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Abstract In order to survive, animals often need to navigate a complex odor landscape where
odors can exist in airborne plumes. Several odor plume properties change with distance from the
odor source, providing potential navigational cues to searching animals. Here, we focus on odor
intermittency, a temporal odor plume property that measures the fraction of time odor is above a
threshold at a given point within the plume and decreases with increasing distance from the odor
source. We sought to determine if mice can use changes in intermittency to locate an odor source.
To do so, we trained mice on an intermittency discrimination task. We establish that mice can
discriminate odor plume samples of low and high intermittency and that the neural responses in the
olfactory bulb can account for task performance and support intermittency encoding. Modulation
of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects
both behavioral outcome on the intermittency discrimination task and neural representation of inter-
mittency. Together, this work demonstrates that intermittency is an odor plume property that can
inform olfactory search and more broadly supports the notion that mammalian odor-based naviga-
tion can be guided by temporal odor plume properties.

Editor's evaluation

This important work addresses the novel question for the vertebrate olfactory community of whether
mice can discriminate odorant intermittency. The evidence supporting the conclusions is convincing.
The authors used multiple experimental and analytical tools. The work will be of interest to sensory
physiologists, both working in olfaction and navigation.

Introduction

When navigating an airborne odor landscape, animals interact with highly dynamic and diverse odor
structures (Fackrell and Robins, 1982; Crimaldi and Koseff, 2001; Crimaldi et al., 2002; Connor
et al., 2018). Variations of odor plume parameters can, for example, create plumes with diffusive odor
signals and little fluctuation, as well as plumes where odor is pulled into filaments (‘odor whiffs’) that
are interleaved with layers of odor-free air. Despite these complex odor environments, many animals
are adept at locating odor sources within airborne plumes (Vickers, 2000; Bhattacharyya and Bhalla,
2015; Gire et al., 2016; Baker et al., 2018; Gumaste et al., 2020). Odor plume characteristics can
be measured using plume statistics such as concentration distribution, odor whiff frequency, and odor
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intermittency, here defined as the fraction of time odor is present at a sampled point within odor
plume space (Yee et al., 1993; Justus et al., 2002; Connor et al., 2018). Statistical properties of
these structures may provide animals with critical information to aid odor source localization (Boie
et al., 2018; Reddy et al., 2022). Although we have a growing understanding of the quantification of
features of these odor plumes, the plume properties that mammals use to navigate to an odor source
remain largely unknown. Several temporal properties of odor plumes change with distance from the
odor source and therefore serve as candidate properties that may be used for odor-guided navigation
(Balkovsky and Shraiman, 2002; Vergassola et al., 2007; Schmuker et al., 2016; Michaelis et al.,
2020).

Changes in odor plume temporal properties affect both insect and rodent navigation strategies
(Reddy et al., 2022). One such temporal property is odor intermittency, which we focus on in the
present study. Moths fly faster and straighter upwind within odor plumes with lower odor plume
intermittency (Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994). In addition, the frequency
and duration of time between odor whiffs, both of which can influence intermittency, affect pausing
and orienting behavior of Drosophila (Alvarez-Salvado et al., 2018; Demir et al., 2020). Further
probing into this behavior through mathematical models suggests that combining odor intermittency
sensing along with detection of other temporal odor plume properties enhances odor source local-
ization in flies (Jayaram et al., 2022). While the effect of intermittency on rodent odor-based navi-
gation remains yet to be studied, recent studies have highlighted that rodent navigation strategies
also depend on temporal properties of odor plumes, such as variance of odor whiffs and number of
odor whiff encounters (Bhattacharyya and Bhalla, 2015; Gumaste et al., 2020; Tariq et al., 2021).
Together this indicates the contribution of temporal odor plume features to navigation within an
airborne odor plume.

Acquisition of odor information by mammals navigating within complex odor environments can
be controlled through active sampling in the form of sniffing (Wesson et al., 2009). Rodent sniffing
behavior is highly dynamic during laboratory odor-guided tasks, suggesting that animals actively
change their sampling strategies to adjust the odor information they process (Uchida and Mainen,
2003; Kepecs et al., 2007; Verhagen et al., 2007, Wesson et al., 2008; Wesson et al., 2009,
Reisert et al., 2020). Additionally, during odor plume navigation, sniff frequency is modulated with
changes in olfactory search phases, such as initial investigation and odor-approaching phases (Khan
et al., 2012; Bhattacharyya and Bhalla, 2015; Findley et al., 2021, Reddy et al., 2022). This indi-
cates that even in more naturalistic odor environments, rodent active sampling is highly modulated.
Inhalation patterns also affect neural representation of odor stimuli and early olfactory processing
within the olfactory bulb. Sniffing influences how odors travel in the epithelium and reach odorant
receptors on olfactory sensory neurons (OSNs), influencing resulting neural responses (Mainland and
Sobel, 2006; Scott, 2006). Sustained high-frequency sniffing diversifies and attenuates olfactory
bulb neural responses (Verhagen et al., 2007, Diaz-Quesada et al., 2018; Jordan et al., 2018a;
Eiting and Wachowiak, 2020), as well as elicits changes in olfactory bulb output cells, mitral and
tufted cells (M/T cells), firing rate, and response latencies (Carey and Wachowiak, 2011; Jordan
et al., 2018b; Shusterman et al., 2018). Thus, sniffing has diverse, but quantifiable effects on early
olfactory processing. The intersection between odor environment properties and the modulation of
active sampling patterns may inform neural representations of temporal odor plume properties while
animals are navigating.

The rodent olfactory system has access to temporal information that may aide in localizing odor
sources. Fluctuating odor input can be reliably represented by olfactory bulb glomeruli. In both rats
and mice, M/T cells’ responses correlate with highly dynamic odor input and the correlation strength
depends on the stimulus odor plume statistics (Gupta et al., 2015; Lewis et al., 2021). This depen-
dence of glomerular response properties on odor plume statistics provides further reason to explore
which temporal odor plume properties can be perceptually discriminated and therefore may inform
navigation. Behaviorally, mice can discriminate changes in temporal properties of odors such as odor
duration and odor whiff frequency (Li et al., 2014; Rebello et al., 2014; Ackels et al., 2021). Addi-
tionally, glomerular responses of OSNs and M/Ts can support this temporal discrimination (Ackels
et al., 2021). Based on olfactory bulb response properties, behavioral discrimination abilities, and
dependence of behavioral strategies on odor plume statistics, we hypothesize that mice can use
temporal odor plume properties for odor-guided navigation.
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Here, we focus on the temporal property of odor intermittency and sought to investigate if mice
can use odor intermittency for odor plume navigation. We use a combination of behavioral training
and simultaneous calcium imaging of the dorsal olfactory bulb to determine if mice can detect differ-
ences in odor intermittency and if the olfactory bulb encodes information that enables intermittency
discrimination. Additionally, using an artificial sniffing system we further address how active sampling
strategies affect the olfactory bulb representation of fluctuating odor plumes. We found that mice
can behaviorally discriminate between odor plume samples of high and low intermittency and that
active sampling behavior can predict discrimination success. Additionally, we found that both input
and output neurons in the olfactory bulb encode information that allows for the detection of differ-
ences in odor intermittency and that intermittency encoding in M/T cells is affected by sniff frequency.
We observed heterogeneity in glomerular response properties based on the intermittency of the
odor stimulus, which may inform intermittency discrimination and indicate specific glomeruli that best
contribute to this discrimination.

Results

Behavioral discrimination of intermittency

Several odor plume statistical properties change with increasing distance from the odor source and
therefore serve as candidate properties that can be used for odor-based navigation. One such prop-
erty is intermittency, which measures the fraction of time odor concentration is above a threshold
at a sampled point in space (Crimaldi et al., 2002, Connor et al., 2018). To characterize mouse
behavioral and neural responses to fluctuating odor stimuli of varying intermittency, we designed
a counterbalanced olfactometer in which the airflow remains constant while odor concentration
changes (Figure 1A-C, Figure 1—figure supplement 1A). We were able to produce odor stimuli that
closely follow sample measurements (Figure 1D and E, Figure 1—figure supplement 1B, Figure 1D
maximum cross-correlation=0.87 *= 0.12, lag = 160 ms) taken from an acetone-based odor plume
using planar laser-induced fluorescence (Connor et al., 2018).

To determine if mice could discriminate between fluctuating odor stimuli with varying intermittency
values, we trained a cohort of OMP-GCaMPéf and THY1-GCaMPé6f mice (expressing GCaMPéf in
OSNs and M/T cells, respectively) on a Go/No-Go task to discriminate between low (CS-, intermit-
tency<0.15) and high intermittency stimuli (CS+, 0.2<intermittency<0.8) using methyl valerate, a fruit-
associated odor. Mice were tested on this intermittency task using three different stimulus types: (1)
Naturalistic in which odor samples were taken directly from the odor plume imaged by Connor et al.,
2018, and normalized so that all plume traces reach the same maximum concentration. (2) Binary
naturalistic, which represent a thresholded version of naturalistic stimuli where odor is either at the
maximum concentration or off. (3) Square-wave in which odor pulses of fixed duration and duty cycle
are presented (Figure 1F). Information-theoretic analysis used to study the odor plume cues that may
be informative in determining odor location shows that the resolution of odor concentration repre-
sentation needs only be coarse, while at strategic increments, for successful navigation (Boie et al.,
2018). Binary naturalistic stimuli were hence included to test the effect of intermediate concentration
changes of the naturalistic stimuli on animal performance. Square-wave stimuli were included to test
the effect of the random nature (aperiodicity) and frequency of naturalistic odor whiff presentation
on animal performance. The intermittency values of the delivered odor stimuli, as determined by
the odor concentration measured with a mini photoionization detector (PID), closely matched the
expected intermittency values (Figure 1G, Figure 1—figure supplement 1C). To test the degree to
which odor concentration integration may inform decisions on the intermittency discrimination task,
mice were tested on interleaved trials using a two gain values, where in trials with a gain of 0.5, the
maximum stimulus concentration was halved (Figure 1F, Figure 1—figure supplement 1D).

