have described what

9An exception is that if, classically, the universe is everywhere expanding or everywhere contracting

along the boundary (and more generally if the canonical momentum is everywhere a positive- or negative-

definite matrix along the boundary), the determinant and propagator may be well-defined even though the

boundary condition is not elliptic. This is explained in [36], following [37].
10Neumann boundary condtions, in which one fixes the second fundamental form K of the boundary

rather than the boundary metric h, are again not elliptic [35].
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Figure 4. An AAdS spacetime X with four asymptotic regions in which asymptotic states might be

specified. Such an X cannot have a metric everywhere of Lorentz signature; it may have Euclidean

signature or possibly a complex metric. Overlapping “cuts” of such an X can be made, as sketched

here, on homotopically inequivalent surfaces such as γ1 and γ2. No one canonical formalism is well

adapted to all of the possible cuts.

might be called the “traditional” Wheeler-DeWitt formalism. There is also a “revised”

Wheeler-DeWitt formalism in which one constructs states that are better candidates for

appearing in a factorization formula [38–44] (see [23] and Appendix B of [45] for recent

discussions). In the revised Wheeler-DeWitt formalism, sometimes called refined algebraic

quantization or group averaging, one still considers a wavefunction Ψ(h), and one still

imposes the momentum constraint equation P iΨ(h) = 0. However, the constraint HΨ = 0

is replaced by an equivalence relation

Ψ(h) ∼= Ψ(h) +
∑
i

H(x⃗i)χi(h) (2.13)

for an arbitrary set of points x⃗i ∈ S and arbitrary functions χi(h). (The discrete sum over

points x⃗i ∈ S can also be replaced by a continuous integral.) In other words, the sense in

which H(x⃗) vanishes is not that it annihilates a physical state, but that its action is trivial,

since any state H(x⃗)χ is considered trivial. In this approach, any state Ψ(h) that satisfies

the momentum constraint is considered physical; two such states are considered equivalent

if their difference is of the form
∑

iH(x⃗i)χi(h).

In this revised Wheeler-DeWitt approach, the inner product of two states is defined

formally as

⟨Ψ′|Ψ⟩ =
∫
Met/Diff

Dh Ψ
′
(h)

∏
x⃗∈S

δ(H(x⃗))Ψ(h). (2.14)

Here Dh represents formally an integral over the space Met/Diff of metrics on S up to

diffeomorphism. The product of delta functions
∏

x⃗∈S δ(H(x⃗)) formally annihilates any

state of the form H(x⃗)χ, ensuring invariance of the inner product under the equivalence

relation.

– 13 –



With this revised interpretation of the constraint operators, it is possible to give a

formal argument that leads to the desired formulas involving cutting and summing over

intermediate states, as in eqn. (1.1). For this, one goes to a canonical ADM formulation of

the path integral in the region in which cutting is supposed to happen. In that formulation,

the action contains a term
∫
S dD−1x⃗ N(x⃗)H(x⃗), where N is called the lapse and does not

appear elsewhere in the action. The path integral therefore contains a factor∫
DN exp

(
i

∫
S
dD−1x⃗ N(x⃗)H(x⃗)

)
. (2.15)

Assuming that N(x⃗) is supposed to be integrated from −∞ to +∞, the integral over N

gives formally the desired
∏

x⃗ δ(H(x⃗)).

A possible criticism of this approach – the status of this issue is not clear to the

author – is that in replacing the covariant version of the Einstein path integral with a

canonical version in which N is allowed to have either sign, we may have changed the

path integral in a way that was adapted to the specific cutting formula we were trying to

get. In the covariant path integral (or classically), it looks natural for N to be positive.

We really want to know how to evaluate the original covariant form of the path integral

by a cutting formula. This issue is particularly sharp in a Euclidean signature context in

which the boundary theory may satisfy many different formulas that result from cutting

on topologically inequivalent hypersurfaces (fig. 4). No one canonical version of the bulk

path integral can reproduce all of those different cutting formulas, so if one is going to use

canonical versions of the path integral to deduce cutting formulas, it is essential to know

that these canonical versions are all equivalent to the underlying covariant version of the

path integral.

The traditional and revised Wheeler-DeWitt theories can be viewed as two special

cases of what one can do with BRST quantization. In BRST quantization, one introduces

ghost fields, of ghost number 1, that transform like the generators of the gauge symmetries,

but with opposite statistics. In the case of gravity, the ghost fields are an anticommuting

vector field cµ(x⃗, t). One also introduces additional multiplets consisting of antighost fields

and auxiliary fields; this part of the construction is nonuniversal and depends on what

gauge condition one wishes to impose. The BRST operator, in the context of gravity, is

[46]

Q =

∫
S
dD−1x⃗

√
h
(
c0(x⃗)H(x⃗) + ci(x⃗)Pi(x⃗) + · · ·

)
, (2.16)

where the omitted terms do not affect the following remarks. This operator obeys Q2 = 0,

so one can define its cohomology. As usual, the cohomology of Q is defined to consist

of states Ψ that satisfy QΨ = 0, modulo the equivalence Ψ ∼= Ψ + Qχ for any χ. In

BRST quantization, the cohomology at one particular (theory-dependent) value of the

ghost number is defined as the Hilbert space of physical states. In the case of gravity, if we

assume that we are interested in states that are not annihilated by any modes of c0 and ci

(and that therefore are annihilated by all modes of the conjugate antighosts), the condition

QΨ = 0 gives H(x⃗)Ψ = Pi(x⃗)Ψ = 0, the traditional Wheeler-DeWitt constraints. On the

other hand, we could assume that we are interested in states that are annihilated by all
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modes of c0 but not by any modes of ci. Then the condition QΨ = 0 gives the momentum

constraint Pi(x⃗)Ψ = 0, but not the Hamiltonian constraint H(x⃗)Ψ = 0. Instead, the

equivalence Ψ ∼= Ψ + Qχ leads to the equivalence relation (2.14) of the revised Wheeler-

DeWitt approach.

Thus the traditional and revised Wheeler-DeWitt theories are special cases of what

one can do in the BRST framework. Neither of these corresponds closely to the way

that BRST quantization is usually carried out in ordinary gauge theory or in perturbative

string theory. Usually, the starting point is a relatively standard Fock space of ghost and

antighost fields, with a basis of states that are annihilated by roughly half of the ghost

modes and half of the antighost modes. In other words, in setting up the BRST machinery

and using it to define the physical Hilbert space, ghosts and antighosts are usually treated

rather similarly to other fields.

In the next section, we will describe a simple gauge-fixing that can be used to construct

a Hilbert space for gravity. The construction is valid to all orders of perturbation theory,

but not beyond, at least not in the present formulation. A factorization formula is manifest.

The states that appear in the factorization formula are functions on Conf/Diff, the answer

that is suggested by the relation of the gravitational phase space to T ∗(Conf/Diff). The

boundary condition that is used in defining these states is the elliptic Dirichlet-Neumann

boundary condition. The BRST approach to quantization is used, but not in the way

that leads to either the traditional or the revised Wheeler-DeWitt theory. A fairly explicit

formula for the inner product will emerge.

2.4 A Simple Gauge-Fixing To Construct A Perturbative Hilbert Space

The part of the BRST formalism for gravity that is universal involves the metric tensor

gµν and the ghost field cµ. They transform as

δgµν = Dµcν +Dνcµ, δcµ = cα∂αc
µ, (2.17)

where δ represents the infinitesimal deformation generated by the BRST charge Q. These

formulas satisfy δ2 = 0, which corresponds to Q2 = 0; since δ2 = 0, any expression of the

general form δΛ is BRST-invariant, for any Λ.

The rest of the BRST formalism depends on what gauge-fixing condition one wishes

to impose. In general the desired gauge condition may be defined by a family of equations

PΥ(g) = 0, (2.18)

where we do not specify the nature of the labels Υ carried by these equations. (More

generally, the PΥ could depend on matter fields as well as on the metric.) To impose such

a gauge condition, we add a family of antighost fields cΥ and auxiliary fields ϕΥ with

δcΥ = ϕΥ, δϕΥ = 0, (2.19)
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consistent with δ2 = 0. A simple way to implement a gauge-fixing that will impose the

condition PΥ(g) = 0 is to add to the action a gauge-fixing term

Igf = δ

(∑
Υ

cΥPΥ

)
=
∑
Υ

(ϕΥPΥ − cΥδPΥ)

=
∑
Υ

(
ϕΥPΥ − cΥ

∫
X
dDx

δPΥ

δgµν(x)
(Dµcν(x) +Dνcµ(x))

)
. (2.20)

Thus, if we add to the action no other terms11 that involve ϕΥ, then ϕΥ will behave as a

Lagrange multiplier, imposing a gauge condition PΥ = 0.

This procedure can be used to impose quantum mechanically any gauge condition that

would be correct classically. A gauge condition is correct classically if on the diffeomor-

phism orbit of gµν , there is a unique representative with PΥ = 0. In practice, one usually

has to content oneself with a gauge condition that is correct classically in the context of

perturbation theory – in other words, a gauge condition that is correct on gauge orbits

that are sufficiently close to some starting point. For topological reasons, it is usually not

possible to find a gauge condition that is uniformly valid on all gauge orbits.

In the case of gravity, assuming that one is constructing perturbation theory in an

expansion around a classical solution g0 of Einstein’s equations, one can write the full

metric as g = g0 + g1, and impose a gauge condition on the perturbation g1. A simple and

convenient gauge condition (which goes by names such as harmonic, de Donder, or Bianchi

gauge) is to require Tµ(x) = 0 with

Tµ(x) = Dµg
µν
1 − 1

2
Dνgµ1µ, (2.21)

where covariant derivatives are taken with respect to the background metric g0, and indices

are also raised and lowered with that metric. Thus with this choice, the label Υ of the

general discussion corresponds to a point x ∈ X and an index µ.

Here we will modify the gauge-fixing procedure so that it will help us in solving the

problem identified in fig. 3(c). Given a Cauchy hypersurface S∞ in the boundary X∞ of

an AAdS spacetime X, from a boundary point of view, a transition amplitude between

initial and final states can be factored as a sum over contributions of quantum states on

S∞. We want to obtain a similar description from a bulk point of view.

If X is actually AdSD for some D, then it is shown in [11] that any boundary Cauchy

hypersurface S∞ is the conformal boundary of a unique bulk Cauchy hypersurface S of max-

imal renormalized volume VR(S). A similar result has been obtained much more recently

[47] in a spacetime that is asymptotic to AdSD, provided the bulk domain of dependence

is compact. The role of this assumption is explained in section 3.1.2; for D = 3, the

assumption is not necessary [9–12]. For a spacetime asymptotic to AdSD × W for some

W , as discussed in section 3.1.2, we expect the maximal volume hypersurface S to exist

11In practice, it is often convenient to add to the action another term − 1
2

∑
Υ δ(cΥϕΥ) = − 1

2

∑
Υ ϕ2

Υ+ . . .

(where the omitted terms involve fermions). Then one can perform a Gaussian integral over ϕΥ, leaving

a contribution 1
2

∑
Υ P 2

Υ to the action for the metric. This can be more convenient than a delta function

constraint PΥ = 0.
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whenever the bulk domain of dependence is compact, but rigorous results along these lines

are not available at present.12 However, to construct perturbation theory, one does not

need such strong results. In perturbation theory, we expand around some sort of classical

limit. Typically this classical limit involves a spacetime X and a boundary Cauchy hyper-

surface S∞ such that the bulk Cauchy hypersurface S of maximal volume does exist and is

unique. For example, if X = AdSD ×W for some W , then with a standard choice of S∞,

the unique maximal volume hypersurface is S = AdSD−1×W , and we can take this as the

starting point of perturbation theory. In any such case, the elliptic nature of the equation

for a Cauchy hypersurface to have maximal volume ensures that after any sufficiently small

perturbation of X and/or S∞, a volume-maximizing S that is asymptotic to S∞ still exists

and is unique. Under such conditions, this existence and uniqueness can be assumed to all

orders of perturbation theory.

In perturbation theory, we integrate over different possible metrics on X, and until a

metric is given, of course we do not know which hypersurface S of boundary S∞ is the

Cauchy hypersurface of maximal VR(S). However, we can proceed as follows. Pick an

arbitrary hypersurface S0 ⊂ X with boundary S∞ that topologically is a potential Cauchy

hypersurface. Without loss of generality, we can pick a “time” coordinate t on X such

that S0 is defined by t = 0. (Unless a special choice was made of S∞, this coordinate t

does not restrict to anything standard on X∞.) Now suppose given an AAdS metric g on

X, sufficiently close to the standard one. For this AAdS metric, there will be some bulk

Cauchy hypersurface S that maximizes VR(S). Since S0 is a potential Cauchy hypersurface

and S is another, there is some diffeomorphism of X that maps S isomorphically onto S0.

This suggests the following strategy for gauge-fixing of quantum gravity on X. As

a first step in the gauge-fixing, we fix a small part of the diffeomorphism symmetry by

requiring S = S0. Then we perform gauge-fixing to the past and future of S0 in any

standard fashion, for instance via the harmonic gauge condition. How one does that will

not be important in what follows. All that is important is that one of the gauge conditions

is S = S0.

The condition for a hypersurface S0 with second fundamental form Kij to extremize

the renormalized volume is K = 0, where K = Ki
i is the trace of K. (This standard fact

will be verified shortly.) So the gauge condition that we want is that the surface S0, which

is defined by t = 0, has K = 0.

To impose the gauge condition that K = 0 on the hypersurface S0, we introduce a

BRST multiplet consisting of a pair of scalar fields b, ϕ that are defined only on that

hypersurface, and satisfy the usual BRST transformation laws of antighost multiplets:

δb = ϕ, δϕ = 0. (2.22)

Here b is a fermion with ghost number −1 and ϕ is a boson with ghost number zero. We

then introduce the partial gauge-fixing action

δ

∫
S
ddx

√
hbK =

∫
S
ddx

√
h
(
ϕ̂K− bδK

)
, (2.23)

12The condition on the bulk domain of dependence is necessary; see section 3.6.
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with ϕ̂ = ϕ + (δ
√
h)b/

√
h. The field ϕ̂ behaves as a Lagrange multiplier setting K = 0 on

S.

