Gender Identity, Race, and Ethnicity-based Discrimination in Access to Mental Health Care: Evidence from an Audit Field Experiment¹

Luca Fumarco Masaryk University

Ben Harrell Vanderbilt University

Patrick Button Tulane University

David J. Schwegman American University

E Dils YouthForce NOLA

January 27, 2023

^{1*}We are thankful for grant support from the National Science Foundation through an NSF CAREER grant to Patrick Button (#2046642), and funding from Tulane University's Murphy Institute, the School of Liberal Arts, the Newcomb Institute, and the COR Research Fellowship. Luca Fumarco acknowledges the generous support from the NPO "Systemic Risk Institute" number LX22NPO5101, funded by European Union -Next Generation EU (Ministry of Education, Youth and Sports, NPO: EXCELES) and from the CERGE-EI Foundation Teaching Fellowship Program. The views expressed are our own and not those of any funders. We thank Sean Alvarez, Barb Lundebjerg, Emma Brick-Hezeau, Kyla Denwood, Batu El, Victoria Guest, Christopher Hoffler, Yu Liu, Lucía Paternostro, Nile Pierre, Matthew Shernicoff, Gregory Shoats, Kodhai Thirumalai, and Brandon Ware for excellent research assistance and comments. We also thank Stephanie Budge, Erik Plug, David Slusky, Brigham Walker, and Janna Wisniewski for helpful feedback. We received helpful feedback from seminar and conference participants at ASSA 2021 and 2023 CSQIEP Virtual Seminar on Economics of LGBTQ+ Individuals, CERGE-EI, Charles University, FBK IRVAPP, Ohio University, Online Seminar on Discrimination and Disparities, RAND, SEA 2020 and 2022, University College Dublin, and the Vanderbilt LGBTQ+ Policy Lab Works in Progress Seminar. This study was approved by the Tulane University IRB (2019-1122-TU Uptown). This experiment was pre-registered at the American Economic Association's registry for randomized controlled trials (RCT ID: AEARCTR-0006560).

Abstract

Racial, ethnic, and gender minorities face mental health disparities. While mental health care can help, minorities could face discriminatory barriers in accessing it. Discrimination may be particularly pronounced in mental health care because providers have more discretion over accepting patients. Research documents discrimination, including in access to health care, but there is limited empirical research on discrimination in access to mental health care. We provide the first experimental evidence, from an audit ("simulated patients") study, of the extent to which transgender and non-binary people, African Americans, and Hispanics face discrimination in access to mental health care appointments. We find significant discrimination against transgender or non-binary African Americans and Hispanics. We do not find evidence of discrimination against White transgender and non-binary prospective patients. We are mostly inconclusive as to if cisgender African Americans or Hispanics face discrimination, except we find evidence of discrimination against cisgender African American women. Our study occurred before and during the initial onset of the COVID-19 pandemic and we study if COVID-19 affected access to (or discrimination in access to) appointments. We find some suggestive evidence that increased COVID-19 intensity may have reduced access, and discrimination in access, to appointments.

Keywords: mental health care, transgender, racial discrimination, audit, COVID-19

JEL Codes: C93, I14, J16, I11, I18, J15.

I. Introduction:

Transgender and non-binary² (TNB) individuals confront considerable stigma and discrimination in their everyday lives. Compared to cisgender individuals, TNB individuals are more likely to live in poverty, be unemployed, and be food insecure (Grant et al. 2011; Carpenter, Eppink, and Gonzales 2020; Badgett, Carpenter, and Sansone, 2021; Liszewski et al. 2018). TNB individuals are especially more likely to experience mental illness and severe psychological stress—they have higher rates of anxiety, depression, substance misuse, and suicidality (Safer et al. 2016; Lagos 2018; Meyer et al. 2017; Streed, McCarthy, and Haas 2018; Mustanski, Garofalo, and Emerson 2010; Su et al. 2016). These disparities are stark. In a sample of 1,053 transgender persons, for example, 41 percent report having attempted suicide—a rate that is 26 times higher than the general population (Safer et al. 2016). Racial and ethnic minorities face similar discrimination and disparities (Miranda et al. 2008; Williams 2018), especially TNB people of color.

Despite an increased need for general and mental health services, real or perceived discrimination by mental health care providers may affect a prospective patient's ability to access (or desire to seek) appropriate mental health care services and treatment. Previous research found that approximately one-fourth of transgender individuals opted not to seek health care when needed for fear of being mistreated due to their gender identity, and one-third report having had a negative experience related to identifying as transgender (James et al. 2016).

² Throughout the paper, we will discuss transgender and non-binary individuals together; however, these are separate gender identities, and our experimental design allows us to test for differences between binary transgender and non-binary individuals. Liszewski et al. (2018) propose useful gender identity definitions that we adopt. Someone who is transgender identifies with a gender identity that does not exclusively match their gender assigned at birth. Someone who is transgender may identify as a gender that is different than the one assigned at birth, with both genders, or no gender. Non-binary individuals identify neither as exclusively male nor exclusively female, may identify as something other than male or female, may identify as multi-gendered, or may not identify with any gender. Cisgender individuals have a gender identity that matches the sex they were assigned at birth.

If mental health care providers (MHPs) behave in a manner, consciously or not, that limits access to mental health services for gender, racial, and ethnic minorities, or discourages them from seeking treatment, it will worsen mental health disparities in several ways. First, discrimination by MHPs further contributes to minority stress (Seng et al. 2012). Second, discrimination delays treatment, which negatively impacts health and increases treatment costs (Himelhoch et al. 2004). Third, difficulties in securing appointments lead many patients to discontinue the search for treatment altogether (James et al. 2016; Lambda Legal 2010). Fourth, discrimination may reduce match quality between the MHP and patient by forcing the patient to select a therapist who is transfriendly but is otherwise not as suitable for the patient, e.g., less experienced in the patient's area of concern, further away, or more expensive (Mizock and Lundquist 2016). Patient-MHP mismatch negatively affects care since a high-quality match is crucial for effective care (Budge and Moradi 2018).

Despite ample observational evidence that TNB individuals face substantial mental health disparities and survey evidence that TNB individuals report facing significant discrimination by health care providers, no study has quantified the actual level of gender identity discrimination within the mental health care system against TNB individuals, and few studies quantify discrimination in any context in access to mental health care.

In this paper, we present the results of one of the first audit field experiments of discrimination in access to mental health care. Specifically, we request appointments for common mental health concerns (anxiety, depression, and stress) from mental health providers in the U.S., including psychologists, counselors, social workers, and psychiatrists, using a popular online website. In our appointment request emails, we randomly assign names to signal race or ethnicity (African American, Hispanic, or White). Additionally, a randomly selected group of fictitious

prospective patients disclose that they are transgender or non-binary by including the statement: "I am (a transgender woman)/(a transgender man)/(non-binary) and am looking for a trans-friendly therapist." We include both an email address and a phone number where the MHP can contact the prospective patient in this appointment request. We quantify discrimination by comparing the appointment, consultation, or phone call offer rates by prospective patient gender identity, race, and ethnicity.

Our audit field experiment, the "gold standard" for measuring discrimination (Gaddis, 2018; Bertrand and Duflo, 2017), allows us to isolate discrimination holding all factors constant other than race, ethnicity, gender, and transgender status, since our appointment request emails are on-average identical other than our randomized signals of race, ethnicity, and transgender status. We also observe actual appointment offer decisions (without booking appointments), avoiding the typical difficulties with measuring discrimination using survey methods, e.g., misreporting, social desirability bias, etc. (Gaddis, 2018).

We find evidence that African American and Hispanic transgender and non-binary people face discrimination when attempting to access mental health care services. We do not find evidence of discrimination against White transgender and non-binary prospective patients. Similarly, due to statistical noise, our results are inconclusive as to if cisgender African American or Hispanic prospective patients face discrimination.

Our study makes important contributions to several literatures and policy topics. First, we conduct the first audit field experiment of gender identity discrimination in the U.S. health care system, and we are one of the few audit studies that tests for gender identity discrimination in any context (Abbate et al. 2022; Bardales 2013; Granberg, Andersson, and Ahmed 2020; Jansson and

4

³ Disclosing trans status and inquiring about LGBTQ+-friendly providers is a common and recommended practice for TNB individuals seeking mental health services (Kassel 2018; Voutilainen et. al. 2018; Allen et. al. 2017).

Fritzson 2022; Rainey, Imse, and Pomerantz 2015; Levy at al. 2017). We also contribute to the small, but growing, literature in economics on gender identity and transgender people in general (Badgett, Carpenter, and Sansone 2021; Campbell and Rodgers 2022; Carpenter, Eppink, and Gonzales 2020; Carpenter, Lee and Nettuno 2022; Drydakis 2017a, 2017b; Drydakis and Zimmermann 2020; Geijtenbeek and Plug 2018; Harrell 2022; Leppel 2020, 2021; Mann 2021; Van Borm and Baert 2018; Van Borm et al. 2020).

Second, we are one of the few studies examining discrimination in access to mental health care in general. Several audit field experiments examine if MHPs discriminate based on race or socioeconomic status, but these studies focus on certain types of mental health providers (e.g., psychiatrists), a specific geographic location (see Kugelmass 2016), or have relatively small sample sizes (e.g., 300). We test a wider array of mental health care providers (including psychiatrists, psychologists, counselors, social workers, etc.) and are the first researchers to examine discrimination in a nationwide context.

