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ABSTRACT: We propose an algebra of operators along an observer’s worldline as a background-
independent algebra in quantum gravity. In that context, it is natural to think of the
Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define
entropy in terms of the relative entropy with this state. In the case that the only space-
times considered correspond to de Sitter vacua with different values of the cosmological
constant, this definition leads to sensible results.
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1 Introduction

In ordinary quantum field theory without gravity in a spacetime M, we can associate an
algebra Ay, of observables to any open set i C M. However, there are a few problems with
this notion in the presence of gravity.

The most obvious problem is that in the context of quantum gravity, since spacetime
fluctuates, it is in general difficult to describe the spacetime region that one wants to talk
about. The options are much more restricted than they are without gravity.

A possibly deeper problem concerns background independence. In ordinary quantum
field theory, the algebra A;; that we associate to an open set & C M depends on M and U,
of course, but it does not depend on the state of the quantum fields. What would be the
analog of that in gravity? In gravity, the spacetime that the observer experiences is part of
what the fields determine, so an algebra that does not depend on the state of the quantum
fields should be defined without reference to any particular spacetime. In other words, it
should be background independent. By contrast, anything we define as the algebra of the
observables in a region Y C M will depend on the choice of M and U and is not background
independent.

A third problem concerns the question of why we want to define an algebra in the
first place. What is this algebra supposed to mean? In ordinary quantum mechanics, an



observer is external to the system and we are quite free to make what assumptions we
want about the capability of the observer. In quantum field theory without gravity, we can
imagine an observer who probes a system at will but only in a specified region & C M.
That is the context in which it makes sense to consider the algebra Ay: it describes the
observations of such an observer. In gravity, at least in a closed universe or in a typical
cosmological model, there is no one who can probe the system from outside so an algebra
only has operational meaning if it is the algebra of operators accessible to some observer
living in the spacetime.

In this article, following many others (for example [1]), we characterize an observer
by a timelike worldline and we assume that what the observer can measure are the quan-
tum fields along this worldline. As the simplest possible dynamical principle, we assume
that the observer worldline is a geodesic. The model is meant to be an idealization of our
own situation in the universe. Our worldline is roughly a geodesic. We have no a prior:
knowledge of the spacetime we live in,! but we have become aware of a vast universe filled
with stars, black holes, galaxies, and all the rest, primarily by measuring the electromag-
netic fields in the immediate vicinity of our worldline. And our laboratory experiments
can likewise be interpreted as more complex measurements of quantum fields along our
worldline.

According to the “timelike tube theorem” [5-10], in quantum field theory without
gravity, the algebra of operators along a timelike worldline v is equivalent to the algebra
of operators in a certain open set, its timelike envelope? £(). So the algebra of operators
along a timelike geodesic is a reasonable substitute for the algebra of an open set, and
makes more sense when gravity is included.

Of course, in a full theory of quantum gravity, we expect that an observer cannot be
introduced from outside but must be described by the theory. What it means then to
assume the presence of an observer is that we define an algebra that makes sense in a
subspace of states in which an observer is present. We do not try to define an algebra that
makes sense in all states.

The background to this article is provided in part by recent work on algebras of ob-
servables in quantum gravity in certain situations [11-18]. Our starting point will actually
be to rethink the construction of [14], which concerned an observer in de Sitter space,
from a different point of view. In that paper, the motivation for including an observer was
that, because of the symmetries of de Sitter space, it was not possible to define a sensible
algebra of operators in the static patch without assuming the presence of an observer.
Once an observer is present, operators can be “gravitationally dressed” to the worldline of
the observer and an algebra of observables in the static patch can be defined. In a more

1For an observer who does have some a priori knowledge of the global nature and contents of the universe,
quite different considerations can apply [2—4].

2£(w) is defined as the set of all points in M that can be reached by deforming ~ through timelike
curves, keeping its endpoints fixed. Under favorable circumstances, £() coincides with J¥(v) N J~(v),
the intersection of the past and future of «, but in general J*(v) N J™(v) is larger. In a general quantum
field theory (such as a conformal field theory in two dimensions), the timelike tube theorem cannot be
strengthened to replace £(vy) with J* (y)NJ~ (), but in sufficiently nonlinear theories, this may be possible
[10].



general spacetime with less symmetry, operators can be gravitationally dressed to features
of the spacetime, so this motivation to include an observer does not apply. Instead, here
we postulate the presence of an observer in order to achieve background independence and
for other reasons already described.

The organization of this article is as follows. In section 2, we introduce the idea of
a background-independent operator product algebra Ags along the observer worldline.
This involves reformulating the construction in [14] in a background-independent way. We
also explain the notion of a state of Agps. In particular, any choice of a spacetime M, a
geodesic v C M that is the observer’s worldline, and a quantum state of the combined
system consisting of the quantum fields in M and the observer gives a state of Agps.

In section 3, we explain the special role of the static patch of de Sitter space as
an example of a spacetime where the observer might be living. In this case, there is a
state Upax of maximum entropy. Roughly, it describes empty de Sitter space in thermal
equilibrium with the observer. The fact that empty de Sitter space has maximum entropy
is in accord with previous arguments [19-29]. Once one has the state WUy, at hand, one
can define a density matrix and entropy for any state of an observer that can be described
as an O(1) perturbation of empty de Sitter space. The entropy of such a state agrees with

the usual generalized entropy
A

Sgen = E + Souta (11)
(for semiclassical states such that the generalized entropy can be defined) up to an additive
renormalization constant, independent of the state [14].

Suppose, however, that the observer lives in another spacetime, perhaps a spacetime
with a different topology, or another de Sitter vacuum with a possibly different value of the
cosmological constant, or simply an O(1/G) perturbation of the original empty de Sitter
spacetime. If we are able to make a similar analysis of states of the observer algebra in
that other spacetime, we will arrive at a corresponding definition of entropy, naively with
an additive renormalization constant appropriate to this new spacetime.

But we are at risk to have a new renormalization constant for every spacetime (or at
least every spacetime that is not continuously connected to one we have already considered).
It would be much more satisfactory to be able to define entropy up to an additive constant
independent of the spacetime, so that one could compare entropies of observer states that
are associated with different spacetimes. It might be impossible to avoid an overall additive
renormalization constant independent of the spacetime; this may be the price to pay for
an approach in which one has algebras and no quantum mechanical pure states.

With this in mind, we propose in section 4 that the Hartle-Hawking no boundary state
Wyy can be regarded as a universal maximum entropy state. We explain in what sense this
hypothesis leads to a universal definition of entropy for any state of the observer algebra, up
to a universal additive constant independent of the spacetime, at least for closed universes
where the definition of the no boundary state makes sense. This proposal is speculative,
but we show that it leads to a sensible answer in at least one interesting case: the case
that the spacetimes considered correspond to de Sitter vacua with different values of the
cosmological constant.



In a background independent sense, the observer algebra Agps is an operator product
algebra, not an algebra of Hilbert space operators. However, any choice of a spacetime
in which the observer is living gives a Hilbert space representation of A.s. Given such a
representation, it is possible to complete Agps to a von Neumann algebra uZobs, and one can
ask what sort of von Neumann algebra one gets. If the spacetime region causally accessible
to the observer includes a complete Cauchy hypersurface, then one expects that .,Zl\obs is of
Type L. In some special cases that are under good control, like the static patch in de Sitter
space, one can argue that one gets an algebra of Type II. It is tempting to conjecture that
/Tobs is always of Type I or Type II, not Type III, so that the experience of the observer
can always be described by a density matrix. It is argued heuristically in section 5 that
this is the case if the no boundary state can indeed be interpreted as a universal state of
maximum entropy.

Up to this point in the paper, we consider an observer who lives inside the spacetime,
as opposed to an observer who can probe spacetime from outside. In section 6, we look from
a somewhat similar point of view at asymptotic observables in an asymptotically Anti de
Sitter (AAdS) spacetime, which can be probed from outside. A large N algebra of single-
trace operators has been studied in several recent papers [11-13, 15]. However, to define a
background independent algebra of single-trace operators, one has to take the large N limit
in a somewhat different way, dividing the single-trace operators by N instead of subtracting
their expectation values, in order to get operators that have a limit for large N. The result
in the large N limit is a Poisson algebra — a commutative algebra, endowed with a Poisson
bracket. Perturbation theory in 1/N? deforms the Poisson algebra into a noncommutative
but associative algebra. This is the setting of deformation quantization [30-35]. In the
present problem, the Poisson algebra can be viewed as an algebra of functions on any
one of the possible classical phase spaces of this problem, which are labeled by the choice
of a bulk topology, possibly with additional asymptotic boundaries apart from the one on
which the algebra is defined. The noncommutative algebra that arises in the 1 /N expansion
is background independent, but, like Agpg, it does not have any preferred Hilbert space
representation. Any choice of a point in any one of the possible classical phase spaces
determines such a representation. This is analogous to the fact that any spacetime in
which the observer might be living determines a Hilbert space representation of Agps.

2 A Background-Independent Operator Product Algebra

Consider an observer whose worldline is a timelike geodesic v in a spacetime M. First let
us discuss the operators along ~ for the case that M is a fixed curved spacetime, in the
absence of gravity. The worldline is parametrized by the observer’s proper time 7. The
observer measures along -, for example, a scalar field ¢, or the electromagnetic field F},,,
or the Riemann tensor R,,.g, as well as their covariant derivatives in directions normal
to 7. Let us focus on a particular observable, say ¢(z(7)), where x(7) is the observer’s
position at proper time 7, and ¢(z(7)) is the value of ¢ at this spacetime point. We will
abbreviate this as ¢(7).



When we take gravity to be dynamical, we have to take into account that the same
observer worldline can be embedded in a given spacetime in different ways, differing by
T — 7T + constant. So ¢(7) by itself is not a meaningful observable. We need to introduce
the observer’s degrees of freedom and define 7 relative to the observer’s clock.

In a minimal model, we describe the observer by a rest mass m and a Hamiltonian

Hys =m+g, (2.1)

where ¢, which can be interpreted as the Hamiltonian of the observer’s clock, is bounded
by ¢ > 0, so that m is the minimum energy of any state of the observer. To impose
the constraint ¢ > 0, we should only allow operators that commute with the projection
operator® Il = ©(q) onto states with ¢ > 0. If O is any operator, then IIOII commutes
with II. So for example, if p = _id% is canonically conjugate to ¢, then e~ is not an
allowed operator, but Ile™'PII is allowed.

To reproduce the Hamiltonian (2.1), the observer action should be

s = [ a7 (= V= +) 2.2)

where 7 parametrizes the worldline v, and g, is the restriction of the spacetime metric
9w to v. With this action, the equations of motion say that « is a geodesic, and that ¢
is a constant along 7. The action (2.2) is invariant under reparametrizations of . The
reparametrization invariance can be fixed by defining 7 so that g, = —1. This condition
determines 7 up to an additive constant.

Of course, what we have just described is only the simplest model. As another example,
given a scalar field ¢, we could assume the presence of another term in the observer action:

AIobs = - / dt\/ _gtt)‘(zs(t)v (23)
Y

with a coupling constant A\. Then v will no longer be a geodesic; the gradient of ¢ will
provide a force on the observer. One could also elaborate the model so that ¢ would
not be a conserved quantity. However, we will consider the simplest possible model, with
Hamiltonian (2.1) and action (2.2).