In the Go/No-Go task, CS+ and CS- were presented in a random order preceded by a tone cue.
When presented with a high intermittency odor stimulus (CS+), head-fixed mice running on a freely
rotating wheel were required to lick during a 1.5 s decision period following the 6 s odor period to
receive a water reward (hit). When presented with a low intermittency (CS-), mice were required to
withhold licking during the decision period to avoid an increased inter-trial interval (miss, Figure 2A,
left, right). Mouse performance on CS+ trials of the intermittency discrimination task increased as
the difference between the CS+ and CS- intermittency values increased, showing that mice can
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Figure 1. Intermittent odor plume stimuli and olfactometer design. (A) Graphical illustration of the intermittency measure. Intermittency () is the fraction
of time an odorant concentration is above a threshold (0.1*C,, where C, refers to the time-averaged source concentration). In a turbulent plume | drops
as a function of distance. Hence, upstream (near the odor source) | tends to be large (here 1=0.6) compared to downstream, distant from the odor
source (here 1=0.09). A steady signal has a high intermittency, and a sporadic signal has a low intermittency. (B) Odor delivery system used to deliver
methyl valerate and 2-heptanone. Two counterbalanced proportional valves maintained constant flow rate. (C) Example of odor concentration (red) and
flow rate (black) on a single trial. (D) Cross-correlation between photoionization detector (PID) measurement (odor concentration) and the command
voltage driving movement of the odor proportional valve. Maximum correlation coefficient is 0.872 + 0.119 at a lag of 160 ms (n=8643 trials). (E) Example
correlation between the trial intermittency value measured from the PID reading vs the intermittency value measured from the voltage command for
one session (n=64 trials). Linear regression: y=1.09x+0.023, r’=0.996, p<0.0001. (F) Example traces of odor concentration at gain 1 (darker colors) and
gain 0.5 (lighter colors) for naturalistic, binary naturalistic, and square-wave stimuli. (G) Median r? of the correlation between voltage intermittency

and PID intermittency for sessions of naturalistic (red), binary naturalistic (orange), and square-wave (blue) stimuli (=48 sessions per stimulus type,
naturalistic median = 0.945 interquartile range [IQR]=[0.937-0.949], binary naturalistic median = 0.998 IQR=[0.997-0.999], square-wave median = 0.987

IQR=[0.982-0.991]).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 1. Additional information on intermittent odor plume stimuli and intermittency calculation.

discriminate intermittency (Figure 2B). Animals performed above chance at intermittency values >
0.3 (t-tests with Bonferroni correction, p<0.0001). Animal performance did not differ based on geno-
type, stimulus type, or the odor used as determined by testing animals using 2-hepatone for the
binary naturalistic condition in addition to methyl valerate (Figure 2—figure supplement 1A, mixed
effects model, n=48 sessions, r’=0.183: performance~intermittency+genotype+stimulus type+gain;
main effect of intermittency, p<0.0001; main effect of genotype, p=0.46; main effect of stimulus type,
p=0.21; 2. Mixed effects model, binary naturalistic for methyl valerate and heptanone, n=48 sessions
per stimulus type, r’=0.179: performance~intermittency+odor; main effect of odor, p=1), showing
that intermediate concentration changes and the unpredictable nature of the odor plume did not
have an effect on intermittency discrimination.

As mentioned, mice were tested on two gain values to determine the degree to which odor concen-
tration integration affected their task decisions. If mice are solely relying on intensity integration, then
halving the odor concentration (gain = 0.5) would be fully equivalent to halving the intermittency at
gain = 1, as the amount of total absorbed odorant during a trial would be identical in both cases.
Figure 2B demonstrates that psychometric curves for gain = 0.5 are not right-shifted versions of gain
= 1 by the expected equivalent doubling of intermittency. Indeed, the intermittency discrimination
thresholds shifted much less (to 0.4, 0.4, and 0.5 at gain = 0.5) than the expected doubling of 0.3 at
gain = 1 (i.e. 0.6 at gain = 0.5). Further, although there was an effect of gain on behavioral perfor-
mance, animal performance at 0.5 gain was significantly better than a psychometric curve prediction
of animal performance solely based on odor concentration integration accordingly (Figure 2—figure
supplement 1B, mixed effects model, n=48 sessions: performance~intermittency+genotype+stim-
ulus type+gain; main effect of gain, p=0.00013, one-tailed t-test with Bonferroni correction, natu-
ralistic intermittency>0.3, p<0.0001; binary naturalistic intermittency>0.5, p<0.0001; square-wave
intermittency<0.8, p<0.0001). Animals’ hit rate also significantly decreased when tested on the Go/
No-Go task with the odor vial replaced with mineral oil (Figure 2C, n=12 mice, two-sample t-test natu-
ralistic: odor hit rate = 0.87 + 0.01, no odor hit rate = 0.23 * 0.05, p<0.0001; two-sample t-test binary
naturalistic: odor hit rate = 0.89+0.01, no odor hit rate = 0.18+0.07, p<0.0001; two-sample t-test
synthetic: odor hit rate = 0.86+0.007, no odor hit rate = 0.23+0.07, p<0.0001), confirming that mice
are using odor to perform the task. Additionally, when trials are binned by the number of whiffs per
trial, the number of whiffs does not have an effect on trial performance, indicating that mice are not
‘counting’ whiffs to perform the intermittency discrimination task (Figure 2—figure supplement 1C,
Spearman correlation, n=48 sessions per stimulus type, p>0.05). Taken together, this suggests that
mice, on a behavioral level, are capable of discriminating fluctuating odors based on intermittency.

Effect of active sampling modulation on intermittency discrimination

Rodent sniffing is highly dynamic during odor exploration and odor-based navigation (Wesson et al.,
2008; Khan et al., 2012). We evaluated active sampling during the discrimination task by measuring
sniffing in real time using a pressure sensor inserted into the odor tube (Figure 2A, right). To assess
how trial behavior and performance depend on active sampling over the 6 s dynamic odor stim-
ulus, we calculated an estimate of perceived odor intermittency over time by mice. Here, we directly
apply the concept of intermittency to the odor sampled during sniffing, thereby retaining a coherent
calculation without introducing new assumptions. We defined estimated perceived odor as the
odor concentration, as measured by the PID, only during sniff inhalation periods (Figure 3A). Using
a thresholded version of the estimated perceived odor (see Methods), we estimated the intermit-
tency perceived by animals based on their active sampling behavior. Average cumulative estimated
perceived intermittency varied across the 6 s trial, however estimated perceived intermittency natu-
rally separates by odor intermittency by the end of the trial (Figure 3B). To assess the effect of odor
intermittency and estimated perceived intermittency on decision-making, we quantified the time at
which each mouse first licked during all trials by intermittency value. Anticipatory licking is used as
a measurement of motivation and early decision-making (Berditchevskaia et al., 2016). Mice lick
earlier for high intermittency trials based on both odor intermittency and estimated perceived inter-
mittency (Figure 3C and D; binary naturalistic: linear regression first lick time vs odor intermittency,
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Figure 2. Mice can discriminate between fluctuating odor stimuli based on intermittency values. (A) Go/No-Go intermittency discrimination task
structure. Animals are presented with a 6 s odor stimulus following a 1.5 s delay and after the odor presentation have a 1.5 s decision period during
which, if they lick for a CS+, they receive a water reward, and if they lick for a CS-, they receive a punishment in the form of an increased ITI. Left:
Imaging and odor delivery setup. Mice are delivered odor through a tube in front of their nose and sniffing is recorded through a pressure sensor

Figure 2 continued on next page
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Figure 2 continued

inserted into the odor tube. Glomerular activity in the dorsal olfactory bulb is imaged using wide-field calcium imaging. (B) Mouse performance

on intermittency discrimination task. At gain 1, mice perform significantly above chance at intermittency values of 0.3 and above (one-tailed t-

test, Bonferroni correction, p<0.0001, n=48 sessions) for all stimulus types. At gain 0.5, mice perform above chance at intermittency values 0.4 and
above, naturalistic and square-wave, 0.5 and above, binary naturalistic (one-tailed t-test, Bonferroni correction, p<0.0001, n=48 sessions). (C) Hit
rates (HR) and false alarm (FA) rates of mice performing the intermittency discrimination task with and without odor. Two-sample t-tests. Naturalistic:
H hrodor=0.87%0.006, Prgnoeodor=0-23%0.055, p<0.0001, praocser=0.18+0.013, tranooder=0.20£0.039, p=0.64, binary naturalistic: piroge=0.89+0.009,
Hinooder=0.18+0.068, p<0.0001, Heaouer=0.18+0.008, Heancos=0.19+0.061, p=0.75, square-wave: piros=0.86=0.007, timneosr=0.23+0.071, p<0.0001,
Hraodor=0.1820.006, Hraneode=0.2120.065, p=0.67.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Intermittency discrimination performance by genotype, odor, and whiff number.

y=—2.25x+5.42, p<0.0001, r?=0.07; binary naturalistic: linear regression first lick time vs estimated
perceived intermittency, y=—2.15x+5.53, p<0.0001, r?=0.05; square-wave: linear regression first lick
time vs odor intermittency, y=—0.93x+4.58, p<0.001, r’=0.01; square-wave: linear regression first lick
time vs estimated perceived intermittency, y=—0.32x+4.4, p<0.001, r’=0.01). For estimated perceived
intermittency values that exceed the range of odor intermittency values, the time of first lick continues
to decrease. Taken together, this suggests that decision-making or motivation on CS+ trials is depen-
dent on the difference between CS+ and CS- trial intermittency values, as well as confirms the validity
of estimated perceived intermittency.