Third, we contribute to a small, but quickly growing, literature in economics on intersectionality. To our knowledge, we are the first study to use experimental methods to examine how race, ethnicity, and gender identity interact. This adds to the limited experimental research on intersectional discrimination in general (Bourabain and Verhaeghe 2018; Francis, De Oliveira, and Dimmitt 2019; Lahey and Oxley 2021; Lauster and Easterbrook 2011; Pedulla 2014; Schwegman 2019).

Lastly, we contribute to a growing literature on the impact of COVID-19 on health care utilization (Andersen, Bryan, and Slusky 2022; Harrell et al. 2023; Ziedan, Simon, and Wing 2020). Our study occurred early in the COVID-19 pandemic, which further enables us to examine if COVID-19 impacted access to metal health care appointments, and if discrimination varied with

the intensity of the COVID-19 pandemic. We find that appointment offer rates fell in general with the onset of COVID-19 but there is little evidence that COVID-19 intensity within a state is associated with changes in appointment access. We find some additional evidence that COVID-19 intensity may have moderated discrimination for African Americans while having little measurable impact on discrimination toward Hispanic or transgender or nonbinary potential patients.

II. Mental Health Disparities among Racial, Ethnic, and Gender Minorities

There is a complex relationship between race, ethnicity, gender identity and mental health, with conflicting evidence on the direction of mental health disparities. Hispanic, African, and Asian Americans report having lower current, last-year, and lifetime rates of major depression and other psychiatric disorders than Whites (Miranda et al. 2008; Williams 2018). However, when African and Hispanic Americans experience a mental disorder, their mental health episode tends to be more severe, persist for longer, and be more debilitating than Whites (Breslau et al. 2005). African Americans reporting an episode of depression are more likely to be chronically or persistently depressed, have more severe symptoms of depression, and be less likely to receive treatment (Williams 2018).

While the relationship between race, ethnicity, and mental health is complex, there is clear evidence that TNB people have worse mental health, higher rates of major psychiatric disorders, and higher substance misuse rates than the general population. TNB individuals report higher rates of suicidal ideation and attempted suicide, as well as significantly higher rates of clinical depression (Haas et al. 2011; Hoffman 2014; Mustanski, Garofalo, and Emerson 2010; Su et al. 2016).

Moreover, there is broad consensus that exposure to chronic and acute stressors—such as poverty, neighborhood violence, or discrimination—can negatively affect mental health (Pearlin et al. 2005). Racial and gender minorities face higher rates of "traditional" stress than Whites. Notably, they are more likely to be unemployed, uninsured, exposed to neighborhood violence, and involved in the criminal justice system (James et al. 2016; Williams 2018).

Economic precariousness, increased exposure to violence, social stigma, and explicit discrimination creates a unique set of psychological pressures and stresses for racial and gender minorities that is often referred to as "minority stress" (Hendricks and Testa 2012). Minority stress correlates with worse mental health outcomes, including higher rates of distress and depression (Paradies et al. 2015).

Specifically, explicit discrimination and other stressors can negatively affect mental health through several different pathways. Discrimination can increase stress, which puts pressure on the body's cardiovascular system (Sawyer et al. 2012). Heightened violence is positively associated with depressive symptoms and contributes to the African American-White disparity in the severity of depression (LaVeist et al. 2014; Testa et al. 2012).

Moreover, structural and institutional racism can give rise to the "stress proliferation process" (Pearlin et al. 2005) in which an initial stressor can initiate or exacerbate stressors in other aspects of life (Williams 2018). Previous research finds evidence of racial discrimination in the labor market (Gaddis 2015; Pager and Shepherd 2008), the housing market (Gaddis and Ghoshal 2020; Hanson et al. 2016; Murchie and Pang 2018; Pager and Shepherd 2008), physical and online stores or marketplaces (Bourabain and Verhaeghe 2018; Doleac and Stein 2013; Pager and Shepherd 2008), and the public sector (Giulietti, Tonin, and Vlassopoulos 2019; Mujcic and Frijters 2020), among other areas and markets.

There is also evidence that TNB individuals face frequent discrimination in the labor market, in secondary and postsecondary schools, when accessing health care, when accessing housing, and in the criminal justice system (Baumle, Badgett, and Boutcher, 2020; Glick et al. 2019; Granberg, Andersson, and Ahmed 2020; Grant et al. 2011; Hanssens et al. 2014; James et al. 2016; Levy et al. 2017; Mallory, Hasenbush, and Sears 2015; Romero et al. 2016; Stotzer 2014; Stroumsa 2014). Systematic discrimination and inequality also contribute to economic insecurity, which is a significant source of stress (Williams 2018).

For TNB individuals and cisgender racial minorities facing acute psychological stressors, counseling and therapy are effective and common strategies for helping with numerous mental health concerns, such as stress, anxiety, depression, and substance misuse. However, suppose providers of these mental health services discriminate against TNB individuals and racial minorities by restricting access to these services. In that case, this discrimination may partially cause and likely exacerbate underlying race and gender identity-related mental health disparities.

III. The Discretion of Mental Health Care Providers in the United States

Mental health care providers (MHPs) supply and regulate access to mental health care services in the United States. There is no universally agreed-upon definition of a "mental health care provider," nor is there consensus over the exact composition of the U.S. mental health workforce (Heisler 2018). Numerous licensed professionals provide mental health care services, including primary care physicians, psychologists, psychiatrists, nurses, mental health and substance abuse counselors, family and marriage counselors, and social workers. Specific education and licensure requirements can vary from state to state, whereas other licensure

requirements are more uniform across states. For example, to be a clinical psychologist requires a doctoral degree in psychology (Ph.D. or Psy.D) and passing a certification exam.

Regardless of their professional training and qualifications, MHPs have a significant degree of professional autonomy. MHPs are, for example, significantly more likely to be in solo practice than physicians or other healthcare providers. While only one in five physicians work by themselves, almost half of all MHPs operate their own businesses (Kane and Emmons 2013; Michalski, Mulvey, and Kohout 2010). Thus, MHPs face fewer formal and institutional constraints on their ability to make decisions consistent with their explicit or implicit biases.

Specifically, MHPs have significant discretion over *who* to provide services to, especially during periods where there may be higher demand for their services (e.g., during the COVID-19 pandemic). Previous experimental and observational studies establish that health care providers, including MHPs, make decisions about patients that are shaped by their perceptions of a patient's race, social class, and gender (Kugelmass 2016, 2019). For example, MHPs have been found to cultivate a group of desirable patients by "cream-skimming," or explicitly or implicitly choosing to provide services to a specific group of patients, such as patients based on gender or race homophily, type of services the patient is seeking (e.g., the severity of the mental illness), or insurance status, which can proxy for education, the likelihood and amount of payment, etc. (Teasdale and Hill 2006). Previous experimental audit and correspondence studies document cream-skimming based on a patient's socioeconomic status (Angerer, Waibel, and Stummer 2019; Kugelmass 2016; Olah, Gaisaino, and Hwang 2013), insurance status (Bisgaier and Rhodes 2011; Olin et al. 2016; Polsky et al. 2015; Rhodes et al. 2014; Werbeck, Wübker, and Ziebarth 2021), race (Leech, Irby-Shasanmi, and Mitchell 2019; Sharma, Mitro, and Stino 2015; Sharma et al.

2018; Wisniewski and Walker 2020; Wisniewski et al. 2021), and gender (Olah, Gaisaino, and Hwang 2013; Sharma, Mitro, and Stino 2015).

Cream-skimming could be rooted in different sources of discrimination, such as taste-based discrimination (e.g., MHPs are transphobic), statistical discrimination (MHPs use minority status to make assumptions about the prospective patient), or implicit bias (unconscious bias). An MHP could exhibit statistical discrimination in appointment allocation in numerous ways. First, MHPs could assume that TNB prospective patients are more likely to have a severe mental health issue, which requires more time and effort to treat and potentially poses greater liability. Alternatively, MHPs may perceive TNB individuals as less likely to be insured or being less able to pay standard out-of-pocket rates. Thus, MHPs could perceive TNB patients as less desirable, causing MHPs to respond less favorably to appointment inquiries from TNB prospective patients.

Mental health care providers may also hold implicit, unconscious biases about racial and gender minorities (Greenwald and Banaji 1995). Numerous studies find that health care providers hold implicit biases and stereotypes about racial minorities that result in unequal treatment (Green et al. 2007; McKinlay, Potter, and Feldman 1996). Few studies document implicit stereotypes about gender identity. However, a recent study found that people tend to express implicit and explicit preferences for cisgender over transgender people (Axt et al. 2020).

IV. Experimental Design

In this section, we outline the details of our experimental design. We discuss and address any ethical concerns in Online Appendix A.

IV.A) Sampling Frame

⁴ Several studies find that TNB individuals are less likely to have health insurance (Carpenter, Eppink, and Gonzales 2020; James et al. 2016; Liszewski et al. 2018) and have lower income (Badgett, Carpenter, and Sansone 2021; Carpenter, Eppink, and Gonzales 2020), which could lead to MHPs statistically discriminating on this basis.

We use a popular online therapist search database to collect our sample of auditable MHPs. In order to be included in our sample, an MHP: (1) must not specialize exclusively on patient populations who are outside of the scope of our experiment (e.g., children, adolescents, or couples therapy), (2) must not be specialized in a type of therapy (e.g., grief, domestic violence) that would not deal with the common mental health conditions that we signal: anxiety, depression, and stress, (3) must list an individual's profile (e.g., it cannot be the profile of a clinic), (4) must provide an email option through a web form (the primary way MHPs are contacted on the platform), and (5) must be accepting new patients. After accounting for these characteristics, we select MHPs proportionately to state populations. Within states, we select MHPs proportionally to the population of each ZIP code such that our final sample is nationally representative.