As already noted, in the presence of gravity, ¢(7) is not a meaningful operator because
a spacetime diffeomorphism can shift 7 by a constant. Let Hy be the generator of a bulk
diffeomorphism that maps 7 to itself, shifting 7. There is no canonical choice of Hyyy,
since we have not specified what the diffeomorphism generated by Hyyuk should do away
from ~y, but it does not matter what choice we make, since diffeomorphism generators that
act trivially along v will anyway be imposed as constraints in quantizing gravity. Taking
into account the degrees of freedom of the observer, the constraint operator that we should
impose is not Hpk but

H = Hpui + Hobs = Hyui +m + ¢. (2.4)

1 >0

3Here © is the Heaviside theta function, ©(z) = .
0 <0



We now want to allow only operators that commute with H. Since

[Hiute, ¢(7)] = —ig(7), (2.5)
and m is a c-number, we need
g, 6(7)] = i9(7). (2.6)
Asq= id%, we can satisfy this condition by simply setting
T =D, (2.7)
or more generally
T=p+s, (2.8)

for a constant s.
So a typical allowed operator is ¢(p + s), or more precisely

b5 = g(p + s)II. (2.9)

In addition to these operators (with ¢ possibly replaced by some other field along the
observer worldline), there is one more obvious operator that commutes with J2§ , hamely ¢
itself. So we define an algebra Ags that is generated by the $8 as well as q.

This construction hopefully sounds “background independent,” since we described it
without picking a background. However, background independence really depends on in-
terpreting the formulas properly. We will not get background independence if we interpret
ggs and ¢ as Hilbert space operators. To get a Hilbert space on which ngﬁs and ¢ act, we
have to pick a spacetime M and a geodesic v C M on which the observer is propagating.
Quantization in this spacetime gives a Hilbert space and we can interpret Agps as an al-
gebra of operators on this Hilbert space. But we will not have background independence,
since different pairs M,~ will, in general, provide inequivalent representations of the same
underlying operator product algebra. To get background independence, we have to think
of Agps as an operator product algebra, rather than an algebra of Hilbert space operators.?

In the absence of gravity, we would characterize the objects ¢(7) by universal short
distance relations. For example, in a theory that is conformally invariant at short distances,
with ¢ having dimension A, we would have

H(T)p(r") = Clr — 7/ —ie) A ... (2.10)

This characterization does not require any knowledge about the quantum state. After
coupling to gravity and including the observer and the constraint, the operator product
expansion (OPE) in powers of 7 — 7’ becomes an expansion in 1/g; see section 3.3. We char-
acterize Aqps purely by the universal short distance or 1/¢ expansion of operator products.
With that understanding, Agps is background-independent.

By a “state” of the observer algebra A,s, we mean a complex-valued linear function
a — (a), a € Agps, that satisfies two conditions:

4Somewhat similarly, by characterizing a quantum field theory by universal operator product relations,
one can define what it means to consider the same quantum field theory in different spacetimes [36-38].



(1) The function a — (a) is positive, in the sense that for all a € A, (afa) > 0.
(2) This function is consistent with all universal OPE relations.

This somewhat abstract notion of a state is analogous to a definition given in [38] for
quantum field theory in a fixed curved spacetime background.®

This definition of a state of the observer is related in the following way to notions that
may be more familiar. Let M be a spacetime and suppose that the observer worldline is a
geodesic v C M. If H is the Hilbert space that describes the fields in M together with the
observer, then H provides a Hilbert space representation of the algebra Aqps. If ¥ € H is
any state, then the linear function

a — (U]a|) (2.11)

is a state of Agps, by the abstract definition. Conditions (1) and (2) are immediate. We
stress that before picking the pair M,~, we do not have a Hilbert space representation of
Aobs, and it is an OPE algebra, not an algebra of Hilbert space operators.

There is a partial converse to this, given by the Gelfand-Naimark-Segal (GNS) con-
struction of a Hilbert space from a state of an algebra. Suppose that a — (a) is a complex-
valued linear function that defines a state of the observer algebra. Formally define a Hilbert
space vector Wy that corresponds to this state, and for every a € A,ps, define a new vector
VU,, in a complex linear fashion, with Wy, b, = AW, + p¥y, for a,b € Ag,s, A,pu € C.
Aobs acts on this set of states by a¥, = W,,. Define inner products among these states by
(U,,¥,) = (a'b). By condition (1) in the definition of a state of A, these inner products
are positive semi-definite. Taking a completion and dividing by null vectors, one obtains a
Hilbert space H with an action of A, and a vector ¥y such that (a) = (¥1]a|¥y), for all
a € Ayps. Thus every state of the algebra A,y in the abstract sense is associated to a pure
state in some Hilbert space representation of Agps. What is not clear from this reasoning is
the extent to which general Hilbert space representations of Agpg are related to pairs M, .

We conclude this section with several technical remarks.

Remark 1. By definition, states a¥; are dense in the GNS Hilbert space H. That
means that the GNS Hilbert space describes O(1) perturbations of the input state Wy,
not perturbations of order 1/G. So, for example, empty de Sitter space and de Sitter
space perturbed by a classical electromagnetic field with energy of order 1/G are described
by different GNS Hilbert spaces. Not coincidentally, they are also described by different
Hilbert spaces in ordinary perturbation theory; one Hilbert space is obtained by perturbing
around empty de Sitter space and one is obtained by perturbing around de Sitter space
with the electromagnetic wave present. Of course, nonperturbatively it may be possible to
describe empty de Sitter space and de Sitter space with a strong classical field by the same
Hilbert space. In perturbation theory they are different.

°In a generic open universe, there is no reasonable Hilbert space that contains all physically sensible
states of a quantum field. To describe all such states, given the absence of a suitable Hilbert space, the
authors of [38] characterized the quantum field by universal, state-independent operator product relations,
and then they defined a state of the quantum field to be a linear function on this operator product algebra
that is positive and consistent with the OPE relations.



Remark 2. Roughly speaking, if a clock has Hamiltonian ¢, the time measured by the clock
is the conjugate variable —p = id/dg. (At the classical level, the equations of motion derived
from the action (2.2) are —p = 1, showing that —p is the time told by the clock, up to an
additive constant.) However, because of the constraint ¢ > 0, it is not possible to define p
as a self-adjoint operator that could be measured. An example of a self-adjoint operator
that can serve as a partial substitute is p? = —d?/d¢?, defined by Dirichlet boundary
conditions at ¢ = 0. This operator is self-adjoint, with a complete set of eigenfunctions
sin(Aq), A > 0. We can also define an operator |p| = (p?)'/2, the positive square root of
p?. This operator measures, informally, the absolute value of the time measured by the
observer’s clock. Its expectation value at time 7, assuming a state 1y(q) of the observer at
time 0, is

(Wo(@)] € lple™™ [wo(a)) = (e o(a)] Ipl [e %0 (q))- (2.12)

For large |7|, this grows as |7| towards either the future or the past, so |p| can serve to
measure the observer’s proper time in either the far future or the far past. However, for
17| £ 1, (¥o(q)|e™|ple™|1)o(q)) depends very much on the assumed initial state to(q).
It does not seem that any operator accessible to the observer does better than this.

Remark 3. To complete the model really requires a refinement that was discussed in
section 2.6 of [14]. By equipping the observer with a Hamiltonian and in effect a clock,
we have made it possible to define “gravitationally dressed” scalar operators along the
observer’s worldline. However, to enable the observer to define and measure operators
that carry nonzero angular momentum, such as the electromagnetic field or the Riemann
tensor, one needs to equip the observer with an orthonormal frame; in the simplest model
(analogous to assuming that the observer worldline is a geodesic), one can assume that
this frame is invariant under parallel transport along the observer’s worldline. The phase
space of the observer, in D spacetime dimensions, is then not T*R; (where R, is the
half-line ¢ > 0 and TRy is its cotangent bundle) but T*Ry x T%Spin(D — 1). Because
the group Spin(D — 1) is compact, including the second factor does not qualitatively affect
our considerations and we will not include it explicitly in this article. In the real world,
we effectively have an orthonormal frame at our disposal, and we use it, for example, in

mapping the positions of stars and galaxies in the sky.

3 The Static Patch

3.1 The Maximum Entropy State

Any spacetime M in which the observer may be living, together with a choice of geodesic
~ that represents the observer’s worldline, leads to a Hilbert space representation of Agps.
However, there is a simple special case (previously analyzed in [14] in a way similar to
what follows) that is particularly important. This is the case that M is an empty de Sitter
space, with some positive value of the effective cosmological constant. De Sitter space in
D dimensions has a very large isometry group SO(1, D), under which all geodesics are
equivalent, so in this case the choice of v does not matter. The region of de Sitter space
that is causally accessible to the observer — the region that the observer can see and also
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Figure 1. A Penrose diagram for de Sitter space. Time flows upward; the far future is at the top of the
diagram and the far past is at the bottom. Coordinates have been chosen so that the observer’s worldline
is the left edge of the diagram. The region causally accessible to the observer is the static patch, which is
shaded green. It is bounded by the past and future horizons of the observer, as shown.

can influence — is bounded by past and future horizons [39], as indicated in the Penrose
diagram of fig. 1. De Sitter space has a Killing vector field V that is future directed timelike
throughout the causally accessible region. It generates a symmetry that maps the geodesic
7 to itself, shifting it forward in time. We normalize V' so that it looks like d/dr along v, and
we denote the corresponding conserved charge as H. Since H generates a symmetry that
shifts the observer’s proper time, it can play the role of the bulk diffeomorphism generator
that was called Hy in the general construction of section 2. If H is viewed as generating
a “time-translation” symmetry, then the causally accessible region is time-independent. It
has therefore been called a static patch.

In the absence of gravity, quantum fields in de Sitter space have a distinguished de
Sitter invariant state Wqg [40-44], with the property that correlation functions in this state
can be defined by analytic continuation from Euclidean signature. We normalize this state
so that

(Ugs|Was) = 1. (3.1)

Correlation functions in the state W4g are thermal at the de Sitter temperature Ty = 1/84s
[39, 45]. It will be helpful to spell out in detail, in the case of the two-point function of
operators ¢, ¢’, the meaning of this assertion. Thermality means that two-point functions
(Uas|o(T)d' (77)|¥4s) have two key properties:

(1) The first property is simply time-translation symmetry,
(Was|p(T)¢'(7)|Was) = (Pas|d(T + )¢/ (7' + ¢)[Vas), c€ER. (32)
(2) The second property is the Kubo-Martin-Schwinger (KMS) condition:

(Was|o(T — 1Bas)d' (0)[Was) = (Vas|¢'(0)¢(T)|Pas)- (3.3)



To be more precise, the KMS condition asserts that the function (¥4s|¢(7)¢’(0)|Wqs),
initially defined for real 7, can be analytically continued to a strip 0 > Im7 > —f4s,
and its values at the lower boundary of the strip satisfy eqn. (3.3). The two properties
do not hold only for the case that ¢, ¢’ are local operators. We could, for example, take
o(1) = Hle ¢; (T + s;), with local operators ¢;, and similarly for ¢'. The same statements
hold without change.

To understand the relation of the KMS condition to thermal equilibrium, consider an
ordinary thermal system with Hamiltonian H, inverse temperature (3, partition function
Z, and density matrix p = %e*ﬁH . Time-dependent correlation functions of operators
A, B are defined by (A(t)B(0))s = Tr pelflt Ae7Ht B (B(0)A(t))s = Tr pBelt Ae 711t and
from this eqn. (3.3) immediately follows. This derivation does not precisely apply to
the correlation functions in the de Sitter state Wqg, but the KMS condition in that case
can be proved using the fact that those correlation functions can be obtained by analytic
continuation from Euclidean signature.

Including gravity and the observer, we define a special state® ¥,,., in which the quan-
tum fields are in the state W4g, and the observer energy has a thermal distribution at the
de Sitter temperature:

lIjmax = \I/dse_ﬂdsq/Q V BdS- (34)

And we replace operators ¢(7) by “gravitationally dressed” operators as = Ig(p + s)IL.
These steps were carried out in [14], with a somewhat different explanation. Note that by
virtue of eqn. (3.1), we have

<\I’max|\1"max> =1 (35)

Then a straightforward calculation shows that the two properties (1), (2) that charac-
terize the thermal nature of the state W4g are modified as follows:

(1") We still have a version of time-translation symmetry, but now it takes the form
<\I’max|$s$/3/|‘ljmax> = <\IjmaX’$s+c$g’+c|‘ljmax>a cE R (36)
(2") The KMS condition simplifies:

(Wi | 05D |V imaxe) = (Winase| D s | Uinaxc) - (3.7)

Crucially, there is no shift by —if; the two operators are simply exchanged. One proof of
eqn. (3.7) can be found in [10], section 4. Another proof is presented shortly in section 3.2.

