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Abstract:We propose an algebra of operators along an observer’s worldline as a background-

independent algebra in quantum gravity. In that context, it is natural to think of the

Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define

entropy in terms of the relative entropy with this state. In the case that the only space-

times considered correspond to de Sitter vacua with different values of the cosmological

constant, this definition leads to sensible results.

ar
X

iv
:2

30
8.

03
66

3v
3 

 [h
ep

-th
]  

24
 S

ep
 2

02
3



Contents

1 Introduction 1

2 A Background-Independent Operator Product Algebra 4

3 The Static Patch 8

3.1 The Maximum Entropy State 8

3.2 A Proof of The Tracial Property 13

3.3 Some Further Properties 16

4 Entropy And The No Boundary State 18

4.1 ΨdS and ΨHH 18

4.2 A Universal No Boundary State? 22

5 More On The No Boundary State 24

5.1 Unnormalizable States and Unbounded Entropies 25

5.2 The “Type” Of The Von Neumann Algebra 27

6 Spacetimes That Do Have Asymptotic Observers 29

1 Introduction

In ordinary quantum field theory without gravity in a spacetime M , we can associate an

algebra AU of observables to any open set U ⊂M . However, there are a few problems with

this notion in the presence of gravity.

The most obvious problem is that in the context of quantum gravity, since spacetime

fluctuates, it is in general difficult to describe the spacetime region that one wants to talk

about. The options are much more restricted than they are without gravity.

A possibly deeper problem concerns background independence. In ordinary quantum

field theory, the algebra AU that we associate to an open set U ⊂M depends on M and U ,
of course, but it does not depend on the state of the quantum fields. What would be the

analog of that in gravity? In gravity, the spacetime that the observer experiences is part of

what the fields determine, so an algebra that does not depend on the state of the quantum

fields should be defined without reference to any particular spacetime. In other words, it

should be background independent. By contrast, anything we define as the algebra of the

observables in a region U ⊂M will depend on the choice ofM and U and is not background

independent.

A third problem concerns the question of why we want to define an algebra in the

first place. What is this algebra supposed to mean? In ordinary quantum mechanics, an
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observer is external to the system and we are quite free to make what assumptions we

want about the capability of the observer. In quantum field theory without gravity, we can

imagine an observer who probes a system at will but only in a specified region U ⊂ M .

That is the context in which it makes sense to consider the algebra AU : it describes the

observations of such an observer. In gravity, at least in a closed universe or in a typical

cosmological model, there is no one who can probe the system from outside so an algebra

only has operational meaning if it is the algebra of operators accessible to some observer

living in the spacetime.

In this article, following many others (for example [1]), we characterize an observer

by a timelike worldline and we assume that what the observer can measure are the quan-

tum fields along this worldline. As the simplest possible dynamical principle, we assume

that the observer worldline is a geodesic. The model is meant to be an idealization of our

own situation in the universe. Our worldline is roughly a geodesic. We have no a priori

knowledge of the spacetime we live in,1 but we have become aware of a vast universe filled

with stars, black holes, galaxies, and all the rest, primarily by measuring the electromag-

netic fields in the immediate vicinity of our worldline. And our laboratory experiments

can likewise be interpreted as more complex measurements of quantum fields along our

worldline.

According to the “timelike tube theorem” [5–10], in quantum field theory without

gravity, the algebra of operators along a timelike worldline γ is equivalent to the algebra

of operators in a certain open set, its timelike envelope2 E(γ). So the algebra of operators

along a timelike geodesic is a reasonable substitute for the algebra of an open set, and

makes more sense when gravity is included.

Of course, in a full theory of quantum gravity, we expect that an observer cannot be

introduced from outside but must be described by the theory. What it means then to

assume the presence of an observer is that we define an algebra that makes sense in a

subspace of states in which an observer is present. We do not try to define an algebra that

makes sense in all states.

The background to this article is provided in part by recent work on algebras of ob-

servables in quantum gravity in certain situations [11–18]. Our starting point will actually

be to rethink the construction of [14], which concerned an observer in de Sitter space,

from a different point of view. In that paper, the motivation for including an observer was

that, because of the symmetries of de Sitter space, it was not possible to define a sensible

algebra of operators in the static patch without assuming the presence of an observer.

Once an observer is present, operators can be “gravitationally dressed” to the worldline of

the observer and an algebra of observables in the static patch can be defined. In a more

1For an observer who does have some a priori knowledge of the global nature and contents of the universe,

quite different considerations can apply [2–4].
2E(γ) is defined as the set of all points in M that can be reached by deforming γ through timelike

curves, keeping its endpoints fixed. Under favorable circumstances, E(γ) coincides with J+(γ) ∩ J−(γ),

the intersection of the past and future of γ, but in general J+(γ) ∩ J−(γ) is larger. In a general quantum

field theory (such as a conformal field theory in two dimensions), the timelike tube theorem cannot be

strengthened to replace E(γ) with J+(γ)∩J−(γ), but in sufficiently nonlinear theories, this may be possible

[10].
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general spacetime with less symmetry, operators can be gravitationally dressed to features

of the spacetime, so this motivation to include an observer does not apply. Instead, here

we postulate the presence of an observer in order to achieve background independence and

for other reasons already described.

The organization of this article is as follows. In section 2, we introduce the idea of

a background-independent operator product algebra Aobs along the observer worldline.

This involves reformulating the construction in [14] in a background-independent way. We

also explain the notion of a state of Aobs. In particular, any choice of a spacetime M , a

geodesic γ ⊂ M that is the observer’s worldline, and a quantum state of the combined

system consisting of the quantum fields in M and the observer gives a state of Aobs.

In section 3, we explain the special role of the static patch of de Sitter space as

an example of a spacetime where the observer might be living. In this case, there is a

state Ψmax of maximum entropy. Roughly, it describes empty de Sitter space in thermal

equilibrium with the observer. The fact that empty de Sitter space has maximum entropy

is in accord with previous arguments [19–29]. Once one has the state Ψmax at hand, one

can define a density matrix and entropy for any state of an observer that can be described

as an O(1) perturbation of empty de Sitter space. The entropy of such a state agrees with

the usual generalized entropy

Sgen =
A

4G
+ Sout, (1.1)

(for semiclassical states such that the generalized entropy can be defined) up to an additive

renormalization constant, independent of the state [14].

Suppose, however, that the observer lives in another spacetime, perhaps a spacetime

with a different topology, or another de Sitter vacuum with a possibly different value of the

cosmological constant, or simply an O(1/G) perturbation of the original empty de Sitter

spacetime. If we are able to make a similar analysis of states of the observer algebra in

that other spacetime, we will arrive at a corresponding definition of entropy, naively with

an additive renormalization constant appropriate to this new spacetime.

But we are at risk to have a new renormalization constant for every spacetime (or at

least every spacetime that is not continuously connected to one we have already considered).

It would be much more satisfactory to be able to define entropy up to an additive constant

independent of the spacetime, so that one could compare entropies of observer states that

are associated with different spacetimes. It might be impossible to avoid an overall additive

renormalization constant independent of the spacetime; this may be the price to pay for

an approach in which one has algebras and no quantum mechanical pure states.

With this in mind, we propose in section 4 that the Hartle-Hawking no boundary state

ΨHH can be regarded as a universal maximum entropy state. We explain in what sense this

hypothesis leads to a universal definition of entropy for any state of the observer algebra, up

to a universal additive constant independent of the spacetime, at least for closed universes

where the definition of the no boundary state makes sense. This proposal is speculative,

but we show that it leads to a sensible answer in at least one interesting case: the case

that the spacetimes considered correspond to de Sitter vacua with different values of the

cosmological constant.
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In a background independent sense, the observer algebra Aobs is an operator product

algebra, not an algebra of Hilbert space operators. However, any choice of a spacetime

in which the observer is living gives a Hilbert space representation of Aobs. Given such a

representation, it is possible to complete Aobs to a von Neumann algebra Âobs, and one can

ask what sort of von Neumann algebra one gets. If the spacetime region causally accessible

to the observer includes a complete Cauchy hypersurface, then one expects that Âobs is of

Type I. In some special cases that are under good control, like the static patch in de Sitter

space, one can argue that one gets an algebra of Type II. It is tempting to conjecture that

Âobs is always of Type I or Type II, not Type III, so that the experience of the observer

can always be described by a density matrix. It is argued heuristically in section 5 that

this is the case if the no boundary state can indeed be interpreted as a universal state of

maximum entropy.

Up to this point in the paper, we consider an observer who lives inside the spacetime,

as opposed to an observer who can probe spacetime from outside. In section 6, we look from

a somewhat similar point of view at asymptotic observables in an asymptotically Anti de

Sitter (AAdS) spacetime, which can be probed from outside. A large N algebra of single-

trace operators has been studied in several recent papers [11–13, 15]. However, to define a

background independent algebra of single-trace operators, one has to take the large N limit

in a somewhat different way, dividing the single-trace operators by N instead of subtracting

their expectation values, in order to get operators that have a limit for large N . The result

in the large N limit is a Poisson algebra – a commutative algebra, endowed with a Poisson

bracket. Perturbation theory in 1/N 2 deforms the Poisson algebra into a noncommutative

but associative algebra. This is the setting of deformation quantization [30–35]. In the

present problem, the Poisson algebra can be viewed as an algebra of functions on any

one of the possible classical phase spaces of this problem, which are labeled by the choice

of a bulk topology, possibly with additional asymptotic boundaries apart from the one on

which the algebra is defined. The noncommutative algebra that arises in the 1/N expansion

is background independent, but, like Aobs, it does not have any preferred Hilbert space

representation. Any choice of a point in any one of the possible classical phase spaces

determines such a representation. This is analogous to the fact that any spacetime in

which the observer might be living determines a Hilbert space representation of Aobs.

2 A Background-Independent Operator Product Algebra

Consider an observer whose worldline is a timelike geodesic γ in a spacetime M . First let

us discuss the operators along γ for the case that M is a fixed curved spacetime, in the

absence of gravity. The worldline is parametrized by the observer’s proper time τ . The

observer measures along γ, for example, a scalar field ϕ, or the electromagnetic field Fµν ,

or the Riemann tensor Rµναβ , as well as their covariant derivatives in directions normal

to γ. Let us focus on a particular observable, say ϕ(x(τ )), where x(τ) is the observer’s

position at proper time τ , and ϕ(x(τ )) is the value of ϕ at this spacetime point. We will

abbreviate this as ϕ(τ).
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When we take gravity to be dynamical, we have to take into account that the same

observer worldline can be embedded in a given spacetime in different ways, differing by

τ → τ + constant. So ϕ(τ) by itself is not a meaningful observable. We need to introduce

the observer’s degrees of freedom and define τ relative to the observer’s clock.

In a minimal model, we describe the observer by a rest mass m and a Hamiltonian

Hobs = m+ q, (2.1)

where q, which can be interpreted as the Hamiltonian of the observer’s clock, is bounded

by q ≥ 0, so that m is the minimum energy of any state of the observer. To impose

the constraint q ≥ 0, we should only allow operators that commute with the projection

operator3 Π = Θ(q) onto states with q ≥ 0. If O is any operator, then ΠOΠ commutes

with Π. So for example, if p = −i ddq is canonically conjugate to q, then e−ip is not an

allowed operator, but Πe−ipΠ is allowed.

To reproduce the Hamiltonian (2.1), the observer action should be

Iobs =

∫
γ
dτ

(
p
dq

dτ
−
√
−gττ (m+ q)

)
, (2.2)

where τ parametrizes the worldline γ, and gττ is the restriction of the spacetime metric

gµν to γ. With this action, the equations of motion say that γ is a geodesic, and that q

is a constant along γ. The action (2.2) is invariant under reparametrizations of γ. The

reparametrization invariance can be fixed by defining τ so that gττ = −1. This condition

determines τ up to an additive constant.

Of course, what we have just described is only the simplest model. As another example,

given a scalar field ϕ, we could assume the presence of another term in the observer action:

∆Iobs = −
∫
γ
dt
√
−gttλϕ(t), (2.3)

with a coupling constant λ. Then γ will no longer be a geodesic; the gradient of ϕ will

provide a force on the observer. One could also elaborate the model so that q would

not be a conserved quantity. However, we will consider the simplest possible model, with

Hamiltonian (2.1) and action (2.2).

As already noted, in the presence of gravity, ϕ(τ) is not a meaningful operator because

a spacetime diffeomorphism can shift τ by a constant. Let Hbulk be the generator of a bulk

diffeomorphism that maps γ to itself, shifting τ . There is no canonical choice of Hbulk,

since we have not specified what the diffeomorphism generated by Hbulk should do away

from γ, but it does not matter what choice we make, since diffeomorphism generators that

act trivially along γ will anyway be imposed as constraints in quantizing gravity. Taking

into account the degrees of freedom of the observer, the constraint operator that we should

impose is not Hbulk but

Ĥ = Hbulk +Hobs = Hbulk +m+ q. (2.4)

3Here Θ is the Heaviside theta function, Θ(x) =

{
1 x ≥ 0

0 x < 0
.
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We now want to allow only operators that commute with Ĥ. Since

[Hbulk, ϕ(τ)] = −iϕ̇(τ), (2.5)

and m is a c-number, we need

[q, ϕ(τ )] = iϕ̇(τ). (2.6)

As q = i d
dp , we can satisfy this condition by simply setting

τ = p, (2.7)

or more generally

τ = p+ s, (2.8)

for a constant s.