In eqn. (2.23), δK is the BRST variation of K on the hypersurface t = 0. This

BRST variation comes from the variation of the metric g which enters the definition of K:

δgµν = Dµcν +Dνcµ. The ghost field cµ has components ci associated to vector fields that

generate diffeomorphisms of the t = 0 hypersurface S0, and a component c0 that generates

shifts of t. Since the condition K = 0 is invariant under diffeomorphisms of S0, δK is

actually independent of ci if K = 0 and is −Ξc0 for some linear operator −Ξ. So

−
∫
S
ddx

√
h bδK =

∫
S
ddx

√
h bΞc0. (2.24)

A convenient way to identify Ξ is as follows. We can pick local coordinates t and

x⃗ = x1, · · · , xd near S0 such that S0 is defined by the condition t = 0, and the metric near

S0 has the form13

ds2 = −dt2 +
d∑

i,j=1

gij(x⃗, t)dx
idxj . (2.25)

We expand g around ϵ = 0 and write just h, ḣ, ḧ for the coefficients:

g(x⃗, ϵ) = h(x⃗) + ϵḣ(x⃗) +
1

2
ϵ2ḧ(x⃗) +O(ϵ3). (2.26)

It is convenient to define the volume density v(x, ϵ) =
√
det g(x⃗, ϵ). The second fundamen-

tal form of S0 is

Kij =
1

2
ḣij (2.27)

and its trace is

K =
1

2
hij ḣij =

v̇

v

∣∣∣∣
ϵ=0

. (2.28)

Now consider a general nearby Cauchy hypersurface S defined by t = ϵ(x⃗). To first

order in ϵ, its volume is just

V (S) =

∫
S0

ddx
√

det g(x⃗, ϵ) = V (S0) +

∫
S0

ddx
√
h ϵK+O(ϵ2). (2.29)

So the condition for S0 to have extremal volume is K = 0. We have written eqn. (2.29)

naively in terms of the ordinary volumes, ignoring the fact that in the AAdS context, these

volumes are divergent. One actually wants to express formulas such as eqn. (2.29) in terms

of the renormalized volume. To define the renormalized volume VR(S), one restricts the

integral over S0 in the definition of the volume to a large compact region, and then one

subtracts some locally defined counterterms near the boundary and removes the cutoff. If

ϵ(x⃗) vanishes sufficiently rapidly at infinity, the counterterms are the same for S and S0

and we can rewrite eqn. (2.29) in terms of renormalized volumes:

VR(S) = VR(S0) +

∫
S0

ddx
√
hϵK+O(ϵ2). (2.30)

13One uses the orthogonal geodesics to the hypersurface S0 to put the metric locally in this form. See

for example section 4.3 of [53].
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The shows that a necessary condition for S0 to have maximal, or even extremal, renor-

malized volume is that it satisfies K = 0. However, to identify the operator Ξ, we need

to compute K not for the hypersurface S0, but for a nearby hypersurface S with t = ϵ(x⃗).

Since we have learned that K is the derivative of the renormalized volume with respect to

ϵ, one way to compute the O(ϵ) contribution to K is to compute the renormalized volume

including terms of order ϵ2. Differentiating the resulting formula with respect to ϵ will then

give K including terms of first order.

A straightforward calculation gives the volume of S including terms of order ϵ2:

VR(S) = VR(S0)+

∫
S0

ddx
√
h

(
ϵ
v̇

v
+

ϵ2

2

(
v̇

v

)2

+
ϵ2

2
∂t

(
v̇

v

)
− 1

2
gij0 ∂iϵ∂jϵ

)
+O(ϵ3). (2.31)

To put this in a convenient form, we use Raychaudhuri’s equation for the tt component of

the Ricci tensor,14 which says that at t = 0,

Rtt = −∂t

(
v̇

v

)
−KijK

ij . (2.32)

Using also Einstein’s equation Rtt = 8πGT̂tt, where Tµν is the matter stress tensor (in-

cluding a contribution from the cosmological constant) and T̂µν = Tµν − 1
D−2gµνT

α
α , we see

that if S0 is an extremal surface, with v̇|t=0 = 0, then the renormalized volume of S to

quadratic order in ϵ is

VR(S) = VR(S0)−
∫
S0

ddx
√
h

(
1

2
hij∂iϵ(x⃗)∂jϵ(x⃗) +

1

2
ϵ(x⃗)2

(
8πGT̂tt +KijK

ij
))

+O(ϵ3).

(2.33)

Let ∆ = hijDiDj be the Laplacian of the hypersurface S0, acting on scalar fields. Varying

VR(S) with respect to ϵ, we get

δVR(S) = −
∫
S0

ddx
√
h δϵ

(
−∆+ 8πGT̂tt +KijK

ij
)
ϵ. (2.34)

Comparing to eqn. (2.30), we can read off the term in K that is linear in ϵ:

K = −
(
−∆+ 8πGT̂tt +KijKij

)
ϵ. (2.35)

For our application, we simply take ϵ to be the time component c0 of the ghost field.

The infinitesimal diffeomorphism generated by this field maps the hypersurface t = 0 to

the hypersurface t = c0. So the BRST variation δK of K is obtained by substituting ϵ = c0

in eqn. (2.33). Thus

δK = −Ξc0, Ξ = −∆+ 8πGT̂tt +KijKij , (2.36)

and the action (2.23) associated to the partial gauge-fixing that makes S0 the maximal

volume hypersurface is ∫
S0

ddx
√
h
(
ϕ̂K+ bΞc0

)
. (2.37)

14This is the original timelike version of Raychaudhuri’s equation [48], not the null version [49] that

governs causal structures.
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In putting the gauge-fixing action in this form, we made use of Einstein’s equations for

Rtt. Quantum mechanically, this means that a field redefinition is involved in putting the

gauge-fixing action in this form.

The partial gauge-fixing condition that we have used is only satisfactory if the operator

Ξ has no zero-mode. Otherwise, there is a mode of b that decouples from the action, the

path integral will vanish, and the assumed gauge-fixing is not correct. In fact, in the context

of perturbation theory, there is no difficulty. The operator −∆ (acting on functions that

vanish at infinity) is strictly positive, and the K2 term is nonnegative.15 If we assume a

strong energy condition, then the T̂tt term is also positive, and this fact will be important

in section 3. But even if we do not assume a strong energy condition, because of an explicit

factor of G, the T̂tt term is perturbatively small and does not affect the positivity of Ξ in

perturbation theory.

Now let us discuss the path integral
∫
db exp(

∫
S0

bΞc0) for the antighost field b. To do

this integral, first recall that if b and c are odd variables and A is a complex number, then∫
db exp(bAc) = Ac = Aδ(c), since c = δ(c) for an odd variable. Applying this principle

on a mode-by-mode basis, we get∫
Db exp

(∫
S0

ddx
√
h bΞc0

)
= det(Ξ)δ(c0|S0). (2.38)

The delta function of c0|S0 has a simple meaning. Since we have fixed S0 to be the Cauchy

hypersurface with maximal VR, the remaining gauge transformations that still have to be

fixed are those that leave S0 fixed (not necessarily pointwise, but as a set). The restriction

on the ghost field cµ so that it generates a diffeomorphism that leaves S0 fixed is precisely

c0|S0 = 0.

To define the path integral in perturbation theory, one still needs a gauge-fixing con-

dition for the remaining diffeomorphism group GS0 . There is an unbroken subgroup Gpast

of diffeomorphisms that are nontrivial only to the past of S0 (and in particular leave S0

fixed pointwise); there is an analogous subgroup Gfut consisting of diffeomorphisms that

are nontrivial only to the future of S0. GS0 is an extension of Gpast × Gfut by the group

diff S0 of diffeomorphisms of S0:

1 → diff S0 → GS0 → Gpast × Gfut → 1. (2.39)

One may use any fairly standard gauge condition to fix GS0 . One detail is that since we

already have fixed the diffeomorphisms that do not leave S0 fixed, we do not need to fix

those gauge symmetries again, and therefore we need a slightly smaller set of antighost

fields and gauge conditions than usual. A convenient choice is to restrict the antighosts cµ

by c0|S0 = 0. Then c0 and c0 are restricted in the same way, which makes possible a more

natural-looking gauge-fixed action. The details will not be important, however.

In quantum field theory in general, there is a standard strategy to factorize a transition

amplitude on a spacetime X by “cutting” on a Cauchy hypersurface S ⊂ X, as in fig. 1.

15For a general choice of S∞, the maximal volume Cauchy hypersurface has K ̸= 0, so it is not necessarily

true that the K2 term is perturbatively small.
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The goal of the cutting is to express a path integral on X in terms of states in a Hilbert

space H that consists of functions of the fields ϕS on S. Schematically, let ΦS be the space

of all possible values of the fields ϕS . And for a given choice of ϕS , let Φpast be the set

of all fields to the past of S and Φfut the set of all fields to the future of S. The integral

over Φpast, keeping fixed the fields ϕS in S, determines a “ket” vector |Ψpast(ϕS)⟩ ∈ H.

Similarly, the integral over Φfut, keeping fixed ϕS , determines a corresponding “bra” vector

⟨Ψfut(ϕS)|. Finally, one integrates over ΦS to compute the inner product ⟨Ψfut|Ψpast⟩. This
inner product gives the full path integral ZX over X, since by the time one integrates over

ϕS , one has integrated over all fields to the past or future of S or on S:

ZX = ⟨Ψfut|Ψpast⟩ =
∫
ΦS

DϕS Ψfut(ϕS)Ψpast(ϕS). (2.40)

Let us discuss how to implement this strategy in the present context, with the above-

described gauge-fixing which ensures that S0 = S is the maximal volume hypersurface.

First of all, in the gauge-fixing, we have ensured that K = 0 on S, so we cannot also fix the

variable that is conjugate to K. This variable is the volume density
√
h. However, we are

free to specify the conformal class of the metric on S. Let us write h0 for this conformal

class; specifying h0 is the same as specifying h up to a Weyl transformation h → e2φh.

Thus h0 defines a point in Conf, the space of conformal structures. So a function of h0
is a function on Conf, and we formally denote the space of such functions as HConf . If

matter fields are present, we can also specify the values of the matter fields on S, and we

write Hmatt for the Hilbert space of functions of the matter fields. Finally, we also have

to consider the ghosts. The fields c0 and c0 vanish along S, because of the conditions

c0|S = c0|S that were described earlier. However, we do have fields ci and ci on S. The

functions of those fields make up a ghost Hilbert space Hgh. The combined Hilbert space

is then H0 = HConf ⊗ Hmatt ⊗ Hgh. (In a general situation, the definition of the ghosts

and matter fields might depend on h0, and then a more precise statement is that H0 is the

combined Hilbert space of functions of h0, the matter fields, and the ghosts.)

In computing Ψpast, we perform a path integral to the past of S with a boundary

condition along S that specifies the conformal structure h0 of S, and also specifies that S

has K = 0. This is the mixed Dirichlet-Neumann boundary condition that was mentioned

in section 2.3 (now specialized to K = 0). It is elliptic, so the path integral that computes

Ψpast will be well-defined in perturbation theory. The same is true for the path integral

that computes Ψfut.

The inner product on H0 is not the obvious one that would come from an integral over

the fields h0, c
i, cj and possible matter fields. Rather, an extra factor det Ξ comes from the

integral over b in eqn. (2.38). Thus the inner product is formally

⟨Ψ1|Ψ2⟩ =
∫

Dh0DciDcj Ψ1(det Ξ)Ψ2. (2.41)

In the absence of the ghosts, this formula would define a positive-definite inner product on

HConf ⊗Hmatt, since the operator Ξ is strictly positive and its determinant is therefore also

positive. However, the inner product on Hgh is not positive-definite.
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At this point, we have to remember the BRST symmetry. The whole gauge-fixing

construction is BRST-invariant and leads to the existence of a BRST charge Q that acts

on H0. The physical Hilbert space Hphys is defined as the cohomology of Q acting on

H0. In the context of perturbation theory, passing to the BRST cohomology eliminates

ci and cj and also eliminates “pure gauge” modes of h0. Here pure gauge modes are the

modes that are induced by diffeomorphisms of S. The positivity of the underlying inner

product on HConf ⊗Hmatt leads to positivity of the inner product on Hphys. In the context

of perturbation theory, to verify this one really only needs to know that positivity holds

in the limit G → 0 in which all fields, including the ghosts, are treated as free fields.

Perturbative corrections will then not spoil this positivity.

In the BRST formalism, the momentum constraint equation is satisfied because the

generator of the momentum constraint is a BRST commutator, P i(x) = {Q,Λi(x)} for

some operator Λi(x), This implies that P i(x) acts trivially on the BRST cohomology

Hphys, since if QΨ = 0 then P i(x)Ψ = Q(Λi(x)Ψ) vanishes as an element of Hphys. We

do not have to consider the Hamiltonian constraint, because we have eliminated it by con-

sidering a canonically determined Cauchy hypersurface S0 = S, the one that has maximal

renormalized volume.

In terms of the decomposition (2.39) of the residual gauge symmetry, the gauge-fixing

of Gpast is a step in computing Ψpast, the gauge-fixing of Gfut is a step in computing Ψfut,

and the gauge-fixing of diff S0 is involved in constructing the BRST operator Q whose

cohomology ultimately defines Hphys. In the context of perturbation theory, instead of

relying on the BRST machinery, one could deal with the diff S0 symmetry by imposing

gauge conditions that explicitly remove the longitudinal modes of the metric h of S. This

would be analogous to axial gauge in gauge theory, and is one way to make manifest the

positivity of the inner product on Hphys.

In short, and modulo some subtleties that are discussed later, we have arrived at a

more precise version of the picture that was suggested heuristically in section 2.2 based on

facts about the classical phase space: in constructing a Hilbert space for AAdS gravity, at

least in the context of perturbation theory, one can forget the troublesome Hamiltonian

constraint if one considers the quantum wavefunction to depend only on the conformal

class h0 of the metric, and not on the volume form. We also now know that to proceed

in this way, one must include a non-classical factor det Ξ in the definition of the inner

product.