Condition (2'), and its straightforward extension to the additional generator g of Agps,
tells us that if for a € Agps, we define

Tra= <\I’max|a‘\l’max>v (38)

5We have imposed the constraint that operators commute with fI; this constraint is a statement about
operators that can be defined along the observer’s worldline. One might expect to also impose a constraint
that states should be annihilated by H. However, this condition depends on what there is beyond the
observer’s horizon and places no useful condition on a physical state as a state of the observer algebra Aopbs.
Accordingly we will not discuss such a condition. Such conditions were discussed in [14] and provide no
information accessible to the observer.

~10 -



then the function a — Tra does have the algebraic property of a trace:
Trab = Trba, a,b¢& Ags. (3.9)

This fact is described by saying that the state W, of the algebra Ags is “tracial.” By
virtue of eqn. (3.5), we have
Tr1=1. (3.10)

Let H be the GNS Hilbert space of the state a — Tra of the observer algebra Agpys.
As explained in section 2, this Hilbert space is generated by states aW¥inax, a € Agps, and
(as in Remark 2 at the end of section 2) it describes perturbations of the static patch that
are of O(1), not O(1/G). H provides a Hilbert space representation of Agps.

At this point, we can ask whether a general state ¥ € H has a density matrix p, defined
by imitating the standard definition in ordinary quantum mechanics:

(U|a|¥) = Trap, a€ Agps- (3.11)
Assuming that the state ¥ is normalized, this condition immediately implies that
Trp=1, (3.12)

as in ordinary quantum mechanics. By virtue of the definition of the trace, it follows
immediately that the state Wy does have a density matrix, namely ppmax = 1. We
can also easily find the density matrix pp of a state Wy = bW, b € Agps: from the
definitions, and the tracial nature of ¥,,.y, we find that p, = bb' has the desired property
(Upla|Pp) = Trapp, a € Agps. So a dense set of states in H, namely those of the form ¥y,
have a density matrix in Agps.

It is not quite true, however, that every state in H has a density matrix in Agps. H
was defined as a completion of the set of states of the form ¥}, and accordingly, if we want
it to be true that every state in H has a density matrix, we need to replace Aqns by a
completion .%Tobs. This completion, which is not background-independent, since it depends
on the choice of the Hilbert space representation H, can be defined as the von Neumann
algebra generated by bounded functions” of operators in Aqgp,s. Once we pass from Agps to
its completion, it is true that every state in H has a density matrix. To be more precise,
every state U € H has a density matrix p that is in, or in general affiliated® to, ./Zl\obs.

Since a dense set of states U}, have a density matrix pp = bb' that is manifestly non-
negative, it follows that, as in ordinary quantum mechanics, the density matrix of any
state is nonnegative. Conversely, if p is any non-negative operator in (or affiliated to) ./zl\obs
satisfying Tr p = 1, then it is the density matrix of a state in H, namely Wi = P2
Indeed, for a € Aups, (W22 ¥ 1/2) = (Urnax|p/2apt?|W o) = Trp/2apt/? = Trap,

“One passes here to bounded functions of operators in Aops, as otherwise it is not clear that the com-
pletion is an algebra.

8An operator O is affiliated to ﬁcbs if bounded functions of O are in ./Zl\obs. It is possible for a density
matrix p to be unbounded (even though it satisfies Trp = 1). Since Aobs is defined as a von Neumann
algebra of bounded operators, an unbounded density matrix is affiliated to .Zobs, rather than being contained
in Aobs.-
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where in the last step we use the tracial property (3.7). ¥ pl/2 18 exactly analogous to the
canonical purification of a density matrix p in ordinary quantum mechanics.

Once we know that every state has a density matrix, we can define entropies. The von
Neumann entropy of a state ¥ with density matrix p is defined as usual by

S(p) = —Trplogp. (3.13)

In ordinary quantum mechanics, a maximally mixed state is a state whose density matrix
is a multiple of the identity, and it has the maximum possible von Neumann entropy. In
the present context, the analog of a maximally mixed state is the state Wy,,x, whose density
matrix is pmax = 1. By analogy with what happens in ordinary quantum mechanics, pmax
is a density matrix of maximum entropy. By the definition (3.13), its entropy vanishes:

S(pmax) = —Tr1llog1 = 0. (3.14)

On the other hand, every other density matrix has strictly negative entropy. One way
to prove this is as follows. Let p # 1 be some other density matrix, and for 0 < ¢ < 1,
set pp = (1 —t) +tp. Then p; is nonnegative and Trp; = 1, so p; is a density matrix.
Define f(t) = S(p;). Then f(0) = f’(0) = 0, and using the general formula log M =

Iy~ ds (s—l—% - S+1M>, one computes that

1
1—
Sert( p)5+pt

o0
(@) = —/ ds Tr (1—p). (3.15)
0
The integrand in eqn. (3.15) is positive, since it is Tr L? where L = (54 p;)~Y2(1 — p)(s +
p¢) "1/ is self-adjoint. So f”(t) < 0,0 <t < 1. From f(0) = f(0) = 0, f"(t) < 0, it follows
that f(t) <0 for t > 0, and therefore S(p) = f(1) < 0.

Thus the system consisting of an observer in the static patch has a state of maxi-
mum entropy, namely Wy ., = U yqePasa/ 2/Bas, consisting of empty de Sitter space with
a thermal distribution of the observer’s energy. Why did this happen? The original jus-
tification for the claim that empty de Sitter space has maximum entropy was as follows
[20]. Consider a state in which the static patch is not empty, but is filled with particles
and fields. As one evolves to the future, these particles and fields will all leave the static
patch through the future horizon, so the static patch will be empty in the far future. Since
the static patch, from any starting point, evolves to be empty in the future, the Second
Law of Thermodynamics appears to imply that the empty static patch must be a state of
maximum entropy.

In the present context, since we have defined the static patch by the presence of an
observer,? by definition the observer does not leave the static patch even in the far future.
On the other hand, it is reasonable to expect that in the far future, the static patch will be
empty except for the presence of the observer, and that the observer energy will eventually

9As noted in the introduction, a possible criticism of approaches that do not explicitly introduce an
observer is that, once gravitational fluctuations are considered, it is not clear what is meant by the static
patch that is under discussion.
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come into equilibrium with the quantum fields at the de Sitter temperature.' Thus the
form of the maximum entropy state Wy, is precisely in accord with what one would expect
based on the argument in [20], once the observer is included.

A von Neumann algebra (of infinite dimension) that has a trace such that the trace
of the identity element is finite — as in eqn. (3.10) — or equivalently, that has a state

f'1 Type II;. So rather as in [14], one

of maximum entropy, here ¥, is said to be o
conclusion is that the algebra .Zobs is of Type II;.

It is possible to show [14] that for states obtained as O(1) perturbations of Wy, — and
thus for states in the GNS Hilbert space H — the entropy defined as in eqn. (3.13) agrees,
up to an additive constant that is independent of the state, with the usual generalized

entropy
A

4G
where as usual A is the horizon area and S,y is the entropy of particles and fields outside the

Sgen = + Souta (316)

horizon. To be more precise, this is true for semiclassical states, for which the generalized
entropy is defined. The additive constant that is lost in this algebraic definition of entropy
is large — it is the entropy of the maximum entropy state. With the definitions that we
have given, the maximum entropy state has entropy zero, and all entropies are measured
relative to that. By contrast, in the standard approach [39], the entropy of the maximum
entropy state is large, approximately Ags/4G, where Agg is the horizon entropy for empty
de Sitter space.

Physically, the meaning of the constant discrepancy between the two notions of entropy
is that the entropy defined in terms of a state of ﬁobs is a sort of renormalized entropy, from
which a renormalization constant has been subtracted. The maximum entropy state of a
Type II; algebra can be described in terms of an infinite number of qubits in a maximally
entangled state, so its entropy is naturally infinite (for example, see [47] for an explanation
of this). This infinity needs to be renormalized away, but the algebraic approach via ./zl\obs
does not have enough information to know what value to assign to the entropy of the
maximum entropy state, and it is usually just set to zero, as we have done in the preceding
discussion. In section 4, however, we will try to do better, at least in comparing different
spacetimes.

3.2 A Proof of The Tracial Property

Our goal in this section is to prove the tracial property of the maximum entropy state ¥ .
Let us first formulate exactly what we wish to prove. First, let a, b be any observables along
the observer’s worldline in the absence of gravity and without imposing the constraint. For
example, as in section 3.1, we could have

a=¢(s), b=q¢'(s), (3.17)

10 Actually, if the observer action is precisely as in eqn. (2.2), this will not happen, since ¢ is a conserved

quantity. A generic small perturbation will ensure that in the far future, the observer reaches equilibrium
with the ambient quantum fields.

1This property is not usually taken as the basic definition of a Type II; algebra. The usual definition is
explained in [46], and a simple construction is explained in [47].
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for some scalar fields ¢, ¢’ and times s,s’. But a and b could be more complicated; for
example, a could be a product of scalar fields at different times: a =[], ¢i(s;).

After including the observer degrees of freedom and imposing the constraint, we replace
a and b with gravitationally dressed operators

3=TMa(p)ll, b=TIb(p)II, (3.18)

where
a(p) _ eipHaefipH, b(p) _ eiprefipH. (3.19)

Here H is the time translation generator of the static patch.
We now wish to prove that

(W max|3D| W rnax) = (Winae |63 Winase).- (3.20)

In fact, since the algebra Agps has one more generator ¢, we will want to prove a slightly
more general statement, as explained later.

Because HV 0 = 0, IW 0 = VUpnax, and H commutes with II, eqn. (3.20) simplifies
to

(Umax|a(P)IIb(p)[¥max) = (Vmax|b(p)Ha(p)|¥max)- (3.21)

The structure of eqn. (3.21) suggests that it is convenient to describe the observer Hilbert
space Hobs as a space of functions of p, with ¢ = id%. If we do this, the constraint ¢ > 0
means that Hops should be defined to consist of square-integrable functions f(p) that are
holomorphic and decaying in the lower half p-plane. For example, a state with ¢ = qq is
exp(—igop), and this decays in the lower half-plane if and only if gy > 0. The inner product
on Heps is the standard

o

F@ow)) = / apT(0)a(p). (3.22)

—0oQ
In this representation, the projection operator IT = ©(q) from L? functions on —oo <

g < oo to L? functions supported on g > 0 is an integral operator with the kernel

1 1

= 3.23
2mip — p' — e ( )

K(p.p')

In fact, by closing the integration contour in the upper or lower half-plane, one can show

that
& o —iar" i g >0
/ ' K(p,pe ' = {° o (3.24)
—o0o 0 if ¢ <0,

implying that K(p,p’) is the integral kernel of the orthogonal projection operator on ¢ > 0.
In this representation, the state of the observer that we have formerly written as

VBase P459/29(q) becomes ‘/%p—iﬁldsﬂ' Therefore

Bas 1

W = Wagy/ 28—~
me T TN 2n p —iBas/2

(3.25)
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Using this expression for Wy, and expressing I in terms of the kernel K, we get

(Wi 30| Wanax) = (Prma]a(p)©(9)b(p) Wnax) (3.26)
_ fas [ dpdp 1 /
27 /_Oo 2mi (p+iBas/2)(p — p/ — ie)(p/ — iﬂds/2)<‘lfds|a(p)b(p )[Was)-