So a typical allowed operator is ϕ(p+ s), or more precisely

ϕ̂s = Πϕ(p+ s)Π. (2.9)

In addition to these operators (with ϕ possibly replaced by some other field along the

observer worldline), there is one more obvious operator that commutes with Ĥ, namely q

itself. So we define an algebra Aobs that is generated by the ϕ̂s as well as q.

This construction hopefully sounds “background independent,” since we described it

without picking a background. However, background independence really depends on in-

terpreting the formulas properly. We will not get background independence if we interpret

ϕ̂s and q as Hilbert space operators. To get a Hilbert space on which ϕ̂s and q act, we

have to pick a spacetime M and a geodesic γ ⊂ M on which the observer is propagating.

Quantization in this spacetime gives a Hilbert space and we can interpret Aobs as an al-

gebra of operators on this Hilbert space. But we will not have background independence,

since different pairs M,γ will, in general, provide inequivalent representations of the same

underlying operator product algebra. To get background independence, we have to think

of Aobs as an operator product algebra, rather than an algebra of Hilbert space operators.4

In the absence of gravity, we would characterize the objects ϕ(τ) by universal short

distance relations. For example, in a theory that is conformally invariant at short distances,

with ϕ having dimension ∆, we would have

ϕ(τ)ϕ(τ ′) = C(τ − τ ′ − iϵ)−2∆ + · · · . (2.10)

This characterization does not require any knowledge about the quantum state. After

coupling to gravity and including the observer and the constraint, the operator product

expansion (OPE) in powers of τ−τ ′ becomes an expansion in 1/q; see section 3.3. We char-

acterize Aobs purely by the universal short distance or 1/q expansion of operator products.

With that understanding, Aobs is background-independent.

By a “state” of the observer algebra Aobs, we mean a complex-valued linear function

a → ⟨a⟩, a ∈ Aobs, that satisfies two conditions:

4Somewhat similarly, by characterizing a quantum field theory by universal operator product relations,

one can define what it means to consider the same quantum field theory in different spacetimes [36–38].
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(1) The function a → ⟨a⟩ is positive, in the sense that for all a ∈ Aobs, ⟨a†a⟩ ≥ 0.

(2) This function is consistent with all universal OPE relations.

This somewhat abstract notion of a state is analogous to a definition given in [38] for

quantum field theory in a fixed curved spacetime background.5

This definition of a state of the observer is related in the following way to notions that

may be more familiar. Let M be a spacetime and suppose that the observer worldline is a

geodesic γ ⊂M . If H is the Hilbert space that describes the fields in M together with the

observer, then H provides a Hilbert space representation of the algebra Aobs. If Ψ ∈ H is

any state, then the linear function

a → ⟨Ψ|a|Ψ⟩ (2.11)

is a state of Aobs, by the abstract definition. Conditions (1) and (2) are immediate. We

stress that before picking the pair M,γ, we do not have a Hilbert space representation of

Aobs, and it is an OPE algebra, not an algebra of Hilbert space operators.

There is a partial converse to this, given by the Gelfand-Naimark-Segal (GNS) con-

struction of a Hilbert space from a state of an algebra. Suppose that a → ⟨a⟩ is a complex-

valued linear function that defines a state of the observer algebra. Formally define a Hilbert

space vector Ψ1 that corresponds to this state, and for every a ∈ Aobs, define a new vector

Ψa, in a complex linear fashion, with Ψλa+µb = λΨa + µΨb, for a, b ∈ Aobs, λ, µ ∈ C.
Aobs acts on this set of states by aΨb = Ψab. Define inner products among these states by

⟨Ψa,Ψb⟩ = ⟨a†b⟩. By condition (1) in the definition of a state of Aobs, these inner products

are positive semi-definite. Taking a completion and dividing by null vectors, one obtains a

Hilbert space H with an action of Aobs and a vector Ψ1 such that ⟨a⟩ = ⟨Ψ1|a|Ψ1⟩, for all
a ∈ Aobs. Thus every state of the algebra Aobs in the abstract sense is associated to a pure

state in some Hilbert space representation of Aobs. What is not clear from this reasoning is

the extent to which general Hilbert space representations of Aobs are related to pairs M,γ.

We conclude this section with several technical remarks.

Remark 1. By definition, states aΨ1 are dense in the GNS Hilbert space H. That

means that the GNS Hilbert space describes O(1) perturbations of the input state Ψ1,

not perturbations of order 1/G. So, for example, empty de Sitter space and de Sitter

space perturbed by a classical electromagnetic field with energy of order 1/G are described

by different GNS Hilbert spaces. Not coincidentally, they are also described by different

Hilbert spaces in ordinary perturbation theory; one Hilbert space is obtained by perturbing

around empty de Sitter space and one is obtained by perturbing around de Sitter space

with the electromagnetic wave present. Of course, nonperturbatively it may be possible to

describe empty de Sitter space and de Sitter space with a strong classical field by the same

Hilbert space. In perturbation theory they are different.

5In a generic open universe, there is no reasonable Hilbert space that contains all physically sensible

states of a quantum field. To describe all such states, given the absence of a suitable Hilbert space, the

authors of [38] characterized the quantum field by universal, state-independent operator product relations,

and then they defined a state of the quantum field to be a linear function on this operator product algebra

that is positive and consistent with the OPE relations.
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Remark 2. Roughly speaking, if a clock has Hamiltonian q, the time measured by the clock

is the conjugate variable −p = id/dq. (At the classical level, the equations of motion derived

from the action (2.2) are −ṗ = 1, showing that −p is the time told by the clock, up to an

additive constant.) However, because of the constraint q ≥ 0, it is not possible to define p

as a self-adjoint operator that could be measured. An example of a self-adjoint operator

that can serve as a partial substitute is p2 = −d2/dq2, defined by Dirichlet boundary

conditions at q = 0. This operator is self-adjoint, with a complete set of eigenfunctions

sin(λq), λ > 0. We can also define an operator |p| = (p2)1/2, the positive square root of

p2. This operator measures, informally, the absolute value of the time measured by the

observer’s clock. Its expectation value at time τ , assuming a state ψ0(q) of the observer at

time 0, is 〈
ψ0(q)

∣∣ eiτq|p|e−iτq
∣∣ψ0(q)

〉
=

〈
e−iτqψ0(q)

∣∣ |p| ∣∣e−iτqψ0(q)
〉
. (2.12)

For large |τ |, this grows as |τ | towards either the future or the past, so |p| can serve to

measure the observer’s proper time in either the far future or the far past. However, for

|τ | ≲ 1,
〈
ψ0(q)|eiτq|p|e−iτq|ψ0(q)

〉
depends very much on the assumed initial state ψ0(q).

It does not seem that any operator accessible to the observer does better than this.

Remark 3. To complete the model really requires a refinement that was discussed in

section 2.6 of [14]. By equipping the observer with a Hamiltonian and in effect a clock,

we have made it possible to define “gravitationally dressed” scalar operators along the

observer’s worldline. However, to enable the observer to define and measure operators

that carry nonzero angular momentum, such as the electromagnetic field or the Riemann

tensor, one needs to equip the observer with an orthonormal frame; in the simplest model

(analogous to assuming that the observer worldline is a geodesic), one can assume that

this frame is invariant under parallel transport along the observer’s worldline. The phase

space of the observer, in D spacetime dimensions, is then not T ∗R+ (where R+ is the

half-line q ≥ 0 and T ∗R+ is its cotangent bundle) but T ∗R+ × T ∗Spin(D − 1). Because

the group Spin(D− 1) is compact, including the second factor does not qualitatively affect

our considerations and we will not include it explicitly in this article. In the real world,

we effectively have an orthonormal frame at our disposal, and we use it, for example, in

mapping the positions of stars and galaxies in the sky.

3 The Static Patch

3.1 The Maximum Entropy State

Any spacetime M in which the observer may be living, together with a choice of geodesic

γ that represents the observer’s worldline, leads to a Hilbert space representation of Aobs.

However, there is a simple special case (previously analyzed in [14] in a way similar to

what follows) that is particularly important. This is the case that M is an empty de Sitter

space, with some positive value of the effective cosmological constant. De Sitter space in

D dimensions has a very large isometry group SO(1, D), under which all geodesics are

equivalent, so in this case the choice of γ does not matter. The region of de Sitter space

that is causally accessible to the observer – the region that the observer can see and also
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Figure 1. A Penrose diagram for de Sitter space. Time flows upward; the far future is at the top of the

diagram and the far past is at the bottom. Coordinates have been chosen so that the observer’s worldline

is the left edge of the diagram. The region causally accessible to the observer is the static patch, which is

shaded green. It is bounded by the past and future horizons of the observer, as shown.

can influence – is bounded by past and future horizons [39], as indicated in the Penrose

diagram of fig. 1. De Sitter space has a Killing vector field V that is future directed timelike

throughout the causally accessible region. It generates a symmetry that maps the geodesic

γ to itself, shifting it forward in time. We normalize V so that it looks like d/dτ along γ, and

we denote the corresponding conserved charge as H. Since H generates a symmetry that

shifts the observer’s proper time, it can play the role of the bulk diffeomorphism generator

that was called Hbulk in the general construction of section 2. If H is viewed as generating

a “time-translation” symmetry, then the causally accessible region is time-independent. It

has therefore been called a static patch.

In the absence of gravity, quantum fields in de Sitter space have a distinguished de

Sitter invariant state ΨdS [40–44], with the property that correlation functions in this state

can be defined by analytic continuation from Euclidean signature. We normalize this state

so that

⟨ΨdS|ΨdS⟩ = 1. (3.1)

Correlation functions in the state ΨdS are thermal at the de Sitter temperature TdS = 1/βdS
[39, 45]. It will be helpful to spell out in detail, in the case of the two-point function of

operators ϕ, ϕ′, the meaning of this assertion. Thermality means that two-point functions

⟨ΨdS|ϕ(τ)ϕ′(τ ′)|ΨdS⟩ have two key properties:

(1) The first property is simply time-translation symmetry,

⟨ΨdS|ϕ(τ)ϕ′(τ ′)|ΨdS⟩ = ⟨ΨdS|ϕ(τ + c)ϕ′(τ ′ + c)|ΨdS⟩, c ∈ R. (3.2)

(2) The second property is the Kubo-Martin-Schwinger (KMS) condition:

⟨ΨdS|ϕ(τ − iβdS)ϕ
′(0)|ΨdS⟩ = ⟨ΨdS|ϕ′(0)ϕ(τ )|ΨdS⟩. (3.3)
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To be more precise, the KMS condition asserts that the function ⟨ΨdS|ϕ(τ)ϕ′(0)|ΨdS⟩,
initially defined for real τ , can be analytically continued to a strip 0 ≥ Im τ ≥ −βdS,
and its values at the lower boundary of the strip satisfy eqn. (3.3). The two properties

do not hold only for the case that ϕ, ϕ′ are local operators. We could, for example, take

ϕ(τ) =
∏k

i=1 ϕi(τ + si), with local operators ϕi, and similarly for ϕ′. The same statements

hold without change.

To understand the relation of the KMS condition to thermal equilibrium, consider an

ordinary thermal system with Hamiltonian H, inverse temperature β, partition function

Z, and density matrix ρ = 1
Z e

−βH . Time-dependent correlation functions of operators

A,B are defined by ⟨A(t)B(0)⟩β = Tr ρeiHtAe−iHtB, ⟨B(0)A(t)⟩β = Tr ρBeiHtAe−iHt, and

from this eqn. (3.3) immediately follows. This derivation does not precisely apply to

the correlation functions in the de Sitter state ΨdS, but the KMS condition in that case

can be proved using the fact that those correlation functions can be obtained by analytic

continuation from Euclidean signature.

Including gravity and the observer, we define a special state6 Ψmax in which the quan-

tum fields are in the state ΨdS, and the observer energy has a thermal distribution at the

de Sitter temperature:

Ψmax = ΨdSe
−βdSq/2

√
βdS. (3.4)

And we replace operators ϕ(τ) by “gravitationally dressed” operators ϕ̂s = Πϕ(p + s)Π.