IV.B) Prospective Patient Inquiry Emails

If a mental health care provider meets the inclusion criteria for this experiment, we send a message to them through an "Email Me" webform. In these emails, we use names to signal the fictitious prospective patient's race, ethnicity, and gender. We randomly assign various other aspects of the email to signal TNB status and mental health concern. Figure 1 provides the general structure of our appointment inquiry emails, and Figure 2 summarizes the randomized options that we assign to each email.

To signal race and gender, we use names from two previous audit studies (Barlow and Lahey 2018; Gaddis 2017a). We present these names in Figure 2, box 2. Each name is either stereotypically masculine (signaling that the sender identifies as a male) or feminine (signaling that the sender identifies as female). We assign transgender and cisgender women (men) a feminine

(masculine) first name. Non-binary prospective patients are assigned either feminine names or masculine names, each with a 50 percent probability.⁵

Each MHP receives one inquiry from one prospective patient who identifies either as transgender (25 percent of the time), non-binary (25 percent of the time), or cisgender (50 percent of the time). Specifically, TNB prospective patients include the following statement in their appointment request email: "I am [a transgender woman]/[a transgender man]/[non-binary] and I am looking for a therapist who is trans-friendly." Cisgender prospective patients do not include any statement about gender identity or their cis/trans status and are thus presumed to be cisgender.

We selected names that clearly signal gender, race (African American or White), and ethnicity (Hispanic) from Barlow and Lahey (2018) and Gaddis (2017a). These are also names that are less likely to signal higher or lower socioeconomic status. Figure 2 presents these names. We randomly assign an MHP to receive an inquiry containing a White name approximately 50 percent of the time, an inquiry containing an African American name approximately 25 percent of the time, and an inquiry containing a Hispanic name approximately 25 percent of the time.

We also randomly assign one of the following mental health conditions: stress, anxiety, or depression. We use these conditions since they are the most common, virtually all MHPs are

⁵ Many non-binary people keep their names assigned at birth or otherwise have names that are more feminine or masculine, especially since few names are non-gender specific. We also avoided assigning non-gendered names because we did not want to introduce another treatment arm.

⁶ We believe that signaling TNB status in this way is common and externally valid. For a TNB individual seeking mental health services, finding a therapist who will not discriminate against them (i.e., a "trans-friendly" therapist) or stop them from being transgender is essential. Almost 1 in 10 respondents to the 2015 U.S. Transgender Survey report that at least one MHP has tried to stop them from being TNB (James et al. 2016). Those who have experienced a professional try to stop them from being TNB report worse mental health outcomes, including higher rates of psychological distress and attempted suicide. Disclosing transgender status and inquiring about transfriendly services is common and is recommended by experts who provide advice on how to find trans-affirming care (e.g., Kassel 2018; Voutilainen et. al. 2018; Allen et. al. 2017).

⁷ Using these names helps us partially confront the criticism that using African American first names to signal race over-estimates discrimination and confuses racial discrimination for socio-economic status discrimination because some names also have negative socioeconomic status signals (Barlow and Lahey 2018; Gaddis 2017a; 2017b). These names are those that are linked to median maternal education, thus ruling out relatively higher and lower socio-economic status first names while still having been tested to signal race and ethnicity.

qualified to treat them, and they do not suggest that the mental health concern is trans-specific. We focus this study on quantifying access to mental health care for common mental health conditions rather than quantifying access to trans-specific care, a separate research question requiring a different research design.

IV.C) Coding Mental Health Provider Responses

Each appointment request email contained both the fictitious patient's email address and phone number. MHPs are thus able to respond via email, phone, or text message. We consider a (non-automated) email, text message, or voicemail to be a response.⁸

We coded each MHP response into one of the following seven mutually exclusive outcome categories: appointment offered, call or consultation offer, screening question(s) (e.g., can you pay out of pocket?), referral, waitlist, rejection, and no response. These seven, mutually exclusive categories⁹ capture the variation in the quality of response. See Table 1 for a more detailed description of each outcome.

To improve power and increase interpretability, we collapse these response categories into a binary variable, called "positive response." We deem appointment offers, consultation offers, and call offers to be positive responses (value of one), with all other responses (only asks a screening question, only offers a referral or a waitlist, or is a rejection) and a non-response being negative (value of zero). ¹⁰

⁹ MHPs of course often provide more than one type of response, such as a referral and a consultation offer. If an MHP's response falls into more than one category, it is coded as the best category. For example, a referral and a consultation offer are coded as consultation offer, and a rejection and a referral is coded as a referral.

⁸ We record MHP's phone numbers and cross-reference those with any missed calls, but we find only perhaps one instance of an MHP calling without leaving a voicemail.

¹⁰ This is the same binary categorization as Kugelmass (2019). Categorizing responses as positive or not positive is a standard approach in audit studies (Neumark, Burn, and Button 2019). Our results are generally similar if we use an alternative binary categorization that re-codes screening questions and referrals as positive responses. We discuss these results in a robustness sub-section within the results section (see Online Appendix Tables B2 to B8).

V. Empirical Strategy

We will first present simple descriptive breakdowns in response rates by groups, and then we will use regression analysis to better quantify differences in outcomes. In our regressions, we start by testing for differences in our broader categories using the binary "positive" outcome variable. Our preferred linear probability model¹¹ is as follows:

$$Positive_{idws} = \beta_0 + \beta_1 Transor Non Binary_i + \beta_2 A frican American_i + \beta_3 Hispanic_i \\ + \beta_4 Depression_i + \beta_5 Anxiety_i + Day_d \gamma + Week_w \delta + State_s \theta + \varepsilon_{idws} \end{cases}$$
[1]

where I indexes for the email inquiry (and each MHP), d indexes for the day of the week (e.g., Monday, Tuesday) the inquiry was sent, w indexes for the week the inquiry was sent, and s indexes the MHP's state. $Positive_i$ equals one for positive responses to the appointment inquiry (appointment offer or call or consultation offer), and $TransorNonBinary_i$, $AfricanAmerican_i$, and $Hispanic_i$ are indicator variables for each randomized patient characteristic, with the excluded category being cisgender White patients. $Depression_i$ and $Anxiety_i$ capture differences in the positive response rate between those who mention depression or anxiety in their appointment request, compared to those who just mention having stress. We include state fixed effects ($State_s$), day of the week fixed effects (Day_a), and week fixed effects ($Week_w$). We cluster our standard errors at the patient level since, while each MHP only gets one email, each patient emails multiple MHPs in their area.

We then extend equation [1] to explore intersectional groups, such as prospective patients by type of TNB identity (e.g., transgender wo(men) vs. cisgender wo(men) vs. non-binary people) and by race, ethnicity, and gender identity intersectionality (e.g., trans people of color).

-

¹¹ Our main results are similar using a probit model (see Online Appendix Table B1).

VI. Main Results

VI.A) Raw Data Positive Response Rate Differences

Between January 28, 2020, and May 15, 2020, we sent appointment requests to 1,000 different MHPs. We receive non-automated responses to 75.5 percent of all our inquiries. Table 1 categorizes the responses (or non-response) into our seven mutually exclusive outcome categories, and then into our "positive response" binary outcome variable. We received a positive response—either an appointment offer (33.3 percent) or a call or consultation (23.3 percent)—for 56.6 percent of our inquiries. We do not receive a response 24.5 percent of the time, which was by far the most common negative response. See Table 1 for the full summary statistics on our outcomes.

In Table 2, we report simple descriptive statistics of our binary "positive response" outcome variable. In the top panel, we report raw differences in positive response rates between cisgender and TNB prospective patients. We find that cisgender prospective patients received a positive response 60.6 percent of the time while TNB prospective patients only received a positive response 52.8 percent of the time—a statistically significant 7.8 percentage point difference (p = 0.013 using a two-sided Fisher's Exact test).

In the bottom panel of Table 2, we compare positive response rates by our finer categorizations of gender identity. Cisgender men have the highest positive response rate (61.6 percent) followed by cisgender women (58.8), transgender women (55.8), non-binary people (51.9), and transgender men (50.7). These finer categorizations have less precision, given our smaller sample size, so only the response rate difference between cisgender and transgender men—where transgender men have a 10.9 percentage point lower response rate—is statistically significant (p = 0.03).

Table 3 presents positive response rates by race and ethnicity. White prospective patients have the highest positive response rate (58.0 percent) followed by African American (55.5) and Hispanic prospective patients (54.8). None of these differences are statistically significant in this raw data.

Lastly, in Table 4, we present positive response rates for cisgender prospective patients broken down by race and ethnicity in the top panel, and we present this breakdown for TNB prospective patients in the bottom panel. We find that cisgender prospective patients have a higher response rate compared to their same race/ethnicity TNB counterparts: cisgender African Americans have a higher positive response rate (60.7 percent) than TNB African Americans (50.0 percent, p = 0.077), and cisgender Whites have a higher positive response rate (61.5 percent) than TNB Whites (54.2, p=0.096). We find the largest positive response rate differences by comparing TNB African Americans and Hispanics to cisgender Whites. TNB African Americans face the lowest positive response rate (50.0 percent) compared to cisgender Whites, who face the highest rate (61.5, p=0.030). For TNB Hispanics, this response rate is 53.3 percent (p=0.105). Thus, it appears that more of the discrimination is intersectional: we find no statistically significant differences in raw response rates between Whites, African Americans, or Hispanics within the same TNB/cisgender status, but we do find differences by race and ethnicity across TNB/cisgender status.