Using time-translation symmetry (3.2) and defining v = p — p/, this becomes

ﬁds/oo dpdv 1
21 Jooo 2mi (p+ifas/2)(v —i€)(p — v —ifas/2)

Integrating over p, we learn that

(Was[a(v)b(0)|Was).- (3.27)

- Bas / > 1
U ab|W =— dv - - Wasla(v)b(0)|[Pys). 3.28
< maX| | maX> or oo (U—le)(v+lﬂds)< dS| ( ) ( )| dS> ( )
Finally we make use of holomorphy and the KMS property. The integrand in eqn. (3.28)
is holomorphic in a strip 0 > Imwv > —f45. So we can shift the integration contour by
v — v — if4s + i€, getting

B _ Bas [ 1 .
(W 3B ) = 25 /_OO ey (Vasha(o — Ba)bO) ). (329

Using the KMS property (3.3) and setting v = —w, we get

<‘I/max‘/3\/l)\‘\11max> = % /::) dw (w— ie)(i} +1Bas) <\PdS’b(0)a(_w)‘\I’ds>
_ Bas (%4, 1 .
om /_ood (0 1) (w 1 8y - Las[B(w)a(0)¥as),  (3.30)

where time-translation symmetry was used again. Comparing to eqn. (3.28), this implies
the claimed result
(Umax|ab| ¥ max) = (Pmax|ba| Vimax)- (3.31)

To complete the picture, we have to take into account that the algebra Agns has one
more generator, namely ¢q. A sufficiently rich set of functions of ¢ are the exponentials e'*¢
for real s. To complete the analysis, it suffices to check the tracial property for operators'?
Ay = 3¢5, B[Sq = Beis,q, with 3, b as before and s, s € R. Using the fact that €7 = 6’_8‘%7
acts on p by p — p — s, one can repeat the previous steps. For example, the generalization
of eqn. (3.28) turns out to be

~ T _ @ /oo 1
<\I/max’a[s]b[sl} ’\I’max> = o . dv (U e ie)(v n o n i,Bds) <\Ifds‘a(’l))b(0)‘\1/ds>. (332)

Again using holomorphy and shifting the integration contour by v = v —ifqg + i€ and then
repeating the previous steps, we arrive at

<\I’max‘g[s}g[s’] ‘\Ijmax> = <\I’max|/b\[s’]/a\[s] ‘\Ijmax>. (333)

?Note that a[y does not coincide with @, = ITa(p + s)II as defined in eqn. (2.9).
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This confirms that the thermal property of W4g leads, after coupling to gravity and includ-
ing the observer, to the tracial property of W ax.

The reader may wonder whether in order to complete the proof of the tracial property,
we need to prove that Tr E[S}B[S/]E[S//} =Tr B[s/ﬁsu]ﬁ[s}, and similarly with more than three
operators. The answer is that this is not necessary, because in the preceding proof, we did
not assume a or b to be local operators, and any product of the form B[S/]/c\[su] can actually

be expressed as a linear combination of operators a[s,,,], for some d. To do this, we write

B[S/]E[s/q — TIb(p)e™' 10 (q)c(p)e' UI. (3.34)

Using O(q) = [*° dA 1€ we get

—o0 27 A—ie

- ~ e d)\ 1 i(s’ is!
b Cler = / Oo%)\_ieﬂb(p)e( A (p)els I, (3.35)

Now we write el(5Ndc(p)e”? = ¢y, o (p)ell®+5" TN Jeading to

~ “dh 1~
b[s/]C[S//] = / fd[S/J’,S//J’,)\], d= bC>\+S/. (336)

Oo%)\—le

This is of the claimed form. It follows, for example, that states B[s} W hax are dense in the
GNS Hilbert space. There is no need to add states 5[151]5[232] . Bﬁ, k}\llmax to get a dense set
of states.

3.3 Some Further Properties

In quantum field theory without gravity, what we informally call a “local operator” ¢(z)
is not really a Hilbert space operator, since in acting on a normalizable state it always
produces an unnormalizable state, mapping us out of Hilbert space. To get a Hilbert space
operator, we have to smear ¢(x) in spacetime. In fact, smearing along a timelike curve,
such as the worldline of an observer, is enough to produce a Hilbert space operator, albeit
one that is unbounded and therefore only densely defined. This was shown originally (for
the case of a geodesic in Minkowski space) in [48] and has been reviewed recently [10].

After coupling to gravity and introducing the observer, we replace, for example, a
local operator ¢(7) with a gravitationally dressed version (55. One may wonder if 55\5, like
the underlying ¢(7), requires some smearing to turn it into a true Hilbert space operator.
The answer to this question is that no smearing is needed; (}55 is already an (unbounded)
Hilbert space operator. Roughly speaking, gravitational dressing has provided the neces-
sary smearing.

This actually follows from some of the facts that were used in proving the tracial
property. The two-point function (¥ggla(v)b(0)|¥4s) that appears in eqn. (3.32) is in
general singular on the real v axis. But this two-point function is the boundary value of a
function holomorphic in a strip 0 > Imv > —f4g. The function 1/(v — s — ie)(v + s’ + B4s)
that multiplies this correlation function in eqn. (3.32) is holomorphic in the same strip.
Hence we can deform the integration contour into the middle of the strip, say at Imv =
—Bas/2. This makes it obvious that the integral that computes (U ax |’§SBS/ |V max) is always
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convergent, regardless of what we choose for a, b, s, and s’. This is true even if we arrange
so that 3y is the hermitian adjoint of Bsr. So BS/\I!maX is normalizable; it is a Hilbert space
state.

There is a simple explanation of why this has happened, and this will hopefully make
it obvious that n-point functions of these operators are similarly finite without any need for
smearing. Let us consider a two-point function in the absence of gravity in the underlying
state Wqg:

G(7) = (Vas|p(7)¢'(0)|Pas). (3.37)
The function G(7) is singular at 7 = 0. The singularity comes from a sum over excitations
with high energy, that is, with a large eigenvalue of the de Sitter generator H, created by
¢'(0) and then annihilated by ¢(7). However, when we include the observer and impose
the constraint, ¢(7) and ¢/(0) are replaced by operators s and $;, that commute with
H = H +m+ q, and instead of G(7) we consider a dressed correlation function

é = (Wmaxygsaéf‘qjmax)- (338)

Since (E’S/ commutes with H 4+ m + ¢, in order for it to create an excitation of large H,
it will have to reduce the value of ¢ by the same amount. But in the state Wy,.y, it is
exponentially unlikely to observe a value of ¢ much greater than 1/84g, and ¢ is strictly
not allowed to be negative. So it is exponentially unlikely for /(25\;, to reduce ¢ by much
more than 1/f34g, and therefore it is exponentially unlikely for ¢/, to create a state with
H > 1/B4s. Hence the sum over high energy states is cut off, and the function @(7‘) is
finite for any choices of the operators.

This explanation makes it clear that the energy cutoff depends on the choice of the
specific state Wy .c. Let us consider a more general state ¥y = W43 ® f(q), replacing the
specific function e P4s9/2,/B;g that is used in the definition of Wy, with a more general
function f(q). If f(q) is supported at ¢ ~ qo, then in eqn. (3.38), the sum over intermediate
states will be cut off at H ~ go. This corresponds to a short distance cutoff at 7 ~ 1/qo.
So for example if in the absence of gravity ¢ and ¢ are scalar fields with the property that
the most singular term in the operator product expansion is

C
O(1)' () ~ R (3.39)
then we expect
(U flpsdi|Ts) ~ g™+ (3.40)

It is not difficult to verify this by generalizing slightly the computations in section 3.2.
Since the two-point functions can be arbitrarily large, depending on f, the operators ggs
are unbounded.

More generally, the usual short distance expansion in decreasing powers of 1/(7—7'—ie)
becomes, after including the observer and coupling to gravity, a high energy expansion in
decreasing powers of q.

In a state of the form ¥y = W4g ® f(q) where f(q) is supported at g = qo, one will
have

(W1 sdiy [ W p) = (Was|(s)¢/ (s)) [ Was) (3.41)

17 -



for |s—s| > 1/qq, since under that restriction the projection operators II in the definition of
ggs and 5;, will not play an important role. In other words, two-point functions will satisfy
an approximate equality (3.41) if the proper time separation between the two operators
is much greater than 1/gp. To the extent that the relation (3.41) holds, the observer is
able to see ordinary physics in the underlying de Sitter space. In the case of the state
Uiax, one has qo ~ 1/84s, which is the time scale of the exponential expansion of de
Sitter space. Thus in the state Uy, an approximate equality (3.41) does not hold at sub-
cosmological time scales. The relation (3.41) does approximately hold in the state Wyax
on super-cosmological time scales, but does not contain much information, since on such
time scales, the two-point functions reduce to products of one-point functions.

One can slightly modify the model under discussion by assuming an upper bound as
well as a lower bound on the value of ¢g. This actually makes the model more realistic: the
upper bound on ¢ is the total energy available to the observer in performing any experiment.
Everything that has been said up to this point remains valid if ¢ is bounded above as well
as below. As usual, an upper bound on the energy available for an experiment places a
lower bound on the time scales that the experiment can resolve. In a model with an upper
bound g < ¢, the observer can resolve ordinary nongravitational physics down to a time
scale of order 1/g,.

Going back to the question of defining the a; as Hilbert space operators, the fact
that n-point functions of such operators are finite implies, for example, that states of the
general form ﬁsgil/b\; x Z’;k U ax are normalizable (here a and b',--- | b* are operators on
the observer worldline in the absence of gravity, and s,sj,--- s, are real parameters).
This implies that the a5 can be defined as operators on the GNS Hilbert space that have a
common dense domain consisting of states of Ehe form B;lgé = -Bﬁkwmax. In view of what
is explained at the end of section 3.2, states bsW.,.x are actually sufficient to comprise a
(slightly smaller) dense domain.

4 Entropy And The No Boundary State

4.1 \Ifds and \IIHH

In section 3, we considered an observer in the static patch in de Sitter space. For any
state that can be described as an O(1) perturbation of the empty static patch, we gave a
definition of entropy. This definition suffers from the need for an arbitrary renormalization
constant, but up to an additive constant that is independent of the state, it seems to
be a satisfactory notion in the sense that it agrees with previously known definitions of
gravitational entropy when they are available [14].

Now suppose we consider the observer living in a different spacetime. A different
spacetime might be topologically different, or it might be derived from a different de Sitter
vacuum of the same underlying theory, or we might simply consider an O(1/G) (rather
than O(1)) perturbation of the original de Sitter space. If we are successful in adapting
the analysis of section 3 to a different spacetime, we will again get a definition of entropy
for any state obtained as an O(1) perturbation of this spacetime, again up to an additive
constant.

~ 18 —



It is not very satisfactory to have a new renormalization constant for every new space-
time that we consider, especially because one suspects that (at least among closed universes,
or among spacetimes with a common asymptotic behavior at spatial infinity) at a nonper-
turbative level, the different spacetimes are all continuously connected. It would be much
nicer to find a definition of entropy subject only to a single overall additive renormalization
constant, independent of the spacetime. Then we could compare different spacetimes. We
will propose such a definition here, at the cost of going somewhat out on a limb. One
overall renormalization constant may be the price of a semiclassical approach based on
algebras rather than quantum mechanical microstates.