In AAdS gravity, this analysis enables us, at least in perturbation theory, to get a

formula like that of eqn. (1.1) or fig. 1(a) in which a transition amplitude is factored in

terms of a sum over intermediate states on a Cauchy hypersurface. The intermediate states

are simply labeled by fields on the maximal volume Cauchy hypersurface S.

In a similar fashion, one can get a formula like that of eqn. (1.2) or fig. 1(b) in which

an amplitude is written as a sum over states on a Cauchy hypersurface S∞ in X∞, and

also on another Cauchy hypersurface S′
∞ to the future of S∞. The bulk Hilbert spaces are

defined on the maximal volume Cauchy hypersurfaces S and S′ with respective boundaries

in S∞ and S′
∞. To extend the previous analysis to this case, we just need to know that if on

the boundary S′
∞ is everywhere to the future of S∞, then likewise in bulk S′ is everywhere
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to the future of S. A simple argument for this is given in Appendix A of [50].16 Given

this, perturbative gauge-fixing such that two predetermined bulk hypersurfaces S0 and S′
0

(with S′
0 to the future of S) both satisfy K = 0 (ensuring S0 = S, S′

0 = S′) will lead to the

desired factorization formula.

Another generalization is as follows.17 Instead of gauge-fixing to require that K = 0

along S0, we could pick an arbitrary real number λ and gauge fix to require K + λ = 0

along S0. This is also a valid gauge condition, in the context of perturbation theory. The

analysis goes through much as before. Instead of being orthogonal to the boundary, as

is the case if λ = 0, S0 will now meet the boundary at a λ-dependent angle. Since this

introduces an asymmetry between future and past, it is most natural to now view Ψpast

and Ψfut as vectors in dual, λ-dependent spaces Hλ and H−λ. These spaces are not Hilbert

spaces in a natural way, but there is a natural sesquilinear pairing ⟨ , ⟩ : Hλ ×H−λ → C,
and the path integral can be expressed in terms of this pairing, ZX = ⟨Ψfut|Ψpast⟩. From

a classical point of view, as λ varies from −∞ to ∞, S sweeps through the whole bulk

domain of dependence Ω of S∞, from its past boundary to its future boundary. It is not

clear what is a useful quantum counterpart of this statement.

Now we will describe some subtleties concerning the definition of det Ξ. To begin with,

we discuss the dependence on K and h0. First consider the limit G → 0. We assume that

the perturbation expansion is based on an expansion around some classical solution that

is determined by asymptotic conditions. In this solution, K is a c-number. Moreover, the

classical solution determines an actual metric on S, not just a conformal class of metrics,

so in the starting point of perturbation theory, there is a distinguished representative

of the conformal class of metrics and we will write h0 for this representative. Having

a distinguished representative is important because the operator ∆ is not conformally

invariant. In the classical limit, with K and h0 being given by the classical solution, the

operator Ξ = −∆+KijKij is a standard sort of second order differential operator, and its

determinant det Ξ is a fairly conventional functional determinant.

This determinant arose in our derivation as the partition function of a theory with a

pair of fermi fields b and c = c0 on S with action

Ibc = −1

2

∫
S
ddx

√
h b(−∆+KijKij + 8πGT̂tt)c. (2.42)

We think of Ibc as the action of an auxiliary quantum field theory. Of course, in this

limit, det Ξ is a highly nontrivial function of g and K. But as soon as we turn on G-

dependent corrections, det Ξ becomes something more interesting. To explain this as

simply as possible, consider a model without matter fields, and suppose that S∞ is such

16Another proof can be deduced from positivity properties of the operator Ξ. Although there is no

solution of Ξϵ = 0 that vanishes at infinity, if one specifies a real-valued function f on S∞, then there is a

unique solution of Ξϵ = 0 on S with ϵ → f at infinity. Moreover, if f is positive, representing a first order

displacement of S∞ into the future, then ϵ is also positive, representing a first order displacement of S into

the future. As S∞ moves into the future, at a rate determined by f , S moves into the future, at a rate

determined by ϵ.
17 This generalization, for suitable λ, might enable one to circumvent the obstruction described in section

3.6.
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that the maximal volume hypersurface S, classically, has Kij = 0. Then at G = 0, Ξ

reduces to −∆. But as soon as we turn on perturbative corrections in G, the picture

changes. According to eqn. (2.1), Kij is canonically conjugate to the metric tensor hij ,

Kij = 16πG 1√
h
Πij if K = 0. Πij acts as a derivative with respect to hij , and in the auxiliary

quantum field theory with action Ibc, this will give an insertion of the stress tensor Tij .

Therefore, in first order, KijK
ij becomes an insertion of G2TijT

ij . Thus the auxiliary

quantum field theory undergoes a T 2 deformation, similar to the deformation considered

in [17–22]. In a more general case, if K is nonzero in the classical limit, we would interpret

Kij as the sum of −16πiG δ
δhij plus a classical contribution. Inclusion of the matter fields in

Ξ gives a further deformation, as in [23], and there are also further corrections, as described

shortly.

As usual, it is possible in principle to express the partition function in the deformed

theory, to any finite order in perturbation theory, in terms of ordinary correlation functions

in the undeformed theory. In the present case, this would be done by expanding the

determinant in terms of the propagator of the operator −∆ and insertions of the stress

tensor. However, because the perturbation is irrelevant in the renormalization group sense,

as one goes to higher and higher orders, one will encounter integrals that potentially have a

very high degree of divergence and which require careful treatment. Beyond perturbation

theory, a definition of the deformed theory is unknown. This assertion is one aspect of the

fact that the construction that we have given of a Hilbert space for AAdS gravity is, in its

present form, only valid in perturbation theory.

An important point here is that since we are specifying h0 along S, the conjugate

variable K is not continuous along S except in the classical limit, and will fluctuate inde-

pendently in the past and future of S. The formula Kij = 16πG 1√
h
Πij holds both to the

past and the future of S; to the past of S, we interpret Πij as a differential operator that

acts on the ket |Ψ2⟩ in the inner product ⟨Ψ1|Ψ2⟩ that we are trying to calculate, while

to the future of S, we interpret Πij as a differential operator that acts on the bra ⟨Ψ1|.
This raises the question of how to interpret Kij when it appears in the operator Ξ and

seemingly must be evaluated precisely on S. The same question will arise in section 2.5 in

the context of a Klein-Gordon particle, and there, since exact formulas are available, we

can confirm that the obvious guess is correct: Kij along S should be interpreted as the

average of the values to the past and future of S. Presumably something similar is true

for gravity, though it would be harder to give a really convincing argument in the case of

gravity.

Yet another question concerns the dependence of det Ξ on the conformal factor that

appears in the metric h = e2φh0. Since det Ξ is not conformally invariant, this dependence

is nontrivial. As explained earlier, in the classical limit, we take for h0 the actual metric

determined by an underlying classical solution. Then the combined data consisting of h0
and the classical values of K and the matter fields satisfy the Einstein equations and in

particular satisfy the Hamiltonian constraint equation. Quantum mechanically, everything

fluctuates, including the conformal factor φ of the metric. The fluctuation in φ is discon-

tinuous across S, since we are fixing the conjugate variable K to vanish along S. However,

if it is correct to assume that the fluctuations satisfy the Hamiltonian constraint equation,
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then (on both sides of S) that equation determines the fluctuations in φ in terms of the

fluctuations in the conformal class of h0 and K. Differently put, the Hamiltonian con-

straint, if valid, determines a unique representative on each Weyl orbit. Explaining this

point is one of the main goals of section 3. Roughly speaking, we expect that on each

side of S, the Hamiltonian constraint equation remains valid and determines φ in terms

of h0 and K. Since we understand h0 and K as operators that act on the bra and ket

wavefunctions, this makes it possible to interpret φ as such an operator (giving a further

correction to the T 2 deformation that was described earlier). Why does the Hamiltonian

constraint remain valid when the fields fluctuate? If it is possible to put the path integral

in canonical form near S, then the manipulation described in eqn. (2.15) shows that the

Hamiltonian constraint equation can be imposed near S. But even if we do not assume

that this manipulation is valid, the vanishing of the Hamiltonian constraint operator H(x⃗)

is the classical equation of motion for the metric component gtt that is “normal” to S. So

a multiple of H(x⃗) appearing in the functional integral – for instance in det Ξ – can be

eliminated by redefining gtt, and hence the Hamiltonian constraint can be used to eliminate

φ in favor of h0 and K, and thus to replace φ with a differential operator acting on the

wavefunction.

The approach to constructing a canonical formalism that we have described is concep-

tually simple, as it is based on a simple gauge-fixing, but it has led to a variety of thorny

technical questions, mostly concerning the understanding of the operator det Ξ. The best

that we can say is that hopefully maintaining the BRST invariance of the construction

determines unique answers to all these questions.

2.5 Analogy With A Klein-Gordon Particle

Long ago, it was noted that the Hamiltonian constraint operator of gravity is formally a

second order differential operator, somewhat like a Klein-Gordon operator [1]. This moti-

vated the suggestion that the inner product on solutions of the Wheeler-DeWitt equation

might be analogous to a Klein-Gordon pairing.

For wavefunctions Φ1,Φ2 that satisfy the Klein-Gordon equation (−gµνDµDν+m2)Φ =

0 in a Lorentz signature spacetime M , the Klein-Gordon pairing is defined by

(Φ1,Φ2) =
i

2

∫
U
dΣµΦ1

↔
∂µΦ2, (2.43)

where U is any Cauchy hypersurface in M and Φ1

↔
∂µΦ2 = Φ1∂µΦ2 − ∂µΦ1Φ2.

One obvious problem with the analogy between gravity and Klein-Gordon theory is

that the Klein-Gordon pairing is indefinite, while the Hilbert space inner product for grav-

ity is supposed to be positive-definite. Another obvious point is that the Hamiltonian

constraint equation, which says that H(x⃗) = 0 for each point x⃗ in a Cauchy hypersurface

S, is more similar to an infinite family of Klein-Gordon operators than to a single Klein-

Gordon operator. For the Klein-Gordon particle, the Klein-Gordon pairing is defined on a

codimension 1 hypersurface U , so an analog of the Klein-Gordon pairing for gravity should

be defined on a submanifold of infinite codimension, with one constraint for each point in

S.
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That is essentially what we have done in defining the inner product (2.41). In gravity,

it is often assumed that the wavefunction should be a function Ψ(h) of the metric h of

an initial value surface S. Thus such a wavefunction is a function on Met, the space of

metrics on S. As explained in section 2.3, a drawback of such an approach is that the path

integral that would formally compute a wavefunction Ψ(h) (from given initial conditions

and sources) is actually ill-defined, even in perturbation theory, since the requisite boundary

condition is not elliptic. One may instead consider a wavefunction Ψ(h0,K) that depends

on a conformal structure h0 on S along with a scalar function K on S (interpreted classically

as the trace of the second fundamental form of S in a spacetime X). The path integrals

that compute wavefunctions Ψ(h0,K) are well-defined in perturbation theory.

The wavefunctions Ψ1, Ψ2 in the inner product that was defined in eqn. (2.41) could

be naturally defined as functions of K and h0, but in the definition of the inner product,

they are not integrated over K and h0, but only over h0, at K = 0. This is analogous to

the restriction from M to U in the Klein-Gordon pairing (2.43): in the gravity case, as

expected, one places a condition at each point in S, namely K = 0.

Another detail is that the symmetry under diffeomorphisms of S is taken into account

in eqn. (2.41) not by asking for Ψ1 and Ψ2 to be invariant under the group Diff of dif-

feomorphisms of S, but via the ghosts and the BRST formalism. The difference is mainly

important technically. A Hilbert space of square-integrable functions or half-densities on

an infinite-dimensional space such as Met is a vague notion unless one can describe exactly

what class of functions one is interested in. In the BRST framework, the appropriate de-

scription is straightforward, at least in perturbation theory. The BRST framework is not

necessarily the only way to make perturbation theory explicit – for example, one could try

to fix the pure gauge modes in Met by a sort of axial gauge – but certainly the BRST

machinery provides a simple framework for perturbation theory.

The last and crucial point about eqn. (2.41) that requires some elucidation is the factor

det Ξ. In fact, we will now explain that this factor is quite analogous to the factor
↔
∂µ in

the Klein-Gordon pairing. In doing so, for brevity, we will take M to be Minkowski space

with metric ds2 = ηµνdX
µdXν = −dT 2 + dX⃗2, and we will take S to be the hypersurface

T = T∗, for some T∗. Generalizations are straightforward.

The action for a Klein-Gordon particle in this spacetime can be described by a generally

covariant theory on a one-dimensional worldline λ. The metric of the worldline is taken

to be g(t)dt2, g(t) ≥ 0, and we define e(t) as the positive square root of g(t). The Klein-

Gordon particle can then be described by the action

I =
1

2

∫
λ
dt

(
−e−1ηµν

dXµ

dt

dXν

dt
− em2

)
, (2.44)

which is invariant under reparametrizations of λ. The Hamiltonian constraint is the

Euler-Lagrange equation for the field e; in other words, it is H = 0 with H = − δI
δe =

1
2

(
1
e2
ηµν

dXµ

dt
dXν

dt +m2
)
. Since the momentum conjugate to Xµ is Πµ = 1

eηµν
dXν

dt , and

upon quantization, Πµ = −i ∂
∂Xµ , we have

H =
1

2

(
ηµνΠµΠν +m2

)
=

1

2

(
−ηµν

∂

∂Xµ

∂

∂Xν
+m2

)
. (2.45)
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We now want to define states by conditions to the past and future of S, and define an

inner product between them by some sort of integral on S. In the spirit of eqn. (1.1) or

fig. 1(a), it would be natural to define initial and final states by conditions at T = −∞
and T = +∞. However, a much shorter derivation is possible if one is willing to define the

states by means of sources at finite points to the past and future of S. So we introduce

points X0 and X1 respectively to the past and future of S, at which states will be created

and annihilated. We can assume that X0 has coordinates Xµ
0 = (T0, X⃗0), T0 < T∗, and

similarly X1 has coordinates Xµ
1 = (T1, X⃗1), T1 > T∗.