To assess the effect of estimated perceived intermittency on trial outcome, we separated CS+
trials into hit and miss trials and compared the estimated perceived intermittency of these trials across
odor intermittency values. There was an interaction between odor intermittency and trial outcome
(hit or miss) on the average estimated perceived intermittency (generalized linear model, estimated
Pl~intermittency*outcome, binary naturalistic: interaction intermittency*outcome, p<0.0001, square-
wave: interaction intermittency*outcome, p<0.0001). On trials with intermediate odor intermittency
values of 0.4 and 0.5, at which animals initially start performing above chance (Figure 1H), animals
had a lower estimated perceived intermittency on miss trials when compared to hit trials (Figure 3E,
two-sample t-tests hit trials estimated perceived intermittency vs miss trials estimated perceived inter-
mittency, binary naturalistic: intermittency 0.4, p=0.02, intermittency 0.5, p=0.04). Additionally, we
assessed if animals were simply sniffing at higher average frequencies during odor presentation on hit
when compared to miss trials, specifically for intermediate odor intermittencies. Neither trial outcome
nor intermittency influenced average trial sniff frequency (Figure 3—figure supplement 1). Addition-
ally, animals show a greater increase in pupil dilation and greater decrease in running speed at the
onset of the reward period on hit trials when compared to miss trials (Figure 3—figure supplement
2A-F). Sniff frequency, pupil dilation, and running speed are more strongly correlated on hit trials
when compared to miss trials (Figure 3—figure supplement 2G-I), possibly indicating switches in
behavioral state (Findley et al., 2021).

To test the ability of an animal’s estimated perceived intermittency on a given trial to predict trial
identity (CS+ or CS-), we trained a linear classifier using trial estimated perceived intermittency values
to discriminate between CS+ and CS- trials. As more trial time is added to the estimated perceived
intermittency, prediction accuracy increases for all trial intermittency values. Prediction accuracy is
significantly above, and is maintained above, the shuffled control earlier in the trial for high intermit-
tency trials when compared to low intermittency trials (Figure 3F, two-sample one-tailed t-test with
Bonferroni correction, see figure and caption for statistics). This finding provides further support for
the notion that as the estimated perceived difference between CS+ and CS- intermittency values
increase, animals are more likely to lick earlier in the trial. These findings reiterate the decrease in
uncertainty in determining trial identity, as measured by the lick time, at higher intermittency values.

Spatial mapping of glomerular response properties

We next investigated how neural responses in early olfactory processing can support intermittency
discrimination behavior. To do so, we used wide-field imaging to measure glomerular responses
in the dorsal olfactory bulb of OMP-GCaMPé6f mice, in which GCaMPéf is expressed in OSNs, in
awake, behaving animals (Figure 2A, right). Recently Lewis et al., 2021, have shown that glomer-
ular responses track odor plume dynamics with varying strength and that this odor tracking depends
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Figure 3. Estimated perceived intermittency differs based on trial outcome. (A) Example photoionization detector (PID) trace (red) and pressure sensor
trace (black), and blue lines correspond to inhalation periods. Left: Example estimated perceived odor trace (PID trace sampled during inhalation
periods). (B) Average cumulative estimated perceived intermittency (based on estimated perceived odor) across trial time for trials with intermittency
values between 0.1 and 0.8 for binary naturalistic (n=1362 trials, left) and square-wave (n=1341 trials, right). (C) Example PID reading (red), sniff trace
(black), lick trace (blue) during an example high intermittency trial (top, intermittency = 0.8) and low intermittency trial (bottom, intermittency = 0.3).
Gray area indicates 6 s odor stimulus period. Following the stimulus period is the decision period where a water reward is delivered if animals lick for

a CS+ (indicated by the water droplet). (D) Time of first lick binned by intermittency using both odor intermittency (blue) and estimated perceived
intermittency (black) for binary naturalistic (n=1362 trials, left) and square-wave (n=1341 trials, right). (E) Estimated perceived intermittency vs odor
intermittency on hit and miss CS+ trials (n=48 sessions). (F) Right: Square-wave. Accuracy of linear classifier performance in predicting trial identity (CS+
or CS-) for trials of intermittency values between 0.2 and 0.8 (CS+) based on estimated perceived intermittency (gray to black lines). Shuffled control is
shown in red. One-sided two-tailed t-test with Bonferroni correction. Left: Binary naturalistic, intermittency values > 0.3, all times are significantly above
shuffled control (black bar, p<0001). Intermittency values = 0.2, times >4 s are significantly above shuffled control (gray line, p<0001). Right: Square-wave,
intermittency values > 0.3, all times are significantly above shuffled control (black bar, p<0001). Intermittency values = 0.2, times >3 s are significantly
above shuffled control (gray line, p<0001) (n=20 repeats per time bin).

The online version of this article includes the following figure supplement(s) for figure 3:
Figure supplement 1. Average trial sniff frequency vs odor intermittency on hit and miss trials.

Figure supplement 2. Pupil dilation and running speed differ between hit and miss trials.
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on odor plume statistics. We wanted to explore if odor intermittency had an effect on glomerular
tracking of odor plumes, by measuring the cross-correlation between glomerular responses and PID
odor reading of methyl valerate across trials of increasing intermittency (Figure 4A). To characterize
the spatial mapping of glomeruli based on stimulus tracking, we found the relationship between
the odor-response correlation and glomerular location on the surface of the olfactory bulb. When
presented with methyl valerate, the glomeruli in the posterior-lateral region of the olfactory bulb had
the highest average correlation with the stimulus (Figure 4B and C) and this spatial organization is
weaker for lower intermittency stimuli in the medial to lateral direction (Figure 4—figure supplement
1A, x, intermittency; y, medial to lateral odor correlation, y=0.22x+0.21, r’=0.08, p<0.0001). Addi-
tionally, the glomeruli in the posterior-lateral region of the olfactory bulb also have the largest ampli-
tude response and are the fastest to respond to the odor (have the shortest time post sniff onset to
reach 75% of the maximum dF/F value corresponding to that sniff, T75, Figure 4D, Figure 4—figure
supplement 1B). If glomeruli are clustered based on their T75, slower responding glomeruli do not
track high intermittency stimuli as well as faster responding glomeruli (Figure 4E, ANCOVA, Cl =
[0.245 0.409], A in slope: 0.328, p<0.0001). Together, this characterization of glomerular responses
confirms the finding of Lewis et al., 2021, that glomeruli track fluctuating odor stimuli to different
degrees. Additionally, these findings suggest that the glomerular ability to track odor stimuli depends
on spatial patterning and that glomerular responses to odors of varying intermittency depend on
intrinsic glomerular properties (such as T75).

Glomerular subpopulations encode differing representations of
intermittency

To investigate how OSNs encode stimuli of varying intermittency, we calculated a glomerular inter-
mittency (Gl) value for each glomerulus for all trials. Just as we applied the concept of intermittency
to the calculation of estimated perceived intermittency based on odor sampling patterns, here we
directly applied an intermittency calculation to glomerular responses. Gl was calculated by measuring
the fraction of time the z-scored glomerular response trace, relative to glomerular-specific non-odor
period background activity, was above a z-score threshold of 2 during the odor stimulus period
(Figure 5A, right). We found that glomeruli display diverse intermittency representation across stimuli
of varying intermittency based on Gl and sought to identify if groups of glomeruli existed based on
their Gl response properties (Figure 5A, left). To do so, hierarchical clustering on the inter-glomerular
correlation of Gl across odor intermittency was performed (Figure 5B). To elaborate, in measuring an
inter-glomerular correlation, two glomeruli that both show an increase in their Gl value across trials
of increasing odor intermittency would have a high inter-glomerular correlation. Glomeruli clustered
into two groups based on their Gl representation of odor intermittency. Glomeruli in clusters 1 and
2 showed inverse and positive relationships, respectively, between Gl and odor intermittency. Thus,
the average slope between Gl and odor intermittency for each glomerulus, Gl slope, for cluster 1 was
negative and was positive for cluster 2 (Figure 5Ci, two-sample Welch's t-test; Gl slope, peysiert = —0.59
+ 0.04, Pausterz = 0.89 * 0.02, p<0.0001). Additionally, glomeruli in these two clusters differed in their
T75 as well as their average odor correlation (Figure 5Cii-iv, Figure 5—figure supplement 1, two-
sample Welch's t-test; T75, tciuster1 = 179 = 5.6 ms, piciuster2 = 159+0.3 ms, p=0.0024; odor correlation,
Heuster1 = 0.24 £ 0.017, Pyusiers = 0.31£0.01, p<0.0001).

Biophysical diversity and heterogeneity in neural populations enhances information encoding in
the olfactory bulb (Tripathy et al., 2013). To test if the heterogeneous population including cluster
1 and 2 of glomeruli can predict intermittency better than a homogeneous population including only
one of the two clusters, we used a 20 times threefold cross-validated linear classifier to predict trial
identity (CS+ or CS-) using Gl values. A homogeneous population including only glomeruli belonging
to cluster 1 or cluster 2 predict trial identity with high accuracy (cluster 1: pyggomeru; = 0-87%0.01,
Mosgiomeruti = 0-87+0.01; cluster 2: Wiogomersi = 0-88%0.01, Moseiomensi = 0.90%0.01). However, the
heterogeneous population, which includes glomeruli of both clusters, shows slightly, but consistently
and significantly, higher prediction accuracy using the linear classifier (Figure 5D, ANOVA [10-25
glomeruli]: p<0.0001, maximum accuracy for each number of glomeruli added to model: Maxq giom-
erui=40% cluster 1, Maxs giomerui=50% cluster 1, Maxg giomeri=60% cluster 1, Max,s giomerui=70% cluster 1).
Glomeruli have varying strengths in Gl slope, and we sought to understand if the strength of Gl slope
has an effect on the ability of a glomerulus to contribute to trial identity prediction. Using a linear
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Figure 4. Spatial mapping of glomerular response properties across intermittency. (A) Example low intermittency trial (top) and a high intermittency
trial (bottom). Photoionization detector (PID) trace (red), sniff trace (black), and deconvolved AF/F traces of two example glomeruli (left, color coded
based on odor correlation color bar, right). Example spatial maps of glomeruli color coded based on glomerular response correlation with odor.