These steps were carried out in [14], with a somewhat different explanation. Note that by

virtue of eqn. (3.1), we have

⟨Ψmax|Ψmax⟩ = 1. (3.5)

Then a straightforward calculation shows that the two properties (1), (2) that charac-

terize the thermal nature of the state ΨdS are modified as follows:

(1′) We still have a version of time-translation symmetry, but now it takes the form

⟨Ψmax|ϕ̂sϕ̂′s′ |Ψmax⟩ = ⟨Ψmax|ϕ̂s+cϕ̂
′
s′+c|Ψmax⟩, c ∈ R. (3.6)

(2′) The KMS condition simplifies:

⟨Ψmax|ϕ̂sϕ̂′s′ |Ψmax⟩ = ⟨Ψmax|ϕ̂′s′ ϕ̂s|Ψmax⟩. (3.7)

Crucially, there is no shift by −iβ; the two operators are simply exchanged. One proof of

eqn. (3.7) can be found in [10], section 4. Another proof is presented shortly in section 3.2.

Condition (2′), and its straightforward extension to the additional generator q of Aobs,

tells us that if for a ∈ Aobs, we define

Tr a = ⟨Ψmax|a|Ψmax⟩, (3.8)

6We have imposed the constraint that operators commute with Ĥ; this constraint is a statement about

operators that can be defined along the observer’s worldline. One might expect to also impose a constraint

that states should be annihilated by Ĥ. However, this condition depends on what there is beyond the

observer’s horizon and places no useful condition on a physical state as a state of the observer algebra Aobs.

Accordingly we will not discuss such a condition. Such conditions were discussed in [14] and provide no

information accessible to the observer.

– 10 –



then the function a → Tr a does have the algebraic property of a trace:

Tr ab = Tr ba, a, b ∈ Aobs. (3.9)

This fact is described by saying that the state Ψmax of the algebra Aobs is “tracial.” By

virtue of eqn. (3.5), we have

Tr 1 = 1. (3.10)

Let H be the GNS Hilbert space of the state a → Tr a of the observer algebra Aobs.

As explained in section 2, this Hilbert space is generated by states aΨmax, a ∈ Aobs, and

(as in Remark 2 at the end of section 2) it describes perturbations of the static patch that

are of O(1), not O(1/G). H provides a Hilbert space representation of Aobs.

At this point, we can ask whether a general state Ψ ∈ H has a density matrix ρ, defined

by imitating the standard definition in ordinary quantum mechanics:

⟨Ψ|a|Ψ⟩ = Tr aρ, a ∈ Aobs. (3.11)

Assuming that the state Ψ is normalized, this condition immediately implies that

Tr ρ = 1, (3.12)

as in ordinary quantum mechanics. By virtue of the definition of the trace, it follows

immediately that the state Ψmax does have a density matrix, namely ρmax = 1. We

can also easily find the density matrix ρb of a state Ψb = bΨmax, b ∈ Aobs: from the

definitions, and the tracial nature of Ψmax, we find that ρb = bb† has the desired property

⟨Ψb|a|Ψb⟩ = Tr aρb, a ∈ Aobs. So a dense set of states in H, namely those of the form Ψb,

have a density matrix in Aobs.

It is not quite true, however, that every state in H has a density matrix in Aobs. H
was defined as a completion of the set of states of the form Ψb, and accordingly, if we want

it to be true that every state in H has a density matrix, we need to replace Aobs by a

completion Âobs. This completion, which is not background-independent, since it depends

on the choice of the Hilbert space representation H, can be defined as the von Neumann

algebra generated by bounded functions7 of operators in Aobs. Once we pass from Aobs to

its completion, it is true that every state in H has a density matrix. To be more precise,

every state Ψ ∈ H has a density matrix ρ that is in, or in general affiliated8 to, Âobs.

Since a dense set of states Ψb have a density matrix ρb = bb† that is manifestly non-

negative, it follows that, as in ordinary quantum mechanics, the density matrix of any

state is nonnegative. Conversely, if ρ is any non-negative operator in (or affiliated to) Âobs

satisfying Tr ρ = 1, then it is the density matrix of a state in H, namely Ψρ1/2 = ρ1/2Ψmax.

Indeed, for a ∈ Âobs, ⟨Ψρ1/2 |a|Ψρ1/2⟩ = ⟨Ψmax|ρ1/2aρ1/2|Ψmax⟩ = Tr ρ1/2aρ1/2 = Tr aρ,

7One passes here to bounded functions of operators in Aobs, as otherwise it is not clear that the com-

pletion is an algebra.
8An operator O is affiliated to Âobs if bounded functions of O are in Âobs. It is possible for a density

matrix ρ to be unbounded (even though it satisfies Tr ρ = 1). Since Âobs is defined as a von Neumann

algebra of bounded operators, an unbounded density matrix is affiliated to Âobs, rather than being contained

in Aobs.
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where in the last step we use the tracial property (3.7). Ψρ1/2 is exactly analogous to the

canonical purification of a density matrix ρ in ordinary quantum mechanics.

Once we know that every state has a density matrix, we can define entropies. The von

Neumann entropy of a state Ψ with density matrix ρ is defined as usual by

S(ρ) = −Tr ρ log ρ. (3.13)

In ordinary quantum mechanics, a maximally mixed state is a state whose density matrix

is a multiple of the identity, and it has the maximum possible von Neumann entropy. In

the present context, the analog of a maximally mixed state is the state Ψmax, whose density

matrix is ρmax = 1. By analogy with what happens in ordinary quantum mechanics, ρmax

is a density matrix of maximum entropy. By the definition (3.13), its entropy vanishes:

S(ρmax) = −Tr 1 log 1 = 0. (3.14)

On the other hand, every other density matrix has strictly negative entropy. One way

to prove this is as follows. Let ρ ̸= 1 be some other density matrix, and for 0 ≤ t ≤ 1,

set ρt = (1 − t) + tρ. Then ρt is nonnegative and Tr ρt = 1, so ρt is a density matrix.

Define f(t) = S(ρt). Then f(0) = f ′(0) = 0, and using the general formula logM =∫∞
0 ds

(
1

s+1 − 1
s+M

)
, one computes that

f ′′(t) = −
∫ ∞

0
dsTr

1

s+ ρt
(1− ρ)

1

s+ ρt
(1− ρ). (3.15)

The integrand in eqn. (3.15) is positive, since it is TrL2 where L = (s+ ρt)
−1/2(1− ρ)(s+

ρt)
−1/2 is self-adjoint. So f ′′(t) < 0, 0 ≤ t ≤ 1. From f(0) = f ′(0) = 0, f ′′(t) < 0, it follows

that f(t) < 0 for t > 0, and therefore S(ρ) = f(1) < 0.

Thus the system consisting of an observer in the static patch has a state of maxi-

mum entropy, namely Ψmax = ΨdSe
−βdSq/2

√
βdS, consisting of empty de Sitter space with

a thermal distribution of the observer’s energy. Why did this happen? The original jus-

tification for the claim that empty de Sitter space has maximum entropy was as follows

[20]. Consider a state in which the static patch is not empty, but is filled with particles

and fields. As one evolves to the future, these particles and fields will all leave the static

patch through the future horizon, so the static patch will be empty in the far future. Since

the static patch, from any starting point, evolves to be empty in the future, the Second

Law of Thermodynamics appears to imply that the empty static patch must be a state of

maximum entropy.

In the present context, since we have defined the static patch by the presence of an

observer,9 by definition the observer does not leave the static patch even in the far future.

On the other hand, it is reasonable to expect that in the far future, the static patch will be

empty except for the presence of the observer, and that the observer energy will eventually

9As noted in the introduction, a possible criticism of approaches that do not explicitly introduce an

observer is that, once gravitational fluctuations are considered, it is not clear what is meant by the static

patch that is under discussion.

– 12 –



come into equilibrium with the quantum fields at the de Sitter temperature.10 Thus the

form of the maximum entropy state Ψmax is precisely in accord with what one would expect

based on the argument in [20], once the observer is included.

A von Neumann algebra (of infinite dimension) that has a trace such that the trace

of the identity element is finite – as in eqn. (3.10) – or equivalently, that has a state

of maximum entropy, here Ψmax, is said to be of11 Type II1. So rather as in [14], one

conclusion is that the algebra Âobs is of Type II1.

It is possible to show [14] that for states obtained as O(1) perturbations of Ψmax – and

thus for states in the GNS Hilbert space H – the entropy defined as in eqn. (3.13) agrees,

up to an additive constant that is independent of the state, with the usual generalized

entropy

Sgen =
A

4G
+ Sout, (3.16)

where as usual A is the horizon area and Sout is the entropy of particles and fields outside the

horizon. To be more precise, this is true for semiclassical states, for which the generalized

entropy is defined. The additive constant that is lost in this algebraic definition of entropy

is large – it is the entropy of the maximum entropy state. With the definitions that we

have given, the maximum entropy state has entropy zero, and all entropies are measured

relative to that. By contrast, in the standard approach [39], the entropy of the maximum

entropy state is large, approximately AdS/4G, where AdS is the horizon entropy for empty

de Sitter space.

Physically, the meaning of the constant discrepancy between the two notions of entropy

is that the entropy defined in terms of a state of Âobs is a sort of renormalized entropy, from

which a renormalization constant has been subtracted. The maximum entropy state of a

Type II1 algebra can be described in terms of an infinite number of qubits in a maximally

entangled state, so its entropy is naturally infinite (for example, see [47] for an explanation

of this). This infinity needs to be renormalized away, but the algebraic approach via Âobs

does not have enough information to know what value to assign to the entropy of the

maximum entropy state, and it is usually just set to zero, as we have done in the preceding

discussion. In section 4, however, we will try to do better, at least in comparing different

spacetimes.

3.2 A Proof of The Tracial Property

Our goal in this section is to prove the tracial property of the maximum entropy state Ψmax.

Let us first formulate exactly what we wish to prove. First, let a, b be any observables along

the observer’s worldline in the absence of gravity and without imposing the constraint. For

example, as in section 3.1, we could have

a = ϕ(s), b = ϕ′(s′), (3.17)

10Actually, if the observer action is precisely as in eqn. (2.2), this will not happen, since q is a conserved

quantity. A generic small perturbation will ensure that in the far future, the observer reaches equilibrium

with the ambient quantum fields.
11This property is not usually taken as the basic definition of a Type II1 algebra. The usual definition is

explained in [46], and a simple construction is explained in [47].
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for some scalar fields ϕ, ϕ′ and times s, s′. But a and b could be more complicated; for

example, a could be a product of scalar fields at different times: a =
∏n

i=1 ϕi(si).

After including the observer degrees of freedom and imposing the constraint, we replace

a and b with gravitationally dressed operators

â = Πa(p)Π, b̂ = Πb(p)Π, (3.18)

where

a(p) = eipHae−ipH , b(p) = eipHbe−ipH . (3.19)

Here H is the time translation generator of the static patch.

We now wish to prove that

⟨Ψmax|âb̂|Ψmax⟩ = ⟨Ψmax|b̂â|Ψmax⟩. (3.20)

In fact, since the algebra Aobs has one more generator q, we will want to prove a slightly

more general statement, as explained later.

Because HΨmax = 0, ΠΨmax = Ψmax, and H commutes with Π, eqn. (3.20) simplifies

to

⟨Ψmax|a(p)Πb(p)|Ψmax⟩ = ⟨Ψmax|b(p)Πa(p)|Ψmax⟩. (3.21)

The structure of eqn. (3.21) suggests that it is convenient to describe the observer Hilbert

space Hobs as a space of functions of p, with q = i d
dp . If we do this, the constraint q ≥ 0

means that Hobs should be defined to consist of square-integrable functions f(p) that are

holomorphic and decaying in the lower half p-plane. For example, a state with q = q0 is

exp(−iq0p), and this decays in the lower half-plane if and only if q0 > 0. The inner product

on Hobs is the standard

⟨f(p)|g(p)⟩ =
∫ ∞

−∞
dp f(p)g(p). (3.22)

In this representation, the projection operator Π = Θ(q) from L2 functions on −∞ <

q <∞ to L2 functions supported on q ≥ 0 is an integral operator with the kernel

K(p, p′) =
1

2πi

1

p− p′ − iϵ
. (3.23)

In fact, by closing the integration contour in the upper or lower half-plane, one can show

that ∫ ∞

−∞
dp′K(p, p′)e−iqp′ =

{
e−iqp′ if q > 0

0 if q < 0,
(3.24)

implying that K(p, p′) is the integral kernel of the orthogonal projection operator on q ≥ 0.

In this representation, the state of the observer that we have formerly written as
√
βdSe

−βdSq/2Θ(q) becomes
√

βdS
2π

1
p−iβdS/2

. Therefore

Ψmax = ΨdS

√
βdS
2π

1

p− iβdS/2
. (3.25)
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Using this expression for Ψmax and expressing Π in terms of the kernel K, we get

⟨Ψmax|âb̂|Ψmax⟩ = ⟨Ψmax|a(p)Θ(q)b(p)|Ψmax⟩ (3.26)

=
βdS
2π

∫ ∞

−∞

dp dp′

2πi

1

(p+ iβdS/2)(p− p′ − iϵ)(p′ − iβdS/2)
⟨ΨdS|a(p)b(p′)|ΨdS⟩.