VI.B) Regression Analysis of Positive Response Rate Differences

Table 5 presents regression estimates of the differences in response rate by race, ethnicity, and TNB status from Equation [1]. In all regressions, cisgender White prospective patients serve as the comparison group. In columns (1) and (2), which do not include any control variables or fixed effects, we find that prospective patients who signal transgender or non-binary status have between a 6.5 and 7.5 percentage point lower positive response rate, but there are no differences

between White, African American, and Hispanic prospective patients. These results mirror the raw differences in positive response rates seen in Tables 2 and 3.

Next, we add fixed effects—state fixed effects in column (3), state and week fixed effects in column (4), and state, week, and day of week fixed effects in column (5). Column (5) is our preferred specification in Table 5. These fixed effects control for random variation from the time that the emails were sent and random variation from the MHP's state of practice (although these are random with respect to prospective patient characteristics). Focusing on our preferred specification in column (5), we find no evidence of differential positive response rates between cisgender-assumed patients and those who directly signal TNB status. MHPs are, however, significantly less likely to respond to African Americans (13.3 percentage points) and or Hispanics (13 percentage points). Moreover, compared to stress, MHPs are more likely to respond to prospective patients who report depression (14.6 percentage points).

In Table 6, we gradually disaggregate the TBN signal into separate transgender and non-binary signals. First, we present our results presented in column (5) in Table 5 the first column of Table 6 to allow for comparisons. Then, we separate the TNB indicator into distinct indicators for binary transgender (transgender women and transgender men) and non-binary individuals (column (2)). Column (3) further disaggregates the TNB and cisgender indicators into separate indicators for: transgender women, transgender men, non-binary individuals, cisgender women, and cisgender men. Finally, column (4) splits non-binary individuals into those with feminine first names and masculine first names. All these regressions include the control variables from our preferred specification (column (5) in Table 5). Regardless of how we divide the TNB population, we do not find any differences within TNB subgroups, or between TNB subgroups and cisgender prospective patients. However, we do find that cisgender women are about 10.8 percentage points

less likely to receive a response compared to cisgender men (columns (4) and (5)), significant at the 5 percent level.

In Table 7, we disaggregate cisgender and TNB people by race and ethnicity to quantify any intersectional discrimination, a trend we saw in the raw data in Table 4. Column (1) of Table 7 again reports baseline estimates from our preferred specification in column (5) of Table 5. Column (2) reports differences in response rates for African Americans, Hispanics, and Whites, by TNB status. We find that White TNB prospective patients are about 10.0 percentage points *more* likely to receive a positive response compared to White cisgender prospective patients (statistically significant at the 10 percent level). However, African American TNB prospective patients are 13.3 percentage points *less* likely to receive a positive response compared to White cisgender prospective patients (significant at the 5 percent level). Similarly, Hispanic TNB prospective patients have a 10.3 percentage point lower response rate, although this difference is not statistically significant.

Comparing cisgender prospective patients by race and ethnicity, we find that African American (Hispanic) cisgender prospective patients have a positive response rate that is 2.4 (3.2) percentage points lower compared to cisgender White prospective patients. However, neither of these estimates are statistically significant. So, while we again find evidence of intersectional discrimination, our evidence is inconclusive as to if there is racial and ethnic discrimination against cisgender prospective patients given the imprecision of our estimates.

Table 8 further disaggregates African American, Hispanic, and White TNB and cisgender prospective patients by gender, again separating the broad TNB category into transgender women, transgender men, and non-binary, and cisgender into cisgender women and cisgender men, all by race and ethnicity. Table 8 again shows evidence of intersectional discrimination. For all African

American and Hispanic TNB groups, we find large negative coefficient estimates, although only sometimes are they statistically significant – likely reflecting our reduced statistical power from splitting the sample further. The two statistically significant estimates are that Hispanic transgender women are 36.0 percentage points less likely to receive a positive response and African American non-binary prospective patients have a 39.7 percentage point lower positive response rate (both significant at the 1 percent level).

Table 8 also shows few differences among cisgender prospective patients, although there is evidence of intersectional discrimination again, in this case against cisgender African American women. Table 8 shows a 9.8 percentage point higher positive response rate for cisgender African American men and a 13.1 percentage point lower positive response rate for cisgender African American women. While neither of those two estimates are statistically significantly different from cisgender White men, we do find that these two coefficients are statistically significantly different from each other (p = 0.029). We also find a similar difference between the response rates of cisgender White women and cisgender African American women (p = 0.094). This suggests that cisgender African American women face more discrimination relative to cisgender African American men and cisgender White women. Gender differences for Hispanic and White prospective patients are far less stark, with the differences in coefficients being smaller and coefficient estimates being noisier and never statistically significant.

VII. Robustness Checks

We conduct several robustness checks to determine if our results are sensitive to reasonable alternative specifications. In Online Appendix Table B1, we find that our main results in Table 5 are robust to using a probit instead of a linear probability model. Next, in Online Appendix Tables

B2 to B8, we test if our results are robust to collapsing our seven mutually exclusive response categories into an alternative "positive response" binary outcome variable, shown in Table 1. In our main results above, we follow Kugelmass (2019) and only consider positive responses to be explicit appointment offers or call or consultation offers. However, two types of MHP responses: asking screening questions and providing referrals (both without any appointment, call, or consultation offer), are arguably more ambiguous. To address this, we re-estimate our main results using an alternative positive outcome variable that re-codes two MHP response categories as positive rather than negative responses.

Online Appendix Tables B2 through B8 show our results using this broader "positive response" coding. Overall, our results are similar across all tables except that our main result of intersectional discrimination and African American and Hispanic TNB prospective patients is slightly weaker. Our broader result—that discrimination or barriers to access are primarily faced by transgender or non-binary people of color—is unchanged with this alternative binary coding.

VIII. Impact of COVID-19 on Access and Discrimination

This study began several months before and continued for several months after the beginning of the COVID-19 pandemic in March 2020. This enables us to quantify the impact of COVID-19 on access to mental health services during the early days of the pandemic. Specifically, building on Harrell et al. (2023), we are interested in if COVID-19 intensity impacted access to

¹² Screening questions could indicate a barrier to access, such as providers being differentially more concerned about insurance status for minorities (e.g., Wisniewski and Walker, 2020). They may also be considered neutral or positive if, for example, the MHP asks if the concerns are trans-specific. Referrals are also likely to indicate a barrier to access (Kugelmass 2019), but it depends on why a referral is provided. Many referrals are essentially "soft" appointment rejections, it is possible that the alternative provider is better for the prospective patient. While we try to avoid these types of referrals by not suggesting that the common mental health concerns are trans- or race-specific, these referrals are ambiguous in nature and then we re-analyze our results also considering these responses as "positive."

mental health care appointments. We also test if COVID-19 intensity moderated the discrimination we observed earlier, that is, does COVID-19 intensity correlate with increased or decreased discrimination?

VIII.A) COVID-19 Data

To measure COVID-19 intensity, we use data on daily COVID-19 infections and deaths from the New York Times (New York Times 2020) and the number of excess deaths calculated by the Centers for Disease Control and Prevention (CDC 2020). The New York Times began tracking cases of the coronavirus in real time following the first reported case in Washington state (on January 21, 2020) using data aggregated from local, state, and federal sources, and has since made that data available to the public. Similarly, the CDC publishes estimates of deaths from COVID-19 from the National Vital Statistics System and estimates the number of excess deaths based on historical trends. This measure allows us to account for mortality that was higher than expected, given that official COVID-19 fatalities are likely undercounts of the actual number of deaths due to COVID-19.

From these combined data, we extract three measures of COVID-19 intensity: (1) the standardized sum of daily COVID-19 infections, (2) the standardized sum of daily deaths caused by COVID-19, and (3) the standardized weekly excess deaths, all measured at the state level. We calculate weekly excess deaths by subtracting the number of observed weekly deaths from the upper bound of the 95% prediction interval of the expected number of deaths in a week.

VIII.B) Appointment Access and COVID-19 Intensity Over Time

¹³ Historical, seasonally adjusted mortality trends ranging from 2013 to 2020 were compared to counts of deaths in recent weeks using Farrington surveillance algorithms. These models generate a predicted count of deaths, as well as an upper-bound threshold based on a one-sided 95% prediction interval.

¹⁴ Data on weekly excess deaths complements data on daily COVID-19 infections and deaths as a measure of COVID-19 intensity by accounting for potential measurement error in observed and recorded deaths due to misclassification. For further discussion of this, see Centers for Disease Control and Prevention (2020).

We first start by plotting, in Figure 3, our COVID-19 intensity measures, at the national level, compared to our positive response rate for each week of our data collection, which ran from January 28, 2020, to May 15, 2020. To compare trends more easily between our positive response rate and our COVID-19 intensity measures (COVID-19 cases, COVID-19 deaths, excess deaths), given their wildly different units and scale, we normalize each to the 0 to 1 range by applying a standard unity normalization (see the notes to Figure 3).

Figure 3 shows a temporary decrease in the positive response rate around the time of the COVID-19 national emergency declaration by the White House on March 13, 2020. Once COVID-19 cases, deaths, and excess deaths started in late March 2020 onward, we see a negative correlation between more COVID-19 intensity, nationally, and the positive response rate. This is suggestive that COVID-19 decreased access to mental health care appointments.