Two example glomeruli shown in the left traces are labeled, middle. Cross-correlation between deconvolved AF/F and odor for each glomerulus for
example trials, right. (B) Glomerular odor correlation organized based on glomerulus anterior to posterior and medial to lateral location in the dorsal
olfactory bulb (low intermittency example, top two graphs; high intermittency example, bottom two graphs). Low intermittency: M-L r=0.34, A-P r=0.58;
high intermittency: M-L r=0.58, A-P r=0.62. (C) Correlation coefficient of glomerular odor correlation in each dimension (based on graphs in B for all
trials). Trial averages are separated by odor intermittency value (colorbar). M-L:pin0.1.02=0.23, Hini03.04=0.33, Hin05.06=0.35, Hini07.06=0.37; A-P: Uin0.1.0.=0.46,
Hin0304=0.48, Hini05.06=0.48, Uin07.05=0.50. (D) Spatial odor map (z-score amplitude, open circle) and spatiotemporal odor map (T75, gray) (for methyl
valerate). M-L: U, ccoreamplitnd=0.18, pr75=-0.33; A-P: U, scoreiamplitua=0.37, pr5=-0.32. (E) Probability density function of T75 for all glomeruli and Gaussian
curve fits for fast responding glomeruli cluster (dark gray) and slow responding glomeruli cluster (light gray) (top). Glomerulus odor correlation on trials
with intermittency >0.7 vs glomerulus odor correlation on trials with intermittency <0.2. Fast responding glomeruli (low T75): y=0.65x-0.05, r’=0.77,
p<0.0001. Slow responding glomeruli (high T75): y=0.29x+0.026, r*=0.53, p<0.0001 (n=244 glomeruli).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relationship between odor correlation and spatial location, response amplitude, and t75.
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Figure 5. Intermittency encoded in olfactory sensory neuron (OSN) glomerular subpopulations. (A) Color maps of glomerular intermittency binned

by trial odor intermittency. Glomeruli are sorted by their glomerular intermittency (Gl) slope (glomerular intermittency vs odor intermittency). Left:
Example photoionization detector (PID) odor trace (red), raw sniff trace (black), and z-scored trace from one glomerulus. Horizontal line at y=2 indicates
the threshold for glomerular intermittency quantification. (B) Left: Dendrogram for hierarchical cluster analysis. Gray indicates cluster 1 (37 glomeruli)

Figure 5 continued on next page
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and black indicates cluster 2 (191 glomeruli). Middle: Inter-glomerular correlation matrix. Colorbar corresponds to correlation coefficient (r) between
two glomeruli (glomerular intermittency vs odor intermittency). Right: Colormap of normalized glomerular intermittency (normalized to individual
glomerular maximum for clearer visualization of two clusters). Rows sorted by hierarchical clustering. (C) (i) Average slope of glomerular intermittency
vs odor intermittency of cluster 1 and cluster 2 (Uguster1=—0.59£0.044, Ueer2=0.89+0.024). (i) Average z-score response amplitude for glomeruli in cluster
1 and cluster 2 (Hauser1=6.3%0.55, Uguerern=7.5+0.33). (iii) Average T75 for glomeruli in cluster 1 and cluster 2 (Ugusien=179.2+5.6 ms, Hgysiern=159.3£3 ms).
(iv) Average correlation between glomerular deconvolved AF/F traces and PID reading for glomeruli in cluster 1 and cluster 2 (pgueer1=0.24+0.017,
Heiusterz=0.31£0.009). (D) Accuracy of linear classifier trained using 10, 15, 20, and 25 glomeruli (colorbar) at varying fractions of cluster 1 and cluster 2
glomeruli. (E) Left: Histogram of abs(Gl slope) for all glomeruli. Black line indicates the bottom 25th percentile (0.53) and red line indicates the top
25th percentile (1.03). Right: True positive accuracy (CS+ predicted as CS+) of linear classifier trained on 0-50 glomeruli for glomeruli with the top 25th
percentile of Gl slopes (red) and the bottom 25th percentile of Gl slopes. Dashed line indicates hit rate of animals on behavioral task (0.87).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Example clusters from three different animals.

Figure supplement 2. Intermittency encoded in mitral and tufted (M/T) cell glomerular subpopulations.

classifier, we found that the glomeruli in the top 25th percentile of Gl slopes predict trial outcome
better than those in the bottom 25th percentile of Gl slopes. Just 22 glomeruli with high Gl slopes are
enough to predict trial outcome at the same accuracy as the average animal hit rate (Figure 5E). Thus,
even a small number of glomeruli have access to enough information to encode trial intermittency and
heterogeneity among glomerular responses to stimuli of varying intermittency may be beneficial for
intermittency discrimination. Using THY1-GCaMP6f mice, in which GCaMPéf is expressed in output
cells of the olfactory bulb, we found similar glomerular populations as well as a consistent ability of
these populations to predict trial identity (Figure 5—figure supplement 2). This suggests that access
to information that can encode intermittency may arise at the level of olfactory input.

Sniff frequency-dependent glomerular representation of intermittency
While performing the intermittency discrimination task, mice modulate their active sampling behavior.
To systematically measure the effect of sniff frequency on glomerular representation of intermittency,
we performed a double tracheotomy procedure on anesthetized animals and used an artificial sniffing
system to control their nasal airflow (Cheung et al., 2009). In this design, nasal airflow is decoupled
from tracheal breathing. We tested glomerular responses to odor stimuli with a range of intermit-
tency values at sniff frequencies of 2, 4, 6, and 8 Hz. This range of sniff frequencies represents those
observed during rest to those observed during engaged active sampling (Wesson et al., 2008). We
presented anesthetized animals with two fruit-associated odors, methyl valerate and 2-heptanone,
with neutral preference indices in mice (Fletcher, 2012; Saraiva et al., 2016). In addition to having
different functional groups, these odors also elicit different spatiotemporal response properties in the
olfactory bulb (Figure 6—figure supplement 1A). Overall, in both OSNs and M/T cell populations,
each individual glomerulus represented a small range of Gl values, whereas the entire population
encoded a much larger range of Gl values, representative of the range of stimulus intermittency values
(Figure 6A, Figure 7A, glomeruli sorted by the Gl slope at 2 Hz, Figure 6—figure supplement 1B).
Additionally, there is an interaction effect between odor intermittency, sniff frequency, and genotype
on Gl (Figure 6—figure supplement 1C, GLM, Gl~intermittency+sniff frequency+genotype, methyl
valerate: pPs yay interaciion <0.0001, r?=0.40; 2-heptanone: Pz yay interaction <0-0001, r?=0.59).

Given that intermittency, sniff frequency, and cell type all have a significant effect on glomerular
representation of intermittency, we sought to further probe the influence of these factors. To quantify
the effect of sniff frequency on recruiting glomeruli that encode intermittency differences, the number
of glomeruli that show a significant effect of odor intermittency on Gl was determined. When presented
with methyl valerate, OSNs show a 13.4% decrease in the number of intermittency-encoding glomeruli
from 2 to 8 Hz sniff frequency (Figure 6B, one-way ANOVA, 2 Hz = 82.3% intermittency-encoding
glomeruli, 8 Hz = 68.9% intermittency-encoding glomeruli), whereas M/T cells show a 25.2% increase
in the number of intermittency-encoding glomeruli from 2 to 8 Hz sniff frequency (Figure 6B, one-way
ANOVA, 2 Hz = 36.7% intermittency-encoding glomeruli, 8 Hz = 61.9% intermittency encoding glom-
eruli). When presented with 2-heptanone, both OSNs and M/T cells show an increase in the number of
intermittency-encoding glomeruli from 2 to 8 Hz sniff frequency, showing a 22.4% and 25.1% increase,
respectively (Figure 7A and B, OSN 2 Hz = 65.2%, OSN 8 Hz = 87.6%, M/T 2 Hz = 29.5%, M/T 8 Hz =
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Figure 6. Effect of sniff frequency on glomerular representation of intermittency (methyl valerate). For all graphs purple indicates olfactory sensory
neurons (OSNs) (OMP-GCaMPéf) and green indicates mitral and tufted (M/T) cells (THY1-GCaMPéf). (A) Heatmap of glomerular intermittency (GI) across
trials of 0.2, 0.5, and 0.8 odor intermittency values (colored heatmaps). Glomeruli are sorted based on their Gl slope at 2 Hz. Gray bars next to heatmaps
indicate the Gl slope of each individual glomerulus. (B) % of intermittency encoding cells across sniff frequencies (OMP n=367 glomeruli, 7 mice; THY
n=294 glomeruli, 6 mice). (C) Gl slope as a function of sniff frequency. (D) Left: Gl slope at 8 Hz as a function of Gl slope at 2 Hz. Right: The top row
shows example photoionization detector (PID) readings from square-wave trials with a fixed odor frequency of 0.83 Hz (5 pulses in 6 s) at intermittency
values of 0.2 (blue), 0.6 (red), 0.8 (yellow). The first column represents averages from 2 Hz sniff frequency trials and the second column represents
averages from 8 Hz sniff frequency trials. The second row shows example z-score deconvolved dF/F traces of a glomerulus with a low Gl slope at 2 sniff
frequency Hz and a high Gl slope at 8 sniff frequency Hz. The last row shows example z-score deconvolved dF/F traces of a glomerulus with a high Gl
slope at 2 Hz and a low Gl slope at 8 Hz. Black line at y=2 indicates the threshold for determining intermittency (z-score value of 2).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional quantification of the effect of sniff frequency on glomerular representation of intermittency.