Using time-translation symmetry (3.2) and defining v = p− p′, this becomes

βdS
2π

∫ ∞

−∞

dp dv

2πi

1

(p+ iβdS/2)(v − iϵ)(p− v − iβdS/2)
⟨ΨdS|a(v)b(0)|ΨdS⟩. (3.27)

Integrating over p, we learn that

⟨Ψmax|âb̂|Ψmax⟩ =
βdS
2π

∫ ∞

−∞
dv

1

(v − iϵ)(v + iβdS)
⟨ΨdS|a(v)b(0)|ΨdS⟩. (3.28)

Finally we make use of holomorphy and the KMS property. The integrand in eqn. (3.28)

is holomorphic in a strip 0 ≥ Im v > −βdS. So we can shift the integration contour by

v → v − iβdS + iϵ, getting

⟨Ψmax|âb̂|Ψmax⟩ =
βdS
2π

∫ ∞

−∞
dv

1

(v − iβdS)(v + iϵ)
⟨ΨdS|a(v − iβdS)b(0)|ΨdS⟩. (3.29)

Using the KMS property (3.3) and setting v = −w, we get

⟨Ψmax|âb̂|Ψmax⟩ =
βdS
2π

∫ ∞

−∞
dw

1

(w − iϵ)(w + iβdS)
⟨ΨdS|b(0)a(−w)|ΨdS⟩

=
βdS
2π

∫ ∞

−∞
dw

1

(w − iϵ)(w + iβdS)
⟨ΨdS|b(w)a(0)|ΨdS⟩, (3.30)

where time-translation symmetry was used again. Comparing to eqn. (3.28), this implies

the claimed result

⟨Ψmax|âb̂|Ψmax⟩ = ⟨Ψmax|b̂â|Ψmax⟩. (3.31)

To complete the picture, we have to take into account that the algebra Aobs has one

more generator, namely q. A sufficiently rich set of functions of q are the exponentials eisq

for real s. To complete the analysis, it suffices to check the tracial property for operators12

â[s] = âeisq, b̂[s′] = b̂eis
′q, with â, b̂ as before and s, s′ ∈ R. Using the fact that eisq = e

−s d
dp

acts on p by p→ p− s, one can repeat the previous steps. For example, the generalization

of eqn. (3.28) turns out to be

⟨Ψmax|â[s]b̂[s′]|Ψmax⟩ =
βdS
2π

∫ ∞

−∞
dv

1

(v − s− iϵ)(v + s′ + iβdS)
⟨ΨdS|a(v)b(0)|ΨdS⟩. (3.32)

Again using holomorphy and shifting the integration contour by v = v− iβdS+ iϵ and then

repeating the previous steps, we arrive at

⟨Ψmax|â[s]b̂[s′]|Ψmax⟩ = ⟨Ψmax|b̂[s′]â[s]|Ψmax⟩. (3.33)

12Note that â[s] does not coincide with âs = Πa(p+ s)Π as defined in eqn. (2.9).
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This confirms that the thermal property of ΨdS leads, after coupling to gravity and includ-

ing the observer, to the tracial property of Ψmax.

The reader may wonder whether in order to complete the proof of the tracial property,

we need to prove that Tr â[s]b̂[s′]ĉ[s′′] = Tr b̂[s′]ĉ[s′′]â[s], and similarly with more than three

operators. The answer is that this is not necessary, because in the preceding proof, we did

not assume a or b to be local operators, and any product of the form b̂[s′]ĉ[s′′] can actually

be expressed as a linear combination of operators d̂[s′′′], for some d. To do this, we write

b̂[s′]ĉ[s′′] = Πb(p)eis
′qΘ(q)c(p)eis

′′qΠ. (3.34)

Using Θ(q) =
∫∞
−∞

dλ
2πi

1
λ−iϵe

iλq, we get

b̂[s′]ĉ[s′′] =

∫ ∞

−∞

dλ

2πi

1

λ− iϵ
Πb(p)ei(s

′+λ)qc(p)eis
′′qΠ. (3.35)

Now we write ei(s
′+λ)qc(p)eis

′′q = cλ+s′(p)e
i(s′+s′′+λ)q, leading to

b̂[s′]ĉ[s′′] =

∫ ∞

−∞

dλ

2πi

1

λ− iϵ
d̂[s′+s′′+λ], d = bcλ+s′ . (3.36)

This is of the claimed form. It follows, for example, that states b̂[s]Ψmax are dense in the

GNS Hilbert space. There is no need to add states b̂1[s1]b̂
2
[s2]

· · · b̂k[sk]Ψmax to get a dense set

of states.

3.3 Some Further Properties

In quantum field theory without gravity, what we informally call a “local operator” ϕ(x)

is not really a Hilbert space operator, since in acting on a normalizable state it always

produces an unnormalizable state, mapping us out of Hilbert space. To get a Hilbert space

operator, we have to smear ϕ(x) in spacetime. In fact, smearing along a timelike curve,

such as the worldline of an observer, is enough to produce a Hilbert space operator, albeit

one that is unbounded and therefore only densely defined. This was shown originally (for

the case of a geodesic in Minkowski space) in [48] and has been reviewed recently [10].

After coupling to gravity and introducing the observer, we replace, for example, a

local operator ϕ(τ) with a gravitationally dressed version ϕ̂s. One may wonder if ϕ̂s, like

the underlying ϕ(τ), requires some smearing to turn it into a true Hilbert space operator.

The answer to this question is that no smearing is needed; ϕ̂s is already an (unbounded)

Hilbert space operator. Roughly speaking, gravitational dressing has provided the neces-

sary smearing.

This actually follows from some of the facts that were used in proving the tracial

property. The two-point function ⟨ΨdS|a(v)b(0)|ΨdS⟩ that appears in eqn. (3.32) is in

general singular on the real v axis. But this two-point function is the boundary value of a

function holomorphic in a strip 0 > Im v > −βdS. The function 1/(v − s− iϵ)(v + s′ + iβdS)

that multiplies this correlation function in eqn. (3.32) is holomorphic in the same strip.

Hence we can deform the integration contour into the middle of the strip, say at Im v =

−βdS/2. This makes it obvious that the integral that computes ⟨Ψmax|âsb̂s′ |Ψmax⟩ is always
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convergent, regardless of what we choose for a, b, s, and s′. This is true even if we arrange

so that âs is the hermitian adjoint of b̂s′ . So b̂s′Ψmax is normalizable; it is a Hilbert space

state.

There is a simple explanation of why this has happened, and this will hopefully make

it obvious that n-point functions of these operators are similarly finite without any need for

smearing. Let us consider a two-point function in the absence of gravity in the underlying

state ΨdS:

G(τ) = ⟨ΨdS|ϕ(τ)ϕ′(0)|ΨdS⟩. (3.37)

The function G(τ) is singular at τ = 0. The singularity comes from a sum over excitations

with high energy, that is, with a large eigenvalue of the de Sitter generator H, created by

ϕ′(0) and then annihilated by ϕ(τ). However, when we include the observer and impose

the constraint, ϕ(τ) and ϕ′(0) are replaced by operators ϕ̂s and ϕ̂′s′ that commute with

Ĥ = H +m+ q, and instead of G(τ) we consider a dressed correlation function

Ĝ = ⟨Ψmax|ϕ̂sϕ̂′s′ |Ψmax⟩. (3.38)

Since ϕ̂′s′ commutes with H + m + q, in order for it to create an excitation of large H,

it will have to reduce the value of q by the same amount. But in the state Ψmax, it is

exponentially unlikely to observe a value of q much greater than 1/βdS, and q is strictly

not allowed to be negative. So it is exponentially unlikely for ϕ̂′s′ to reduce q by much

more than 1/βdS, and therefore it is exponentially unlikely for ϕ̂′s′ to create a state with

H ≫ 1/βdS. Hence the sum over high energy states is cut off, and the function Ĝ(τ) is

finite for any choices of the operators.

This explanation makes it clear that the energy cutoff depends on the choice of the

specific state Ψmax. Let us consider a more general state Ψf = ΨdS ⊗ f(q), replacing the

specific function e−βdSq/2
√
βdS that is used in the definition of Ψmax with a more general

function f(q). If f(q) is supported at q ∼ q0, then in eqn. (3.38), the sum over intermediate

states will be cut off at H ∼ q0. This corresponds to a short distance cutoff at τ ∼ 1/q0.

So for example if in the absence of gravity ϕ and ϕ′ are scalar fields with the property that

the most singular term in the operator product expansion is

ϕ(τ)ϕ′(τ ′) ∼ C

(τ − τ ′ − iϵ)2∆
+ · · · , (3.39)

then we expect

⟨Ψf |ϕ̂sϕ̂′s′ |Ψf ⟩ ∼ q2∆0 + · · · . (3.40)

It is not difficult to verify this by generalizing slightly the computations in section 3.2.

Since the two-point functions can be arbitrarily large, depending on f , the operators ϕ̂s
are unbounded.

More generally, the usual short distance expansion in decreasing powers of 1/(τ−τ ′−iϵ)

becomes, after including the observer and coupling to gravity, a high energy expansion in

decreasing powers of q.

In a state of the form Ψf = ΨdS ⊗ f(q) where f(q) is supported at q ∼= q0, one will

have

⟨Ψf |ϕ̂sϕ̂′s′ |Ψf ⟩ ∼= ⟨ΨdS|ϕ(s)ϕ′(s′)|ΨdS⟩ (3.41)
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for |s−s′| ≫ 1/q0, since under that restriction the projection operators Π in the definition of

ϕ̂s and ϕ̂
′
s′ will not play an important role. In other words, two-point functions will satisfy

an approximate equality (3.41) if the proper time separation between the two operators

is much greater than 1/q0. To the extent that the relation (3.41) holds, the observer is

able to see ordinary physics in the underlying de Sitter space. In the case of the state

Ψmax, one has q0 ∼ 1/βdS, which is the time scale of the exponential expansion of de

Sitter space. Thus in the state Ψmax, an approximate equality (3.41) does not hold at sub-

cosmological time scales. The relation (3.41) does approximately hold in the state Ψmax

on super-cosmological time scales, but does not contain much information, since on such

time scales, the two-point functions reduce to products of one-point functions.

One can slightly modify the model under discussion by assuming an upper bound as

well as a lower bound on the value of q. This actually makes the model more realistic: the

upper bound on q is the total energy available to the observer in performing any experiment.

Everything that has been said up to this point remains valid if q is bounded above as well

as below. As usual, an upper bound on the energy available for an experiment places a

lower bound on the time scales that the experiment can resolve. In a model with an upper

bound q ≤ q∗, the observer can resolve ordinary nongravitational physics down to a time

scale of order 1/q∗.

Going back to the question of defining the âs as Hilbert space operators, the fact

that n-point functions of such operators are finite implies, for example, that states of the

general form âsb̂
1
s1 b̂

2
s2 · · · b̂

k
sk
Ψmax are normalizable (here a and b1, · · · , bk are operators on

the observer worldline in the absence of gravity, and s, s1, · · · , sk are real parameters).

This implies that the âs can be defined as operators on the GNS Hilbert space that have a

common dense domain consisting of states of the form b̂1s1 b̂
2
s2 · · · b̂

k
sk
Ψmax. In view of what

is explained at the end of section 3.2, states b̂sΨmax are actually sufficient to comprise a

(slightly smaller) dense domain.

4 Entropy And The No Boundary State

4.1 ΨdS and ΨHH

In section 3, we considered an observer in the static patch in de Sitter space. For any

state that can be described as an O(1) perturbation of the empty static patch, we gave a

definition of entropy. This definition suffers from the need for an arbitrary renormalization

constant, but up to an additive constant that is independent of the state, it seems to

be a satisfactory notion in the sense that it agrees with previously known definitions of

gravitational entropy when they are available [14].

Now suppose we consider the observer living in a different spacetime. A different

spacetime might be topologically different, or it might be derived from a different de Sitter

vacuum of the same underlying theory, or we might simply consider an O(1/G) (rather

than O(1)) perturbation of the original de Sitter space. If we are successful in adapting

the analysis of section 3 to a different spacetime, we will again get a definition of entropy

for any state obtained as an O(1) perturbation of this spacetime, again up to an additive

constant.
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It is not very satisfactory to have a new renormalization constant for every new space-

time that we consider, especially because one suspects that (at least among closed universes,

or among spacetimes with a common asymptotic behavior at spatial infinity) at a nonper-

turbative level, the different spacetimes are all continuously connected. It would be much

nicer to find a definition of entropy subject only to a single overall additive renormalization

constant, independent of the spacetime. Then we could compare different spacetimes. We

will propose such a definition here, at the cost of going somewhat out on a limb. One

overall renormalization constant may be the price of a semiclassical approach based on

algebras rather than quantum mechanical microstates.