To examine how state-level COVID-19 intensity relates to positive response rates, we reestimate equation (1) including different measures of COVID-19 intensity. First, we include standardized daily cases and standardized daily deaths, and then we replace these measures with standardized weekly excess deaths. Given that spikes in COVID-19 intensity may not affect MHPs immediately, we also estimate all our regressions with contemporaneous, 1-week, 2-week, and 3-week lagged COVID-19 intensity measures. In these models, we include state fixed effects since state-specific factors that may lead to correlation between COVID-19 intensity and positive response rates could bias our estimates. We continue to include week sent fixed effects and day sent fixed effects to control for national time trends and day-specific correlates of COVID-19

¹⁵ For example, in the early onset of the COVID-19 pandemic, more populous areas were more affected, and these areas may have perhaps had higher access to appointments given that urban areas are less likely to be mental healthcare shortage areas (Merwin et al., 2003). While state fixed effects could remove these sources of bias, including them could be at the cost of potentially decreasing precision by excluding between-state variation in COVID-19 intensity.

intensity and response rates such that our final fully saturated models including state, week sent, and day of the week fixed effects.

In Table 9, we present the results of our estimation of the impact of contemporaneous and lagged COVID-19 intensity as measured by standardized daily cases and deaths on aggregate appointment offer rates. For the contemporaneous measure (column (1)) and all lags (columns (2) to (4)), we find negative coefficients on standardized daily cases and positive coefficients on standardized daily deaths, although none are statistically significant except in one case. We find that a one standard deviation increase in contemporaneous COVID-19 cases at the state level is associated with a 7.5 percentage point lower positive response rate. While this is a sizeable effect in magnitude, it is only significant at the 10% level. Also, the coefficient on daily deaths is positive, suggesting that the weak potential relationship between cases and appointment access only seems to be in situations where deaths do not also rise proportionally.

In Table 10 we present the same regression results using standardized weekly excess deaths and find little association between state-level increases in COVID-19 cases and deaths, with no estimates being statistically significant. Overall, we find weak evidence of a negative relationship between contemporaneous state-level COVID-19 intensity and response rates.

VIII.C) Discrimination in Appointment Access and COVID-19 Intensity Over Time

Next, we test if COVID-19 intensity moderated discrimination in access to mental healthcare. To do this, we add interactions between our COVID-19 intensity measures and the prospective patient characteristics. We focus on if COVID-19 moderated discrimination against

African American or Hispanic TNB prospective patients, since that was the group for which we found strong and robust evidence of discrimination.¹⁶

Table 11 presents the results of this analysis using cases and deaths as the COVID-19 intensity measure. We find no clear relationship between COVID-19 cases and deaths and discrimination: either the interactions between cases and deaths and prospective patient characteristics are not significant (columns (1) to (3)) or, when they are significant, cases and deaths are of opposite signs and there is overall no clear pattern (column (4)).

Table 12 presents an identical analysis using weekly excess deaths. In column (2), when we include only the interaction between excess deaths and African American or Hispanic TNB, we find that weekly excess deaths is now negative and statistically significant (at the 5% level) This coefficient suggests that a one standard deviation increase in state-level weekly excess deaths is associated with a 7.6 percentage point decrease in the positive response rate for prospective patients who are cisgender or who are White and TNB. The coefficient on the interaction between excess deaths and African American or Hispanic TNB is positive (0.1070) and significant (at the 1% level), meaning that these effects cancel out: there is no negative association between COVID-19 intensity and the positive response rate for African American or Hispanic TNB prospective patients. Given that we still do find discrimination against this group, these results suggest that the discrimination is concentrated during times when COVID-19 was not present or was less severe.

Column (3) focuses just on African American, Hispanic, and TNB separately, and finds a similar effect for African American prospective patients in general, where there is a strong and significant negative relationship between COVID-19 and the positive response rate for White and

24

¹⁶ Given power issues, since we are interacting the effects of COVID-19 with the effects of prospective patient characteristics, we opted to collapse the African American TNB and Hispanic TNB categories into one category (African American or Hispanic TNB).

Hispanic prospective patients, but no relationship for African American prospective patients. However, when we put columns (2) and (3) together into column (4) by including interactions of excess deaths with African American, Hispanic, TNB (from column (3)) and African American or Hispanic and TNB (from column (2)), none of the estimates are significant due to large standard errors, making it difficult to tease out to what extent the effects in columns (2) and (3) are just driven by African American TNB prospective patients. Overall, the results of this analysis provide some evidence, although not robust to all COVID-19 intensity measures, that greater COVID-19 intensity is associated with less discrimination, namely against African American TNB prospective patients.

IX. Conclusion and Discussion

We conduct an audit correspondence field experiment using a nationally representative sample of mental health providers in the United States to test for discrimination in access to mental healthcare appointments based on gender identity, race, and ethnicity. To date, this is the largest audit study of mental health care providers, and it is the only empirical study we are aware of on gender identity discrimination in access to healthcare.

We have several central findings. First, we find consistent evidence that MHPs are less likely to offer appointments or respond to African American or Hispanic transgender and non-binary prospective patients. This is particularly problematic given the mental health disparities faced by TNB individuals, people of color, and particularly, TNB people of color. Given that these minority groups are, on average, in greater need for mental health services, discrimination by MHPs can have profound mental and physical health consequences.

Second, we do not find evidence of discrimination against White transgender and non-binary individuals. We either find no difference in response rates between White TNB prospective patients and White (presumed) cisgender prospective patients, or we find that White TNB prospective patients have a *higher* positive response rate.

Third, our results are mostly inconclusive as to whether (presumed) cisgender African American or Hispanic prospective patients face discrimination in access to appointments. While the response rates for cisgender African American and Hispanic prospective patients are not statistically significantly different from cisgender Whites, these estimates are not precise and thus cannot rule out meaningful amounts of discrimination even if the estimates are near zero. Future research with a larger sample size, and thus more statistical power, would be better able to determine to what extent there is this discrimination. We do, however, find that cisgender African American women face discrimination relative to cisgender White women and cisgender African American men.

Finally, given that our study covered about six weeks before and 12 weeks after the onset of the COVID-19 pandemic in the US, we were able to examine the impact of the initial onset of the COVID-19 pandemic on access to mental health care services. We find some evidence that increased COVID-19 intensity—measured either by daily cases or standardized excess deaths—is associated with decreased access to mental healthcare appointments in general. When we investigate if COVID-19 intensity affected appointment access differentially by prospective patient race, ethnicity, and TNB status, we find some weak evidence that increased COVID-19 intensity is associated with *less* discrimination.

Our results have meaningful policy implications. First, our results suggest the possibility for increased oversight and regulation of the MHP market to attempt to reduce discrimination. This

could occur from federal or state anti-discrimination laws, more oversight by state licensing boards, or policies and leadership from occupational groups, such as the American Counseling Association.

Second, our results speak to the need for increased access to trans-friendly mental health services and culturally competent MHPs, as well as an organized network to identify (and "vet") these providers. Given the undersupply of LGBTQ+-competent MHPs (Romanelli and Hudson 2017) and BIPOC MHPs (Chandler 2011), efforts to diversity MHPs or improve their training around LGBTQ+ and race/ethnicity issues (Lelutiu-Weinberger, Clark, and Pachankis, 2022; Newell et al. 2010) may help. To improve the ability to identify trans-friendly MHPs, a system akin to the Human Rights Campaign's "All Children – All Families" program, which identifies LGBTQ+-inclusive foster care and adoption agencies, could be developed for the mental healthcare market.

References

- Abbate, Nicolás, Inés Berniell, Joaquín Coleff, Luis Laguinge, Margarita Machelett, Mariana Marchionni, Julián Pedrazzi, and María Florencia Pinto. 2022. "Discrimination Against Gay and Transgender People in Latin America: A Correspondence Study in the Rental Housing Market." CEDLAS documento de trabajo (working paper) #306. http://sedici.unlp.edu.ar/handle/10915/145394.
- Allen ML, Cook BL, Carson N, Interian A, La Roche M, Alegría M. 2017. "Patient-Provider Therapeutic Alliance Contributes to Patient Activation in Community Mental Health Clinics." *Adminstrative Policy and Mental Health* 44 (4): 431-40. https://doi.org/10.1007/s10488-015-0655-8.
- Andersen, Martin, Sylvia Bryan, and David Slusky. 2022. "COVID-19 Restrictions Reduced Abortion Clinic Visits, Even in Blue States." NBER Working Paper 28058. https://doi.org/10.3386/w28058.
- Angerer, Silvia, Christian Waibel, and Harald Stummer. 2019. "Discrimination in Health Care: A Field Experiment on the Impact of Patients' Socioeconomic Status on Access to Care." *American Journal of Health Economics* 5 (4): 407–27. https://doi.org/10.1162/ajhe a 00124.
- Axt, Jordan R., Morgan A. Conway, Erin C. Westgate, and Nicholas R. Buttrick. 2020. "Implicit Transgender Attitudes Independently Predict Beliefs About Gender and Transgender People." *Personality and Social Psychology Bulletin* 47 (2): 257-74, https://doi.org/10.1177/0146167220921065.
- Badgett, M.V. Lee, Christopher S. Carpenter, and Dario Sansone. 2021. "LGBTQ Economics." *Journal of Economic Perspectives* 35 (2): 141-70. https://doi.org/10.1257/jep.35.2.141.
- Baert, Stijn, Bart Cockx, Niels Gheyle, and Cora Vandamme. 2015. "Is There Less Discrimination in Occupations Where Recruitment Is Difficult?" *ILR Review* 68 (3): 467–500. https://doi.org/10.1177/0019793915570873.
- Bardales, Nujavi. 2013. "Finding a Job in 'a Beard and a Dress': Evaluating the Effectiveness of Transgender Anti-Discrimination Laws." Working Paper, 1–17. https://polisci.ucsd.edu/_files/undergrad/Thesis%202013%20Finding%20a%20Job%20in%20a%20Beard%20and%20a%20Dress%20Evaluating%20the%20Effectiveness%20of%20transgender%20Antidiscrimination%20Laws.pdf.
- Barlow, Rose M., and Joanna N. Lahey. 2018. "What Race Is Lacey? Intersecting Perceptions of Racial Minority Status and Social Class." *Social Science Quarterly* 99 (5): 1680–98. https://doi.org/10.1111/ssqu.12529.
- Baumle, Amanda K., M. V. Lee Badgett, and Steven Boutcher. 2020. "New Research on Sexual Orientation and Gender Identity Discrimination: Effect of State Policy on Charges Filed at the EEOC." *Journal of Homosexuality* 67 (8): 1135–44. https://doi.org/10.1080/00918369.2019.1603494.
- Bertrand, Marianne, and Esther Duflo. 2017. "Field Experiments on Discrimination." In Handbook of Economic Field Experiments, edited by Abhijit Vinayak Banerjee and Esther Duflo, 309–93. New York, NY: Elsevier. https://doi.org/10.1016/bs.hefe.2016.08.004.
- Bisgaier, Joanna, and Karin V. Rhodes. 2011. "Auditing Access to Specialty Care for Children with Public Insurance." *New England Journal of Medicine* 364 (24): 2324–33. https://doi.org/10.1056/NEJMsa1013285.
- Bourabain, Dounia, and Pieter Paul Verhaeghe. 2018. "Could You Help Me, Please?