Figure supplement 2. Effect of sniff frequency on odor correlation, sniff correlation, air response, and odor response.

54.6%). Additionally, previous studies have shown that increases in sniff frequency lead to more diver-
sity in neural responses of M/T cells (Diaz-Quesada et al., 2018; Jordan et al., 2018a). Similarly, we
find that at higher sniff frequencies, glomerular intermittencies are more variable (Figure 6—figure
supplement 1D, Bartlett's test, p<0.0001). Having shown that glomeruli with a greater change in Gl
across odor intermittency, Gl slope, can better predict trial intermittency, we quantified changes in
glomerular Gl slope based on sniff frequency. When presented with both methyl valerate and hepta-
none, M/T cells that significantly encode intermittency also show an increase in their Gl slope as sniff
frequency increases (Figure 6C, Figure 7C, Spearman correlation, methyl valerate: r=0.36, p<0.0001,
n=294 glomeruli; 2-heptanone: r=0.29, p<0.0001, n=271 glomeruli). These increases in Gl slope may
in part be due to the increases in odor tracking (i.e. cross-correlation between glomerular responses
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Figure 7. Effect of sniff frequency on glomerular representation of intermittency (2-heptanone). For all graphs purple indicates olfactory sensory
neurons (OSNs) (OMP-GCaMPéf) and green indicates mitral and tufted (M/T) cells (THY1-GCaMPéf). (A) Heatmap of glomerular intermittency across
trials of 0.2, 0.5, and 0.8 odor intermittency values (colored heatmaps). Glomeruli are sorted based on their glomerular intermittency (Gl) slope at 2 Hz.
Gray bars next to heatmaps indicate the Gl slope of each individual glomerulus. (B) % of intermittency encoding cells across sniff frequencies (OMP
n=241 glomeruli, 6 mice; THY n=271 glomeruli, 6 mice). (C) Gl slope as a function of sniff frequency. (D) Gl slope at 8 Hz as a function of Gl slope at 2 Hz.
(E) Linear classifier performance (accuracy) over 240 glomeruli when trained on trials of four different sniff frequencies (2, 4, 6, 8 Hz). 60 iterations (20
times threefold) per classifier. Exponential plateau fit, OMP: 2 Hz: plateau = 0.95, Y=0.95-(0.44)*(e%%*), r’=0.67; 8 Hz: plateau = 0.98, Y=0.98-(0.37)*(e
004, r2=0.7; THY: 2 Hz: plateau = 0.85, Y=0.85-(0.4)*(e™%), r’=0.54; 8 Hz: plateau = 0.94, Y=0.94—(0.4)*(e*%), r’=0.64.

and PID signal), decreases in sniff tracking (i.e. cross-correlation between glomerular responses and
sniff pressure signal), and decreases in air responses as sniff frequency increases (Figure 6—figure
supplement 2). Together this suggests that at higher sniff frequencies, more glomeruli encode inter-
mittency, as well as show a greater range in their representation of intermittency at the level of olfac-
tory bulb output.

We next assessed if the same glomerular populations best represent intermittency at both low
and high sniff frequencies. Using Gl slope to represent the degree to which glomeruli contribute to
intermittency prediction, we found that when presented with methyl valerate, both input and output
cells show a negative relationship between Gl slope at 8 and at 2 Hz sniff frequency (Figure 6D, left
and right, linear regression, OMP: y=—0.27x+0.38, r’=0.05, p<0.0001; THY: y=—0.40x+0.44, r?=0.11,
p<0.0001). This shows that different glomeruli show the greatest change in Gl across odor inter-
mittency (Gl slope) at 2 and 8 Hz sniff frequency, suggesting that different glomerular populations
encode intermittency at low and high sniff frequencies. However, we found that when presented
with 2-heptanone, the same glomeruli have the greatest Gl slope at both 2 and 8 Hz sniff frequency
(Figure 7D, linear regression, OMP: y=0.57x+0.29, r?=0.35, p<0.0001; THY: y=0.94x+0.15, r?=0.35,
p<0.0001). Together this leads to the understanding that the effect of sniff frequency on the glomerular
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population that most strongly encodes intermittency is odor-specific (GLM: Gl slope~sniff frequen-
cy*odor, p<0.0001, r*=0.14, sniff frequency*odor interaction, p<0.0001).

Although sniff frequency has an effect on both the number of glomeruli that encode intermit-
tency and the strength of this encoding (Gl slope), there are only slight differences between the
prediction of odor stimulus intermittency based on sniff frequency. We trained a linear classifier to
predict odor intermittency value (0.2, 0.5, or 0.8) based on trial Gl across sniff frequencies. Using
glomeruli responding to methyl valerate, the classifier performs better at low sniff frequencies and
plateaus for OSNs at 91% for 2 Hz and 86% for 8 Hz (Figure 6—figure supplement 1E, exponential
plateau fit). For M/T cells, the classifier plateaus at 92% for 2 Hz and 93% for 8 Hz, showing little
difference in performance between trials of different sniff frequencies. Using glomeruli responding
to 2-heptanone, the classifier performs better at high sniff frequencies for both OSNs and M/T cells
(Figure 7E, exponential plateau fit, OSNs: plateaus at 95% for 2 Hz and 99% for 8 Hz, M/Ts: plateaus
at 85% for 2 Hz and 94% for 8 Hz). However, for both input and output cells, across all sniff frequen-
cies and odors tested, less than 50 glomeruli are required to exceed a prediction accuracy of 75%
(Figure 7E, Figure 6—figure supplement 1E). Overall, this suggests that although sniff frequency has
an effect on prediction of odor intermittency, prediction accuracy is high using glomerular information
from trials at all sniff frequencies between 2 and 8 Hz. This finding is congruent with previous studies
showing that although sniff frequency alters olfactory bulb response properties, it does not influence
performance on odor discrimination tasks (Jordan et al., 2018b).

Discussion

Mammals are likely often required to rely on and navigate within a highly dynamic and complex odor
plume environment in order to find food sources, locate mates, and avoid predators (Vergassola
et al.,, 2007; Reddy et al., 2022). Although it is well established that mammals are skilled at navi-
gating within these complex environments, the properties of odor plumes that they use for source
localization remain largely unknown (Baker et al., 2018). Here, we show that mice can discriminate
odor intermittency, a temporal odor plume property that varies with distance from the odor source,
and that early olfactory processing encodes intermittency. We demonstrate that active sampling
patterns may affect intermittency discrimination and sniff frequency influences glomerular represen-
tation of intermittency. Additionally, we have shown that glomeruli encode information that enables
reliable discrimination between odor plume samples based on intermittency. Overall, these findings
suggest that intermittency can be used to inform odor-guided navigation in mice.

We found that mouse performance on the intermittency discrimination task is not affected by the
odor used or frequency of odor whiffs, but is affected by the concentration gain. This shows that
intermittency is a temporal property of odor plumes that can be detected independently from other
temporal properties, such as whiff frequency. This distinction may be important if different temporal
properties provide at least partially independent information about location within the odor plume, as
suggested by Jayaram et al., 2022. Other temporal properties that may indicate distance from and
composition of an odor source are odor whiff frequency and the temporal correlation of fluctuating
odors, both of which mice are capable of detecting (Hopfield, 1991, Schmuker et al., 2016, Ackels
et al., 2021; Dasgupta et al., 2022). It is possible that these temporal properties are either used
independently or in concert during odor navigation. Additionally, we show that concentration gain
has an effect on intermittency discrimination, suggesting that mice are in part using odor concen-
tration integration for intermittency discrimination. While further work needs to be done to explore
discrimination of odor stimuli based on odor integration, a plethora of work suggests that rodents can
discriminate odor duration and intensity both at the neural and behavioral levels (Rubin and Katz,
1999; Rospars et al., 2000; Spors and Grinvald, 2002; Li et al., 2014; Wojcik and Sirotin, 2014;
Sirotin et al., 2015; Li et al., 2020). In some odor plumes, odor concentration and odor intermittency
both increase as distance from the odor source decreases, indicating that the integral of measured
odor would also increase (Connor et al., 2018). It is possible that odor intermittency and odor inte-
gration might inform odor source localization in a partially dependent manner, where both statistical
properties provide information on location within the plume.

We found that glomeruli show heterogeneous responses to odor plume stimuli across a range of
intermittency values. We primarily found two subsets of glomeruli with inverse representations of
intermittency and select glomeruli within both populations best represent changes in intermittency.
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Our results are consistent with previous findings showing that a subset of glomeruli track odor plume
dynamics, and that the degree of odor tracking depends on odor plume statistics (Lewis et al., 2021).
However, our findings contradict those suggesting that fluctuating odors are linearly processed by
M/T cells (Gupta et al., 2015). This discrepancy may be due to our use of stimuli across a range of
intermittencies and resulting non-linearities may only arise in response to plume samples of certain
odor plume statistics not previously tested. Biophysical diversity in the mammalian olfactory bulb
allows for increased information encoding (Padmanabhan and Urban, 2010; Tripathy et al., 2013),
which may be particularly relevant during odor plume navigation where the odor plume property that
is most salient for source localization may change along an animal’s trajectory within the plume (Rigolli
et al., 2021, Jayaram et al., 2022). Thus, the heterogeneity we observe among glomeruli may yield
specialized populations, important for feature selection of different statistical properties within the
odor plume. Ultimately, these populations could be advantageous for efficient information encoding
during odor plume navigation. Our results suggest glomeruli have varying lag times in their odor
correlation and if future studies indicate a response synchronicity within these glomerular clusters, this
concerted activity could be important in robustly encoding intermittency (Gill et al., 2020). We show
that both populations can predict intermittency and show distinct response properties (Figure 5).
Cluster 2 glomeruli, which show higher glomerular-response correlations may not only be effective at
encoding intermittency but may also convey information about odor whiff timing or frequency; both
of which provide additional information about an animal’s distance to the odor source (Crimaldi and
Koseff, 2001; Celani et al., 2014).