First we will take advantage of the existence of a maximum entropy state to reinterpret
entropy in terms of relative entropy. We recall that in ordinary quantum mechanics, the
relative entropy between two density matrices p and o is defined as

S(plo) = Trp(log p — log o). (4.1)

Clearly, this definition makes sense for the algebra .Zobs of the static patch, since this
algebra has a trace and a notion of density matrices. The static patch algebra has a
state Wpax of maximum entropy, with density matrix ppmax = 1. From the definition, we
see immediately that, since log pmax = 0, the entropy S(p) of any density matrix can be
expressed in terms of its relative entropy'® with the maximum entropy state:

S(p) = =S(plpmax)- (4.2)

In ordinary quantum mechanics with a Hilbert space of dimension N < 0o, something
similar is true, but with an additive constant independent of the state. In that case, the
density matrix of maximum entropy is pmax = 1/N and instead of eqn. (4.2), we have

S(p) = —S(plpmax) + log N. (4.3)

A Type II; algebra can be viewed as a large N limit of ordinary quantum mechanics, with
the states considered being almost maximally mixed, and with entropy defined with an
additive renormalization that removes the additive constant log N and sets the entropy of
the maximum entropy state to vanish. See [47] for more detail on this.

The de Sitter invariant state W4g with which we began our discussion of the static
patch can be obtained by analytic continuation from Euclidean signature. Let us spell
out what that means. The Euclidean analog of de Sitter D-space is a D-sphere S”. The
“equator” of the sphere is a (D — 1)-sphere W, which can be viewed as the boundary of
the southern (or northern) hemisphere H. The state W4g can be understood as a state of
quantum fields on W that is obtained by a path integral on H, keeping fixed the boundary
values on W = 0H. To be precise, suppose for example that we are studying a scalar
field ¢. We will write ¢y for a classical ¢ field defined on W and ¢y for such a field

13 A previous paper in which it has been useful to understand entropy as relative entropy with a special
state was [49], in which the generalized entropy outside a black hole horizon was interpreted as relative
entropy with the Hartle-Hawking state of the black hole. This was a step in proving the Generalized Second
Law.

~19 —



defined on H. A state of the quantum fields on W in this model is a function ¥(¢y ). The
particular state ¥qs(¢w ) can be found by a path integral over ¢ subject to the condition
that ¢ |lw = ¢ow (here ¢p|w is the restriction of ¢ to W):

\Ist(gﬁw) = / D¢H eXp(—I(gf)H)). (4.4)
dulw=ow

The Hartle-Hawking no boundary state [50], which we will call ¥y, is based on a
similar idea in the context of gravity. To adapt the definition of W4g to gravity, one of the
fields on which the wavefunction depends should be a metric gy on W. Also in a theory of
gravity, one has to sum over all possible choices of manifolds H with W = 0H, rather than
just choosing one, as in the definition of U4g. This leads to the definition of ¥y (gw) as
a path integral over all manifolds H of boundary W; one sums over the choice of H, and
for each H, one integrates over the metric gy on H, with the restriction gg|w = gw. If
other fields are present as well, they are included in an obvious way: one formally defines
the no boundary state Yy (gw, ¢w,---) by summing and integrating over all bulk data
that restrict to the given boundary data on W. The state is called a no boundary state
because spacetime is taken to have no boundaries except a specified boundary on which
the quantum state is defined. The rest of this section will be a brief review of aspects of
the no boundary state and an explanation of its extension to include an observer.

For a variety of reasons, including the fact that the Einstein action in Euclidean sig-
nature is unbounded below, there are many unanswered questions about the no boundary
state. Everything about it can be questioned. However, assuming the cosmological con-
stant is positive so that a D-sphere of appropriate radius is a classical solution, and in case
the metric gy is such that W is an almost round sphere of a radius properly matched to
the cosmological constant, it is believed that the path integral that computes WUy(gw ) is
dominated by the case that H is a hemisphere, of boundary W, also with an almost round
metric. This contribution is exponentially large as G — 0 (because the classical action of
the hemisphere is of order 1/G and negative), and it is believed that contributions from
other manifolds with boundary W are exponentially smaller (since the classical action of
the hemisphere is more negative than that of any other critical point of the path integral
that computes Wyyy).

This description of Uy makes clear that Uiy is a sort of gravitational version of Wyg.
The maximum entropy state W ax of de Sitter space is a simple extension of ¥4g to include
the observer, so we can hope to interpret an extension of Wy to include an observer as a
generalization of Wy,,. How to include an observer in the no boundary path integral was
already briefly discussed in [14]. For a clue, we can consider the no boundary path integral
that computes Z = (Upp|Vgy). (We will later divide g by v/Z to get a normalized
version of the no boundary state.) It is believed that Z should be computed by a path
integral over D-manifolds without boundary. Assuming that the cosmological constant is
positive, a round D-sphere is a critical point in this path integral, and it is believed that
for small G this is the dominant contribution. The classical action of a round D-sphere is
—A/4G, where A is the area of the cosmological horizon of de Sitter space, so in a classical
approximation the contribution of this critical point is e/, times a subleading factor that
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Figure 2. A two-sphere S” containing an “equator” W 22 SP~! orthogonal to a great circle yg. Drawn
is the case D = 2, so W is another great circle. W and ~g intersect at two points and accordingly the
continuation of vg to Lorentz signature has two components.

comes from quantum fluctuations around the critical point. The logarithm of this path
integral was interpreted [39] as the de Sitter entropy, which is therefore Sgg = % + ey
where the subleading corrections (which are of order log G) comes from the fluctuations
around the critical point.

How can we include an observer in this discussion? In our model, the observer is
described by the action (2.2), and propagates on a geodesic. In Euclidean signature, we
will denote this geodesic as vg. If spacetime is a sphere, then yg will be a great circle
on this sphere. The circumference of this great circle is Sqg. The action for a observer of
energy m-+q to propagate for a Euclidean distance (4s is Sqs(m+¢q), and this contributes to
the integrand of the path integral a factor e Pas(m+49)  If we simply integrate this over ¢, we

Smis. A localized observer in any sort of semiclassical de Sitter space has

get a factor e Pa
Basm > 1, so the factor e=Pas™ is important, but the factor 1 /Bas is a subleading correction
that can be included with the other factors that come from quantum fluctuations. Ignoring

such factors, we can approximate the path integral including the observer as

Z = exp <:é — ﬁdsm> . (4.5)

Taking the logarithm, we find that the entropy of de Sitter space with an observer of mass
m is (according to the logic of [39])

A
Sds,obs = e Basm. (4.6)

This is actually a standard result. Including in the static path an object of mass m (with m
small enough that we can ignore back reaction due to the gravity of this object, as assumed
in the preceding discussion) reduces the entropy of the static patch by Bqsm.

To interpret the no boundary state Uy in Lorentz signature, the standard procedure is
to “cut” the Euclidean spacetime on a plane of symmetry W (that is, on the codimension
one fixed point set of a Zs symmetry) and then continue to Lorentz signature with W
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viewed as an initial value surface. In the absence of the observer, because of the assumed
Zo symmetry, this gives a real solution in Lorentz signature if the original Euclidean solution
is real. In the case that the Euclidean spacetime is a sphere ST, an appropriate W is an
“equator” W = §P~1 1In the presence of an observer, we want a further condition that
~vE continues in Lorentz signature to a real geodesic, which will be the observer worldline.
To make this true, W must be orthogonal to vg (fig. 2). W and ~g intersect at two
points, and the continuation of vg to Lorentz signature is actually the disjoint union of
two timelike geodesics v and 7/ that are spacelike separated. (This is analogous to what
happens for an accelerated observer in Minkowski space [1]; the Euclidean orbit is a circle,
and its continuation to Lorentz signature is a hyperbola with two components.) In fig. 1,
if 7 is the left edge of the Penrose diagram, then + is the right edge. We can think of v
as the worldline of the observer that we have been studying in this article, and ~/ as the
worldline of a second observer who is entangled with the first.

If we had not integrated over ¢, we would have written the partition function as
I dgeA/4G—Pasm—Basa (times additional factors from quantum fluctuations). When we
“cut” on W to divide the sphere into two hemispheres, we associate to each hemisphere
the square root of the integrand in this integral or e4/8G—Ffasm/2=Basa/2 Ip particular, this
gives the no boundary state as a function of ¢: it is proportional to e~Pas9/2 This coincides
with the g-dependence of the maximum entropy state Wy, so we learn that in the context
of de Sitter space, the no boundary state coincides with the maximum entropy state, at least
to the extent that they are both defined and understood. We cannot be sure that either
or both of them make sense beyond perturbation theory or if so, that they agree beyond
perturbation theory. To compute the no boundary partition function Z = (Ugg|VYun)
from the no boundary state, we multiply two factors of e4/8G—Basm/2-Basa/2 one from the
northern hemisphere and one from the southern hemisphere, or one from the bra and one
from the ket, and integrate over ¢ to evaluate the inner product of the bra and the ket.

Some puzzles about this setup were described and not entirely resolved in [14]. Those
issues will not be repeated here.

4.2 A Universal No Boundary State?

We wish to consider a hypothesis with two parts.

The first part of the hypothesis asserts, roughly, that the no boundary state Wygy,
enriched to include the observer, makes sense universally as a state of the observer algebra
Aobs- This means that, regardless of the spacetime M in which the observer lives, one can
define the expectation value (¥p|a| W) of an operator a € .Zobs.

Actually, in section 5, we will slightly refine this hypothesis to say that in general Wy
is a weight, rather than a state, of .,AAlObS. Roughly, this means that (Uyp|a|Ppy) is defined
only for a sufficiently nice class of operators in ﬁobs, somewhat analogous to trace class
operators acting on an infinite-dimensional Hilbert space. The difference between a state
and a weight will not be important in this section.

The second part of the hypothesis is that Wy can be regarded as a universal maximum
entropy state.
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Under these assumptions, we can give a general definition of entropy for a state of the
observer in any spacetime. Suppose that V¥ is a state of the algebra ﬁobs in some spacetime
M. Then by our hypothesis, we have two states of jobs, namely the given state ¥ and
the no boundary state Wgy. In general, the relative entropy between two states of a von
Neumann algebra -’zl\obs is always defined. If ./Zl\obs is of Type I or Type II, then density
matrices and traces make sense for ﬁobs, and we can use the familiar definition (4.1) of
relative entropy. Assuming our hypothesis about Uy, it is reasonable to suspect that ./Zobs
is always of Type I or Type II regardless of M this point will be discussed in section 5.
But relative entropy between two states of a von Neumann algebra can always be defined,
even if the algebra is of Type III. For a Type III algebra,'® one has to use a more abstract
definition of relative entropy in terms of a certain relative modular operator [51, 52].

Under our hypotheses, we can give a general definition of the entropy of any state of
the observer:

S(¥) = =5(¥|¥un). (4.7)

On the r1ght hand side, S(V|¥qn) is the relative entropy between the two states ¥ and
Wy of Aobs If Aobb is of Type I or Type II, then ¥ and ¥y can be described by density
matrices p and ppp, and we can restate eqn. (4.7) in the form

S(p) = —Trp(log p — log pun). (4.8)

Otherwise, one has to use a more abstract definition of relative entropy. The proposal (4.7)
is natural if it is true that Ugy can be viewed as a state of maximum entropy and can be
regarded as a state of the observer algebra in any spacetime. The intuition for Yy to be
a state of maximum entropy is that it is a sort of global version of W,,,,, which is a state of
maximum entropy in a particular de Sitter vacuum. The reason to hope that W makes
sense in any (closed) spacetime is that naively, the recipe to compute it by integrating over
all bulk manifolds with given boundary data seems to be universal.

In one interesting situation, we can show that the definition (4.7) gives a sensible
answer. This is the case that the spacetimes that we consider are different de Sitter
spacetimes M, in a theory that has many different inequivalent de Sitter vacua. Each
M has its own Hilbert space H®, inverse temperature 3, and horizon area A% Each M
also has its own maximal entropy state Wpax o, with density matrix pmaxa = 1o (here
1, is the identity operator on H®). We will assume that the observer Hamiltonian is the
same H,,s = m + ¢ independent of «, but this could easily be generalized by letting the
coefficients in the action (2.2) depend on a scalar field that has different expectation values
in different de Sitter vacua. We could also generalize the discussion to allow the possibility
that G has different effective values in different vacua.