- Intersectional Field Experiments on Everyday Discrimination in Clothing Stores." *Journal of Ethnic and Migration Studies* 45 (11): 2026–44. https://doi.org/10.1080/1369183X.2018.1480360.
- Breslau, Joshua, Kenneth S. Kendler, Maxwell Su, Sergio Gaxiola-Aguilar, and Ronald C. Kessler. 2005. "Lifetime Risk and Persistence of Psychiatric Disorders across Ethnic Groups in the United States." *Psychological Medicine* 35 (3): 317-27. https://doi.org/10.1017/s0033291704003514.
- Budge, Stephanie L., and Bonnie Moradi. 2018. "Attending to Gender in Psychotherapy: Understanding and Incorporating Systems of Power." *Journal of Clinical Psychology* 74 (11): 2014–27. https://doi.org/10.1002/jclp.22686.
- Carpenter, Christopher S., Samuel T. Eppink, and Gilbert Gonzales. 2020. "Transgender Status, Gender Identity, and Socioeconomic Outcomes in the United States." *ILR Review* 73 (3): 573–99. https://doi.org/10.1177/0019793920902776.
- Carpenter, Christopher S., Maxine J. Lee, and Laura Nettuno. 2022. "Economic Outcomes for Transgender People and Other Gender Minorities in the United States: First Estimates from a Nationally Representative Sample." *Southern Economic Journal* 89 (2): 280–304. https://doi.org/10.1002/soej.12594.
- Centers for Disease Control and Prevention. (2020). Excess Deaths Associated with COVID-19. Retrieved November 21, 2020 from: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
- Chandler, Daphne R. 2011. "Proactively Addressing the Shortage of Blacks in Psychology: Highlighting the School Psychology Subfield." *Journal of Black Psychology* 37 (1): 99–127. http://doi.org/10.1177/0095798409359774.
- Dahl, Gordon B., and Matthew M. Knepper. 2020. "Age Discrimination Across the Business Cycle." NBER Working Paper 27581. https://doi.org/10.3386/w27581.
- Doleac, Jennifer L, and Luke C.D. Stein. 2013. "The Visible Hand: Race and Online Market Outcomes." *Economic Journal* 123 (572): F469-F492. https://doi.org/10.1111/ecoj.12082.
- Drydakis, Nick. 2017a. "Trans People, Well-Being, and Labor Market Outcomes." *IZA World of Labor* 386: 1-9. https://doi.org/10.15185/izawol.386.
- . 2017b. "Trans employees, transitioning, and job satisfaction." *Journal of Vocational Behavior* 98: 1-16. https://doi.org/10.1016/j.jvb.2016.09.003.
- Drydakis, Nick, and Klaus F. Zimmermann. 2020. "Sexual Orientation, Gender Identity and Labour Market Outcomes: New Patterns and Insights." *International Journal of Manpower* 41 (2): 621-28. https://doi.org/10.1108/IJM-03-2020-481.
- Francis, Dania V., Angela C.M. De Oliveira, and Carey Dimmitt. 2019. "Do School Counselors Exhibit Bias in Recommending Students for Advanced Coursework?" *B.E. Journal of Economic Analysis and Policy*, 19 (4): 1-17. https://doi.org/10.1515/bejeap-2018-0189.
- Gaddis, S. Michael. 2015. "Discrimination in the Credential Society: An Audit Study of Race and College Selectivity in the Labor Market." *Social Forces* 93 (4): 1451–59. https://doi.org/10.1093/sf/sou111.
- ——. 2017a. "How Black Are Lakisha and Jamal? Racial Perceptions from Names Used in Correspondence Audit Studies." *Sociological Science* 4: 469–89. https://doi.org/10.15195/v4.a19.
- ——. 2017b. "Racial/Ethnic Perceptions from Hispanic Names: Selecting Names to Test for Discrimination." *Socius* 3: 1–11. https://doi.org/10.2139/ssrn.2975829.
- ——. 2018. "An Introduction to Audit Studies in the Social Sciences." In Audit Studies:

- Behind the Scenes with Theory, Method, and Nuance, edited by S. Michael Gaddis. New York: Springer. http://dx.doi.org/10.1007/978-3-319-71153-9 1.
- Gaddis, S. Michael, and Raj Ghoshal. 2020. "Searching for a Roommate: A Correspondence Audit Examining Racial/Ethnic and Immigrant Discrimination among Millennials." *Socius* 6: 1-16. https://doi.org/10.1177/2F2378023120972287.
- Geijtenbeek, Lydia, and Erik Plug. 2018. "Is There a Penalty for Registered Women? Is There a Premium for Registered Men? Evidence from a Sample of Transsexual Workers." *European Economic Review* 109 (October): 334–347. https://doi.org.10.1016/j.euroecorev.2017.12.006.
- Glick, Jennifer L., Alex Lopez, Miranda Pollock, and Katherine P. Theall. 2019. "Housing Insecurity Seems to Almost Go Hand in Hand with Being Trans': Housing Stress among Transgender and Gender Non-Conforming Individuals in New Orleans." *Journal of Urban Health* 96 (5): 751–59. https://doi.org/10.1007/s11524-019-00384-y.
- Giulietti, Corrado, Mirco Tonin, and Michael Vlassopoulos. 2019. "Racial Discrimination in Local Public Services: A Field Experiment in the United States." *Journal of the European Economic Association* 17 (1): 165–204. https://doi.org/10.1093/jeea/jvx045.
- Granberg, Mark, Per A Andersson, and Ali Ahmed. 2020. "Hiring Discrimination Against Transgender People: Evidence from a Field Experiment." *Labour Economics* 65 (101860). https://doi.org/10.1016/j.labeco.2020.101860.
- Grant, Jaime M., Lisa A. Mottet, Justin Tanis, Jack Harrison, Jody L. Herman, and Mara Keisling. 2011. "Injustice at Every Turn: A Report of the National Transgender Discrimination Survey." Washington National Center for Transgender Equality and the National Gay and Lesbian Task Force. https://www.thetaskforce.org/wp-content/uploads/2019/07/ntds-full.pdf.
- Green, Alexander R., Dana R. Carney, Daniel J. Pallin, Long H. Ngo, Kristal L. Raymond, Lisa I. Iezzoni, and Mahzarin R. Banaji. 2007. "Implicit Bias among Physicians and Its Prediction of Thrombolysis Decisions for Black and White Patients." *Journal of General Internal Medicine* 22 (9): 1231–38. https://doi.org/10.1007/s11606-007-0258-5.
- Greenwald, Anthony G., and Mahzarin R. Banaji. 1995. "Implicit Social Cognition: Attitudes, Self-Esteem, and Stereotypes." *Psychological Review* 102 (1): 4–27. https://doi.org/10.1037/0033-295x.102.1.4.
- Haas, Ann P., Mickey Eliason, Vickie M. Mays, Robin M. Mathy, Susan D. Cochran, Anthony R. D'Augelli, Morton M. Silverman, et al. 2011. "Suicide and Suicide Risk in Lesbian, Gay, Bisexual, and Transgender Populations: Review and Recommendations." *Journal of Homosexuality* 58 (1): 10–51. https://doi.org/10.1080/00918369.2011.534038.
- Hanson, Andrew, Zackary Hawley, Hal Martin, and Bo Liu. 2016. "Discrimination in Mortgage Lending: Evidence from a Correspondence Experiment." *Journal of Urban Economics* 92: 48–65. https://doi.org/10.1016/j.jue.2015.12.004.
- Hanssens, Catherine, Aisha C. Moodie-Mills, Andrea J. Ritchie, Dean Spade, Urvashi Vaid, and Sexuality Law. 2014. "A Roadmap for Change: Federal Policy Recommendations.

 Addressing the Criminalization of LGBT People and People Living with HIV." New York: Center for Gender and Sexuality Law at Columbia Law School.
- Harrell, Ben. 2022. "Conversion Therapy Bans, Suicidality, and Mental Health." Working Paper. https://www.benharrellecon.com/s/Conversion-Therapy-Bans-Suicidality-and-Mental-Health_101022.pdf.
- Harrell, Ben, Luca Fumarco, Patrick Button, David J. Schwegman, and Kyla Denwood. 2023.