Now we want to perform a path integral for the case that λ is an interval, with boundary

conditions such that one end of the interval maps to X0 and the other to X1. After

evaluating this path integral, we will explore how it can be factored in terms of states

passing through the hypersurface S.

Because of reparametrization invariance, there is no loss of generality in assuming that

λ is the unit interval 0 ≤ t ≤ 1 with the endpoint t = 0 mapped toX = X0 and the endpoint

t = 1 mapped to X = X1. The technique to do the path integral is well-known. First of

all, the length of the interval τ =
∫ 1
0 dt e(t) can be any positive number. One can fix the

reparametrization invariance of the interval by setting e = τ . The ghosts that are involved

in this gauge-fixing decouple. For fixed τ , the path integral over Xµ is just an ordinary

quantum mechanical path integral on an interval of length τ , with the Hamiltonian H. So

the value of the path integral is ⟨X1|e−iHτ |X0⟩. To evaluate the path integral, one has to

integrate this matrix element over the remaining variable τ that is not determined by the

gauge-fixing. This integral is only conditionally convergent. To define it precisely, one can

include a convergence factor exp(−ϵτ ) where ϵ is taken to 0 at the end of the calculation.

The output of the path integral is then

G(X1;X0) =

∫ ∞

0
dτ⟨X1|e−iHτ−ϵτ |X0⟩ =

〈
X1

∣∣∣∣ −i

H − iϵ

∣∣∣∣X0

〉
. (2.46)

This obeys

HG(X1;X0) = −iδD(X1 −X0), (2.47)

where one can consider H to act either on X1 or on X0.

Assuming that m is large enough that m(T1 − T∗), m(T∗ − T0) >> 1, G(X1, X0) can

also be computed in a perturbative expansion in which the starting point is a solution of

the classical equations of motion of this theory with the boundary conditions that X = X0

at one endpoint and X = X1 at the other. There is a unique solution,18 namely a straight

line trajectory from X0 to X1. Such a trajectory, of course, intersects the hypersurface U

defined by T = T∗ in precisely one point. Expanding around this orbit, we learn that to all

orders in an expansion in 1/m, we can assume that a trajectory intersects U in a unique

point.

This means that, from the standpoint of perturbation theory in 1/m, we can partially

gauge fix the theory by requiring that some specified point on the interval λ is mapped

18The proper time elapsed in this solution is real if X1 and X0 are timelike separated, and imaginary if

they are spacelike separated. For an interesting analysis of the implications of this in the context of what

in section 2.3 was called the revised Wheeler-DeWitt formalism, see [41].
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to U . This step is analogous to the main step in section 2.4, where we made a partial

gauge-fixing to specify that a pre-chosen hypersurface S0 is the Cauchy hypersurface with

K = 0.

To implement this idea in the present context, we can take λ to be the interval −1 ≤
t ≤ 1, with boundary conditions X(−1) = X0, X(1) = X1, and a partial gauge-fixing

condition T (0) = T∗. To impose this condition, we use the BRST formalism. The BRST

transformation of the field Xµ(t) is δXµ(t) = cdX
µ(t)
dt , where c is the ghost field associated

to an infinitesimal reparametrization of the worldline K. To implement the partial gauge-

fixing, we introduce a BRST multiplet consisting of an antighost variable b and a bosonic

variable ϕ with BRST transformations

δb = ϕ, δϕ = 0. (2.48)

(b and ϕ are defined only at t = 0, so they are variables, not fields.) The gauge-fixing

action is

δ (b(T (0)− T∗)) = ϕ(T (0)− T∗)− bc
dT (0)

dt
. (2.49)

The integral over these variables is19∫
db dϕ

2πi
exp

(
iϕ(T (0)− T ∗)− ibc(0)

dT (0)

dt

)
= −δ(T (0)− T∗)

dT (0)

dt
δ(c(0)). (2.50)

The delta function δ(c(0)) means that c(t) effectively splits up as two different fields,

one of which is supported for t < 0 and is associated to reparametrizations of the interval

−1 ≤ t ≤ 0, and one of which is supported for t > 0 and is associated to reparametrizations

of the interval 0 ≤ t ≤ 1.

For a fixed value of X⃗(0), the path integral for t ≤ 0 gives G(T∗, X⃗(0);X0) and the path

integral over t ≥ 0 gives G(X1;T∗, X⃗(0)). Integrating (2.50) over X⃗(0), we get the full path

integral, which is supposed to equal G(X1;X0), since we have merely analyzed the same

path integral that led to eqn. (2.46) with a different parametrization and gauge-fixing. So

we expect

G(X1;X0) = −
∫

dD−1X⃗(0)G(X1;T∗, X⃗(0))
dT (0)

dt
G(T∗, X⃗(0);X0). (2.51)

Here dT (0)
dt can act as −i∂T∗ on G(T∗, X⃗(0);X0), or as +i∂T∗ on G(X1;T∗, X⃗(0)). The

reason for the relative minus sign is that the normal vector ∂t at t = 0 is outward directed

for the interval −1 ≤ t ≤ 0 and inward directed for the interval 0 ≤ t ≤ 1. The derivation

that we are giving here is not precise enough to directly show whether dT (0)
dt should be

taken to act to the right or the left, but the symmetry of the construction under exchange

of the future and past shows that we presumably should take a symmetric combination of

the two choices. Thus we interpret the formula to be

G(X1;X0) = − i

2

∫
U
dD−1X⃗(0)G(X1;T∗, X⃗(0))

↔
∂

∂T∗
G(T∗, X⃗(0);X0). (2.52)

19To properly justify the numerical factor 1/2πi that we assume here in the measure would require a

more precise derivation, possibly with a discretization of the path integral.
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In this formula, we see the Klein-Gordon inner product on the hypersurface U . The

formula says that a transition amplitude between states created to the past and future of

the hypersurface can be evaluated in terms of a sum over states on S, using the Klein-

Gordon inner product.

To verify that this formula is in fact correct, let Θ(T∗ − T (0)) be the function that is

1 for T∗ − T (0) > 0 and otherwise 0. By using ∂T (0)Θ(T∗ − T (0)) = −δ(T∗ − T (0)), we can

replace the integral over U in eqn. (2.52) with an integral over all of M :

− i

2

∫
U
dD−1X⃗(0)G(X1;T∗, X⃗(0))

↔
∂

∂T∗
G(X⃗(0), T∗;X0) (2.53)

=
i

2

∫
M

dD−1X⃗(0) dT (0)

(
∂

∂T (0)
Θ(T∗ − T (0))

)
G(X1;T (0), X⃗(0))

↔
∂

∂T (0)
G(X⃗(0), T (0);X0).

Now we integrate by parts with respect to T (0) and observe that for any functions A,B

∂T0(A
↔
∂T0B) = 2 (A(HB)− (HA)B) +

D−1∑
i=1

∂Xi(A
↔
∂XiB). (2.54)

When we use this in eqn. (2.53), the terms ∂Xi(· · · ) can be dropped because we are

integrating over X⃗ and nothing else depends on X⃗. So the formula (2.53) becomes

G(X1;X0) = i

∫
M

dDX(0)Θ(T∗−T (0))
(
G(X1;X(0))HG(X(0);X0)−(HG(X1;X(0)))G(X(0);X0)

)
,

(2.55)

where H acts on X(0). Finally, from (2.47), we have HG(X(0);X0) = −iδD(X(0) −X0)

and HG(X1;X(0)) = −iδD(X1 −X(0)). Of these two delta functions, only the first is in

the support of the function Θ(T∗ − T (0)), and upon doing the integral, we confirm that

eqn. (2.55) is valid.

One surprise here is that although the derivation of eqn. (2.52) suggested that this

formula is valid only in perturbation theory in 1/m, the formula actually turned out to be

exact. It is not clear to what extent there is a general lesson here.

The derivation shows that the factor
↔
∂

∂Xµ that makes the Klein-Gordon inner prod-

uct indefinite can be interpreted as coming from a ghost determinant. For gravity, the

analogous ghost determinant is det Ξ, and is positive in perturbation theory.

3 The Classical Phase Space

In section 2.1, we explained just enough about the relation of the classical phase space Φ

of AAdS gravity to a cotangent bundle T ∗(Conf/Diff) to motivate the quantum treatment

in section 2.4. Here we will give a more complete explanation and also a more general one,

including matter fields.

In this discussion, Conf is the space of conformal structures on a Cauchy hypersurface

S in a spacetime X, and Diff is the group of diffeomorphisms of S. If X is asymptotically

Anti de Sitter, which is our main focus, the conformal structure on S is required to be
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asymptotic to a specified conformal structure on the boundary S∞, and diffeomorphisms

of S are required to be trivial at infinity. However, some of the considerations can be

adapted to a closed universe – that is, to the case that S is compact.

To establish an equivalence of Φ to T ∗(Conf/Diff), or a generalization of this to include

matter fields, one finds maps in both directions that are inverses of each other. The

map from Φ to T ∗(Conf/Diff) is made by finding a maximal volume hypersurface with

specified asymptotic behavior, and the map in the opposite direction is made by solving the

Lichnerowicz equation to find a Weyl factor by means of which the Hamiltonian constraint

equation is satisfied. The two maps are inverses of each other, under appropriate conditions,

and this establishes the isomorphism between Φ and T ∗(Conf/Diff). We begin by discussing

the maximal hypersurfaces and then we consider the Lichnerowicz equation.

3.1 Maximal Hypersurfaces

3.1.1 Extremal Hypersurfaces and Maximal Ones

The first important fact is that in pure gravity with negative cosmological constant, and

also in the presence of matter fields that satisfy the strong energy condition, a hypersurface

of extremal volume is automatically a local maximum of the volume. To be more precise,

we consider a Cauchy hypersurface S ⊂ X that is asymptotic at infinity to some given

Cauchy hypersurface S∞ ⊂ X∞, and we assume that S has extremal renormalized volume

among all Cauchy hypersurfaces that are asymptotic to S∞. The claim is that, in a large

class of theories, the renormalized volume VR(S) is actually a local maximum among this

class of hypersurfaces.

As in section 2.4, we can pick local coordinates t, x⃗ near S so that S is defined by t = 0

and the metric near S takes the form

ds2 = −dt2 +

d∑
i,j=1

gij(x⃗, t)dx
idxj . (3.1)

Consider a nearby hypersurface S′ defined by t = ϵ(x⃗) for some function ϵ. We require that

ϵ(x⃗) vanishes at infinity so that S and S′ are asymptotic to the same boundary hypersurface

S∞.

If S is an extremum of the renormalized volume, then the renormalized volume of S′

coincides with that of S in order ϵ, and the ϵ2 term was identified in eqn. (2.33):

VR(S
′) = VR(S)−

∫
S
ddx

√
h

(
1

2
hij∂iϵ(x⃗)∂jϵ(x⃗) +

1

2
ϵ(x⃗)2

(
8πGT̂tt +KijK

ij
))

+O(ϵ3),

(3.2)

where T̂µν = Tµν − 1
D−1gµνT

α
α , with Tµν the matter stress tensor (including a contribution

from the cosmological constant). We see that if T̂tt ≥ 0, then the ϵ2 term in VR(S
′) is

negative (the condition that ϵ → 0 at infinity ensures that the −(∇ϵ)2 on the right hand

side of eqn. (3.2) is strictly negative for any ϵ ̸= 0). This shows that in this AAdS context,

assuming that T̂tt ≥ 0, an extremum of the renormalized volume is always a local maximum.

The condition that T̂tt ≥ 0 at each point and in each local Lorentz frame is called

the strong energy condition. Partly because of its role in the argument just sketched, the
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strong energy condition is important in relating the phase space of AAdS gravity to a

cotangent bundle.20 In what theories does it hold? It holds for pure gravity with negative

cosmological constant, and it holds in any dimension for gravity coupled to p-form fields,

p ≥ 1, and to scalar fields with a non-positive potential. For example, the strong energy

condition holds in all of the usual 10 and 11 dimensional supergravity theories with the

exception of the massive Type IIA supergravity theory, which was constructed in [51].

These facts are explained in section 3.5. The outstanding example of a theory that does

not satisfy the strong energy condition is gravity with a positive cosmological constant,

and more generally, any theory that contains scalar fields in which the scalar potential is

not negative semi-definite.

In a model that satisfies the strong energy condition, the fact that any extremum of the

renormalized volume is a local maximum suggests that the extremum of the renormalized

volume is unique: viewing the renormalized volume as a function on the space of Cauchy

hypersurfaces with specified asymptotics, between two local maxima one would expect to

find a saddle point, contradicting the fact that every extremum is a local maximum. A proof

of this uniqueness was given in Appendix A of [50] by use of the Raychaudhuri equation.21

For completeness, we will summarize the argument (the details are not needed for the rest

of this article). Let S be an extremal Cauchy surface whose uniqueness we wish to prove,

and let S′ be some other Cauchy surface with the same asymptotic behavior. Given a point

p ∈ S, let γp be the geodesic through p that is normal to S. By global hyperbolicity, γp
intersects S′ at a unique point p′; let γ[p,p′] be the segment of γp from p to p′. Then γ[p,p′]
may or may not be the causal path from p to p′ that has the greatest possible elapsed

proper time. Let S0 be the subset of S consisting of points p such that γ[p,p′] is proper time

maximizing. Define φ0 : S0 → S′ by φ0(p) = p′ if p′ = γp ∩ S′. A standard argument (see

for example [52, 53]) using global hyperbolicity and compactness of spaces of causal paths

shows that every point p′ ∈ S′ can be reached from S by a causal path that maximizes

the elapsed proper time; moreover, this path is a geodesic orthogonal to S at some point

p ∈ S. So the map φ : S0 → S′ is surjective. Moreover, if T̂tt is everywhere strictly positive,

Raychaudhuri’s equation implies that φ is everywhere volume-reducing. Hence the volume

of S′ is strictly less than the volume of S0, and this in turn is no greater than the volume of

S. So S has greater volume than any other Cauchy hypersurface. So any extremal Cauchy

hypersurface is a strict maximum of the renormalized volume, and is therefore unique.