MFor a Type Il algebra, traces and density matrices exist, but there is no natural normalization of the
trace. If one rescales the trace by Tr — e“Tr, one has to rescale all density matrices by p — e™p in order
to preserve the condition Tr p = 1. This shifts entropies by S(p) — S(p) + ¢; that is one aspect of the fact
that the definition of entropy of a state of a Type II algebra involves an additive renormalization. But it
does not affect the definition (4.1) of the relative entropy. Of course, that is related to the fact that the
relative entropy between two states of a von Neumann algebra can be defined without existence of a trace
at all.
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In the approximation of considering only the spacetimes M, the no boundary partition
function, summed over connected manifolds, can naively be read off from eqn. (4.5):

Z = %: exp (fg — ﬂam> . (4.9)

This formula should not be taken very literally because it includes exponentially small
corrections from manifolds with non-maximal values of A%, but ignores perturbative cor-
rections to the contribution with maximal A%. At any rate, the precise value of Z will not
be very important in what follows.

In the no boundary state, the probability that the observer is living in M is

VA 1 A®
Pa = 7 = E €xXp <4G - 5am> s (4‘10)

where Z¢ is the partition function if the observer is in M%, and we used the result eqn.
(4.5) for Z«. If the observer does live in M“, then the no boundary state with the observer
present reduces to the state Wyax o, which is the maximum entropy state in that spacetime,
as we saw in section 4.1. This tells us what must be the density matrix of the no boundary
state:

1 A”
PHH = Z Za:exp <4G — Bam> -1,. (4.11)

In other words, if the universe is in the state gy, then the observer is in M“ with prob-

ability p., and if so the observer experiences a maximum entropy state in that spacetime.
In this particular case, density matrices are available since A\obs is of Type II in each

universe. Using eqn. (4.11) for ppp along with pmaxa = 1|a, we can evaluate eqn. (4.8):

a

A
S(pPmax,a) = Vel Bam —log Z. (4.12)

This is a satisfactory answer. Up to the overall constant — log Z, it agrees with the expected
value of the entropy of the maximum entropy state of M, including the area term A%*/4G
and the reduction by B,m because of the presence of the observer.

If instead of putting M® in the state Wp,.x, we consider a state that is an O(1) per-
turbation of W,y and such that the generalized entropy Sgen(p) = A/4G + Sout can be
defined, the analysis of [14] can be applied and extends eqn. (4.12) to get S = Sgen —log Z.
Thus at least for this class of spacetimes and states, entropy defined using our hypothesis
about the no boundary state agrees with the usual generalized entropy, up to a universal
additive constant —log Z. In the derivation in [14], the A/G term contributed to entropy
differences between states, but, since the states considered were O(1) perturbations of
Unax, they had values of A/G that differ only by O(1). In eqn. (4.12), the A/G terms
makes a contribution to entropy differences of order 1/G.

5 More On The No Boundary State

Let M be a spacetime in which the observer may be living. To be precise, we define
M by a solution of the appropriate gravity theory, and a geodesic v C M that will be
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the worldline of the observer. Then we quantize small fluctuations around the chosen
solution to construct a Hilbert space H. This definition makes sense at least to all orders
of perturbation theory. The observer algebra A.Ls can be completed to an algebra ﬁobs of
operators on H.

In section 5.1, we ask two questions about this setup:

(1) Is there a state in H that has maximum entropy for ./Zt\obs?

(2) To what extent does the no boundary state Wiy make sense as a state in H?

Though we will not be able to get firm answers to these questions, we will motivate
the following answers. On the first question, generically there is no state in H of maximum
entropy. On the second question, generically Wi does not make sense as an ordinary
normalizable state in H, but it may be that generically ¥y makes sense as, roughly, an
unnormalizable state (more precisely, as a weight for /Tobs).

In section 5.2, we discuss how these two questions are potentially related to each other
and to the “type” of the von Neumann algebra ./Zl\obs.

5.1 Unnormalizable States and Unbounded Entropies

We will consider two examples of relatively simple spacetimes that are still more compli-
cated than empty de Sitter space. This discussion will be heuristic and speculative on the
most interesting points. Then we will be even more speculative about a general picture.

For our first example, we imagine turning on a scalar or electromagnetic field in de
Sitter space. For definiteness, consider a scalar field ¢. Pick a particular G-independent
profile ¢ for the scalar field, and consider a one-parameter slice in the space of scalar fields,
say ¢ = uy, with u a real parameter. Now we want to set u = ug where ug > 0 is large, say
of order G~1/2, so that turning on ¢ with coefficient ug is an O(1/G) perturbation, rather
than an O(1) perturbation, of the original de Sitter space. However, we can assume that
the coefficient of G~1/2 is small enough that back reaction on the metric is not important.
What we have described is then to good approximation a strong scalar field in a background
de Sitter space.

Now expanding around the background with u = ug, we can quantize all the small
fluctuations and construct a Hilbert space H. A state x € H is a function of infinitely
many modes, including one that describes a fluctuation in u, say with © = ug + x. Like
all the fluctuating modes on which x depends, x is supposed to be of order 1, not order
/G2

Introducing now an observer so that we can hope to define entropy, we can ask, “Is
there a state in H with maximum entropy for the observer algebra Agns?” The answer
to this question is going to be “no” for the following reason. Since empty de Sitter space
has maximum entropy, turning on ¢ ~ u has reduced the entropy of de Sitter space. We
can increase the entropy by making |u| smaller; since u = up +  and ug > 0, we should
take z < 0. With ug ~ G™Y2 and 2 ~ 1, within any semiclassical picture we always
have |z| < |up| and we can always make the entropy of a state bigger by making = more
negative. So there is no maximum entropy state in .

The story for the no boundary state is somewhat similar. The no boundary state of a
free scalar field coupled to a background gravitational field is a Gaussian, since the path
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integral over ¢ in eqn. (4.4) is Gaussian in the case of a free scalar field in a background
gravitational field. So we can assume Wy (u) = C exp(—Eu?) with constants C, E. Now
we expand u = ug + z, so viewed as a function of x, ¥yy(z) = Cexp(—E(up + x)?).
This state has two key properties. With ug ~ G~%/2 and x ~ 1, it is extremely small,
exponentially small as G — 0. But ¥y cannot be viewed as a normalizable state in H,
since as long as ug ~ G~/2 and = ~ 1, Uy grows indefinitely as z becomes more negative.

It may seem contradictory to say that a state is unnormalizable and also that it is
exponentially small. It means that for given x, the state is exponentially small for G — 0,
but the dependence on x is such that the state is not normalizable.

Though ¥y cannot be viewed as a normalizable vector in H, we were able to write it
as a function of z, so one might be tempted to think that Wy is an unnormalizable state
in H. Of course, by definition, a Hilbert space does not contain unnormalizable states,
so the phrase “unnormalizable state in H” is problematical. However, in von Neumann
algebra theory there is a notion of a “normal weight” which roughly corresponds to the
intuition of an unnormalizable state. For WUyy to be a normal weight'® of the algebra
Aobs acting on H means in part that there are some positive operators a € .,Zl\ObS such that
(UpplalPhn) < co. An example of a positive operator with a finite expectation value in
Wy is the projection operator on x > —r, which we will call Z,.. Since ,Zobs contains any
bounded function of any mode of the ¢ field that the observer can measure, and x is the
only mode of ¢ that is effectively unbounded in Wy, it is plausible that .Zobs contains a
projection operator similar to =, with a finite expectation value in Wy, For Wy to be
a normal weight, one also wants to know that the function a — (¥gy|a|¥pn) on positive
elements of le\obs is a limit of increasing functions (¥, |a|¥,), where ¥,,, for n =1,2,3,---,
are normalizable states in H. Here we can possibly take ¥,, = =, Wyy.

A somewhat similar example is the Schwarzschild de Sitter (SdS) solution, describing
a black hole in de Sitter space. This solution depends on a free parameter, the black hole
horizon area App. There is also a canonical conjugate of Ay, which is a sort of global
time-shift mode. The entropy is a decreasing function of Apy; it is minimized when Apy
has the largest possible value (this corresponds to the Nariai solution, with Ay equal to
the area of the cosmological horizon) and maximized in the rather singular limit Agy — 0,
where the topology changes as the two sides of the black hole become disconnected. Now
consider an SdS solution with a typical value Agy = Ag ~ BC?S_Q. We can define a Hilbert
space H that describes O(1) fluctuations around this SdS solution including fluctuations
in Agy, say with Agg = Ag + y, where y < Ayp.

The parameter y will play a role similar to that played by x in the previous example.
There is no maximum entropy state in H, because in the context of the Hilbert space
‘H, we can always increase the entropy by making y more negative. What about Wyp?
Heuristically, because the entropy of the SdS solution is less than that of empty de Sitter
space, one would expect that the no boundary state Wy is exponentially small in H. But
because that entropy increases as y becomes more negative, one would expect that Wy is
unnormalizable as a state in . Similarly to the discussion of the previous example, it is

5For a slightly more detailed explanation, see section 4 of [16].
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plausible that Wy can be interpreted as a normal weight of the algebra ,Zobs acting on H.
A projector on y > —r could play the role of =, in the previous case.

The relevant difference between the two examples is the following. In the first example,
the deformation to a maximum entropy state by turning off the scalar field perturbation
is a completely smooth and straightforward process classically. The second example is less
straightforward classically, since the limit Agy — 0 is not really a smooth classical limit.
Presumably when Apy gets sufficiently small, the semiclassical picture breaks down and
the black hole evaporates, disconnecting the two sides of the black hole and replacing a
Cauchy hypersurface SP=2 x S with SP~1. This is a relatively exotic form of spacetime
topology change, though one about which we have some inkling.

What do we think happens in a generic closed universe M? Consider a Hilbert space
‘H that describes small fluctuations around some classical solution on M. We have very
little idea of the behavior of ¥y as a vector in H, because except in a few cases, a stable
Euclidean solution that is a candidate to dominate the evaluation of Wy is not known.
We expect that Wpy is exponentially small in H because presumably the entropy of M
is smaller than that of empty de Sitter space. Is Wyy normalizable as a vector in H?
Possibly it is, but there is no obvious reason to think so. Plausibly the two examples that
we discussed are typical and that Wiy grows exponentially in some directions in field space.
It seems much more likely for Uy to be a normal weight of ﬁobs than a normalizable state.
As in the SdS case, the directions in field space in which Wy grows exponentially may
bring us towards topology-changing transitions to a higher entropy state, though these
may generically be highly nonclassical transitions of which we have no idea. In that case,
one would expect that there is no maximum entropy state in H. Maximizing the entropy
would require moving in the direction of some topology-changing transitions.

5.2 The “Type” Of The Von Neumann Algebra

Though the observer algebra Agps is not an algebra of Hilbert space operators, once we
pick a spacetime M that the observer lives in, we can refine and complete Ay to a von
Neumann algebra .Zobs. The question we will ask in this section is what is the “type” of
this von Neumann algebra. For our purposes, the relevant types of von Neumann algebra
are as follows (for more detail, see [46, 47]). We consider only algebras that are “factors,”
in the sense that their center consists only of c-numbers.

A Type I algebra has an irreducible representation in a Hilbert space H. This is the
usual situation in ordinary quantum mechanics and the structures here are familiar.

A Type II algebra has no irreducible representation in a Hilbert space, so for such an
algebra there is no notion of a quantum microstate. However, a Type II algebra does have
a trace, and therefore density matrices and entropies can be defined for a state of a Type 11
algebra. Physically, the entropy of a state of a Type II algebra is a renormalized entropy,
from which an infinite constant (independent of the state) has been subtracted.

A Type III algebra has no irreducible representation in a Hilbert space, and it also has
no trace and no notion of a density matrix or entropy.