First we will take advantage of the existence of a maximum entropy state to reinterpret

entropy in terms of relative entropy. We recall that in ordinary quantum mechanics, the

relative entropy between two density matrices ρ and σ is defined as

S(ρ|σ) = Tr ρ(log ρ− log σ). (4.1)

Clearly, this definition makes sense for the algebra Âobs of the static patch, since this

algebra has a trace and a notion of density matrices. The static patch algebra has a

state Ψmax of maximum entropy, with density matrix ρmax = 1. From the definition, we

see immediately that, since log ρmax = 0, the entropy S(ρ) of any density matrix can be

expressed in terms of its relative entropy13 with the maximum entropy state:

S(ρ) = −S(ρ|ρmax). (4.2)

In ordinary quantum mechanics with a Hilbert space of dimension N <∞, something

similar is true, but with an additive constant independent of the state. In that case, the

density matrix of maximum entropy is ρmax = 1/N and instead of eqn. (4.2), we have

S(ρ) = −S(ρ|ρmax) + logN. (4.3)

A Type II1 algebra can be viewed as a large N limit of ordinary quantum mechanics, with

the states considered being almost maximally mixed, and with entropy defined with an

additive renormalization that removes the additive constant logN and sets the entropy of

the maximum entropy state to vanish. See [47] for more detail on this.

The de Sitter invariant state ΨdS with which we began our discussion of the static

patch can be obtained by analytic continuation from Euclidean signature. Let us spell

out what that means. The Euclidean analog of de Sitter D-space is a D-sphere SD. The

“equator” of the sphere is a (D − 1)-sphere W , which can be viewed as the boundary of

the southern (or northern) hemisphere H. The state ΨdS can be understood as a state of

quantum fields on W that is obtained by a path integral on H, keeping fixed the boundary

values on W = ∂H. To be precise, suppose for example that we are studying a scalar

field ϕ. We will write ϕW for a classical ϕ field defined on W and ϕH for such a field

13A previous paper in which it has been useful to understand entropy as relative entropy with a special

state was [49], in which the generalized entropy outside a black hole horizon was interpreted as relative

entropy with the Hartle-Hawking state of the black hole. This was a step in proving the Generalized Second

Law.
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defined on H. A state of the quantum fields on W in this model is a function Ψ(ϕW ). The

particular state ΨdS(ϕW ) can be found by a path integral over ϕH subject to the condition

that ϕH |W = ϕW (here ϕH |W is the restriction of ϕH to W ):

ΨdS(ϕW ) =

∫
ϕH |W=ϕW

DϕH exp(−I(ϕH)). (4.4)

The Hartle-Hawking no boundary state [50], which we will call ΨHH, is based on a

similar idea in the context of gravity. To adapt the definition of ΨdS to gravity, one of the

fields on which the wavefunction depends should be a metric gW on W . Also in a theory of

gravity, one has to sum over all possible choices of manifolds H with W = ∂H, rather than

just choosing one, as in the definition of ΨdS. This leads to the definition of ΨHH(gW ) as

a path integral over all manifolds H of boundary W ; one sums over the choice of H, and

for each H, one integrates over the metric gH on H, with the restriction gH |W = gW . If

other fields are present as well, they are included in an obvious way: one formally defines

the no boundary state ΨHH(gW , ϕW , · · · ) by summing and integrating over all bulk data

that restrict to the given boundary data on W . The state is called a no boundary state

because spacetime is taken to have no boundaries except a specified boundary on which

the quantum state is defined. The rest of this section will be a brief review of aspects of

the no boundary state and an explanation of its extension to include an observer.

For a variety of reasons, including the fact that the Einstein action in Euclidean sig-

nature is unbounded below, there are many unanswered questions about the no boundary

state. Everything about it can be questioned. However, assuming the cosmological con-

stant is positive so that a D-sphere of appropriate radius is a classical solution, and in case

the metric gW is such that W is an almost round sphere of a radius properly matched to

the cosmological constant, it is believed that the path integral that computes ΨHH(gW ) is

dominated by the case that H is a hemisphere, of boundary W , also with an almost round

metric. This contribution is exponentially large as G → 0 (because the classical action of

the hemisphere is of order 1/G and negative), and it is believed that contributions from

other manifolds with boundary W are exponentially smaller (since the classical action of

the hemisphere is more negative than that of any other critical point of the path integral

that computes ΨHH).

This description of ΨHH makes clear that ΨHH is a sort of gravitational version of ΨdS.

The maximum entropy state Ψmax of de Sitter space is a simple extension of ΨdS to include

the observer, so we can hope to interpret an extension of ΨHH to include an observer as a

generalization of Ψmax. How to include an observer in the no boundary path integral was

already briefly discussed in [14]. For a clue, we can consider the no boundary path integral

that computes Z = ⟨ΨHH|ΨHH⟩. (We will later divide ΨHH by
√
Z to get a normalized

version of the no boundary state.) It is believed that Z should be computed by a path

integral over D-manifolds without boundary. Assuming that the cosmological constant is

positive, a round D-sphere is a critical point in this path integral, and it is believed that

for small G this is the dominant contribution. The classical action of a round D-sphere is

−A/4G, where A is the area of the cosmological horizon of de Sitter space, so in a classical

approximation the contribution of this critical point is eA/4G, times a subleading factor that

– 20 –



Figure 2. A two-sphere SD containing an “equator” W ∼= SD−1 orthogonal to a great circle γE . Drawn

is the case D = 2, so W is another great circle. W and γE intersect at two points and accordingly the

continuation of γE to Lorentz signature has two components.

comes from quantum fluctuations around the critical point. The logarithm of this path

integral was interpreted [39] as the de Sitter entropy, which is therefore SdS = A
4G + · · · ,

where the subleading corrections (which are of order logG) comes from the fluctuations

around the critical point.

How can we include an observer in this discussion? In our model, the observer is

described by the action (2.2), and propagates on a geodesic. In Euclidean signature, we

will denote this geodesic as γE . If spacetime is a sphere, then γE will be a great circle

on this sphere. The circumference of this great circle is βdS. The action for a observer of

energym+q to propagate for a Euclidean distance βdS is βdS(m+q), and this contributes to

the integrand of the path integral a factor e−βdS(m+q). If we simply integrate this over q, we

get a factor e−βdSm 1
βdS

. A localized observer in any sort of semiclassical de Sitter space has

βdSm≫ 1, so the factor e−βdSm is important, but the factor 1/βdS is a subleading correction

that can be included with the other factors that come from quantum fluctuations. Ignoring

such factors, we can approximate the path integral including the observer as

Z = exp

(
A

4G
− βdSm

)
. (4.5)

Taking the logarithm, we find that the entropy of de Sitter space with an observer of mass

m is (according to the logic of [39])

SdS,obs =
A

4G
− βdSm. (4.6)

This is actually a standard result. Including in the static path an object of mass m (with m

small enough that we can ignore back reaction due to the gravity of this object, as assumed

in the preceding discussion) reduces the entropy of the static patch by βdSm.

To interpret the no boundary state ΨHH in Lorentz signature, the standard procedure is

to “cut” the Euclidean spacetime on a plane of symmetry W (that is, on the codimension

one fixed point set of a Z2 symmetry) and then continue to Lorentz signature with W
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viewed as an initial value surface. In the absence of the observer, because of the assumed

Z2 symmetry, this gives a real solution in Lorentz signature if the original Euclidean solution

is real. In the case that the Euclidean spacetime is a sphere SD, an appropriate W is an

“equator” W ∼= SD−1. In the presence of an observer, we want a further condition that

γE continues in Lorentz signature to a real geodesic, which will be the observer worldline.

To make this true, W must be orthogonal to γE (fig. 2). W and γE intersect at two

points, and the continuation of γE to Lorentz signature is actually the disjoint union of

two timelike geodesics γ and γ′ that are spacelike separated. (This is analogous to what

happens for an accelerated observer in Minkowski space [1]; the Euclidean orbit is a circle,

and its continuation to Lorentz signature is a hyperbola with two components.) In fig. 1,

if γ is the left edge of the Penrose diagram, then γ′ is the right edge. We can think of γ

as the worldline of the observer that we have been studying in this article, and γ′ as the

worldline of a second observer who is entangled with the first.

If we had not integrated over q, we would have written the partition function as∫∞
0 dqeA/4G−βdSm−βdSq (times additional factors from quantum fluctuations). When we

“cut” on W to divide the sphere into two hemispheres, we associate to each hemisphere

the square root of the integrand in this integral or eA/8G−βdSm/2−βdSq/2. In particular, this

gives the no boundary state as a function of q: it is proportional to e−βdSq/2. This coincides

with the q-dependence of the maximum entropy state Ψmax, so we learn that in the context

of de Sitter space, the no boundary state coincides with the maximum entropy state, at least

to the extent that they are both defined and understood. We cannot be sure that either

or both of them make sense beyond perturbation theory or if so, that they agree beyond

perturbation theory. To compute the no boundary partition function Z = ⟨ΨHH|ΨHH⟩
from the no boundary state, we multiply two factors of eA/8G−βdSm/2−βdSq/2, one from the

northern hemisphere and one from the southern hemisphere, or one from the bra and one

from the ket, and integrate over q to evaluate the inner product of the bra and the ket.

Some puzzles about this setup were described and not entirely resolved in [14]. Those

issues will not be repeated here.

4.2 A Universal No Boundary State?

We wish to consider a hypothesis with two parts.

The first part of the hypothesis asserts, roughly, that the no boundary state ΨHH,

enriched to include the observer, makes sense universally as a state of the observer algebra

Aobs. This means that, regardless of the spacetime M in which the observer lives, one can

define the expectation value ⟨ΨHH|a|ΨHH⟩ of an operator a ∈ Âobs.

Actually, in section 5, we will slightly refine this hypothesis to say that in general ΨHH

is a weight, rather than a state, of Âobs. Roughly, this means that ⟨ΨHH|a|ΨHH⟩ is defined
only for a sufficiently nice class of operators in Âobs, somewhat analogous to trace class

operators acting on an infinite-dimensional Hilbert space. The difference between a state

and a weight will not be important in this section.

The second part of the hypothesis is that ΨHH can be regarded as a universal maximum

entropy state.
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Under these assumptions, we can give a general definition of entropy for a state of the

observer in any spacetime. Suppose that Ψ is a state of the algebra Âobs in some spacetime

M . Then by our hypothesis, we have two states of Âobs, namely the given state Ψ and

the no boundary state ΨHH. In general, the relative entropy between two states of a von

Neumann algebra Âobs is always defined. If Âobs is of Type I or Type II, then density

matrices and traces make sense for Âobs, and we can use the familiar definition (4.1) of

relative entropy. Assuming our hypothesis about ΨHH, it is reasonable to suspect that Âobs

is always of Type I or Type II regardless of M ; this point will be discussed in section 5.

But relative entropy between two states of a von Neumann algebra can always be defined,

even if the algebra is of Type III. For a Type III algebra,14 one has to use a more abstract

definition of relative entropy in terms of a certain relative modular operator [51, 52].

Under our hypotheses, we can give a general definition of the entropy of any state of

the observer:

S(Ψ) = −S(Ψ|ΨHH). (4.7)

On the right hand side, S(Ψ|ΨHH) is the relative entropy between the two states Ψ and

ΨHH of Âobs. If Âobs is of Type I or Type II, then Ψ and ΨHH can be described by density

matrices ρ and ρHH, and we can restate eqn. (4.7) in the form

S(ρ) = −Trρ(log ρ− log ρHH). (4.8)

Otherwise, one has to use a more abstract definition of relative entropy. The proposal (4.7)

is natural if it is true that ΨHH can be viewed as a state of maximum entropy and can be

regarded as a state of the observer algebra in any spacetime. The intuition for ΨHH to be

a state of maximum entropy is that it is a sort of global version of Ψmax, which is a state of

maximum entropy in a particular de Sitter vacuum. The reason to hope that ΨHH makes

sense in any (closed) spacetime is that naively, the recipe to compute it by integrating over

all bulk manifolds with given boundary data seems to be universal.

In one interesting situation, we can show that the definition (4.7) gives a sensible

answer. This is the case that the spacetimes that we consider are different de Sitter

spacetimes Mα, in a theory that has many different inequivalent de Sitter vacua. Each

Mα has its own Hilbert space Hα, inverse temperature βα and horizon area Aα. Each Mα

also has its own maximal entropy state Ψmax,α, with density matrix ρmax,α = 1α (here

1α is the identity operator on Hα). We will assume that the observer Hamiltonian is the

same Hobs = m + q independent of α, but this could easily be generalized by letting the

coefficients in the action (2.2) depend on a scalar field that has different expectation values

in different de Sitter vacua. We could also generalize the discussion to allow the possibility

that G has different effective values in different vacua.