3.1.2 Existence of a Local Maximum

The next step is to discuss the existence of a local maximum of VR, in the AAdS setting, for

hypersurfaces with specified asymptotic behavior. Here what is known is actually incom-

plete. A detailed discussion leads almost inevitably to questions about cosmic censorship

and the singularities of classical solutions of Einstein’s equations.

20We will see that the same condition is also important in analyzing the Lichnerowicz equation.
21For X = AdS3, another proof of uniqueness is given in [11]. This proof is valid even if the conformal

boundary S∞ of S is highly nonsmooth (which complicates the definition and analysis of VR). That case is

important for some applications (for example, see [12]), but for our purposes in the present article, we can

assume that S∞ is smooth.
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For the case X = AdSD, for any dimension D, and any choice of S∞, a proof of

existence of an extremal Cauchy hypersurface S ⊂ X with boundary S∞ was given in [11].22

More recently [47], existence of such a hypersurface was shown in any AAdS spacetime

under the hypothesis that the bulk domain of dependence of S∞ is compact. One goal

of the following qualitative remarks is to explain the role of that assumption; the other

goal is to explain that under the same assumption, one should expect a similar result for

AdSD compactifications, that is, for spacetimes that are asymptotic to AdSD×W for some

compact W .

Let us say that a Cauchy hypersurface23 in a spacetime X that is asymptotic to

AdSD or AdSD × W is “allowed” if it is asymptotic to some chosen boundary Cauchy

hypersurface S∞ ⊂ X∞. Any allowed Cauchy hypersurface is contained in the bulk domain

of dependence24 of S∞, which we will call Ω. We assume that Ω is compact; this assumption

will be discussed critically later. Now let S1, S2, · · · be a sequence of allowed Cauchy

hypersurfaces. The Si cannot go to infinity in spacetime, since they are all contained in

the compact set Ω. The condition that they all are everywhere spacelike or null means that

they also cannot go to infinity in momentum space. More specifically, if a hypersurface S

is described locally by specifying a function t = f(x⃗) where x⃗ and t are local space and

time coordinates, then the condition for S to be spacelike or null is |∇f | ≤ 1, which is

a sort of momentum space bound. Because the Si are bounded in both position space

and momentum space, the sequence Si has a (pointwise) convergent subsequence.25 The

renormalized volume is bounded above26 as a function on the space of allowed Cauchy

22In addition, using this result, existence and uniqueness of an extremal Cauchy hypersurface was shown

in [12] for a spacetime that is locally (not just asymptotically) AdS3, in other words, for any classical

solution of pure Einstein gravity in D = 3 with Λ < 0. This result holds for arbitrary topology of the initial

value surface; in particular, the boundary may have any number of connected components.
23We are about to make an argument that involves limits. A sequence of spacelike hypersurfaces can

develop null portions in a limit. So technically, in the following argument, it is best to define a Cauchy

hypersurface to be a complete achronal, but not necessarily spacelike, hypersurface on which initial data

can be formulated; it may have null portions. The null portions have zero volume so a volume-maximizing

hypersurface will not have null portions.
24The bulk domain of dependence of S∞ is the domain of dependence of any allowed bulk hypersurface

S; alternatively, it is the set of points in X that are not timelike separated from S∞. Technically, in the

following argument, it is convenient to include the points of S∞ in S and in the bulk domain of dependence

Ω; this ensures that S is compact, and makes it possible for Ω to be compact (as we wll see, this happens

if X is geodesically complete).
25For a fuller explanation of this type of argument about sequences of hypersurfaces, see the proof of

Theorem 10 in [54]. An important detail is that the renormalized volume is only upper semicontinuous

on the space of Cauchy hypersurfaces that are asymptotic to S∞, meaning that in a limit, it can jump

upward but cannot jump downward. However, since we are trying to maximize the renormalized volume,

upward jumps are not a problem. (To see why upward jumps in volume are possible, consider a sequence

of spacelike hypersurfaces that look locally like t = 1
2
ϵ cos(x/ϵ), where x is a space coordinate and ϵ << 1.

This family of hypersurfaces has a limit for ϵ → 0, namely the hypersurface t = 0, and the volume jumps

upward at ϵ = 0.)
26Although VR is bounded above on the space of allowed Cauchy hypersurfaces, it is actually not bounded

below. If S is asymptotic to S∞ but is not orthogonal to X∞, then VR(S) = −∞. That is because the

unsubtracted volume V (S) is always +∞, so an infinite subtraction has been made to define VR(S). A

hypersurface that is not orthogonal to the boundary has a less divergent volume than an orthogonal one,
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hypersurfaces, since a sequence S1, S2, · · · with VR(Si) tending to +∞ could not have a

convergent subsequence. Let Vmax be the least upper bound on VR(S) among allowed

Cauchy hypersurfaces S, and consider a sequence S1, S2, . . . of allowed hypersurfaces with

limi→∞ VR(Si) = Vmax. The limit S of a convergent subsequence of the sequence S1, S2, · · ·
will have VR(S) = Vmax and will be a maximal volume hypersurface.

A key assumption in this argument was that the bulk domain of dependence Ω is

compact. This is true if X = AdSD, but in a general spacetime that is asymptotic to

AdSD, Ω may fail to be compact, because singularities may form in the evolution of X

from initial data on S. For example, if a Schwarzschild black hole forms to the past or

future of S, the domain of dependence of S may not be compact. However, the presence of a

Schwarzschild singularity does not spoil the existence of a volume-maximizing hypersurface,

for the following reason. A Schwarzschild singularity is a special case of a more general

type of singularity known as a Kasner singularity. A Kasner singularity is a solution of

Einstein’s equations of the form27

ds2 = −dt2 +
d∑

j=1

t2pj (dxj)2,
d∑

i=1

pi =
d∑

i=1

p2i = 1. (3.3)

The volume form of a hypersurface t = t0 vanishes as t0 approaches the singularity at t = 0,

so a volume-maximizing hypersurface is repelled from a Kasner singularity. (Essentially

this point is discussed in [54] in the proof of Theorem 11.) Therefore, noncompactness

of Ω due to formation of a Kasner singularity poses no problem for the existence of a

volume-maximizing hypersurface. A Schwarzschild singularity is the special case of a Kas-

ner singularity with one of the pi equal to −(d − 2)/d and the others equal to 2/d, so

it causes no difficulty. Formation of a Kerr black hole causes no difficulty because the

singularity of a Kerr black hole is timelike and would not be contained in the domain

of dependence Ω. Belinski-Khalatnikov-Lifshitz (BKL) singularities are similar to Kasner

singularities but, roughly, with repeated jumps in the exponents as t → 0+, so one would

expect them to cause no difficulty.

It is conjectured that generic spacelike singularities in General Relativity are of BKL

type [55]. Under this assumption, we can hope that a maximal volume hypersurface S

with specified asymptotic behavior always exists in any asymptotically AdSD spacetime,

for any D. In a theory in which the strong energy condition holds, S would be unique.

We should caution the reader, however, that compactifications to AdSD are different.

In a spacetime X asymptotic not to AdSD but to AdSD ×W for some compact manifold

W , we will in section 3.6 explain a simple argument showing in some cases that a maximal

volume hypersurface cannot exist. This will actually motivate a conjecture that non-BKL

singularities form generically in such compactifications.

so its renormalized volume is −∞. An allowed hypersurface that is orthogonal to the boundary has a finite

renormalized volume, but the renormalized volume of such hypersurfaces can be arbitrarily negative, since

a sequence S1, S2, · · · of allowed hypersurfaces that are orthogonal to X∞ might have a limit that is not

orthogonal to X∞; in that case limi→∞ VR(Si) = −∞.
27This is a solution of Einstein’s equations with zero cosmological constant; however, the cosmological

constant is not important near the singularity.
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We will now show that assuming the null energy condition,28 if X is free of singularity,

or more precisely if it is geodesically complete, then Ω is compact. (This argument is

not needed in the rest of the article.) First we show that if X is geodesically complete,

then the future boundary of Ω, which we will denote as ∂+Ω, is compact; similarly the

past boundary ∂−Ω is compact. The reasoning involved is similar to that in the proof

of Penrose’s singularity theorem; see for example [52] or [53]. Any point p ∈ ∂+Ω can

be reached from S∞ by an orthogonal null geodesic without a focal point. The future-

going inward orthogonal null geodesics that originate on S∞ are initially converging, and

assuming the null energy condition (which holds in reasonable classical field theories),

Raychaudhuri’s equation implies that if X is geodesically complete, they all reach focal

points, beyond which they are not contained in ∂+Ω. The segment of any such geodesic

that is contained in ∂+Ω (including its initial point on S∞) is therefore compact, and as

S∞ is also compact, it follows that ∂+Ω is compact. Similarly ∂−Ω is compact. Given

this, to show that Ω is compact, we can for example use the fact that a globally hyperbolic

manifold X with Cauchy hypersurface S can be put in the form S×R where the set p×R
is timelike for any p ∈ S, and R is parametrized by a variable u that, for each p ∈ S, runs

over the full range −∞ < u < ∞. Compactness of ∂+Ω and ∂−Ω implies that the function

u is bounded on ∂+Ω and on ∂−Ω. For p ∈ S, let u+(p) be the least upper bound of u on

(p×R)∩Ω, and similarly let u−(p) be the greatest lower bound of u on (p×R)∩Ω. Then

Ω consists of points p× u ∈ S × R with u−(p) ≤ u ≤ u+(p), and so is compact.

3.2 The Phase Space and the Constraint Equations

The existence and uniqueness of a maximal volume hypersurface S, discussed in section

3.1, is one ingredient in relating the phase space of AAdS gravity to a cotangent bundle

T ∗(Conf/Diff). The other ingredient, as developed in [9–12] for the case D = 3, involves

analyzing the Einstein constraint equations and in particular showing that the Hamiltonian

constraint equation can be viewed as a condition that fixes the Weyl factor in the metric of

a Cauchy hypersurface S. Here, we will explain this argument for the case of pure gravity

with negative cosmological constant. Matter fields will be included in section 3.4.

Suppose that S is a Cauchy hypersurface in a spacetime X of dimension D = d + 1

that satisfies Einstein’s equations with negative cosmological constant Λ. The metric h and

second fundamental form K of S automatically satisfy the Einstein constraint equations:

DiK
ij −DjKi

i = 0

R(h) = KijKij −Ki
iK

j
j + 2Λ, (3.4)

where R(h) is the scalar curvature of the metric h. These equations were introduced

previously in section 2.2; the first is called the momentum constraint and the second is the

Hamiltonian constraint. Any pair h,K satisfying these constraint equations on a manifold

S provides initial data that determines a spacetime X that satisfies Einstein’s equations

and has S as a Cauchy hypersurface.

28The null energy condition states that at each point q ∈ X and for each null vector n, the stress tensor

T satisfies nαnβTαβ(x) ≥ 0. This condition holds rather generally in physically sensible relativistic field

theories (in theories with scalar fields, it holds in Einstein frame).
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Given suitable assumptions about singularities as discussed in section 3.1.2, we expect

that if X is an AAdS solution of Einstein’s equations, there is a unique volume-maximizing

Cauchy hypersurface S ⊂ X asymptotic to any given boundary Cauchy hypersurface S∞.

The metric h and second fundamental form K of S satisfy the Einstein constraint equations

(with Ki
i = 0, since S is volume-maximizing), and the spacetime X can be recovered from

S by solving Einstein’s equations with initial data h,K. Since S is unique, two spacetimes

obtained this way are equivalent if and only if they are equivalent via a diffeomorphism

of S. So in short, under the given assumption about singularities, the phase space Φ of

solutions of the Einstein equations in the domain of dependence of a boundary Cauchy

hypersurface S∞ is the same as the space of solutions of the constraint equations (3.4)

with Ki
i = 0 and S asymptotic to S∞, up to diffeomorphism of S. Our goal here is to show

that this space is T ∗(Conf/Diff), implying that Φ = T ∗(Conf/Diff), under our assumptions.

As a first step, observe that once we set Ki
i = 0, which reduces the momentum con-

straint to DiK
ij = 0, the momentum constraint becomes Weyl-invariant. To be precise, if

we introduce a Weyl-rescaled metric

h̃ = ϕℓh, (3.5)

with a positive function ϕ, and similarly rescale the second fundamental form, setting

K̃ij = ϕ−ℓ(1+d/2)Kij , (3.6)

then the momentum constraint simply becomes

D̃iK̃
ij = 0, (3.7)

where D̃i is the covariant derivative computed with the new metric h̃. Though this assertion

is easily verified, it may seem mysterious at first sight, since the Weyl rescaling in question

is certainly not a symmetry of General Relativity. In section 3.3, we will give a more

conceptual explanation of this Weyl invariance, but here we explain why it is useful.

The point is that if we are given a pair h,K that satisfies the momentum constraint

equation (and the AAdS boundary condition at infinity), then there is a unique Weyl trans-

form of this pair that satisfies the Hamiltonian constraint equation. Thus for the purposes

of describing the phase space, we can simply replace the Einstein constraint equation with

the operation of dividing by the group Weyl of Weyl transformations. Therefore, the only

constraint equation that we have to discuss explicitly is the momentum constraint; the

Hamiltonian constraint can be replaced by the group of Weyl transformations. This is a

substantial simplification, because the momentum constraint is linear in K, and is much

easier to understand than the Hamiltonian constraint equation.

Thus, the key fact is that given a pair h̃, K̃ that satisfies the momentum constraint

equation, there is a unique positive function ϕ such that the Weyl rescaled metric and

second fundamental form h = ϕ−ℓh̃, Kij = ϕℓ(1+d/2)K̃ij satisfy the Hamiltonian constraint

equation. In sketching the proof, we will follow the very useful explanation in section 3 of

[7]. For convenience, we use the notation of that paper. See also, for example, [3–6, 8].
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Setting ℓ = −4/(d− 2), the scalar curvatures R(h) and R(h̃) are related by

R(h)ϕ
4

d−2 = R(h̃)− 4(d− 1)

(d− 2)ϕ
∆

h̃
ϕ, (3.8)

where ∆
h̃
= h̃ijD̃iD̃j is the Laplacian for the metric h̃. An important preliminary point

is that in an AAdS spacetime, this equation can be used to show that, by a Weyl trans-

formation that is trivial at infinity, we can set R(h̃) = 2Λ everywhere (not just at infinity)

[57]. Actually, in the following argument, it suffices for R(h̃) to be negative-definite, and

knowing that this suffices is important background for understanding what happens when

matter fields are included. So we will retain R(h̃) in the formulas and assume only that it

is negative, and approaches 2Λ at infinity. Since we want also R(h) → 2Λ at infinity, we

can assume that the function ϕ approaches 1 at infinity.