There are several properties of glomerular responses that can be altered by sniff frequency which
can influence intermittency representation. Some of the properties that we have considered that may
cause an increase in Gl representation are a reduction of baseline air responses (the threshold for Gl
is dependent on the background response), an increase in response amplitude (so that it exceeds
the threshold), an increase in the number of responses per unit time, or a decrease in adaptation
(preventing sustained response from dropping below the threshold). We find that the average glomer-
ular odor-response amplitude does not change with sniff frequency, but the air response amplitude
decreases as sniff frequency increases. At low sniff frequencies, responses are more highly correlated
with the sniff trace, whereas at higher sniff frequencies, responses are more highly correlated with
the odor trace. This suggests that at higher sniff frequencies, odor responses are more representa-
tive of the stimulus due to more frequent sampling (Figure 6). Additionally, although high-frequency
sniffing attenuates odor responses (Verhagen et al., 2007, Wachowiak et al., 2009), G| on average
increases with sniff frequency, suggesting that glomerular responses do not fall below the threshold
for Gl calculation due to adaptation. Using these findings, we reason that high sniff frequency in part
changes intermittency representation by decreasing background air responses and more accurately
representing the odor stimulus. These changes alone provide a reasonable understanding of why we
observe an increase in M/T cell representation of changes in intermittency at high sniff frequencies.

When exploring the role of intermittency in mouse odor-based navigation, two main questions to
address are: Is it feasible for mice to detect changes in odor intermittency? If so, are they using inter-
mittency for navigation? We address the former by using a behavioral assay to determine that mice can
discriminate odor intermittency and that the olfactory bulb can support this discrimination. The results
of our work provide motivation to further study how mice may use intermittency when navigating
complex odor environments. Future work focusing on shifts in navigation strategies based on changes
in odor plume intermittency will further elucidate how mice use this property for source localization
and enable more informed modeling approaches to the use of intermittency. Recently, head-mounted
sensors have been implemented to measure odor concentration in real time during plume navigation
in a laboratory arena (Tariq et al., 2021). Such techniques provide important advancements that can
be used to understand the correlation between changes in odor plume statistics experienced by a
navigating animal and the behavioral decisions made along its trajectory. However, a limitation in
studying rodent navigation in the laboratory environment is the ability to recapitulate naturalistic odor
environments where more complex navigation strategies may be needed. To address this, virtual odor
environments have begun to be implemented (Baker et al., 2018; Radvansky and Dombeck, 2018,
Fischler-Ruiz et al., 2021). The use of virtual odor plumes presents an opportunity to manipulate the
odor environment in a systematic manner and expose differences in navigation strategies when for
example intermittency changes with distance from the odor source versus when it does not (Jayaram
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et al., 2022). Measuring if mice can detect within-stimulus increases or decreases in odor plume inter-
mittency will also help elucidate the timescale over which mice can detect intermittency differences.

Our data show that mice can discriminate odor intermittency and that early processing in the
mouse olfactory system encodes intermittency. Intermittency influences and may be critical for odor
navigation in invertebrates. Here, we take the first steps in showing that intermittency may be used
by rodents for odor plume navigation and provide further support that timing-based properties can
be used for source localization.

Methods

Olfactometer design

Filtered high purity nitrogen (Airgas, NI ISP300, <0.1 ppm total hydrocarbons, H,O, and O, contam-
inants) was carbon filtered and passed through PFA vials (Savillex 200-30-12) containing odor (2%
methyl valerate in mineral oil, Sigma-Aldrich product #1489977; 2% 2-heptanone in mineral ail,
Sigma-Aldrich product # 537683; stored in the dark under nitrogen at room temperature). Addition-
ally, the carbon-filtered nitrogen line was split before passing through the odor and is directed to an
empty PFA vial used for counterbalancing odor flow (Figure 1B). Both odor delivery and counter-
balanced nitrogen delivery are controlled by independent EVP Series Clippard Proportional Valves
and an EVPD-2 valve driver (Clippard Instrument Laboratory, Inc, Cincinnati, OH, USA). Proportional
valves were calibrated so as to ensure that final combined nitrogen and odor flow is maintained at
50 mL/min. Combined nitrogen and odor flow was confirmed using a flow meter (Omron Electronic
Components Product # D6F-PO010A1). Combined nitrogen and odor flow is injected orthogonally
to and diluted using clean air (Airgas, Al UZ300, ultra-zero grade, <1 ppm total hydrocarbons, CO,,
and CO contaminants) that is carbon filtered and passed through a mass flow controller so that it is
maintained at 200 mL/ min. All connections within the olfactometer design were made using 1/8"” OD
Teflon tubing (4 mm ID, 8 mm OD). Odor delivery is confirmed using a mini PID (200B miniPID, Aurora
Scientific). Suction flow through the PID was fixed at 90 mL/min through a flow meter (Cole Parmer
PMR1-010977). Final airflow post PID suction is 160 mL/min and the odor dilution is delivered through
a Teflon nose cone. Final odor delivery consists of a 0-20% airflow dilution of a 2% liquid odor dilution
in mineral oil.

Olfactory stimuli

Plume data

Odor plume data was collected in the lab of Dr. John Crimaldi using a flow chamber compatible with
planar laser-induced fluorescence according to the specifications indicated by Connor et al., 2018.
Digital mapping of this data has been made available on the DataDryad database (DataDryad, https://
doi.org/10.5061/dryad.zgmsbcc71). Odor plume traces (6 s each) within the digital odor plume were
made at varying distances directly in line with the odor source (60, 120, and 240 y pixel coordinates
from the release point, x=245 and y=0, out of 495x495 pixels) to obtain stimuli of varying intermit-
tency values. Samples were normalized so that all traces reached the same maximum concentration
so as to eliminate effects of maximum concentration differences dependent on distance from the
odor source. Stimuli were delivered at two gain levels, a gain of 1 and a gain of 0.5. For the latter,
the sample trace was scaled so that the maximum concentration was half of that delivered for a gain
of 1. Intermittency is the probability that the odor concentration exceeds a threshold at a location
of an odor plume. Intermittency y values of each sample were calculated according to the following
equation, where C is the concentration trace for a given stimulus and C, is the source concentration:

7 = prob [C > 0.1Cy]

Naturalistic stimuli

Eight unique odor traces were extracted from the digital odor plume with an intermittency value <0.15
and four unique stimuli were created for each interval of 0.1 for intermittency values between 0.2 and
0.8 (e.g. four unique stimuli with intermittency values 0.2<y<0.3).
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Binary naturalistic stimuli

Binary naturalistic stimuli were generated using the same time-concentration traces as the natural-
istic stimuli. Binary naturalistic stimuli were binarized using a threshold of 0.1Cj so that all C > 0.1Cy
reached the maximum concentration. In this set of stimuli, there were no intermediate concentration
changes (i.e. odor was either at maximum concentration, 20% of final airflow dilution using 2% liquid
odor in mineral oil, or off).

Square-wave stimuli

Square-wave stimuli were generated using the Square() function in MATLAB (MATLAB 2021b, Math-
Works, MA, USA) with periods between 1/3m and 8/3m (pulse repetitions between 1 and 8 pulses in
6 s at intervals of 1 pulse) and with duty cycles between 10 and 80 at intervals of 10.

Optical imaging system and experimental setup

Olfactory bulbs of awake head-fixed animals were imaged using wide-field fluorescent microscopy.
A high-power LED 470 nm (Thorlabs, Newark, NJ, USA) stimulation driven by a T-Cube LED Driver
(LEDD1B, Thorlabs, Newark, NJ, USA) was used for the duration of the 9 s trial (but remained off during
the inter-trial interval to avoid photobleaching effects). Imaging was collected using a RedShirtimaging
NeuroCCD256 optical imaging system. The epifluorescence macroscope used is a custom-made tandem-
lens type with a 135 mm F/3.5 Nikon objective lens and 85 mm F/4 Nikon imaging lens, yielding a x1.59
magnification and 4.2 mm field of view. The fluorescence filter set is BL P01-514 (excitation filter), LP515
(dichroic), and LP530 (emission filter; Semrock, Lake Forest, IL, USA). Data was collected using Neuroplex
Software (Redshirtimaging) and converted into MATLAB-compatible files for further analysis.

Animals were head-fixed to a custom stationary bar made to fit the stainless-steel head-post over a
freely-rotating 20 cm diameter wheel moving on a spinning axis. The behavioral setup was equipped
with an automated imaging-compatible Go/No-Go task setup implemented using custom LabView
software. A rotary encoder (Broadcom/Avago HEDS-5500/5600 series) was attached to the axis of
the wheel to measure running speed. An infrared beam break sensing lick-spout allows for lick-based
reward delivery and lick-counting. Additionally, a pressure sensor (Amphenol 0.25 INCH-D-4V) is
inserted into the nose cone to measure sniffing during the behavioral task.