14For a Type II∞ algebra, traces and density matrices exist, but there is no natural normalization of the

trace. If one rescales the trace by Tr → ecTr, one has to rescale all density matrices by ρ → e−cρ in order

to preserve the condition Tr ρ = 1. This shifts entropies by S(ρ) → S(ρ) + c; that is one aspect of the fact

that the definition of entropy of a state of a Type II algebra involves an additive renormalization. But it

does not affect the definition (4.1) of the relative entropy. Of course, that is related to the fact that the

relative entropy between two states of a von Neumann algebra can be defined without existence of a trace

at all.
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In the approximation of considering only the spacetimesMα, the no boundary partition

function, summed over connected manifolds, can naively be read off from eqn. (4.5):

Z =
∑
α

exp

(
Aα

4G
− βαm

)
. (4.9)

This formula should not be taken very literally because it includes exponentially small

corrections from manifolds with non-maximal values of Aα, but ignores perturbative cor-

rections to the contribution with maximal Aα. At any rate, the precise value of Z will not

be very important in what follows.

In the no boundary state, the probability that the observer is living in Mα is

pα =
Zα

Z
=

1

Z
exp

(
Aα

4G
− βαm

)
, (4.10)

where Zα is the partition function if the observer is in Mα, and we used the result eqn.

(4.5) for Zα. If the observer does live in Mα, then the no boundary state with the observer

present reduces to the state Ψmax,α, which is the maximum entropy state in that spacetime,

as we saw in section 4.1. This tells us what must be the density matrix of the no boundary

state:

ρHH =
1

Z

∑
α

exp

(
Aα

4G
− βαm

)
· 1α. (4.11)

In other words, if the universe is in the state ΨHH, then the observer is in Mα with prob-

ability pα, and if so the observer experiences a maximum entropy state in that spacetime.

In this particular case, density matrices are available since Âobs is of Type II in each

universe. Using eqn. (4.11) for ρHH along with ρmax,α = 1|α, we can evaluate eqn. (4.8):

S(ρmax,α) =
Aα

4G
− βαm− logZ. (4.12)

This is a satisfactory answer. Up to the overall constant − logZ, it agrees with the expected

value of the entropy of the maximum entropy state of Mα, including the area term Aα/4G

and the reduction by βαm because of the presence of the observer.

If instead of putting Mα in the state Ψmax, we consider a state that is an O(1) per-

turbation of Ψmax and such that the generalized entropy Sgen(ρ) = A/4G + Sout can be

defined, the analysis of [14] can be applied and extends eqn. (4.12) to get S = Sgen− logZ.

Thus at least for this class of spacetimes and states, entropy defined using our hypothesis

about the no boundary state agrees with the usual generalized entropy, up to a universal

additive constant − logZ. In the derivation in [14], the A/G term contributed to entropy

differences between states, but, since the states considered were O(1) perturbations of

Ψmax, they had values of A/G that differ only by O(1). In eqn. (4.12), the A/G terms

makes a contribution to entropy differences of order 1/G.

5 More On The No Boundary State

Let M be a spacetime in which the observer may be living. To be precise, we define

M by a solution of the appropriate gravity theory, and a geodesic γ ⊂ M that will be
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the worldline of the observer. Then we quantize small fluctuations around the chosen

solution to construct a Hilbert space H. This definition makes sense at least to all orders

of perturbation theory. The observer algebra Aobs can be completed to an algebra Âobs of

operators on H.

In section 5.1, we ask two questions about this setup:

(1) Is there a state in H that has maximum entropy for Âobs?

(2) To what extent does the no boundary state ΨHH make sense as a state in H?

Though we will not be able to get firm answers to these questions, we will motivate

the following answers. On the first question, generically there is no state in H of maximum

entropy. On the second question, generically ΨHH does not make sense as an ordinary

normalizable state in H, but it may be that generically ΨHH makes sense as, roughly, an

unnormalizable state (more precisely, as a weight for Âobs).

In section 5.2, we discuss how these two questions are potentially related to each other

and to the “type” of the von Neumann algebra Âobs.

5.1 Unnormalizable States and Unbounded Entropies

We will consider two examples of relatively simple spacetimes that are still more compli-

cated than empty de Sitter space. This discussion will be heuristic and speculative on the

most interesting points. Then we will be even more speculative about a general picture.

For our first example, we imagine turning on a scalar or electromagnetic field in de

Sitter space. For definiteness, consider a scalar field ϕ. Pick a particular G-independent

profile φ for the scalar field, and consider a one-parameter slice in the space of scalar fields,

say ϕ = uφ, with u a real parameter. Now we want to set u = u0 where u0 > 0 is large, say

of order G−1/2, so that turning on ϕ with coefficient u0 is an O(1/G) perturbation, rather

than an O(1) perturbation, of the original de Sitter space. However, we can assume that

the coefficient of G−1/2 is small enough that back reaction on the metric is not important.

What we have described is then to good approximation a strong scalar field in a background

de Sitter space.

Now expanding around the background with u = u0, we can quantize all the small

fluctuations and construct a Hilbert space H. A state χ ∈ H is a function of infinitely

many modes, including one that describes a fluctuation in u, say with u = u0 + x. Like

all the fluctuating modes on which χ depends, x is supposed to be of order 1, not order

1/G1/2.

Introducing now an observer so that we can hope to define entropy, we can ask, “Is

there a state in H with maximum entropy for the observer algebra Aobs?” The answer

to this question is going to be “no” for the following reason. Since empty de Sitter space

has maximum entropy, turning on ϕ ∼ u has reduced the entropy of de Sitter space. We

can increase the entropy by making |u| smaller; since u = u0 + x and u0 > 0, we should

take x < 0. With u0 ∼ G−1/2 and x ∼ 1, within any semiclassical picture we always

have |x| ≪ |u0| and we can always make the entropy of a state bigger by making x more

negative. So there is no maximum entropy state in H.

The story for the no boundary state is somewhat similar. The no boundary state of a

free scalar field coupled to a background gravitational field is a Gaussian, since the path
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integral over ϕH in eqn. (4.4) is Gaussian in the case of a free scalar field in a background

gravitational field. So we can assume ΨHH(u) = C exp(−Eu2) with constants C,E. Now

we expand u = u0 + x, so viewed as a function of x, ΨHH(x) = C exp(−E(u0 + x)2).

This state has two key properties. With u0 ∼ G−1/2 and x ∼ 1, it is extremely small,

exponentially small as G → 0. But ΨHH cannot be viewed as a normalizable state in H,

since as long as u0 ∼ G−1/2 and x ∼ 1, ΨHH grows indefinitely as x becomes more negative.

It may seem contradictory to say that a state is unnormalizable and also that it is

exponentially small. It means that for given x, the state is exponentially small for G→ 0,

but the dependence on x is such that the state is not normalizable.

Though ΨHH cannot be viewed as a normalizable vector in H, we were able to write it

as a function of x, so one might be tempted to think that ΨHH is an unnormalizable state

in H. Of course, by definition, a Hilbert space does not contain unnormalizable states,

so the phrase “unnormalizable state in H” is problematical. However, in von Neumann

algebra theory there is a notion of a “normal weight” which roughly corresponds to the

intuition of an unnormalizable state. For ΨHH to be a normal weight15 of the algebra

Aobs acting on H means in part that there are some positive operators a ∈ Âobs such that

⟨ΨHH|a|ΨHH⟩ < ∞. An example of a positive operator with a finite expectation value in

ΨHH is the projection operator on x ≥ −r, which we will call Ξr. Since Âobs contains any

bounded function of any mode of the ϕ field that the observer can measure, and x is the

only mode of ϕ that is effectively unbounded in ΨHH, it is plausible that Âobs contains a

projection operator similar to Ξr with a finite expectation value in ΨHH. For ΨHH to be

a normal weight, one also wants to know that the function a → ⟨ΨHH|a|ΨHH⟩ on positive

elements of Âobs is a limit of increasing functions ⟨Ψn|a|Ψn⟩, where Ψn, for n = 1, 2, 3, · · · ,
are normalizable states in H. Here we can possibly take Ψn = ΞnΨHH.

A somewhat similar example is the Schwarzschild de Sitter (SdS) solution, describing

a black hole in de Sitter space. This solution depends on a free parameter, the black hole

horizon area ABH. There is also a canonical conjugate of ABH, which is a sort of global

time-shift mode. The entropy is a decreasing function of ABH; it is minimized when ABH

has the largest possible value (this corresponds to the Nariai solution, with ABH equal to

the area of the cosmological horizon) and maximized in the rather singular limit ABH → 0,

where the topology changes as the two sides of the black hole become disconnected. Now

consider an SdS solution with a typical value ABH = A0 ∼ βD−2
dS . We can define a Hilbert

space H that describes O(1) fluctuations around this SdS solution including fluctuations

in ABH, say with ABH = A0 + y, where y ≪ A0.

The parameter y will play a role similar to that played by x in the previous example.

There is no maximum entropy state in H, because in the context of the Hilbert space

H, we can always increase the entropy by making y more negative. What about ΨHH?

Heuristically, because the entropy of the SdS solution is less than that of empty de Sitter

space, one would expect that the no boundary state ΨHH is exponentially small in H. But

because that entropy increases as y becomes more negative, one would expect that ΨHH is

unnormalizable as a state in H. Similarly to the discussion of the previous example, it is

15For a slightly more detailed explanation, see section 4 of [16].
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plausible that ΨHH can be interpreted as a normal weight of the algebra Âobs acting on H.

A projector on y ≥ −r could play the role of Ξr in the previous case.

The relevant difference between the two examples is the following. In the first example,

the deformation to a maximum entropy state by turning off the scalar field perturbation

is a completely smooth and straightforward process classically. The second example is less

straightforward classically, since the limit ABH → 0 is not really a smooth classical limit.

Presumably when ABH gets sufficiently small, the semiclassical picture breaks down and

the black hole evaporates, disconnecting the two sides of the black hole and replacing a

Cauchy hypersurface SD−2 × S1 with SD−1. This is a relatively exotic form of spacetime

topology change, though one about which we have some inkling.

What do we think happens in a generic closed universe M? Consider a Hilbert space

H that describes small fluctuations around some classical solution on M . We have very

little idea of the behavior of ΨHH as a vector in H, because except in a few cases, a stable

Euclidean solution that is a candidate to dominate the evaluation of ΨHH is not known.

We expect that ΨHH is exponentially small in H because presumably the entropy of M

is smaller than that of empty de Sitter space. Is ΨHH normalizable as a vector in H?

Possibly it is, but there is no obvious reason to think so. Plausibly the two examples that

we discussed are typical and that ΨHH grows exponentially in some directions in field space.

It seems much more likely for ΨHH to be a normal weight of Âobs than a normalizable state.

As in the SdS case, the directions in field space in which ΨHH grows exponentially may

bring us towards topology-changing transitions to a higher entropy state, though these

may generically be highly nonclassical transitions of which we have no idea. In that case,

one would expect that there is no maximum entropy state in H. Maximizing the entropy

would require moving in the direction of some topology-changing transitions.

5.2 The “Type” Of The Von Neumann Algebra

Though the observer algebra Aobs is not an algebra of Hilbert space operators, once we

pick a spacetime M that the observer lives in, we can refine and complete Aobs to a von

Neumann algebra Âobs. The question we will ask in this section is what is the “type” of

this von Neumann algebra. For our purposes, the relevant types of von Neumann algebra

are as follows (for more detail, see [46, 47]). We consider only algebras that are “factors,”

in the sense that their center consists only of c-numbers.

A Type I algebra has an irreducible representation in a Hilbert space H. This is the

usual situation in ordinary quantum mechanics and the structures here are familiar.

A Type II algebra has no irreducible representation in a Hilbert space, so for such an

algebra there is no notion of a quantum microstate. However, a Type II algebra does have

a trace, and therefore density matrices and entropies can be defined for a state of a Type II

algebra. Physically, the entropy of a state of a Type II algebra is a renormalized entropy,

from which an infinite constant (independent of the state) has been subtracted.

A Type III algebra has no irreducible representation in a Hilbert space, and it also has

no trace and no notion of a density matrix or entropy.

For an observer in a universe M , closed or open, it is definitely possible to have a

Cauchy hypersurface W no part of which is hidden by either a past or future horizon. In
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such a case, one expects that the algebra Âobs will be a Type I algebra, the algebra of all

operators on H. However, if there is no Cauchy hypersurface in the region causally acces-

sible to the observer, one may expect that the observer does not have access to quantum

microstates and that Âobs will be of Type II or Type III.

For the static patch in de Sitter space, one can convincingly argue that Âobs is of Type

II. In a generic spacetime, this is rather unclear.

A key difference between a Type II algebra and one of Type III is that for a state of

a Type II algebra, but not for a state of a Type III algebra, there is a reasonable notion

of entropy. With our hypothesis that the no boundary state ΨHH is a universal state

of maximal entropy, we have a general definition of entropy in terms of relative entropy

between a given state and the no boundary state. Therefore, if this hypothesis is correct,

one may suspect that Âobs is always of Type II.

An obstruction to this idea has been simply that a Type II algebra has a trace, and

for an observer in a generic spacetime, it has been quite difficult to imagine how a trace

could possibly be defined. However, the hypothesis concerning the universal nature of the

no boundary state gives a possible answer.