We perhaps should stress at this point that the ability to make a Weyl rescaling to set

R(h̃) < 0 is special to an AAdS spacetime. There are potential obstructions to this in a

closed universe, and the statement also has no equally simple analog for gravity with zero

or positive cosmological constant. That is one of the reasons that the conformal approach

to the constraint equations, which we are describing here, is particularly powerful in an

AAdS spacetime. Another reason is that the arguments of section 3.1.2 concerning maximal

hypersurfaces in AAdS spacetimes do not have equally satisfactory analogs in other cases.

Let us define |K̃|2
h̃
= K̃ijK̃i′j′ h̃ii′ h̃jj′ . (Similar notation will be used later for other

tensors.) Making use of eqn. (3.8), we find that the Hamiltonian constraint equation in

(3.4) becomes

∆
h̃
ϕ− (d− 2)

4(d− 1)
R(h̃)ϕ+

(d− 2)

4(d− 1)
|K̃|2

h̃
ϕ(2−3d)/(d−2) +

Λ(d− 2)

2(d− 1)
ϕ(d+2)/(d−2) = 0. (3.9)

In this form, the Hamiltonian constraint is called the Lichnerowicz equation. It can be

written

∆
h̃
ϕ− F (ϕ, x) = 0, (3.10)

with

F (ϕ, x) =
(d− 2)

4(d− 1)
R(h̃)ϕ− (d− 2)

4(d− 1)
|K̃|2

h̃
ϕ(2−3d)/(d−2) − Λ(d− 2)

2(d− 1)
ϕ(d+2)/(d−2). (3.11)

Here x denotes a point in S, and the explicit x-dependence of F (ϕ, x) comes from the

x-dependence of R(h̃) and |K̃|2
h̃
.

To complete the description of the phase space, we want to show that, with R(h̃) and Λ

both negative, there is a unique positive function ϕ that satisfies the Lichnerowicz equation

and approaches 1 at infinity. The main tool is the following. A positive function ϕ− is

called a subsolution if the left hand side of eqn. (3.10) is nonnegative,

∆
h̃
ϕ− F (ϕ−, x) ≥ 0, (3.12)

and a positive function ϕ+ is called a supersolution if the right hand side is nonpositive,

∆
h̃
ϕ+ − F (ϕ+, x) ≤ 0. (3.13)
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If there is a subsolution ϕ− and a supersolution ϕ+ with ϕ− ≤ ϕ+, then we will prove that

there exists a solution ϕ of the Lichnerowicz equation with

ϕ− ≤ ϕ ≤ ϕ+. (3.14)

For small ϕ, the dominant term in F (ϕ, x) is the |K̃|2
h̃
term wherever K̃ ̸= 0, and the

R(h̃) term wherever K̃ = 0. Both of these contributions to F (ϕ, x) are negative, since we

have assumed R(h̃) < 0. So an example of a subsolution is any sufficiently small constant

C. For large ϕ, the dominant term in F (ϕ, x) is the term proportional to −Λ. We have

assumed Λ < 0, so this term is positive. Hence an example of a supersolution is any

sufficiently large constant D. On a compact manifold S, these choices of subsolution and

supersolution are satisfactory. However, in the AAdS context, we want a solution of the

Lichnerowicz equation such that ϕ → 1 at infinity. Eqn. (3.14) will guarantee this if ϕ−
and ϕ+ both approach 1 at infinity. So we want a subsolution and a supersolution with

that property. These can be found as follows. Write the AAdS metric in the familiar form

ds2 =
1

ρ2

dρ2 +

d∑
a,b=1

gab(x, ρ)dx
adxb

 , (3.15)

where the conformal boundary S∞ is at ρ = 0. For a suitably small constant ϵ, take ϕ− to

equal 1 at ρ = 0 and C for ρ ≥ ϵ, with a smooth monotonic interpolation in between, and

similarly take ϕ+ to interpolate from 1 at ρ = 0 to D for ρ ≥ ϵ. With a suitable choice of

the interpolations, this gives a subsolution and a supersolution with ϕ− ≤ ϕ+ everywhere

and ϕ−, ϕ+ → 1 at ρ = 0. See section 5 of [58] for a more detailed explanation of this

point.

The proof of existence of a solution of the Lichnerowicz equation, given ϕ− and ϕ+,

is simpler on a compact manifold, so we begin with that case. For a sufficiently large

constant c, the function Fc(ϕ, x) = F (ϕ, x) − cϕ is (for any x) monotone decreasing for ϕ

in the interval29 [C,D]. The operator ∆
h̃
− c is negative-definite, so for any function f ,

the equation (∆
h̃
− c)ϕ = f has a unique solution for ϕ. So we can inductively define a

sequence of functions ϕ0, ϕ1, · · · with ϕ0 = ϕ+ and for n ≥ 1,

(∆
h̃
− c)ϕn = Fc(ϕn−1, x). (3.16)

Suppose that for all n ≥ 0,

ϕ− ≤ ϕn ≤ ϕ+

ϕn+1 ≤ ϕn. (3.17)

In this case ϕn is monotonically decreasing with n and bounded below by ϕ−, and so must

have a limit for n → ∞. The limiting function ϕ = limn→∞ ϕn is clearly bounded by

29This statement is also true in the AAdS case, because natural AAdS boundary conditions ensure that

all coefficients in F (ϕ, x) are bounded at infinity; indeed, R(h̃) is asymptotically constant, and |K̃|2
h̃
→ 0 at

infinity.

– 37 –



ϕ− ≤ ϕ ≤ ϕ+, and satisfies the Lichnerowicz equation, since eqn. (3.16) converges for large

n to (∆
h̃
− c)ϕ = Fc(ϕ, x).

The inequalities (3.17) are proved by induction in n. For example, suppose that ϕn ≤
ϕ+ for some n. Then

(∆
h̃
− c)(ϕn+1 − ϕ+) = Fc(ϕn, x)−∆

h̃
ϕ+ + cϕ+ ≥ Fc(ϕn, x)− F (ϕ+, x) + cϕ+

= Fc(ϕn, x)− Fc(ϕ+, x) ≥ 0. (3.18)

The second step holds because ϕ+ is a supersolution, and the last step follows from mono-

tonicity of Fc. The maximum principle then implies that ϕn+1 − ϕ+ is nonpositive, be-

cause if ϕn+1 − ϕ+ is positive at the point where it achieves its maximum value, then

(∆
h̃
− c)(ϕn+1 − ϕ+) is negative at that point, contradicting eqn. (3.18). A similar induc-

tive argument proves that ϕ− ≤ ϕn for all n. Finally, to prove inductively that ϕn+1 ≤ ϕn

for all n, one observes that

(∆
h̃
− c)(ϕn+1 − ϕn) = Fc(ϕn, x)− Fc(ϕn−1, x). (3.19)

By the induction hypothesis ϕn ≤ ϕn−1 along with the monotonicity of Fc, the right hand

side of eqn. (3.19) is nonnegative. The same argument as before using the maximum

principle then implies that ϕn+1 − ϕn is nonpositive.

This completes the existence proof of the solution of the Lichnerowicz equation on a

compact manifold S, assuming R(h̃),Λ < 0. In the AAdS case, one proceeds as follows.

Restrict from S to the compact manifold with boundary Sϵ defined by ρ ≥ ϵ. The same

argument as before, using Neumann boundary conditions for the operator ∆
h̃
−c, produces

a solution ϕϵ of the Lichnerowicz equation on Sϵ satisfing ϕ− ≤ ϕϵ ≤ ϕ+ and also satisfying

Neumann boundary conditions on ∂Sϵ. In the limit ϵ → 0, ϕϵ converges to the desired

function ϕ that satisfies the Lichnerowicz equation throughout S and approaches 1 at

infinity.

To show uniqueness of the solution, first observe that since we know that the solution

exists, we can make a Weyl transformation from the initially assumed metric h̃ to some

other metric h that satisfies the Einstein constraint equation. Saying that h obeys the

Einstein constraint equation is equivalent to saying that, with background metric h, the

Lichnerowicz equation is satisfied with ϕ = 1:

F (1, x) = 0. (3.20)

Now let us ask whether some other function ϕ satisfies the Lichnerowicz equation:

∆hϕ− F (ϕ, x) = 0. (3.21)

If so, then

0 =∆hϕ− F (ϕ, x) + ϕF (1, x)

=∆hϕ+
(d− 2)

4(d− 1)
|K̃|2

h̃
(ϕ(2−3d)/(d−2) − ϕ) +

Λ(d− 2)

2(d− 1)
(ϕ(d+2)/(d−2) − ϕ). (3.22)
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This equation implies that ϕ ≤ 1 everywhere, since if the maximum of ϕ is at a point p

at which ϕ > 1, then each term on the right hand side is negative at that p, which is not

possible. Likewise the equation implies that ϕ ≥ 1 everywhere, since if the minimum of ϕ

is at a point p at which ϕ < 1, then each term on the right hand side is positive at p, again

not possible. So we must have ϕ = 1 and the solution is unique.

This completes our discussion of the Lichnerowicz equation for pure gravity.

3.3 Symplectic Point Of View

A more conceptual understanding of the Einstein momentum constraint and its Weyl in-

variance requires a few steps.30 The canonical momentum in General Relativity is

Πij =
1

8πG

√
deth

(
Kij − Khij

)
. (3.23)

The canonical commutation relations between the metric h and the canonical momentum

Π can be summarized by the symplectic form

ω =

∫
S
δΠijδhij , (3.24)

where δ is the exterior derivative acting on the infinite-dimensional space W of pairs Π, h

(in finite dimensions, we denote the exterior derivative as d rather than δ). We have

ω = δλ (3.25)

with

λ =

∫
S
Πijδhij . (3.26)

In classical mechanics, analogous formulas λ =
∑

a padq
a, ω = dλ hold for any classical

phase space that is a cotangent bundle T ∗Q, where Q is parametrized by the qa and the

pa parametrize the fiber directions in the cotangent bundle. So in the case of gravity, the

full phase space W, prior to imposing any constraint, is T ∗Met, where Met is the space of

metrics h on S.

Two interesting groups act on this phase space, and we will want to construct reduced

phase spaces by imposing these groups as constraints. First we observe that the symplectic

form ω and the 1-form λ have an obvious Weyl symmetry:

δhij = 2φhij , δΠij = −2φΠij . (3.27)

Let Weyl be the group of Weyl transformations, and Conf = Met/Weyl the space of con-

formal structures on S. The Hamiltonian function that generates the Weyl transformation

(3.27) by Poisson brackets is31

µφ,g = −2

∫
S
φhijΠ

ij . (3.28)

30The following remarks are equally valid in a closed universe or open universe and require no assumption

about the cosmological constant. In the AAdS case, of course, one must place appropriate conditions on

the behavior of the metric and canonical momentum at infinity, and on the allowed behavior at infinity of

a Weyl transformation or diffeomorphism.
31The label “g” in µφ,g is for gravity; later we will consider matter contributions to the Hamiltonian

functions.
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By setting µφ,g = 0 and dividing by Weyl, one can construct a “reduced phase space,”

called the symplectic quotient of W by Weyl. Setting µφ,g = 0 means taking hijΠ
ij = 0, so

that Π becomes traceless and the definition (3.23) of Π reduces to

Πij =
1

8πG

√
dethKij , (3.29)

with Kij now constrained by K = 0. After imposing this condition, we divide by Weyl

transformations, acting as in eqn. (3.27). In terms of h and K, the Weyl transformations

are

δhij = 2φhij , δKij = −2(1 + d/2)φKij . (3.30)

Thus the reduced phase space, denoted T ∗Met//Weyl, is the space of pairs h,K, with K

traceless, subject to this action of Weyl. What is described in eqn. (3.30), though written at

the Lie algebra level, is the same Weyl transformation law for h and K that was introduced

previously in eqns. (3.5), (3.6). In particular, this derivation gives a better understanding

of the possibly mysterious-looking exponent in eqn. (3.6). Since the action of Weyl on

T ∗Met comes from an action on the base space Met, the reduced phase space is again a

cotangent bundle T ∗Met//Weyl = T ∗(Met/Weyl) = T ∗Conf.

Another natural group that acts on these spaces is the diffeomorphism group Diff of S.

The Lie algebra of Diff consists of vector fields on S. The transformation of h generated

by a vector field U on S is δhij = DiUj +DjUi. The Hamiltonian function that generates

this transformation is

µU,g =

∫
S
Πij(DiUj +DjUi). (3.31)

To construct the symplectic quotient T ∗Met/Diff, we set µU,g = 0 and divide by Diff.

Integrating by parts in eqn. (3.31), we see that the condition that µU,g = 0 for all U is

satisfied if and only if

0 = DiΠ
ij =

1

8πG

√
h
(
DiK

ij −DjK
)
. (3.32)

This is the momentum constraint of General Relativity.

Diffeomorphisms and Weyl transformations together generate a group that is a semidi-

rect product Weyl ⋊ Diff. In particular, Diff is a group of outer automorphisms of Weyl.

This group structure implies that a Weyl transformation shifts µU,g by a multiple of µϕ,g;

in other words, µU,g is Weyl-invariant, once we impose µϕ,g = 0. This gives the promised

conceptual explanation of the fact that the momentum constraint is Weyl-invariant when

restricted to K = 0.