- "The Impact of COVID-19 on Access to Mental Health Services." Forthcoming in the *AEA Papers & Proceedings*.
- Heisler, Elayne J. 2018. "The Mental Health Workforce: A Primer." CRS Reports (Library of Congress. Congressional Research Service). https://crsreports.congress.gov/product/details?prodcode=R43255.
- Hendricks, Michael L., and Rylan J. Testa. 2012. "A Conceptual Framework for Clinical Work with Transgender and Gender Nonconforming Clients: An Adaptation of the Minority Stress Model." *Professional Psychology: Research and Practice* 43 (5): 460–67. https://doi.org/10.1037/a0029597.
- Himelhoch, Seth, Wendy E. Weller, Albert W. Wu, Gerard F. Anderson, and Lisa A. Cooper. 2004. "Chronic Medical Illness, Depression, and Use of Acute Medical Services among Medicare Beneficiaries." *Medical Care* 42 (6): 512–21. https://doi.org/10.1097/01.mlr.0000127998.89246.ef.
- Hoffman, Beth. 2014. "An Overview of Depression Among Transgender Women." *Depression Research and Treatment* vol. 2014: 1-9. https://doi.org/10.1155/2014/394283.
- James, Sandy E., Jody L. Herman, Susan Rankin, Mara Keisling, Lisa Mottet, and Ma'ayan Anafi. 2016. "The Report of the U.S. Transgender Survey." Washington, DC: National Center for Transgender Equality. http://www.ustranssurvey.org/reports.
- Jansson, Joakim, and Sofia Fritzson. 2022. "Gender and Gender Identity in the Rental Housing Market: Evidence from a Correspondence Study." SSRN Electronic Journal. http://doi.org/10.2139/ssrn.4058828.
- Kane, Carol K., and David W. Emmons. 2013. "New Data on Physician Practice Arrangements: Private Practice Remains Strong Despite Shifts toward Hospital Employment." *Chicago: American Medical Association*. https://www.ama-assn.org/sites/ama-assn.org/files/corp/media-browser/premium/health-policy/prp-physician-practice-arrangements 0.pdf.
- Kassel, Gabrielle. 2018. "How to Find a Legit LGBTQ+ Therapist Who Will Actually Support Your Needs." WELL+GOOD, November 8, 2018, accessed October 25, 2020, https://www.wellandgood.com/lgbt-therapist/.
- Kugelmass, Heather. 2016. "Sorry, I'm Not Accepting New Patients': An Audit Study of Access to Mental Health Care." *Journal of Health and Social Behavior* 57 (2): 168–83. https://doi.org/10.1177/0022146516647098.
- ——. 2019. "'Just the Type with Whom I Like to Work': Two Correspondence Field Experiments in an Online Mental Health Care Market." *Society and Mental Health* 9 (3): 350–65. https://doi.org/10.1177/2156869318755213.
- Lahey, Joanna N., and Douglas R. Oxley. 2021. "Discrimination at the Intersection of Age, Race, and Gender: Evidence from a Lab-in-the-Field Experiment." *ournal of Policy Analysis & Management* 40 (4): 1083-119. https://doi.org/10.1002/pam.22281.
- Lagos, Danya. 2018. "Looking at Population Health Beyond 'Male' and 'Female': Implications of Transgender Identity and Gender Nonconformity for Population Health." *Demography* 55 (6): 2097–117. https://doi.org/10.1007/s13524-018-0714-3.
- Lambda Legal. 2010. "When Health Care Isn't Caring: Lambda Legal's Survey on Discrimination Against LGBT People and People Living with HIV." Washington, DC. www.lambdalegal.org/health-care-report.

- Lauster, Nathanael, and Adam Easterbrook. 2011. "No Room for New Families? A Field Experiment Measuring Rental Discrimination against Same-Sex Couples and Single Parents." *Social Problems* 58 (3): 389–409. https://doi.org/10.1525/sp.2011.58.3.389.
- LaVeist, Thomas A., Roland J. Thorpe Jr, Geraldine Pierre, GiShawn A. Mance, and David R. Williams. 2014. "The Relationships Among Vigilant Coping Style, Race, and Depression." *The Journal of Social Issues* 70 (2): 241-55. https://doi.org/10.1111/josi.12058.
- Leech, Tamara G.J., Amy Irby-Shasanmi, and Anne L. Mitchell. 2019. "Are You Accepting New Patients?" A Pilot Field Experiment on Telephone-Based Gatekeeping and Black Patients' Access to Pediatric Care." *Health Services Research* 54 (January): 234–42. https://doi.org/10.1111/1475-6773.13089.
- Lelutiu-Weinberger, Corina, Kirsty A. Clark, and John E. Pachankis. 2022 "Mental health provider training to improve LGBTQ competence and reduce implicit and explicit bias: A randomized controlled trial of online and in-person delivery." Forthcoming in *Psychology of Sexual Orientation and Gender Diversity*. https://dx.doi.org/10.1037/sgd0000560.
- Leppel, Karen. 2020. "Labor Force Status of Transgender Individuals." In *Handbook of Labor, Human Resources and Population*, edited by Klaus F. Zimmermann, 1–16. Zurich: Springer Nature Switzerland.
- ——. 2021. "Transgender Men and Women in 2015: Employed, Unemployed, or Not in the Labor Force." *Journal of Homosexuality* 68 (2): 203–29. https://doi.org/10.1080/00918369.2019.1648081.
- Levy, Diane K., Doug Wissoker, Claudia L. Aranda, Brent Howell, Rob Pitingolo, Sarale Sewell, and Rob Santos. 2017. "A Paired-Testing Pilot Study of Housing Discrimination against Same-Sex Couples and Transgender Individuals." The Urban Institute, Washington, DC. https://www.urban.org/sites/default/files/publication/91486/hds-lgt-final-report-3.pdf.
- Liszewski, Walter, J. Klint Peebles, Howa Yeung, and Sarah Arron. 2018. "Persons of Nonbinary Gender Awareness, Visibility, and Health Disparities." *The New England Journal of Medicine* 379 (25): 2391-93. https://doi.org/10.1056/NEJMp1812005.Persons.
- Mann, Samuel. 2021. "Transgender Employment and Gender Marker Laws." *Labour Economics* 73 (January). https://doi.org/10.1016/j.labeco.2021.102072.
- McKinlay, John B., Deborah A. Potter, and Henry A. Feldman. 1996. "Non-medical Influences on Medical Decision-making." *Social Science & Medicine* 42 (5): 769–76. https://doi.org/10.1016/0277-9536(95)00342-8.
- Merwin, Elizabeth, Ivora Hinton, Bruce Dembling, and Steven Stern. 2003. "Shortages of Rural Mental Health Professionals." *Archives of Psychiatric Nursing* 17 (1): 42–51. https://doi.org/10.1053/apnu.2003.1.
- Meyer, Ilan H., Taylor N. T. Brown, Jody L. Herman, Sari L. Reisner, and Walter O. Bockting. 2017. "Demographic Characteristics and Health Status of Transgender Adults in Select US Regions: Behavioral Risk Factor Surveillance System, 2014." *American Journal of Public Health* 107 (4): 582–89. https://doi.org/10.2105/AJPH.2016.303648.
- Michalski, Daniel, Tanya Mulvey, and Jessica Kohout. 2010. 2008 APA Survey of Psychology Health Service Providers. Washington, D.C.: American Psychological Association Center for Workforce Studies. https://www.apa.org/workforce/publications/08-hsp.
- Miranda, Jeanne, Tomas G. McGuire, David R. Williams, and Philip Wang. 2008. "Mental Health in the Context of Health Disparities." *American Journal of Psychiatry* 165 (9): 1102–08. https://doi.org/10.1176/appi.ajp.2008.08030333.
- Mizock, Lauren, and Christine Lundquist. 2016. "Missteps in Psychotherapy with Transgender