For our purposes, there are two types of Type II algebra.16 A Type II1 algebra A has

a representation in a Hilbert space H such that there is a “tracial” vector Ψtr ∈ H. A

tracial vector is a vector with the property that the trace in the algebra is the expectation

value in that state:

Tr a = ⟨Ψtr|a|Ψtr⟩, a ∈ A. (5.1)

One usually normalizes the tracial vector by ⟨Ψtr|Ψtr⟩ = 1, ensuring that Tr 1 = 1. As

explained in section 3.1, a tracial vector automatically defines a state of A of maximum

entropy.

A Type II∞ algebra, roughly speaking, has the same property except that Ψtr is

unnormalizable. To be more precise, Ψtr is a normal weight of the algebra, a concept

briefly introduced in section 5.1. In a Type II∞ algebra, because Ψtr is unnormalizable,

we cannot normalize it by a condition like ⟨Ψtr|Ψtr⟩ = 1, and in fact there is no natural

way to normalize the trace in a Type II∞ algebra. (There is an obstruction: the algebra

has a group of outer automorphisms that rescales the trace.) Moreover, in a Type II∞
algebra, the trace is not defined for all elements of the algebra, since for example if Ψtr is

unnormalizable, then eqn. (5.1) implies that Tr 1 = ∞.

How can one possibly define a trace in a generic spacetime? If one is willing to hy-

pothesize that the no boundary state ΨHH can be defined for any closed universe, then this

suggests that ΨHH is itself the tracial state:

Tr a = ⟨ΨHH|a|ΨHH⟩. (5.2)

If so, then Âobs is of Type II1 in the (possibly very exceptional) case that ΨHH is normaliz-

able in a given spacetime, and Type II∞ otherwise. There is a maximum entropy state in a

16These are the two types of “hyperfinite” Type II algebra. A hyperfinite algebra is one that can be

approximated by finite dimensional matrix algebras. If one relaxes the assumption of hyperfiniteness, the

classification of Type II algebras is much more involved.
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given spacetime if and only if ΨHH is normalizable in that spacetime. This is in reasonable

agreement with the heuristic discussion in section 5.1.

Eqn. (5.2) makes more sense if it is true that ΨHH is unnormalizable in a given

spacetime, because in that case, the trace is defined only for operators that in some way

cancel or project out the divergence in ΨHH in the given spacetime. Not understanding

ΨHH in a generic spacetime, we do not understand what are the operators for which we

should define a trace, and that helps explain why it is hard to see that a trace exists.

If ΨHH is normalizable for a given spacetime, one expects to define a trace valid for all

operators in Âobs, and one could hope that such a trace would be more visible.

Probably the best that we can say about eqn. (5.2), apart from the fact that it can

be verified for the static patch in de Sitter space and possibly in a few other special cases,

is that it is difficult to disprove this conjecture, because we know so little about the no

boundary state in a generic spacetime.

Going back to the case of a closed universe in which Aobs is of Type I, what then plays

the role of the no boundary state? Let M be such a spacetime with Hilbert space HM . To

get a sensible answer, we have to interpret the restriction of ρHH toHM – that is, to the case

that the observer is in M – as ρHH|HM
= 1

Z1HM
. This formula makes sense in the spirit of

the proposal we are exploring because it is formally small – as Z is exponentially large –

but its trace is divergent, so it is not the density matrix of a normalizable state. (Rather,

the function a → Tr aρHH is a weight of the Type I algebra of all bounded operators on

HM .) With this proposal for ρHH|HM
and with ρ being any density matrix on HM , the

general formula (4.7) for entropy gives

S(ρ) = −Tr ρ log ρ− logZ, (5.3)

which is the standard answer up to the universal additive constant − logZ. That constant

appears because we have defined entropy relative to the maximum entropy state ΨHH.

Perhaps the claim that ρHH|HM
= 1

Z1HM
whenever the observer has causal access to a

complete Cauchy hypersurface in a closed universe can shed light on a general understand-

ing of the no boundary state. Note that this formula for the density matrix of ΨHH implies

that as a Hilbert space vector, ΨHH can be naturally taken to live in the Hilbert space of

the disjoint union of M with a time-reversed conjugate of itself.

6 Spacetimes That Do Have Asymptotic Observers

Up to this point, we have considered observers who actually live in the spacetime under

study. As explained in the introduction, one motivation for this choice is that we ourselves

are in that situation; another motivation is that in a closed universe and in many standard

cosmological models, there is no reasonable notion of an observer who can look at spacetime

from outside.

However, it is also interesting to consider an asymptotically flat or asymptotically

Anti de Sitter (AAdS) spacetime, in which there can be an asymptotic observer at infinity,

essentially looking at spacetime from outside. In such cases, one can consider asymptotic
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observables without explicitly introducing an observer who is making them, and this is the

standard practice.

In particular, as in [11, 12] and various later papers [13, 15], in the context of AdS/CFT

duality, it is interesting to define an algebra generated by single-trace operators of the

boundary theory in the large N limit. Here we consider operators defined on a particular

asymptotic boundary – where an asymptotic observer may be living – in a spacetime

that may or may not have additional asymptotic boundaries. For convenience, we will

assume that the boundary theory is a four-dimensional gauge theory; the statements have

straightforward modifications for other cases.

What has been studied in the recent literature is an algebra of single-trace operators

normalized so that their connected two-point functions – or equivalently, their commutators

– are of order 1. Assuming the action is normalized as I = NTrL, where L is a gauge-

invariant polynomial in the fields and their derivatives (with no explicit dependence on

N), the single-trace operators with two-point functions and commutators of order 1 are

generically of the form O = TrW , where again W is a gauge-invariant function with no

explicit N -dependence. However, operators of this form do not have large N limits. For

example, at inverse temperature β, their thermal expectation values ⟨O⟩β are of order N .

One way to define operators that have a large N limit is to subtract the expectation values

of the single-trace operators. For example, one can consider the operators O−⟨O⟩β , which
have a large N limit at inverse temperature β. These operators generate an algebra that

has been studied fruitfully, but it is not background-independent. Above the Hawking-

Page transition, it describes O(1) perturbations of a black hole at inverse temperature

β. Background independence was lost by subtracting the thermal expectation values at a

particular temperature.

As an alternative, one can define operators that have a large N limit by dividing the

single-trace operators by an extra factor of N . Thus, one considers operators of the general

form W = 1
NTrW . These operators have large N limits, and likewise any function of these

operators F(W1,W2, · · · ) (with no explicit dependence on N) has a large N limit. The

algebra A generated by such functions is background-independent, since in defining it we

have made no choice of background. This algebra makes sense in the large N limit and

in the 1/N expansion. But at N = ∞, this algebra is commutative, since dividing by an

extra factor of N gives operators that have commutators of order 1/N 2:

[Wi,Wj ] =
i

N2
Pij +O(1/N4). (6.1)

Here Pij is a function of the W’s, with no explicit N -dependence. (We have included a

factor of i so that if the Wi are hermitian, then the Pij are also hermitian.) In general, the

Pij are highly nonlinear functions of the W’s. Of course the commutator [Wi,Wj ] satisfies

the Jacobi identity. But if we consider only the terms of O(1/N2) in the commutators,

there is a further identity

[Wi,WjWk] =
i

N2
(PijWK + PikWj) +O(1/N4), (6.2)
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since a connected three-point function of the operators Wi,Wj ,Wk is of order 1/N4. To

formalize the idea of keeping only the terms of order 1/N2, let us define, for any functions

F ,G of the single-trace operators,

{F ,G} = lim
N→∞

(−iN2)[F ,G]. (6.3)

For example,

{Wi,Wj} = Pij . (6.4)

Obviously these brackets are antisymmetric. The Jacobi identity for commutators implies

a Jacobi identity for these brackets; for F ,G,K ∈ A,

{F , {G,K}}+ {G, {K,F}}+ {K, {F ,G}} = 0. (6.5)

Eqn. (6.2) implies that

{Wi,WjWk} = {Wi,Wj}Wk + {Wi,Wk}Wj . (6.6)

This generalizes to

{F ,GK} = {F,G}K + {F ,K}G. (6.7)

A commutative algebra with an antisymmetric bracket that satisfies the Jacobi identity

(6.5) and the identity (6.7) is called a Poisson algebra, so the large N limit of A is a Poisson

algebra. Of course, in perturbation theory in 1/N2, A is deformed to be an associative

but noncommutative algebra. To exhibit the dependence of the algebra A on N , we will

denote it as A1/N2 , so A0 is a commutative Poisson algebra, and A1/N2 is noncommutative

for 1/N ̸= 0.

Why is the large N limit a Poisson algebra? The bulk dual of the theory under

discussion has a classical phase space, consisting of classical solutions of the relevant gravity

or string theory. In fact, it has many possible classical phase spaces, differing by the possible

existence (and geometry and topology) of additional asymptotic boundaries apart from the

one where we are defining the algebra, and by the bulk topology that is assumed. Let S be

the set of possible bulk phase spaces, and let us denote those phase spaces as Mλ, λ ∈ S. A

point on any of the Mλ determines a classical solution of the bulk gravity or string theory,

and the asymptotic behavior of the bulk fields in this solution determines the expectation

values of the W’s. To say this differently, in the large N limit, the W’s are functions on

Mλ (for each choice of λ). As classical phase spaces, the Mλ have symplectic structures

which enable one to define Poisson brackets. Note that on any classical phase space, the

Poisson brackets of functions f, g, k satisfy

{f, gk} = {f, g}k + {f, k}g, (6.8)
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in perfect parallel with (6.7). So the functions on any classical phase space form a Poisson

algebra.17 In fact, in the AdS/CFT correspondence, the 1/N 2 expansion of the boundary

theory matches the expansion of the bulk theory in powers of Gℏ, so the Poisson brackets

of the bulk theory, which are the leading term in Gℏ of the commutators of bulk operators,

map to the leading term in 1/N 2 of the commutators of single-trace operators.

In deformation quantization, one is given a classical phase M or a more general Poisson

manifold as in footnote 17. The goal is to deform the commutative algebra A of functions

on M to an associative but noncommutative algebra Aℏ, order by order in a parameter ℏ,
with [f, g] = iℏ{f, g} + O(ℏ2), and with [f, g], in order ℏk, being defined locally in terms

of derivatives of f and g up to kth order. We are in this setting except that our Poisson

algebra is associated with not one Poisson manifold but many. The problem of deformation

quantization (at least in the usual case of a single Poisson manifold) has a general solution

that is unique up to a certain kind of equivalence [30–35]. In our problem of the AdS/CFT

correspondence, we do not need to invoke general theorems to know that the problem has

a solution, since we know that the quantum theory under study exists for every integer N

and that it has an asymptotic expansion of an appropriate form near N = ∞. However, it

is worth mentioning that one very interesting approach to deformation quantization [33–35]

involves a path integral on a disc with the algebra elements inserted on the boundary of

the disc. As in two-dimensional models of a black hole such as JT gravity, the path integral

on the disc naturally produces an algebra. The rotation symmetry of the disc enables one

to endow this algebra with a trace if the Poisson manifold is symplectic (that is, if the

Poisson tensor is invertible). However, this algebra does not have a natural Hilbert space

representation, or more precisely, it does not have a natural “one-sided” Hilbert space

representation that could represent quantization of a single copy18 of M . However, if one

picks a point p ∈ M , then expanding around p, one can construct a Hilbert space Hp on

which the algebra acts. We will give an example shortly.

From the standpoint of the 1/N expansion, the algebra A1/N2 that we get by deforming

the large N Poisson algebra A order by order in 1/N 2 is somewhat analogous to the

observer algebra Aobs that we have studied in the bulk of the present paper. It does

not have any distinguished Hilbert space representation that can be defined in the 1/N

expansion. However any choice of a point in any one of the classical phase spaces Mλ

17More generally, a manifold M with a Poisson bracket {f, g} = αij∂if∂jg that satisfies the Jacobi

identity, where αij is an antisymmetric tensor field on M , is called a Poisson manifold (and αij is called

a Poisson tensor). Such a Poisson bracket automatically satisfies eqn. (6.8), so the functions on such a

manifold form a Poisson algebra. If αij is invertible, then the Jacobi identity implies that its inverse is

a symplectic form ωij , and in that case M is a symplectic manifold – a classical phase space. A simple

example of a Poisson manifold with non-invertible Poisson tensor is a Lie algebra g with Poisson brackets

{xa, xb} = fc
abxc, where fc

ab are the structure constants of g.
18When the algebra has a trace, there is a natural two-sided Hilbert space, as in the black hole case: the

algebra itself can be regarded as a Hilbert space, with ⟨a, b⟩ = Tr a†b. This gives a Hilbert space with the

algebra acting on itself by left multiplication, and commuting with a similar algebra acting on the right.