To construct the symplectic quotient T ∗Met//Weyl⋊Diff, we have to set µφ = µU = 0

and divide by Weyl ⋊ Diff. In other words T ∗Met//Weyl ⋊ Diff parametrizes pairs K,h,

where K is traceless and obeys the momentum constraint equation, up to equivalence under

diffeomorphisms and Weyl transformations. Since the action of Weyl⋊Diff on T ∗Met comes

from an action on Met, the symplectic quotient T ∗Met//Weyl⋊Diff is a cotangent bundle

T ∗P, where P = Met/(Weyl⋊ Diff) = Conf/Diff.

What we learned in section 3.2 is that it is equivalent to impose the Einstein Hamil-

tonian constraint equation on a pair K,h, where K is traceless, or to divide by Weyl
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transformations. So assuming the existence of maximal volume hypersurfaces (so that K

can be assumed traceless), the phase space of General Relativity in an AAdS spacetime is

the cotangent bundle T ∗P = T ∗(Conf/Diff).

3.4 Generalization To Include Matter Fields

It is pleasantly straightforward to generalize what was explained about the Einstein con-

straint equations in section 3.2 to encompass any of the usual models of gravity coupled

to matter fields that satisfy the strong energy condition. The important examples include

scalar fields (possibly forming a nonlinear sigma-model) with a nonpositive potential en-

ergy and p-form gauge fields for p ≥ 1 (possibly generalized to Yang-Mills fields if p = 1).

Incorporation of such fields in the Lichnerowicz equation has been discussed in [6, 7, 58, 59],

among other references.

As a first example, we will consider scalar fields. To simplify the notation, we consider

a single scalar field σ; the generalization to several scalar fields does not change anything

essential. Assuming that σ is canonically normalized, its stress tensor is

Tij = ∂iσ∂jσ − 1

2
gij∂kσ∂

kσ − 1

2
gijV (σ). (3.33)

Here g is the metric on X; its restriction to S will be denoted as h. The cosmological

constant is included in V (σ) as an additive constant. The strong energy condition is

satisfied if and only V (σ) ≤ 0 for all σ.

In studying gravity coupled to a scalar field in AAdS spacetime, we assume that σ

has a constant value near infinity. Moreover, we assume that this constant value is an

extremum of V (σ), with a negative value of V , corresponding to an AdS vacuum.

The phase space of the scalar field σ can be parametrized by the restriction of σ to an

initial value surface S together with a canonical momentum π. The symplectic form for

this data is

ωσ =

∫
S
δπδσ = δλσ, (3.34)

with

λσ =

∫
S
πδσ. (3.35)

To incorporate these variables in the analysis of the Lichnerowicz equation, the first step

is to decide how Weyl transformations act on π, σ. The only general procedure that makes

sense is to take σ to be Weyl-invariant, since in a general model of scalar fields, σ is really

the pullback to spacetime of a function on the target space of a nonlinear sigma-model;

in that generality a non-trivial Weyl transformation law for σ would not be meaningful.

Once we decide that σ is Weyl-invariant, invariance of λσ and ωσ means that π must be

Weyl-invariant as well.

In a coordinate system that takes the standard form (2.25) near S, the standard

formula for π is

π =
√
hσ̇, (3.36)
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where σ̇ = ∂σ/∂t. Since we take Weyl transformations to act on h by δhij = 2φhij , eqn.

(3.36), together with the Weyl-invariance of π, implies that σ̇ must transform as δσ̇ = −dσ̇,

In sum,

δσ = 0, δσ̇ = −dσ̇. (3.37)

The Einstein momentum constraint equation with the field σ included and with K

assumed to be traceless is

DiK
ij = 8πGT 0j = −8πGσ̇∂kσh

kj . (3.38)

This equation is Weyl-invariant, with Weyl transformations taken to act by eqns. (3.27)

and (3.36). This Weyl invariance may come as a slight surprise, but it has the same

explanation as in section 3.3 in terms of a symplectic quotient. To see this, let Σ be

the infinite-dimensional space that parametrizes the values of the field σ on S. Then

the phase space of σ is T ∗Σ, where the fiber directions are parametrized by π. So σ,

h, and their canonical momenta jointly parametrize T ∗(Met × Σ). Let us consider the

symplectic quotient of this phase space by the group Weyl⋊Diff. First we need to compute

the contributions of σ to the Hamiltonian functions µφ and µU . The contribution to µφ

vanishes because σ and π are Weyl-invariant. So setting µφ = 0 will mean setting K = 0,

just as in the absence of σ. On the other hand, σ does contribute to µU . The contribution

is32

µU,σ = −ιVU
λσ = −

∫
S
πUk∂kσ = −

∫
S

√
hσ̇Uk∂kσ. (3.39)

So the condition for vanishing of the total Hamiltonian function µU = µU,g + µU,σ is

−DiK
ij = 8πGσ̇∂kσh

jk, (3.40)

which is the Einstein momentum constraint for this coupled system. The same group

theoretic considerations as before imply that the momentum constraint is Weyl-invariant,

once we set K = 0.

To construct the symplectic quotient T ∗(Met×Σ)//Weyl⋊Diff, we set K = 0, impose

the Einstein momentum constraint, and divide by Weyl⋊Diff. Since the action ofWeyl⋊Diff

on T ∗(Met × Σ) is induced in the usual way from an action on Met × Σ, the result is a

cotangent bundle T ∗PΣ, where PΣ = (Met×Σ)/(Weyl⋊Diff) parametrizes pairs (h, σ) up

to diffeomorphism and Weyl transformation.

To construct the phase space of this system, we would follow all of the same steps except

that instead of dividing by Weyl, we would impose the Einstein Hamiltonian constraint

equation

R = KijK
ij + 16πGT00. (3.41)

However, essentially the same arguments as summarized in section 3.2 shows that it is

equivalent to impose the Hamiltonian constraint or to divide by the group of Weyl trans-

formations, since each orbit of Weyl contains a unique point at which the Hamiltonian

constraint equation is satisfied.

32Here ιV is the operation of contracting the first index of a differential form with a vector field V .
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To show this, we consider the orbit of Weyl that contains a set of fields h̃, K̃, σ̃, ˙̃σ. This

can be Weyl-transformed to

h = ϕ4/(d−2)h̃

Kij = ϕ−2(d+2)/(d−2)K̃ij

σ = σ̃

σ̇ = ϕ−2d/(d−2) ˙̃σ, (3.42)

where ϕ is an arbitrary positive function. The energy density is

T00 =
1

2
σ̇2 +

1

2
∂iσ∂jσh

ij + V (σ)

=
1

2
ϕ−4d/(d−2) ˙̃σ

2
+

1

2
ϕ−4/(d−2)∂iσ̃∂j σ̃h̃

ij + V (σ̃). (3.43)

Repeating the derivation that led to eqn. (3.9), we get the new form of the Lichnerowicz

equation. This is actually an equation of the same general form as before, but with new

coefficients:

∆
h̃
ϕ− (d− 2)

4(d− 1)
αϕ+

(d− 2)

4(d− 1)
βϕ(2−3d)/(d−2) +

(d− 2)

4(d− 1)
γϕ(d+2)/(d−2) = 0, (3.44)

with

α = R(h̃)− 8πG∂iσ̃∂j σ̃h̃
ij

β = |K̃|2
h̃
+ 16πG˜̇σ2

γ = 16πGV (σ̃). (3.45)

In section 3.2, to prove the existence of a solution of the Lichnerowicz equation, we

needed33 α < 0, γ < 0. The proof of uniqueness of the solution required β > 0, γ < 0.

Incorporating the scalar field σ does not affect the conditions α < 0 and β > 0, and it does

not affect the condition γ < 0 in a model that satisfies the strict strong energy condition

V (σ) < 0 for all σ. Thus, in such a model, the Lichnerowicz equation has a unique positive

solution that approaches 1 at infinity. This assertion is actually Theorem 3.3 in [58].

Under these conditions, solving the Hamiltonian constraint equation has the same

effect as dividing by the group of Weyl transformations, and therefore the part of the phase

space that parametrizes spacetimes that can be described by a solution of the Lichnerowicz

equation with K = 0 is a cotangent bundle T ∗PΣ. We argued in section 3.1.2 that given

reasonable (but optimistic) assumptions about singularities in General Relativity, every

solution has a maximal Cauchy hypersurface and hence can be described by a K = 0

33The definition of a subsolution and a supersolution actually requires these statements to hold uniformly,

so that for example, instead of just saying that α < 0, we need to have a positive constant ϵ such that

α < −ϵ everywhere. On a noncompact manifold, in general such a uniform inequality might be a stronger

condition than α < 0, but with AAdS boundary conditions (and σ assumed to be constant at infinity) the

two statements are equivalent.
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solution of the Lichernowicz equation. Thus under this assumption, the phase space is

T ∗PΣ.

The slightly more general case of a model that satisfies V (σ) ≤ 0 everywhere but not

necessarily V (σ) < 0 is analyzed in [58], Theorem 7.1.

3.5 p-Form Gauge Fields

In this section, we will generalize from a scalar field to a p-form gauge field34 A with gauge

transformation A → A + dλ, for a (p − 1)-form λ, and with (p + 1)-form field strength

F = dA. Here 0 ≤ p ≤ D − 2. As usual, if S is a Cauchy hypersurface, we can pick local

coordinates such that S is defined by t = 0 and near S the metric takes the form

ds2 = −dt2 + hij(x⃗, t)dx
idxj . (3.46)

Along S, we decompose F = B + dt ∧ E, where the “magnetic” field B is a (p + 1)-form

along S, and the “electric” field E is a p-form along S.

We have two goals in studying a p-form gauge field: (1) to show that the standard

theories of a p-form gauge field satisfy the strong energy condition; (2) to incorporate such

a field in the analysis of the Einstein constraint equations.

With the usual normalization, the stress tensor of a minimally coupled p-form gauge

field is

Tµν =
1

p!
Fµα1···αpFν

α1···αp − 1

2(p+ 1)!
gµνFα0α1···αpF

α0α1···αp . (3.47)

From this, we can compute

T00 =
1

2p!
Ei1···ipE

i1···ip +
1

2(p+ 1)!
Bi0i1···ipB

i0i1···ip . (3.48)

Likewise

Tα
α =

1

p!

(
1− D

2(p+ 1)

)
Fα0···αpF

α0···αp

=
1

p!

(
1− D

2(p+ 1)

)(
−(p+ 1)Ei1···ipE

i1···ip +Bi0i1···ipB
i0i1···ip) . (3.49)

Remembering the definition T̃µν = Tµν − 1
D−2gµνT

α
α , we find

T̂00 =
1

(D − 2)p!

(
(D − p− 2)Ei1···ipE

i1···ip + pBi0i1···ipB
i0i1···ip) . (3.50)

This is manifestly non-negative in the whole range 0 ≤ p ≤ D − 2, showing that these

theories satisfy the strong energy condition.

Several commonly studied nonminimal couplings of a p-form gauge field do not affect

this analysis. Chern-Simons couplings do not contribute to the stress tensor, so they do

not affect the strong energy condition. A p-form gauge field can couple to a scalar field ϕ in

34For p = 0, a p-form gauge field is the same as a scalar field, already discussed in section 3.4. For p = 1,

a p-form gauge field is an abelian gauge field. Abelian gauge theories can be generalized to nonabelian

gauge theories, but this generalization does not affect our considerations here.
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such a way that the action is, for example,
∫
eϕF ∧ ⋆F rather than the minimal

∫
F ∧ ⋆F .

This merely multiplies the stress tensor by eϕ, without effect on the above analysis. One

can also have Higgsing of a p-form gauge field by a (p− 1)-form gauge field (as a result of

which the p-form gauge field becomes massive). This again does not disturb the analysis.

Bearing in mind these comments, we see that eleven-dimensional supergravity, and

also the Type I, Type IIA, and Type IIB supergravities in ten dimensions, all satisfy the

strong energy condition. However, massive Type IIA supergravity [51] does not satisfy the

strong energy condition, since it has a scalar field with a positive potential.35

Now we will discuss the incorporation of these fields in the Einstein constraint equa-

tions. First, we have to decide how Weyl transformations should act in this theory.

The gauge invariance A → A+ dλ would not intertwine with a nontrivial Weyl trans-

formation law for A in any reasonable way, so A must be Weyl-invariant. Hence B = dA is

Weyl-invariant. Another way to reach the same conclusion is to observe that the Bianchi

identity satisfied by B, and the quantized Dirac fluxes that it can carry, would not be con-

sistent with any nontrivial Weyl transformation law for B. So B must be Weyl-invariant.

Since A is Weyl-invariant, its canonical momentum Π must also be Weyl-invariant.

With the usual normalization, Πi1i2···ip =
√
hEi1i2···ip . So Ei1i2···ip must transform as

1/
√
h, and equivalently Ei1i2···ip must transform as hp−d/2. This tells us the p-form analog

of eqn. (3.42):

h = ϕ4/(d−2)h̃

Kij = ϕ−2(d+2)/(d−2)K̃ij

Bi0···ip = B̃i0···ip

Ei1···ip = ϕ(4p−2d)/(d−2)Ẽi1···ip . (3.51)

Because A and Π are Weyl-invariant, the p-form gauge field, just like the scalar field

studied in section 3.4, does not contribute to the Hamiltonian generator µφ of Weyl transfor-

mations. So we remain with µφ = K, and imposing Weyl-invariance as a constraint means

setting K = 0 and then dividing by Weyl transformations, exactly as before. Once we set

K = 0, the momentum constraint equation, which now has a contribution proportional to

the momentum density T 0i of the p-form gauge field, again becomes Weyl-invariant. The

group theoretic explanation for this fact is exactly as before.