For an observer in a universe M, closed or open, it is definitely possible to have a
Cauchy hypersurface W no part of which is hidden by either a past or future horizon. In
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such a case, one expects that the algebra .,éAlObs will be a Type I algebra, the algebra of all
operators on H. However, if there is no Cauchy hypersurface in the region causally acces-
sible to the observer, one may expect that the observer does not have access to quantum
microstates and that /zl\obs will be of Type II or Type III.

For the static patch in de Sitter space, one can convincingly argue that ﬁobs is of Type
II. In a generic spacetime, this is rather unclear.

A key difference between a Type II algebra and one of Type III is that for a state of
a Type II algebra, but not for a state of a Type III algebra, there is a reasonable notion
of entropy. With our hypothesis that the no boundary state Wy is a universal state
of maximal entropy, we have a general definition of entropy in terms of relative entropy
between a given state and the no boundary state. Therefore, if this hypothesis is correct,
one may suspect that ﬁobs is always of Type II.

An obstruction to this idea has been simply that a Type II algebra has a trace, and
for an observer in a generic spacetime, it has been quite difficult to imagine how a trace
could possibly be defined. However, the hypothesis concerning the universal nature of the
no boundary state gives a possible answer.

For our purposes, there are two types of Type II algebra.' A Type II; algebra A has
a representation in a Hilbert space H such that there is a “tracial” vector Wy, € H. A
tracial vector is a vector with the property that the trace in the algebra is the expectation
value in that state:

Tra = (U la|Py), ac A (5.1)

One usually normalizes the tracial vector by (¥|W) = 1, ensuring that Tr1 = 1. As
explained in section 3.1, a tracial vector automatically defines a state of A of maximum
entropy.

A Type Il algebra, roughly speaking, has the same property except that Wy, is
unnormalizable. To be more precise, ¥y, is a normal weight of the algebra, a concept
briefly introduced in section 5.1. In a Type Il algebra, because Wy, is unnormalizable,
we cannot normalize it by a condition like (U, |¥y,) = 1, and in fact there is no natural
way to normalize the trace in a Type 11, algebra. (There is an obstruction: the algebra
has a group of outer automorphisms that rescales the trace.) Moreover, in a Type I
algebra, the trace is not defined for all elements of the algebra, since for example if Wy, is
unnormalizable, then eqn. (5.1) implies that Tr1 = co.

How can one possibly define a trace in a generic spacetime? If one is willing to hy-
pothesize that the no boundary state Wy can be defined for any closed universe, then this
suggests that Wiy is itself the tracial state:

Tra = <\IIHH|3‘\IJHH> (52)

If so, then .Zobs is of Type II; in the (possibly very exceptional) case that Wy is normaliz-
able in a given spacetime, and Type I, otherwise. There is a maximum entropy state in a

6These are the two types of “hyperfinite” Type II algebra. A hyperfinite algebra is one that can be
approximated by finite dimensional matrix algebras. If one relaxes the assumption of hyperfiniteness, the
classification of Type II algebras is much more involved.
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given spacetime if and only if Wy is normalizable in that spacetime. This is in reasonable
agreement with the heuristic discussion in section 5.1.

Eqn. (5.2) makes more sense if it is true that Upp is unnormalizable in a given
spacetime, because in that case, the trace is defined only for operators that in some way
cancel or project out the divergence in Wypg in the given spacetime. Not understanding
Wy in a generic spacetime, we do not understand what are the operators for which we
should define a trace, and that helps explain why it is hard to see that a trace exists.
If Uy is normalizable for a given spacetime, one expects to define a trace valid for all
operators in ./Zl\obs, and one could hope that such a trace would be more visible.

Probably the best that we can say about eqn. (5.2), apart from the fact that it can
be verified for the static patch in de Sitter space and possibly in a few other special cases,
is that it is difficult to disprove this conjecture, because we know so little about the no
boundary state in a generic spacetime.

Going back to the case of a closed universe in which Agpg is of Type I, what then plays
the role of the no boundary state? Let M be such a spacetime with Hilbert space Hjys. To
get a sensible answer, we have to interpret the restriction of pyy to Hjas — that is, to the case
that the observer is in M — as pumly,, = %17{ - This formula makes sense in the spirit of
the proposal we are exploring because it is formally small — as Z is exponentially large —
but its trace is divergent, so it is not the density matrix of a normalizable state. (Rather,
the function a — Trapppy is a weight of the Type I algebra of all bounded operators on
Har.) With this proposal for pum|u,, and with p being any density matrix on Hys, the
general formula (4.7) for entropy gives

S(p) =—Trplogp —log Z, (5.3)

which is the standard answer up to the universal additive constant —log Z. That constant
appears because we have defined entropy relative to the maximum entropy state Wyg.
Perhaps the claim that pumly,, = %17'[]\{ whenever the observer has causal access to a
complete Cauchy hypersurface in a closed universe can shed light on a general understand-
ing of the no boundary state. Note that this formula for the density matrix of Wy implies
that as a Hilbert space vector, ¥y can be naturally taken to live in the Hilbert space of
the disjoint union of M with a time-reversed conjugate of itself.

6 Spacetimes That Do Have Asymptotic Observers

Up to this point, we have considered observers who actually live in the spacetime under
study. As explained in the introduction, one motivation for this choice is that we ourselves
are in that situation; another motivation is that in a closed universe and in many standard
cosmological models, there is no reasonable notion of an observer who can look at spacetime
from outside.

However, it is also interesting to consider an asymptotically flat or asymptotically
Anti de Sitter (AAdS) spacetime, in which there can be an asymptotic observer at infinity,
essentially looking at spacetime from outside. In such cases, one can consider asymptotic

~ 99 —



observables without explicitly introducing an observer who is making them, and this is the
standard practice.

In particular, as in [11, 12] and various later papers [13, 15], in the context of AdS/CFT
duality, it is interesting to define an algebra generated by single-trace operators of the
boundary theory in the large N limit. Here we consider operators defined on a particular
asymptotic boundary — where an asymptotic observer may be living — in a spacetime
that may or may not have additional asymptotic boundaries. For convenience, we will
assume that the boundary theory is a four-dimensional gauge theory; the statements have
straightforward modifications for other cases.

What has been studied in the recent literature is an algebra of single-trace operators
normalized so that their connected two-point functions — or equivalently, their commutators
— are of order 1. Assuming the action is normalized as I = NTr L, where L is a gauge-
invariant polynomial in the fields and their derivatives (with no explicit dependence on
N), the single-trace operators with two-point functions and commutators of order 1 are
generically of the form O = Tr W, where again W is a gauge-invariant function with no
explicit N-dependence. However, operators of this form do not have large N limits. For
example, at inverse temperature (3, their thermal expectation values (O)g are of order N.
One way to define operators that have a large IV limit is to subtract the expectation values
of the single-trace operators. For example, one can consider the operators O — (O) g, which
have a large N limit at inverse temperature 8. These operators generate an algebra that
has been studied fruitfully, but it is not background-independent. Above the Hawking-
Page transition, it describes O(1) perturbations of a black hole at inverse temperature
B. Background independence was lost by subtracting the thermal expectation values at a
particular temperature.

As an alternative, one can define operators that have a large N limit by dividing the
single-trace operators by an extra factor of V. Thus, one considers operators of the general
form W = %Tr W. These operators have large N limits, and likewise any function of these
operators F(Wi, Wh,---) (with no explicit dependence on N) has a large N limit. The
algebra A generated by such functions is background-independent, since in defining it we
have made no choice of background. This algebra makes sense in the large N limit and
in the 1/N expansion. But at N = oo, this algebra is commutative, since dividing by an
extra factor of N gives operators that have commutators of order 1/N?:

Wi, Wj| = %Pij + O(l/N4). (6.1)

Here P;; is a function of the W’s, with no explicit N-dependence. (We have included a
factor of i so that if the WW; are hermitian, then the P;; are also hermitian.) In general, the
P;j are highly nonlinear functions of the W’s. Of course the commutator [W;, W] satisfies
the Jacobi identity. But if we consider only the terms of O(1/N?) in the commutators,
there is a further identity

1
Wi, WiW,] = e (Pij Wi + PiWj) + O(1/N*), (6.2)
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since a connected three-point function of the operators W;, W;, W, is of order 1/N 4 To
formalize the idea of keeping only the terms of order 1/N?, let us define, for any functions
F, G of the single-trace operators,

{F,G} = ]\}iinm(—iNZ)[f, gl. (6.3)

For example,

Wi, Wt = Pi;. (6.4)

Obviously these brackets are antisymmetric. The Jacobi identity for commutators implies
a Jacobi identity for these brackets; for F,G,K € A,

{FAG, K} +{G {K, F}} +{K,{F,G}} =0. (6.5)
Eqn. (6.2) implies that
Wi, WiWit = {Wi, Wi Wi, + {Wi, Wi }W;. (6.6)

This generalizes to

{F,GK} ={F,G}K + {F,K}G. (6.7)

A commutative algebra with an antisymmetric bracket that satisfies the Jacobi identity
(6.5) and the identity (6.7) is called a Poisson algebra, so the large N limit of A is a Poisson
algebra. Of course, in perturbation theory in 1/N2, A is deformed to be an associative
but noncommutative algebra. To exhibit the dependence of the algebra A on N, we will
denote it as A; /2, so Ag is a commutative Poisson algebra, and A, /2 is noncommutative
for 1/N # 0.

Why is the large N limit a Poisson algebra? The bulk dual of the theory under
discussion has a classical phase space, consisting of classical solutions of the relevant gravity
or string theory. In fact, it has many possible classical phase spaces, differing by the possible
existence (and geometry and topology) of additional asymptotic boundaries apart from the
one where we are defining the algebra, and by the bulk topology that is assumed. Let S be
the set of possible bulk phase spaces, and let us denote those phase spaces as My, A € 5. A
point on any of the M determines a classical solution of the bulk gravity or string theory,
and the asymptotic behavior of the bulk fields in this solution determines the expectation
values of the W’s. To say this differently, in the large N limit, the W’s are functions on
M, (for each choice of X). As classical phase spaces, the M) have symplectic structures
which enable one to define Poisson brackets. Note that on any classical phase space, the
Poisson brackets of functions f, g, k satisfy

{f,9k} ={f. gtk +{f, k}g, (6.8)
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in perfect parallel with (6.7). So the functions on any classical phase space form a Poisson
algebra.!” In fact, in the AdS/CFT correspondence, the 1/N? expansion of the boundary
theory matches the expansion of the bulk theory in powers of Gh, so the Poisson brackets
of the bulk theory, which are the leading term in Gh of the commutators of bulk operators,
map to the leading term in 1/N? of the commutators of single-trace operators.

In deformation quantization, one is given a classical phase M or a more general Poisson
manifold as in footnote 17. The goal is to deform the commutative algebra A of functions
on M to an associative but noncommutative algebra Ay, order by order in a parameter 7,
with [f, g] = iR{f,g} + O(h?), and with [f,g], in order i*, being defined locally in terms
of derivatives of f and g up to k" order. We are in this setting except that our Poisson
algebra is associated with not one Poisson manifold but many. The problem of deformation
quantization (at least in the usual case of a single Poisson manifold) has a general solution
that is unique up to a certain kind of equivalence [30-35]. In our problem of the AdS/CFT
correspondence, we do not need to invoke general theorems to know that the problem has
a solution, since we know that the quantum theory under study exists for every integer N
and that it has an asymptotic expansion of an appropriate form near N = co. However, it
is worth mentioning that one very interesting approach to deformation quantization [33-35]
involves a path integral on a disc with the algebra elements inserted on the boundary of
the disc. As in two-dimensional models of a black hole such as JT gravity, the path integral
on the disc naturally produces an algebra. The rotation symmetry of the disc enables one
to endow this algebra with a trace if the Poisson manifold is symplectic (that is, if the
Poisson tensor is invertible). However, this algebra does not have a natural Hilbert space
representation, or more precisely, it does not have a natural “one-sided” Hilbert space
representation that could represent quantization of a single copy'® of M. However, if one
picks a point p € M, then expanding around p, one can construct a Hilbert space H, on
which the algebra acts. We will give an example shortly.