This Hilbert space can be interpreted as representing quantization of the product of two copies of M . Of

course, in some cases, such as an example discussed below, a natural one-sided Hilbert space does exist (for

certain values of j). This is not always the case and defining a natural one-sided Hilbert space is beyond

the scope of deformation quantization.
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determines a Hilbert space representation of A1/N2 . Indeed, a point p ∈ Mλ determines

a classical solution of the bulk gravity or string theory. Expanding around this point and

quantizing the small fluctuations, we get a Hilbert space that makes sense order by order

in perturbation theory. In the boundary theory, this corresponds to a Hilbert space that

makes sense order by order in 1/N and provides a representation of A1/N2 . Like Aobs,

A1/N2 is not a von Neumann algebra in any background independent sense, but once one

picks a Hilbert space representation, one can complete it to get a von Neumann algebra.

A difference between the two cases is that in AdS/CFT, we expect that A1/N2 can be

defined nonperturbatively, in the sense that it is possible to take N to be a positive integer

and thus to assign a numerical value to 1/N2 rather than treating it as a formal variable.

By contrast, the idea of an eternal observer in spacetime is an idealization. The best we

can say about Aobs is that it makes sense to all orders of perturbation theory; the precise

limitation on the validity of Aobs is not clear. However, in AdS/CFT, it is quite plausible

that semiclassical bulk notions of spacetime and causality are not sharply defined in the

nonperturbative theory in which 1/N2 is set to a numerical value. These notions may

make sense only asymptotically in 1/N2. The boundary algebra related to a semiclassical

spacetime would then be A1/N2 with 1/N2 treated as a formal variable, sharpening the

analogy with Aobs.

We will conclude by describing an elementary example of deformation quantization,

in the hope that this will make some things clearer. The phase space is a two-sphere M

parametrized by real variables x1, x2, x3 with

x21 + x22 + x23 = 1. (6.9)

We take the symplectic structure to be

ω = (j + 1/2)
dx1dx2
x3

. (6.10)

We could choose the coefficient here to be j rather than j + 1/2; we will be expanding in

1/j, which is essentially equivalent to expanding in 1/(j + 1/2). The formulas will look

nicer with the choice we have made. The symplectic form in eqn. (6.10) is SO(3)-invariant,

though not manifestly so. It has been normalized so that∫
M
ω = 4π(j + 1/2), (6.11)

which is an integer multiple of 2π, making quantization possible, if and only if j ∈ 1
2Z.

We can orient M so that j is nonnegative. Quantizing a sphere with a symplectic form

whose integral is 2πk, we expect to get a Hilbert space of dimension k, thus with angular

momentum such that 2j+1 = k. Thus, we anticipate that if j is a half-integer, quantization

of M will give a Hilbert space in the spin j representation of SU(2).

This symplectic form can be derived from a Lagrangian that is also proportional to

j + 1/2. Thus j (or j + 1/2) plays the role of N2 or 1/ℏ. The Poisson brackets derived

from the symplectic form are

{xi, xj} =
1

j + 1/2
ϵijkxk. (6.12)
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So in deformation quantization, we want to promote the xi to operators xi that will obey

[xi, xj ] =
i

j+1/2ϵijkxk+O(1/j2) and also obey a relation that will coincide with the classical

relation (6.9) up to a correction of order 1/j. In this simple example, we can just write

down the answer. No correction is needed to the commutation relations, but there is a

1/j2 correction to the classical relation
∑

i x
2
i = 1. The algebra relations are

[xi, xj ] =
i

j + 1/2
ϵijkxk, x21 + x22 + x23 =

j(j + 1)

(j + 1/2)2
= 1− 1

(2j + 1)2
. (6.13)

Alternatively,19 we could rescale the xi by a factor (1− 1
(2j+1)2

)−1/2, and then there would

be a 1/j3 correction to the commutation relations, but no correction to the classical relation∑
i x

2
i = 1. We will denote this algebra defined by the relations (6.13) as A1/j .

It is quite familiar that when j is a non-negative half-integer, j ∈ 1
2Z≥0, this algebra

has a representation in a Hilbert space H(j) of dimension 2j+1. However, it is not possible

to define a large j limit of H(j) in an SO(3)- or SU(2)-invariant way. So the algebra A1/j

defined in perturbation theory in 1/j, with 1/j regarded as a formal variable, does not have

a natural Hilbert space representation. But once we choose a point p ∈ M , by expanding

around p, we can define a Hilbert space Hp that does have a large j limit and on which

A1/j acts, order by order in 1/j. In explaining the construction of Hp, because of the

rotation symmetry of the sphere, it does not matter which point we pick. We will take p

to be the point (x1, x2, x3) = (0, 0, 1). This means that in the Hilbert space Hp, x3 will

be of order 1, but x1 and x2 will vanish in the large j limit; in fact, they are of order

1/j1/2. The Hilbert space Hp can be constructed without picking a Hamiltonian, but the

construction is possibly more obvious if one picks a Hamiltonian to organize the states. A

convenient Hamiltonian is H = −x3, chosen so that classically its minimum is the point

p = (0, 0, 1) about which we want to expand. We can solve the classical relation (6.9) with

x3 = (1− x21 − x22)
1/2, so the Hamiltonian is

H = −(1− x21 − x22)
1/2 = −1 +

1

2
(x21 + x22) +O((x21 + x22)

2) (6.14)

and the Poisson brackets are

{x1, x2} =
1

j + 1/2
(1− x21 − x22)

1/2 =
1

j
+O((x21 + x22)/j, 1/j

2). (6.15)

From these formulas, one sees that in the large j limit,
√
jx1 and

√
jx2 are canonically

conjugate variables, and the Hamiltonian is a harmonic oscillator Hamiltonian. One can

systematically construct perturbation theory in 1/j about this starting point.

That perturbative construction could be carried out on any phase space M , expand-

ing around any point p ∈ M , but in the particular case that M is a two-sphere with

SO(3)-invariant symplectic form, we can describe the Hilbert space Hp exactly, not just

19We could also reparametrize j by j → j + c0 + c1/j + · · · , with constants c0, c1, · · · , and this would

still give a valid solution of the problem of deformation quantization. By making such a reparametrization

of j and also rescaling the xi, one could entirely remove the deformation of the classical algebra. However,

the choice we have made is more natural in what follows.
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in perturbation theory in 1/j. In the Hilbert space H(j), the operator jx3 is an angular

momentum generator with eigenvalues j, j − 1, j − 2, · · · ,−j. Hp is going to be a large j

limit of H(j), with the limit taken in such a way that all states have eigenvalues of jx3 close

to the maximum. To accomplish this, we simply declare that Hp has a basis consisting

of the eigenstates of jx3 with eigenvalue j − n, where n is kept fixed while j → ∞. In

this way, we define a Hilbert space in which there is a highest weight vector for the U(1)

subgroup of SU(2) generated by jx3, but no lowest weight vector for that subgroup and no

highest or lowest weight vector for any other U(1) subgroup of SU(2). For any choice of

p ∈ M , we can similarly define a Hilbert space Hp that has a highest weight vector pre-

cisely for the subgroup of SU(2) that leaves p fixed. Each of these Hilbert spaces furnishes

a representation of A1/j , order by order in perturbation theory.

Although the algebra A1/j does not have a Hilbert space representation that has a

large j limit, it does have a trace that has a large j limit. This trace is completely

determined on polynomials in the algebra generators xi by the condition that it is SU(2)-

invariant and that Tr 1 = 1. SU(2) invariance implies that Tr xi = 0 for all i and that

Tr xixj = Cδij for some constant C. The constant can be determined by using the relations

(6.13): C = 1
3

(
1− 1

(2j+1)2

)
. Similarly Tr xixjxj must be C ′ϵijk for some constant C ′,

which using the relations in the algebra and the fact that Tr 1 = 1 can be found to be

C ′ = 1
6

(
1− 1

(2j+1)2

)
. Continuing in this way, it is not difficult to see by induction that

the trace of any polynomial in the xi is uniquely determined by the relations in the algebra

together with SU(2) invariance and the condition Tr 1 = 1. Moreover, one can show that

the trace of a polynomial in the xi of degree at most 2n is a polynomial in 1 − 1
(2j+1)2

of

degree at most n.

For j ∈ 1
2Z≥0, the algebra A1/j has a completely natural representation in the Hilbert

space H(j). Since it was uniquely determined by the symmetries and a normalization

condition, the trace constructed in the last paragraph coincides for these values of j with

1/(2j+1) times the ordinary trace in the Hilbert space H(j). However, the trace as defined

in the last paragraph makes sense for any complex j except for a pole at j = −1/2. One

can ask for what values of j the trace is positive, meaning that Tr a†a ≥ 0 for any element

a ∈ A1/j . This is certainly true for j ∈ 1
2Z≥0, since then the trace is just a positive multiple

of the trace in H(j). It is also true that the trace is positive in perturbation theory in 1/j,

where j is understood to be real, in the sense that for any given a, Tr a†a > 0 in the large j

limit and therefore also in perturbation theory in 1/j. In fact, a stronger statement is true:

the large j limit of Tr a†a is the integral over M of the classical function that is the large

j limit of a†a, divided by 4π. We will leave it to the interested reader to try to prove that.

However, if we set j to a real value that is not a half-integer, the trace is not positive.20

To see this, let a = (x1 + ix2)
n. Then a annihilates H(j) if 2j < n. So Tr a†a has n zeroes

at j = 0, 1/2, · · · , (n − 1)/2. Since Tr a†a is a polynomial in 1 − 1
(2j+1)2

of degree at most

n, it has at most 2n zeroes. Moreover the set of zeroes is invariant under j ↔ −1 − j, so

at most n of them are nonegative. Therefore the n zeroes we know about at non-negative

values of j are all simple zeroes and are all the zeroes at non-negative j. Since Tr a†a > 0

20Apart from half-integer j, the trace is positive if j = −1/2 + is, with s real.
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for sufficiently large j, it is negative in the region (n− 2)/2 < j < (n− 1)/2, between the

two largest zeroes. Since we can make this argument with any choice of n, we learn that if

we set j to a non-negative numerical value, the trace is only positive for j ∈ 1
2Z≥0.

Going back to AdS/CFT, in that context we do not expect the Hilbert space above

the Hawking-Page transition to have a large N limit, or any sort of regular behavior

beyond whatever follows from the fact that thermodynamic functions (broadly construed

to include certain averaged correlation functions) have a smooth behavior for large N . So

A1/N2 is not expected to have a natural Hilbert space representation that makes sense in

the 1/N expansion, but it has such a representation for any choice of a point in one of the

phase spaces. It is interesting to speculate that, similarly to A1/j , A1/N2 can possibly be

analytically continued to complex values of N . If there is something that plays for A1/N2

the role that we have conjectured the no boundary state to play for Aobs, it is likely the

infinite temperature limit of the thermofield double state.
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[42] T. S. Bunch and P. Davies, “Quantum Field Theory in de Sitter Space: Renormalization by

Point Splitting,” Proc. Roy. Soc. London A360 (1978) 117-34.

[43] E. Mottola, “Particle Creation in de Sitter Space,” Phys. Rev. D31 (1985) 754.

[44] B. Allen, “Vacuum States in de Sitter Space,” Phys. Rev. D32 (1985) 3136.

[45] R. Figari, R. Hoegh-Krohn, and C. R. Nappi, “Interacting Relativistic Boson Fields in the

De Sitter Universe With Two Space-Time Dimensions,” Commun. Math. Phys. 44 (1975)

265-278.

[46] J. Sorce, “Notes on the Type Classification of von Neumann Algebras,” arXiv:2302.01958.

[47] E. Witten, “Why Does Quantum Field Theory In Curved Spacetime Make Sense? And What

Happens to the Algebra of Observables in the Thermodynamic Limit?” arXiv:2112.11614.

[48] H. J. Borchers, “Field Operators as C∞ Functions In Spacelike Directions,” Il Nuovo

Cimento 33 (1964) 1.

[49] A. C. Wall, “A Proof of the Generalized Second Law for Rapidly Changing Fields and

Arbitrary Horizon Slices,” Phys. Rev. D87 (2013) 069904, arXiv:1105.3445.

[50] J. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D28 2960-75.

[51] H. Araki, “Relative Entropy of States of von Neumann Algebras,” Publ. RIMS, Kyoto Univ.

11 (1976) 809-33.

[52] E. Witten, “Notes on Some Entanglement Properties of Quantum Field Theory,” Rev. Mod.

Phys. 90 (2018) 45003, arXiv:1803.04993.

– 38 –


	Introduction
	A Background-Independent Operator Product Algebra
	The Static Patch
	The Maximum Entropy State
	A Proof of The Tracial Property
	Some Further Properties

	Entropy And The No Boundary State
	dS and HH
	A Universal No Boundary State?

	More On The No Boundary State
	Unnormalizable States and Unbounded Entropies
	The ``Type'' Of The Von Neumann Algebra

	Spacetimes That Do Have Asymptotic Observers