For pupil tracking, an infrared CMOS camera (Basler, acA1920) was positioned in front of the
animal along with an 850 nm LED (M850L3, Thorlabs) and an 850+8 nm bandpass filter (FB850-40,
Thorlabs), to illuminate the eye. Image acquisition from the pupil camera was synchronized with the
start of each trial. Custom software code written in LabView (National Instruments) controlled image
acquisition, storage, and data analysis. Images were acquired at 30 Hz for the duration of the trial
and analyzed in real time to extract the pupil diameter. Each frame of the image series was passed
through an edge detection algorithm developed using the vision development module in LabView.
A region-of-interest in the shape of an annulus was drawn over the pupil with an inner circle near the
center of the eye and the outer circle extending past the edge of the pupil with enough room to allow
for dilations and constrictions. The edge detection algorithm identified dark to light transitions points
starting from the inner circle to the outer circle. The pupil diameter was calculated by fitting a circle
using the detected edges. The threshold level for edge detection and number of transitions points to
be identified were adjusted to get the best fit for each mouse.

Artificial sniffing system

Components for the artificial sniffing system used a mounted 5 mL glass syringe piston (Air-Tite,
7.140-33) coupled via a custom 3D-printed connector to a linear solenoid actuator (Soft Shift Part#
192907-023) under the control of a voltage-driven command (Canfield Connector B950 Series) by
custom LabView software. The driven movement of the actuator allows for gradual push and pull of air
through the syringe. The inlet end of the syringe was attached to tubing connecting to the nasopha-
ryngeal cavity of the tracheotomized mouse. This design is according to the specifications described
in Cheung et al., 2009. Sniff traces were obtained from the Wachowiak lab (previous published traces
in Cheung et al., 2009) and resampled to produce traces at sniff frequencies of 2, 4, 6, and 8 Hz.

Mice
For behavioral experiments, seven OMP-GCaMPé&f mice (5 males, 3 females; generated by crossing
OMP-Cre [Jax Stock #006668; B6;129P2-Omp'™m¥eMem/MomJ] with GCaMPéf floxed transgenic
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mice [Jax Stock #024105; B6;129S-Gt(ROSA)26Sortm?>1(CAG-GCaMPsiHze/ J))  and  six THY1-GCaMP6f
mice (2 males, 4 females; Jax Stock #024339; C57BL/6J-Tg(Thy1-GCaMP6f)GP5.11Dkim/J) aged
10-12 weeks were used. Mice were housed up to 3 per cage under a 12-12 hr reverse light-dark
cycle. The experimental design flow was carried out as follows: animals underwent the head-post
surgical procedure, 48 hr after head-post-surgery mice were water regulated and handled for 5 days,
mice were acclimated to head-restraint for 3 days, mice were trained on the Go/No-Go task (mean
+ SD: 3.7 + 1.8 days), mice were tested on the Go/No-Go task until meeting criteria (mean + SD:
7.2 + 6.4 days), water regulation was temporarily suspended 48 hr prior to surgery, mice underwent
the optical window procedure, 48 hr after optical window procedure mice were water regulated and
tested on the Go/No-Go task while performing calcium imaging on the olfactory bulb (3.7 + 2.3 days
per condition).

For anesthetized imaging, 13 OMP-GCaMPéf mice (heptanone: 3 males, 3 females; methyl valerate:
4 males, 3 females; generated by crossing OMP-Cre [Jax Stock #006668] with GCaMPéf floxed trans-
genic mice [Jax Stock #024105]) aged 10-12 weeks and 12 THY1-GCaMPéf mice (heptanone: 3 males,
3 females; methyl valerate: 3 males, 3 females; Jax Stock #024339) were used. Mice were housed up
to 3 per cage under a 12-12 hr reverse light-dark cycle.

Primer sequences

FL-GCAMP6F: Common Reverse: CCGAAAATCTGTGGGAAGTC; Wild Type Forward: AAGG
GAGCTGCAGTGGAGTA; Mutant Forward: ACGAGTCGGATCTCCCTTTG.

OMP-CRE: Wild Type Forward: AGTTCGATCACTGGAACGTG; Wild Type Reverse: CCCA
AAAGGCCTCTACAGTCT; Mutant Forward: TAGTGAAACAGGGGCAATGG; Mutant Reverse:
AGACTGCCTTGGGAAAAGCG.

THY1-GCAMP6F: Mutant Forward: AAAGAGAGGGGCTGAGGTATTC; Mutant Reverse: CTCG
AGATCCTCTAGGTGCC.

Surgical procedures

Head-post procedure

Head-post implant procedure was performed as outlined in Baker et al., 2019. Animals were anes-
thetized using isoflurane (4% for induction, 1.5% for maintenance) and monitored by testing pedal
reflex withdrawal. Core body temperature was monitored using a rectal thermometer coupled to a
thermostatically controlled heating pad to maintain a temperature of 37°C. Carprofen (5 mg/kg, s.c.)
and buprenorphine (50 pg/kg, i.m.) were administered prior to surgery. The head of the isoflurane-
anesthetized mouse was shaved, scrubbed with betadine followed by alcohol, then secured in a
stereotaxic head holder. The skin caudal to Bregma was retracted and a 9x40x1.5 mm aluminum
plate was cemented to the skull using MetaBond (Parkell C & B Metabond Quick Self-Curing Cement
System).

Optical window procedure

Thinned-skull dorsal olfactory bulb optical window surgery was performed as outlined in Baker et al.,
2019. Animals were anesthetized, monitored, and provided analgesics as described in the head-post
procedure. Mice received supplemental carprofen 24 hr post surgery. Animals were placed in a stereo-
taxic holder, and the animals were prepared using aseptic procedures. For exposure of the dorsal
olfactory bulb, the skin was removed, and the underlying bone was thinned using a dental drill. A thin
layer of cyanoacrylate was applied to the dorsal window.

Tracheotomy procedure for anesthetized imaging

No earlier than 48 hr after optical window instillation, animals were anesthetized with ketamine:dex-
medetomidine (100:0.5 mg/kg, i.p., 25% original dose booster). Additionally, animals were admin-
istered atropine (0.03 mg/kg, i.p.). The skin of the neck was shaved and scrubbed using betadine
followed by alcohol. An incision in the skin was made and muscle bundles overlying the trachea were
separated. An incision was made in caudal end of the trachea and sterilized polyethylene tubing
(0.86 mm ID, 1.27 mm OD) was installed and directed toward the lungs. A knot was tied tightly around
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the trachea and tubing (to prevent flow of any fluid into the trachea) with suture thread (Surgical
Specialties #SP102). The same was done at the rostral end of the trachea for the insertion of a naso-
pharyngeal tube for breathing-independent orthonasal odor presentation. The midline incision was
closed by sutures.

Go/No-Go behavior

Acclimation

Forty-eight hours after recovery from head-post surgery, animals underwent 5 days of adaptation to
experimenter handling and concurrently were started on a regimen of water regulation (access to
1 mL of water per animal each day in their home cage). Animal body weight was maintained at 85% of
original body weight. Following 5 days of handling, animals were acclimated to head-restraint over a
freely rotating wheel for 3 days. When animals were head-fixed over this wheel, they could run freely.

CS+ training

Following head fixation habituation, animals were trained to lick in response to the CS+ (0.2<intermit-
tency<0.9). At the beginning of each trial, animals were presented with a 500 ms 2 kHz tone, followed
by a 1.5 s delay before odor presentation. Stimulus was presented for é s followed by a 500 ms 6 kHz
tone indicating the beginning of a 1.5 s decision period. If mice licked before the decision period,
the trial still continued, however anticipatory licking was recorded. If mice licked during the decision
period, they received a water reward. One mouse out of the eight OMP-GCaMPé4f mice was unable
to acquire the lick training task and was removed from the study. One mouse out of the seven THY1-
GCaMP6f mice was unable to acquire the lick training task and was removed from the study. Once
animals successfully licked for >85% of CS+ trials, they were moved onto training on the complete
Go/No-Go task. On average, animals took 2.08 + 0.29 days to reach 85% on CS+ training.

Complete Go/No-Go task

For the complete Go/No-Go task, animals were trained to lick for stimuli with intermittency values
>0.2 and withhold licking for stimuli with intermittency values <0.15 (CS-). If mice licked during the
decision period in response to a CS+, they received a water reward. If mice licked during the deci-
sion period in response to a CS-, they received a punishment in the form of an increased inter-trial
interval (increasing from 7 to 14 s). For each session 50% of trials are CS+ and 50% of trials are CS-
following an initial 8 high intermittency CS+ trials used to engage the animal in the task. On a given
session, animals were trained or tested on 64 trials (8 trials of intermittency >0.6 followed by a random
presentation of 28 CS+ trials and 28 CS- trials). Additionally, trials of a gain of 0.5 and a gain of 1 are
interwoven randomly during the session with each unique stimulus being presented at both a gain of
0.5 and 1. Thus, after the initial engagement trials, animals are presented with a total of 28 trials at a
gain of 0.5 and 28 trials at a gain of 1. Animals were trained using a set of naturalistic stimuli. Animals
met criteria when they reached a hit rate >75% and a false alarm rate <25% for 2 consecutive days.
On average, animals took 3.7 = 1.8 days to reach criteria on the complete Go/No-Go training set.
Once animals met criteria on the training set, they were tested using two sets of naturalistic, binary
naturalistic, and square-wave stimuli each. The order in which animals were tested on each stimulus
set type was randomly permuted (e.g. some animals were first tested on naturalistic and once criteria
was met, they were moved onto square wave, and then lastly onto binary naturalistic. Other animals
were started on binary naturalistic and once criteria was met, they were moved onto square-wave, and
then lastly onto naturalistic).