From the standpoint of the 1/N expansion, the algebra A /y2 that we get by deforming
the large N Poisson algebra A order by order in 1/N? is somewhat analogous to the
observer algebra Ag,s that we have studied in the bulk of the present paper. It does
not have any distinguished Hilbert space representation that can be defined in the 1/N
expansion. However any choice of a point in any one of the classical phase spaces M

"More generally, a manifold M with a Poisson bracket {f,g} = a*/0;f8;g that satisfies the Jacobi
identity, where o' is an antisymmetric tensor field on M, is called a Poisson manifold (and o is called
a Poisson tensor). Such a Poisson bracket automatically satisfies eqn. (6.8), so the functions on such a
manifold form a Poisson algebra. If a% is invertible, then the Jacobi identity implies that its inverse is
a symplectic form w;;, and in that case M is a symplectic manifold — a classical phase space. A simple
example of a Poisson manifold with non-invertible Poisson tensor is a Lie algebra g with Poisson brackets
{za, 2} = fopxe, where fg, are the structure constants of g.

18When the algebra has a trace, there is a natural two-sided Hilbert space, as in the black hole case: the
algebra itself can be regarded as a Hilbert space, with (a,b) = Tr a'b. This gives a Hilbert space with the
algebra acting on itself by left multiplication, and commuting with a similar algebra acting on the right.
This Hilbert space can be interpreted as representing quantization of the product of two copies of M. Of
course, in some cases, such as an example discussed below, a natural one-sided Hilbert space does exist (for
certain values of j). This is not always the case and defining a natural one-sided Hilbert space is beyond
the scope of deformation quantization.
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determines a Hilbert space representation of A, /n2- Indeed, a point p € M) determines
a classical solution of the bulk gravity or string theory. Expanding around this point and
quantizing the small fluctuations, we get a Hilbert space that makes sense order by order
in perturbation theory. In the boundary theory, this corresponds to a Hilbert space that
makes sense order by order in 1/N and provides a representation of A;/y2. Like Agps,
Aj/n2 is not a von Neumann algebra in any background independent sense, but once one
picks a Hilbert space representation, one can complete it to get a von Neumann algebra.

A difference between the two cases is that in AdS/CFT, we expect that A; /2 can be
defined nonperturbatively, in the sense that it is possible to take IV to be a positive integer
and thus to assign a numerical value to 1/N? rather than treating it as a formal variable.
By contrast, the idea of an eternal observer in spacetime is an idealization. The best we
can say about A is that it makes sense to all orders of perturbation theory; the precise
limitation on the validity of Agps is not clear. However, in AdS/CFT, it is quite plausible
that semiclassical bulk notions of spacetime and causality are not sharply defined in the
nonperturbative theory in which 1/N? is set to a numerical value. These notions may
make sense only asymptotically in 1/N2. The boundary algebra related to a semiclassical
spacetime would then be A;/y2 with 1 /N? treated as a formal variable, sharpening the
analogy with Agps.

We will conclude by describing an elementary example of deformation quantization,
in the hope that this will make some things clearer. The phase space is a two-sphere M
parametrized by real variables x1, xo, x3 with

o i ai=1 (6.9)

We take the symplectic structure to be

daid
w=(j+1/2) x;g“. (6.10)

We could choose the coefficient here to be j rather than j + 1/2; we will be expanding in
1/4, which is essentially equivalent to expanding in 1/(j + 1/2). The formulas will look
nicer with the choice we have made. The symplectic form in eqn. (6.10) is SO(3)-invariant,
though not manifestly so. It has been normalized so that

/ w = 4m(j +1/2), (6.11)
M

which is an integer multiple of 2w, making quantization possible, if and only if j € %Z.
We can orient M so that j is nonnegative. Quantizing a sphere with a symplectic form
whose integral is 27k, we expect to get a Hilbert space of dimension k, thus with angular
momentum such that 2j4+1 = k. Thus, we anticipate that if j is a half-integer, quantization
of M will give a Hilbert space in the spin j representation of SU(2).

This symplectic form can be derived from a Lagrangian that is also proportional to
§+1/2. Thus j (or j + 1/2) plays the role of N2 or 1/h. The Poisson brackets derived

from the symplectic form are
1
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So in deformation quantization, we want to promote the x; to operators x; that will obey
X4, %5] = ﬁeijkxk +0(1/4?) and also obey a relation that will coincide with the classical
relation (6.9) up to a correction of order 1/j. In this simple example, we can just write
down the answer. No correction is needed to the commutation relations, but there is a
1/42 correction to the classical relation Y, 2? = 1. The algebra relations are

i 2,2, 2 JU+1) 1
]l = — e = =] - — 6.13
[Xi, X;] i 1/26kak, X] + X5 + X3 G+1/2)? 2j + 1) ( )
Alternatively,'® we could rescale the x; by a factor (1 — 7(2].J1r1)2 )~1/2, and then there would

be a 1/j3 correction to the commutation relations, but no correction to the classical relation
>, x2 = 1. We will denote this algebra defined by the relations (6.13) as Ay

It is quite familiar that when j is a non-negative half-integer, j € %ZZO, this algebra
has a representation in a Hilbert space H ;) of dimension 2j +1. However, it is not possible
to define a large j limit of H ;) in an SO(3)- or SU(2)-invariant way. So the algebra A, ;
defined in perturbation theory in 1/, with 1/j regarded as a formal variable, does not have
a natural Hilbert space representation. But once we choose a point p € M, by expanding
around p, we can define a Hilbert space H, that does have a large j limit and on which
Ay; acts, order by order in 1/j. In explaining the construction of #,, because of the
rotation symmetry of the sphere, it does not matter which point we pick. We will take p
to be the point (z1,x2,23) = (0,0,1). This means that in the Hilbert space H,, x3 will
be of order 1, but 1 and xo will vanish in the large j limit; in fact, they are of order
1/ /2 The Hilbert space H, can be constructed without picking a Hamiltonian, but the
construction is possibly more obvious if one picks a Hamiltonian to organize the states. A
convenient Hamiltonian is H = —z3, chosen so that classically its minimum is the point
p = (0,0,1) about which we want to expand. We can solve the classical relation (6.9) with

2

z3 = (1 — 23 — 22)Y/2, so the Hamiltonian is

1
H=—(1—af —2§)/? = —1+ (2 + 23) + O((a? + 23)*) (6.14)
and the Poisson brackets are
1 1
o) = 1— 22— 222 = = 4+ O((2? + 22)/4,1/52). 6.15

From these formulas, one sees that in the large j limit, \/jx1 and \/jxo are canonically
conjugate variables, and the Hamiltonian is a harmonic oscillator Hamiltonian. One can
systematically construct perturbation theory in 1/j about this starting point.

That perturbative construction could be carried out on any phase space M, expand-
ing around any point p € M, but in the particular case that M is a two-sphere with

SO(3)-invariant symplectic form, we can describe the Hilbert space H, exactly, not just

19We could also reparametrize j by j — j + co + c1/j + -+, with constants co,c1,---, and this would
still give a valid solution of the problem of deformation quantization. By making such a reparametrization
of j and also rescaling the x;, one could entirely remove the deformation of the classical algebra. However,
the choice we have made is more natural in what follows.
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in perturbation theory in 1/j. In the Hilbert space H;), the operator jx3 is an angular
momentum generator with eigenvalues j,j — 1,7 —2,---,—j. H, is going to be a large j
limit of Hj, with the limit taken in such a way that all states have eigenvalues of jx3 close
to the maximum. To accomplish this, we simply declare that H, has a basis consisting
of the eigenstates of jx3 with eigenvalue j — n, where n is kept fixed while j — oco. In
this way, we define a Hilbert space in which there is a highest weight vector for the U(1)
subgroup of SU(2) generated by jxs, but no lowest weight vector for that subgroup and no
highest or lowest weight vector for any other U(1) subgroup of SU(2). For any choice of
p € M, we can similarly define a Hilbert space H, that has a highest weight vector pre-
cisely for the subgroup of SU(2) that leaves p fixed. Each of these Hilbert spaces furnishes
a representation of A, /;, order by order in perturbation theory.

Although the algebra A;,; does not have a Hilbert space representation that has a
large j limit, it does have a trace that has a large j limit. This trace is completely
determined on polynomials in the algebra generators x; by the condition that it is SU(2)-
invariant and that Tr1 = 1. SU(2) invariance implies that Trx; = 0 for all ¢ and that
Trx;x; = Cd;; for some constant C'. The constant can be determined by using the relations

(6.13): C = %(1 — m) Similarly Trx;x;x; must be C’¢;j;, for some constant C’,
which using the relations in the algebra and the fact that Tr1 = 1 can be found to be
= % (1 — m) Continuing in this way, it is not difficult to see by induction that

the trace of any polynomial in the x; is uniquely determined by the relations in the algebra
together with SU(2) invariance and the condition Tr1 = 1. Moreover, one can show that
the trace of a polynomial in the x; of degree at most 2n is a polynomial in 1 — m of
degree at most n.

For 5 € %ZZO, the algebra A, /; has a completely natural representation in the Hilbert
space H;). Since it was uniquely determined by the symmetries and a normalization
condition, the trace constructed in the last paragraph coincides for these values of j with
1/(2j+1) times the ordinary trace in the Hilbert space H ;). However, the trace as defined
in the last paragraph makes sense for any complex j except for a pole at 7 = —1/2. One
can ask for what values of j the trace is positive, meaning that Trafa > 0 for any element
a € Ay/;. This is certainly true for j € %Zzo, since then the trace is just a positive multiple
of the trace in Hj. It is also true that the trace is positive in perturbation theory in 1 /7,
where j is understood to be real, in the sense that for any given a, Trafa > 0 in the large j
limit and therefore also in perturbation theory in 1/j. In fact, a stronger statement is true:
the large j limit of Trafa is the integral over M of the classical function that is the large
4 limit of afa, divided by 4. We will leave it to the interested reader to try to prove that.
However, if we set j to a real value that is not a half-integer, the trace is not positive.?’
To see this, let a = (x; +ix2)". Then a annihilates H ;) if 2j < n. So Tr a'a has n zeroes
at j =0,1/2,---,(n —1)/2. Since Trafa is a polynomial in 1 — ﬁ
n, it has at most 2n zeroes. Moreover the set of zeroes is invariant under j <> —1 — j, so

of degree at most

at most n of them are nonegative. Therefore the n zeroes we know about at non-negative
values of j are all simple zeroes and are all the zeroes at non-negative j. Since Trafa > 0

20 Apart from half-integer 5, the trace is positive if j = —1/2 + is, with s real.
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for sufficiently large j, it is negative in the region (n —2)/2 < j < (n — 1)/2, between the
two largest zeroes. Since we can make this argument with any choice of n, we learn that if
we set j to a non-negative numerical value, the trace is only positive for j € %ZZO.

Going back to AdS/CFT, in that context we do not expect the Hilbert space above
the Hawking-Page transition to have a large N limit, or any sort of regular behavior
beyond whatever follows from the fact that thermodynamic functions (broadly construed
to include certain averaged correlation functions) have a smooth behavior for large N. So
Ay /N2 1s not expected to have a natural Hilbert space representation that makes sense in
the 1/N expansion, but it has such a representation for any choice of a point in one of the
phase spaces. It is interesting to speculate that, similarly to A;/;, A;/y2 can possibly be
analytically continued to complex values of N. If there is something that plays for A; 2
the role that we have conjectured the no boundary state to play for Ags, it is likely the
infinite temperature limit of the thermofield double state.
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