It remains to examine the contribution of the p-form gauge field to the Lichnerowicz

equation. From eqns. (3.48) and (3.51), we find for this field

T00 =
ϕ−4(d−p)/(d−2)

2p!
|Ẽ|2

h̃
+

ϕ−4(p+1)/(d−2)

2(p+ 1)!
|B̃|2

h̃
. (3.52)

As a check, note that this is consistent with the usual duality under p ↔ d − p − 1 with

exchange of E and B. Following the familiar steps, the Lichnerowicz equation comes out

35Nonetheless, massive Type IIA supergravity does satisfy the Maldacena-Nuñez no go theorem [60] for

de Sitter compactifications.
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to be

∆
h̃
ϕ− (d− 2)

4(d− 1)
R(h̃)ϕ+

(d− 2)

4(d− 1)
|K̃|2

h̃
ϕ

(2−3d)
(d−2) +

Λ(d− 2)

2(d− 1)
ϕ

(d+2)
(d−2)

+
4πG(d− 2)

(d− 1)

(
1

2p!
ϕ

(−3d+4p+2)
(d−2) |Ẽ|2

h̃
+

1

2(p+ 1)!
ϕ

(d−4p−2)
(d−2) |B̃|2

h̃

)
= 0. (3.53)

The method of subsolutions and supersolutions applies exactly as before to show the exis-

tence of a solution of this equation with ϕ → 1 at infinity. All that we need to know is that

the |Ẽ|2
h̃
and |B̃|2

h̃
terms that have been added are positive, so they do not change the sign

of the left hand side of the equation if ϕ is small and constant, and they are subdominant

for large ϕ, so they also do not change the sign if ϕ is large and constant.

The functions of ϕ that multiply |Ẽ|2
h̃
and |B̃|2

h̃
in eqn. (3.53) are of the form ϕα where

α ≤ 1 for all p in the range 0 ≤ p ≤ d − 1. This bound on the exponent ensures that the

additional terms in the equation do not affect the proof of uniqueness of the solution of

the Lichnerowicz equation, which proceeds as in the discussion of eqn. (3.22).

3.6 AdS Compactifications

The analysis of the Lichnerowicz equation works so nicely for a spacetime that is asymptotic

to AdSD for some D that it perhaps comes as a surprise that compactification to AdSD is

different. In other words, if we consider a spacetime that is asymptotic to AdSD ×W for

some compact manifold W of positive dimension, we do not get such a simple picture.

As a typical example, we will consider solutions of ten-dimensional Type IIB super-

gravity that are asymptotic at infinity to AdS5×S5. Type IIB supergravity has a four-form

gauge field A whose five-form field strength F = dA is self-dual. In the standard AdS5×S5

solution of Type IIB supergravity, F is everywhere nonzero. Type IIB supergravity has

bosonic fields other than the metric and A, but including them would not qualitatively

change the picture, so for brevity we omit them.

We can find the Lichnerowicz equation appropriate to a Type IIB spacetime X that is

asymptotic to AdS5×S5 by setting d = 9, p = 4 in eqn. (3.53). Self-duality of the five-form

F means that the |Ẽ|2
h̃
and |B̃|2

h̃
terms in the equation are equal, and we actually should

keep only one of them. We also have to set Λ = 0, since Type IIB supergravity in ten

dimensions has vanishing cosmological constant. So the Lichnerowicz equation becomes

∆
h̃
ϕ− (d− 2)

4(d− 1)
R(h̃)ϕ+

(d− 2)

4(d− 1)
|K̃|2

h̃
ϕ−27/7 +

4πG(d− 2)

2(d− 1)(p+ 1)!
ϕ−9/7|B̃|2

h̃
= 0. (3.54)

To proceed, we need to take into account one more key fact. In studying the Lichnerow-

icz equation on a manifold asymptotic to AdSD, we always required R(h̃) to be negative at

infinity. However, in a spacetime X that is asymptotic to AdS5×S5, we instead want R(h̃)

to be positive near infinity. One way to see this is to observe that the usual AdS5 × S5

spacetime actually has zero scalar curvature, since the negative scalar curvature of AdS5

is equal and opposite to the positive scalar curvature of S5. However, if we restrict to a

Cauchy hypersurface S such as AdS4 × S5, then as the scalar curvature of AdS4 is less

negative than that of AdS5, we see that S actually has positive scalar curvature.
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More directly, we can look at the Hamiltonian constraint equation, which for an ex-

tremal hypersurface S reads

R(h) = KijKij + 16πGT̂tt. (3.55)

Since Type IIB supergravity satisfies the strong energy condition, as observed in section

3.5, we will have T̂tt ≥ 0 everywhere in a solution of this theory, and therefore any extremal

hypersurface will always have R(h) ≥ 0 everywhere. Note that this argument is not in any

way special to AdS5 × S5; it applies to any AAdS compactification of eleven-dimensional

supergravity or of Type IIA, Type IIB, or Type I supergravity in ten dimensions, since

these models all satisfy the strong energy condition, as found in section 3.5. Because of this,

what we are explaining here applies to a very wide range of Anti de Sitter compactifications,

though we consider AdS5 × S5 for illustration.

For the standard extremal Cauchy hypersurface S = AdS4 × S5 in the standard

AdS5 × S5 spacetime, B is everywhere nonzero and the scalar curvature R(h) is every-

where positive. Therefore, for any pair h̃, B̃ sufficiently close to this standard example, B̃

is everywhere nonzero and R(h̃) is everywhere positive. Under this restriction, the analysis

of the Lichnerowicz equation actually proceeds rather as before, with minor differences.

The left hand side of the equation is positive for ϕ a small positive constant and negative

for large constant ϕ, though the negativity for large ϕ now comes from the fact that R(h̃)

is assumed positive rather than from having Λ < 0. Given this property of the equation,

the method of subsolutions and supersolutions applies to prove the existence of a solution

ϕ of the equation with ϕ → 1 at infinity. In addition, the various powers of ϕ appearing

in the equation are such that the solution of the Lichnerowicz equation is unique, by the

same argument as in eqn. (3.22).

What happens in the case of a solution that is not close to the standard example?

Of the two assumptions that we made in getting to this point, the assumption that B

is everywhere nonzero is relatively harmless, since B has 9!/4!5! = 126 components, and

generically is everywhere nonzero in nine dimensions. However, the assumption that R(h̃)

is everywhere positive is highly problematic. When we studied spacetimes asymptotic to

AdSD, we used the fact that it is always possible, by a Weyl transformation, to find a

starting point with R(h̃) < 0. But in studying compactifications to Anti de Sitter space,

we would want to make a Weyl transformation to set R(h̃) > 0. This is not always possible.

In fact, there are strong topological obstructions to the existence on a manifold M

of a metric of positive scalar curvature. The simplest obstruction is as follows. Type

IIB supergravity has fermions, so we can assume that S is a spin manifold. Therefore

it has a Dirac operator D = i /D. A spin manifold of dimension 8k + 1 has a topological

invariant known as the “mod 2 index” [61], the number of zero modes of the Dirac operator

mod 2. A nine-dimensional spin manifold M with a nonzero mod 2 index cannot admit

a metric of positive scalar curvature. In fact, the square of the Dirac operator, namely

D2 = −DµD
µ + R/4, is strictly positive if R > 0, so D has no zero-modes on a manifold

of positive scalar curvature [62]. Therefore, on a manifold M on which the ordinary index

of the Dirac operator (if M has dimension 4k) or the mod 2 index (if M has dimension

8k + 1 or 8k + 2) is nonzero, there is no metric of positive scalar curvature. To be more
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precise, such results are usually stated and proved on a compact manifold M , and we are

interested in a noncompact nine-manifold S. However, we want a complete metric on S

such that the scalar curvature approaches a positive constant at infinity (namely the scalar

curvature of AdS4 × S5). This, together with the formula D2 = −DµD
µ + R/4, implies

that the Dirac operator on S has a discrete spectrum near 0. Given this, positivity of R

implies that the index and the mod 2 index must vanish, just as on a compact manifold.

The formula D2 = −DµD
µ + R/4 also shows that D2 is strictly positive if R ≥ 0

everywhere and R is not identically 0. In our application, we are interested in metrics for

which R is strictly positive near infinity and in particular not identically zero. A nonzero

mod 2 index implies that there is no such metric with R ≥ 0 everywhere.

A simple example of a nine-manifold with a nonzero mod 2 index is provided by a

certain exotic nine-sphere. In general, roughly speaking, half of all nine-dimensional spin

manifolds have a nonzero mod 2 index. Actually, the mod 2 index is only the simplest

example of an obstruction to positive scalar curvature. A more systematic study [63]

shows that, roughly speaking, most manifolds with a large fundamental group do not

admit a metric of positive scalar curvature. On the other hand, for a simply-connected

nine-dimensional spin manifold, the mod 2 index is the only obstruction to having a metric

of positive scalar curvature [64]. Again, such results are most often stated for compact

manifolds but apply equally to, for example, nine-manifolds that are asymptotic to AdS4×
S5 with the stipulation that the scalar curvature should approach a positive constant at

infinity.

Now consider a spacetime X that is asymptotic to AdS5 × S5 and has a Cauchy

hypersurface S that, topologically, does not admit a metric of positive scalar curvature.

The Hamiltonian constraint equation (3.55) implies immediately that if it is possible to

choose S to have K = 0, then the scalar curvature of S is nonnegative. Thus, if X is such

that a Cauchy hypersurface S ⊂ X has a nonzero mod 2 index, then it is not possible to

choose such an S to satisfy K = 0.

On the other hand, if S is any nine-manifold asymptotic to AdS4 × S5, there is no

problem to find initial data on S that satisfy the Einstein constraint equations if we relax

the assumption K = 0. When K ̸= 0, there is an additional term −K2 on the right hand

side of the Hamiltonian constraint equation, and there is no reason to expect that R ≥ 0

everywhere.

Therefore, there are perfectly good spacetimes X asymptotic to AdS5 × S5 and com-

pletely generic but not possessing any extremal Cauchy hypersurface. What are we to

make of this? Based on the discussion in section 3.1.2, though the arguments are not

truly bullet-proof, we suspect that in such a spacetime, some sort of unfamiliar, non-BKL

singularity forms generically.

We will speculate in a moment on how this might be interpreted, but first let us note

that in the context of an asymptotically flat spacetime, the obstruction we are discussing

to the existence of an extremal slice was discovered long ago [65]. The original context for

this work was that it had been conjectured that in an asymptotically flat spacetime X, for

any value of the time measured at infinity, there would be an extremal Cauchy slice S in

the interior of X; it was shown by considering topological obstructions to positive scalar
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curvature that this is not the case. On the other hand, it was found that by allowing K ̸= 0,

one can find initial data leading to an asymptotically flat spacetime X with any assumed

topology of S [66, 67].

We have simply pointed out precisely the same topological obstruction in the context

of compactifications to Anti de Sitter space. However, the implications are somewhat

different. In an asymptotically flat spacetime X, the domain of dependence of a Cauchy

hypersurface S is all of X, and is never compact. However, in, for example, a spacetime X

that is asymptotic to AdS5 × S5, the domain of dependence Ω of a Cauchy hypersurface

S is compact in the absence of singularities. This was explained in section 3.1.2. So the

potential connection between the topological obstruction to R ≥ 0 and singularities is

special to AdS compactifications.

What are we to say about these hypothetical non-BKL singularities? We can only make

some speculative remarks. As an example, consider the mod 2 index as an obstruction to

positive scalar curvature. It is an invariant in spin bordism, which means that from the

point of view of classical physics, if one assumes that the relevant spacetime histories

are smooth manifolds (possibly not admitting a metric everywhere of Lorentz signature,

as discussed for example in [68]), the mod 2 index is a conserved quantity. There is no

corresponding Z2 gauge field, so this is a candidate as a global conserved Z2 charge. On the

other hand, one does not expect global conservation laws in quantum gravity (for the most

precise known argument for this assertion, see [69]), and in particular we do not expect

cobordism invariants to be truly conserved [70]. So we expect that there is some sort of

process in Type IIB superstring theory in which the mod 2 index changes. Perhaps the

non-BKL singularity that is suggested by the arguments we have sketched is a signal of

such topology change. One can imagine a singularity that arises when a topological defect

of some sort that supports the mod 2 index collapses to a point and disappears. There is

certainly no known singularity in General Relativity associated to such a time-dependent

process, so if this type of topology change is associated to a singular classical history, this

is a classical history with a singularity of an unknown and exotic type.

More generally, a nine-dimensional spin manifold S has many possible topologies, but

one expects that most topological distinctions between different initial value surfaces are

not well-defined in the full Type IIB superstring theory – even though only a few special

cases of topology-changing processes are well-understood. It is possible that the non-BKL

singularities that the analysis here suggests play a role in filling in the gaps and providing

missing topology-changing processes.

We conclude with the following remarks. In asymptotically AdSD spacetimes, in mod-

els that satisfy the strong energy condition, we learned from the study of the Lichnerowicz

equation that – with an optimistic but not obviously wrong assumption about the nature

of singularities – the gravitational phase space is a cotangent bundle, with potential impli-

cations for quantization. On the other hand, in the context of a spacetime X asymptotic

to AdSD ×W , for some compact W , this is not the case: if a Cauchy hypersurface S ⊂ X

is such that positive scalar curvature is topologically obstructed, then there is a perfectly

good phase space of classical solutions of Type IIB supergravity with this S, but there is

no reason for it to be a cotangent bundle.
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In fact, even if S is such that there is no obstruction to positive scalar curvature, we

cannot prove that the phase space is a cotangent bundle, no matter what assumption we

make about possible singularities. The reason is that even if S does admit metrics with

R ≥ 0 and appropriate asymptotic behavior, this does not mean that every metric on S with

appropriate asymptotic behavior is Weyl-equivalent to one with R ≥ 0 everywhere. For

example, if S is topologically AdS4×S5, we only know a priori that any metric sufficiently

close to the standard one has R ≥ 0. (In fact, it is possible to prove that there are metrics

on S with the desired behavior at infinity that are not conformal to any metric with R ≥ 0

everywhere.)

So in spacetimes asynptotic to AdSD × W , as opposed to AdSD, the phase space is

not going to be a cotangent bundle for each topological choice of initial value surface, even

with optimistic assumptions. However, we know little about the generic singularities in

these spacetimes. At the cost of going rather far out on a limb, we can speculate that

perhaps different classical phase spaces associated to spacetimes with different topologies,

after taking singularities and topology-changing processes and massive stringy modes into

account, do fit together to make a cotangent bundle.

The singularities associated to topology change might conceivably be mild enough that

a hypersurface S can be sensibly continued from one side of the singularity to the other. In

that case, it might be that ultimately the maximal volume hypersurface does always exist,

but in general on a spacetime with a different topology than what we started with.
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