All animals are trained and tested using 2% methyl valerate in mineral oil (Sigma-Aldrich product
#1489977). After completing the entire behavioral paradigm (testing using naturalistic, binary natural-
istic, and square-wave stimulus sets) using 2% methyl valerate, animals are tested on the binary natu-
ralistic condition using 2% 2-heptanone in mineral oil (Sigma-Aldrich product #537683). Thus, within a
session, all CS+ and CS- are a single odor, the distinguishing property between CS+ and CS- is their
intermittency value.
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Awake wide-field calcium imaging

After being tested on the 2-heptanone control condition, animals underwent an optical window
procedure and were allowed a minimum 48 hr recovery period. After the recovery period, animals
were tested on the binary naturalistic and square-wave stimulus sets using methyl valerate. The order
in which animals were tested on each stimulus set type was randomly permuted. During this testing
period, the dorsal olfactory bulbs of these animals were imaged according to the optical imaging
protocol described in the ‘Optical imaging system’ section.

Anesthetized wide-field calcium imaging

Animals remained anesthetized post tracheotomy and immediately prepared for calcium imaging.
They were placed on a heating pad directly under a camera with their nose directly in front of an
odor tube. The nasopharyngeal tracheal tube was connected to the previously described actuator-
controlled artificial sniffing system while allowing the animal to freely breath through the lung-directed
tracheal tube. Core body temperature was monitored and maintained throughout the procedure.
Breathing was monitored by eye for signs of distress. Warmed saline was administered for hydration
after 4 hr. Imaging lasted no more than 8 hr. Anesthetic maintenance was monitored based on the
pedal withdrawal reflex and anesthesia boosters were administered as necessary (ketamine:dexmede-
tomidine, 100:0.5 mg/kg, i.p., 25% original dose booster). An atropine booster was administered every
2 hr after first administration (0.3 mg/kg, i.p.) Animals were euthanized immediately after imaging.

Quantification and statistical analyses

All behavioral and imaging data was converted into a MATLAB-compatible format. All quantification
and statistical analysis were carried out using custom-written MATLAB scripts.

Statistics
For all statistical analyses, one asterisk denotes p<0.05, two asterisks denote p<0.01, and three aster-
isks denote p<0.001. In all cases p<0.05 was used to determine significance unless otherwise stated.
On all graphs, unless otherwise stated, the error bars indicate standard error (SEM). For all box and
whisker plots, the center line indicates the group median and the limits of the box correspond to the
upper 0.75 quantile and lower 0.25 quantile. The ends of the whiskers correspond to 1.5%interquartile
range from either the top or bottom of the box. Outliers are indicated as points that lie beyond the
whiskers.

In order to execute statistical tests, the following MATLAB functions were used: fitime (mixed
effects models,), fitlm or corr (linear regression models), xcorr (cross-correlation analyses), linkage and
clust (cluster analysis), and fitdiscr and predict (linear discriminant analysis).

Go/No-Go behavior

For each session, animal performance was calculated starting with the first trial following four hit trials
to ensure animal engagement in the task. For each session, hit rate was calculated as:

_ Correct CS+
" total CS+

with correct CS+ trials being CS+ trials where the animal licked during the decision period. For each
session false alarm rate was calculated as:

_ Incorrect CS—
total CS—

with incorrect CS- trials being CS- trials where the animal licked during the decision period. Total
animal performance for each session was calculated as: performance = HR-FA. A mixed effects model
(hit rate~stimulus type+gain+odor+odor intermittency) controlling for a random effect of animal iden-
tity was implemented using MATLAB function fitlme() to determine the effect of various independent
variables on animal performance on the task.

As previously described, sniffing was measured in real time using a pressure sensor during task
performance. Sniff peaks were identified by peaks in the sniff trace (where positive deflections
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indicate inhalation) and sniff onsets were identified as the point at which the sniff trace changes sign
prior to the peak. Inhalation periods were identified as the time between each sniff onset and subse-
quent peak. To quantify estimated perceived intermittency, the PID reading for each trial was sampled
during inhalation periods. The perceived intermittency value was then calculated as described above
with T = total inhalation time during the 6 s stimulus period.

Optical imaging pre-processing

Imaging data was collected at 25 frames/s and 256x256 pixels, and pre-processed to correct for
movement and global noise in every imaged frame. Glomerular ROIs were manually selected for
each mouse accounting for glomeruli that may be recruited during different stimuli. Raw fluores-
cence traces were converted into AF/F using the average fluorescence of a 100 ms period prior to
odor presentation as baseline fluorescence. Each trace was bandpass filtered (0.075-10 Hz, fourth-
order Butterworth) to limit the contribution of noise to the measured response. Traces were base-
line corrected for effects of photobleaching by fitting a second-degree polynomial to the response
trace during pre- and post-odor periods. To obtain an estimate of the neural firing rate based on the
GCaMPé6f fluorescence calcium signal, filtered and baseline-corrected AF/F traces were deconvolved
using a time constant of 150 ms (Chen et al., 2013).

Identifying responding glomeruli
Estimated running firing rates (deconvolved AF/F traces) (FR) were z-scored relative to the baseline
(2 s period preceding odor presentation) signal’'s mean and SD:

FR — Hpre—odor

Zresponse =
Opre—odor

For a given trial, if the glomerular response amplitude of the z-scored trace (identified as the
trough to the peak of the response) associated with the first sniff of odor presentation exceeded a
z-score value of 2, this glomerulus was identified as responding to odor for that specific trial. Sniff
onsets were identified as previously described using the pressure sensor output and odor onsets were
identified using the PID reading. Glomeruli that responded to >10% of trials (~6 trials) were included
in the final quantification.

Cross-correlation of glomerular response with odor dynamics

To calculate the glomerular response tracking of odor dynamics, deconvolved AF/F traces of each
glomerulus were cross-correlated with the PID signal for a single trial. Correlation coefficients were
calculated for lags between -500 ms and 500 ms using the xcorr() function in MATLAB. Both the
deconvolved AF/F traces and PID signal are mean subtracted before calculating cross-correlations so
that the reported coefficients represent the Pearson coefficient. For each glomerulus, we addition-
ally calculated a shuffled average (10 shuffle iterations) in which the deconvolved AF/F traces were
shuffled, cross-correlated with the PID reading, and correlation coefficients were averaged across the
10 shuffle iterations. This shuffled cross-correlation was subtracted from the original glomerular cross-
correlation for each trial. A maximum correlation for each glomerulus was identified as the peak of the
shuffle-subtracted cross-correlation for the given 500 ms window.

Spatiotemporal analysis of response patterns
The z-scored response amplitude for each glomerulus was determined, as previously described, by
measuring the difference in z-score value from trough to peak of the z-scored deconvolved AF/F
glomerular response corresponding to the first sniff during odor presentation. Reported values are an
average for each glomerulus over all trials. A T75 for each glomerulus was measured as the time to
reach 75% of the response amplitude of the first sniff during odor presentation (as measured using %
AF/F) from the sniff onset. Reported values are an average for each glomerulus over all trials.
Spatiotemporal response maps were established using the method outlined in Baker et al., 2019.
Briefly, for a single trial, z-scored response amplitudes and T75 values of all glomeruli were correlated
with their location along each of their spatial dimensions using corr() in MATLAB (A-P pixels and M-L
pixels, with the latter being measured as the pixel distance from the midline). Reported values are an
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average of the spatiotemporal response maps over all trials. The same approach was used to identify
the olfactory bulb spatial location with the highest correlation between odor and glomerular response.

Glomerular intermittency

Gl was quantified using the z-scored deconvolved AF/F glomerular response traces. The threshold
for intermittency quantification was set at a z-score value of 2 so that the Gl was determined as the
probability that the z-scored response trace is above 2 during the 6 s odor presentation period:

GI = Prob [Zre.vpon.ve > 2]

Gl slope was quantified using a linear regression fit (fitlm() function in MATLAB) of the Gl values
vs odor intermittency across all trials for a given glomerulus. To determine if glomeruli significantly
encoded intermittency as measured by Gl representation across odor intermittency, a one-way
ANOVA was performed using intermittency groups of 0.2, 0.5, and 0.8 for each glomerulus using all
input trials (n=180 trials). A significant result was determined if the main effect of odor intermittency
had p<0.001.

Hierarchical clustering

To quantify similarities in glomerular responses across odor intermittency values, the average Gl
across odor intermittency values were correlated between all glomeruli. More specifically, each row
in Figure 5A, left, was correlated with every other row to obtain the correlation coefficient values (r)
represented in correlation matrix in Figure 5B, middle. If the Gl of two glomeruli covary strongly in
the same direction across odor intermittency values, the r value was close to 1. Hierarchical clustering
was implemented using the Linkage() function in MATLAB by calculating correlation distance of the
correlation matrix. Briefly, hierarchical clustering was determined using a method in which if 1 —r is
close to 0, two glomeruli are quantified as closely related. Subsequent cluster analysis was performed
using the cluster() function in MATLAB and a distance cutoff for cluster detection set (0.74).

Linear classification

A threefold cross-validated linear discriminant classifier was implemented using the fitdiscr() function
in MATLAB. The classifier was trained on one-third of all trials with equal sampling of each intermit-
tency value (0.1-0.8) for each training set. The classifier was trained to predict the trial identity (CS+
or CS-) using Gl as the predictors. The resulting classifier was then tested using the predict() function
in MATLAB with remaining two-thirds of trials. Model accuracy and true positive rates were calculated
as follows:

#correct prediction
Accuracy = ——(————
#test trials
.. #correct predicted CS+
True Positive Rate = P -
#CS + trials

Threefold cross-validation was repeated 20 times for each model to obtain error values for model
prediction. For Figure 5E, responsive glomeruli were added at random for each iteration of 20 times
threefold cross-validation. For anesthetized imaging experiments, the classifier was trained to predict
the trial intermittency value (0.2, 0.5, and 0.8), as opposed to trial identity (CS+ or CS-).
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