- Clients: Promoting Gender Sensitivity in Counseling and Psychological Practice." *Psychology of Sexual Orientation and Gender Diversity* 3 (2): 148–55. https://doi.org/10.1037/sgd0000177.
- Mujcic, Redzo, and Paul Frijters. 2020. "The Colour of a Free Ride." *The Economic Journal*, 131 (634): 970-99. https://doi.org/10.1093/ej/ueaa090.
- Murchie, Judson, and Jindong Pang. 2018. "Rental housing discrimination across protected classes: Evidence from a randomized experiment." *Regional Science and Urban Economics* 73: 170-79. https://doi.org/10.1016/j.regsciurbeco.2018.10.003.
- Mustanski, Brian S., Robert Garofalo, and Erin M. Emerson. 2010. "Mental Health Disorders, Psychological Distress, and Suicidality in a Diverse Sample of Lesbian, Gay, Bisexual, and Transgender Youths." *American Journal of Public Health* 100 (12): 2426–32. https://doi.org/10.2105/AJPH.2009.178319.
- Neumark, David, Ian Burn, and Patrick Button. 2019. "Is It Harder for Older Workers to Find Jobs? New and Improved Evidence from a Field Experiment." *Journal of Political Economy* 127 (2): 922–70. https://doi.org/10.1086/701029.
- Newell, Markeda, Bonnie Nastasi, Chryse Hatzichristou, Janine Jones, G. Thomas Schanding, and Georgette Yetter. 2010. "Evidence on Multicultural Training in School Psychology: Recommendations for Future Directions." *School Psychology Quarterly* 25 (December): 249–78. https://doi.org/10.1037/a0021542.
- The New York Times. (2020). Coronavirus (COVID-19) Data in the United States. Retrieved November 21, 2020 from https://github.com/nytimes/covid-19-data.
- Olah, Michelle, Gregory Gaisaino, and Stephen Hwang. 2013. "The Effect of Socioeconomic Status on Access to Primary Care: An Audit Study." *Canadian Medical Association Journal* 185 (6): 263–70. https://doi.org/10.1503/cmaj.121383.
- Olin, Su-chin Serene, Briannon C. O'Connor, Amy Storfer-Isser, Lisa J. Clark, Matthew Perkins, Sarah Hudson Scholle, Emma D. Whitmyre, Kimberly Hagwood, and Sarah McCue Horwitz. 2016. "Access to Care for Youth in a State Mental Health System: A Stimulated Approach." *Journal of the American Academy of Child and Adolescent Psychiatry* 55 (5): 392–99. https://doi.org/10.1016/j.jaac.2016.02.014.
- Pager, Devah, and Hana Shepherd. 2008. "The Sociology of Discrimination: Racial Discrimination in Employment, Housing, Credit, and Consumer Markets." *Annual Review of Sociology* 34: 181–209. https://doi.org/10.1146%2Fannurev.soc.33.040406.131740.
- Paradies, Yin, Jehonathan Ben, Nida Denson, Amanuel Elias, Naomi Priest, Alex Pieterse, Arpana Gupta, Margaret Kelaher, and Gilbert Gee. 2015. "Racism as a determinant of health: a systematic review and meta-analysis." *PLOS ONE* 10 (9): e0138511. https://doi.org/10.1371/journal.pone.0138511.
- Pearlin, Leonard I., Scott Schieman, Elena M. Fazio, and Stephen C. Meersman. 2005. "Stress, Health, and the Life Course: Some Conceptual Perspectives." *Journal of Health and Social Behavior* 46 (2): 205–19.
- Pedulla, David S. 2014. "The Positive Consequences of Negative Stereotypes: Race, Sexual Orientation, and the Job Application Process." *Social Psychology Quarterly* 77 (1): 75–94. https://doi.org/10.1177/0190272513506229.
- Polsky, Daniel, Michael Richards, Simon Basseyn, Douglas Wissoker, Genevieve M. Kenney, Stephen Zuckerman, and Karin V. Rhodes. 2015. "Appointment Availability after Increases in Medicaid Payments for Primary Care." *New England Journal of Medicine* 372 (6): 537–45. https://doi.org/10.1056/NEJMsa1413299.

- Rainey, Teresa, Elliot E. Imse, and Ari Pomerantz. 2015. "Qualified and transgender: A report on results of resume testing for employment discrimination based on gender identity" Office of Human Rights District of Columbia, Washington, DC.

 https://ohr.dc.gov/sites/default/files/dc/sites/ohr/publication/attachments/QualifiedAndTransgender-FullReport-1.pdf
- Rhodes, Karin V., Genevieve M. Kenney, Ari B. Friedman, Brendan Saloner, Charlotte C. Lawson, David Chearo, Douglas Wissoker, and Daniel Polsky. 2014. "Primary Care Access for New Patients on the Eve of Health Care Reform." *JAMA Internal Medicine* 174 (6): 861–69. https://doi.org/10.1001/jamainternmed.2014.20.
- Romanelli, Meghan, and Kimberly D. Hudson. 2017. "Individual and systemic barriers to health care: Perspectives of lesbian, gay, bisexual, and transgender adults." *American Journal of Orthopsychiatry* 87 (6): 714–28. https://doi.org/10.1037/ort0000306.
- Romero, Adam P., James E. Tysse, Jessica M. Weisel, and Zak Franklin. 2016. "Brief of Scholars Who Study the Transgender Population as Amici Curiae in Support of Plaintiffs-Appellants." *Appeal from the United States District Court for the Middle District Of North Carolina*. No. 1:15-cv-00236-TDS-JEP.

 https://www.aclu.org/sites/default/files/field_document/060-3 scholars who study trans population 2016.10.25.pdf
- Safer, Joshua D., Eli Coleman, Jamie Feldman, Robert Garofalo, Wylie Hembree, Asa Radix, and Jae Sevelius. 2016. "Barriers to healthcare for transgender individuals." *Current Opinion in Endocrinology, Diabetes, and Obesity* 23 (2): 168-71. https://doi.org/10.1097%2FMED.000000000000227.
- Sawyer, Pamela J., Brenda Major, Bettina J. Casad, Sarah S. M. Townsend, and Wendy Berry Mendes. 2012. "Discrimination and the Stress Response: Psychological and Physiological Consequences of Anticipating Prejudice in Interethnic Interactions." *American Journal of Public Health* 102 (5): 1020–26. https://doi.org/10.2105%2FAJPH.2011.300620.
- Schwegman, David. 2019. "Rental Market Discrimination Against Same-Sex Couples: Evidence From a Pairwise-Matched Email Correspondence Test." *Housing Policy Debate* 29 (2): 250–72. https://doi.org/10.1080/10511482.2018.1512005.
- Seng, Julia S., William D. Lopez, Mickey Sperlich, Lydia Hamama, and Caroline D. Reed Meldrum. 2012. "Marginalized Identities, Discrimination Burden, and Mental Health: Empirical Exploration of an Interpersonal-Level Approach to Modeling Intersectionality." *Social Science & Medicine* 75 (12): 2437–45. https://doi.org/10.1016/j.socscimed.2012.09.023.
- Sharma, Rajiv, Arnab Mitra, and Miron Stano. 2015. "Insurance, Race/Ethnicity, and Sex in the Search for a New Physician." *Economics Letters* 137: 150–53. https://doi.org/10.1016/j.econlet.2015.11.005.
- Sharma, Rajiv, Sarah Tinkler, Arnab Mitra, Sudeshna Pal, Raven Susu-Mago, and Miron Stano. 2018. "State Medicaid Fees and Access to Primary Care Physicians." *Health Economics* 27 (3): 629–636. https://doi.org/10.1002/hec.3591.
- Stotzer, Rebecca L. 2014. "Law Enforcement and Criminal Justice Personnel Interactions with Transgender People in the United States: A Literature Review." *Aggression and Violent Behavior* 19 (3): 263–77. https://doi.org/10.1016/j.avb.2014.04.012.
- Streed, Carl G., Ellen P. McCarthy, and Jennifer S. Haas. 2018. "Self-Reported Physical and Mental Health of Gender Nonconforming Transgender Adults in the United States." *LGBT Health* 5 (7): 443–48. https://doi.org/10.1089/lgbt.2017.0275.

- Stroumsa, Daphna. 2014. "The State of Transgender Health Care: Policy, Law, and Medical Frameworks." *American Journal of Public Health* 104 (3): 31–38. https://doi.org/10.2105/AJPH.2013.301789.
- Su, Dejun, Jay A. Irwin, Christopher Fisher, Athena Ramos, Megan Kelley, Diana Ariss Rogel Mendoza, and Jason D. Coleman. 2016. "Mental Health Disparities Within the LGBT Population: A Comparison Between Transgender and Nontransgender Individuals." *Transgender Health* 1 (1): 12–20. https://doi.org/10.1089/trgh.2015.0001.
- Teasdale, Anthony C., and Clara E. Hill. 2006. "Preference of Therapists-in-Training for Client Characteristics." *Psychotherapy: Theory, Research, Practice, Training* 43 (1): 111–18. https://doi.org/10.1037/0033-3204.43.1.111.
- Testa, Rylan J., Laura M. Sciacca, Florence Wang, Michael L. Hendricks, Peter Goldblum, Judith Bradford, and Bruce Bongar. 2012. "Effects of Violence on Transgender People." *Professional Psychology: Research and Practice* 43 (5): 452–59. https://doi.org/10.1037/a0029604.
- Van Borm, Hannah, and Stijn Baert. 2018. "What Drives Hiring Discrimination against Transgenders?" *International Journal of Manpower* 39 (4): 581–99. https://doi.org/10.1108/IJM-09-2017-0233.
- Van Borm, Hannah, Marlot Dhoop, Acker Allien Van, and Stijn Baert. 2020. "What Does Someone's Gender Identity Signal to Employers?" *International Journal of Manpower* 41 (6): 753–777. https://doi.org/10.1108/IJM-03-2019-0164.
- Voutilainen L, Henttonen P, Kahri M, Ravaja N, Sams M, Peräkylä A. 2018. "Empathy, Challenge, and Psychophysiological Activation in Therapist-Client Interaction." *Frontiers in Psychology.* 9 (530): 1-13. https://doi.org/10.3389/fpsyg.2018.00530.
- Werbeck, Anna, Ansgar Wübker, and Nicolas R. Ziebarth. 2021. "Cream Skimming by Health Care Providers and Inequality in Health Care Access: Evidence from a Randomized Field Experiment." *Journal of Economic Behavior & Organization* 188 (C): 1325-50 https://doi.org/10.1016/j.jebo.2021.05.028.
- Williams, David R. 2018. "Stress and the Mental Health of Populations of Color: Advancing our Understanding of Race-related Stressors." *Journal of Health and Social Behavior* 59 (4): 466-486. https://doi.org/10.1177/0022146518814251.
- Wisniewski, Janna M., and Brigham Walker. 2020. "Association of Simulated Patient Race/Ethnicity With Scheduling of Primary Care Appointments." *JAMA Network Open*, 3(1), pp. e19200010. https://doi.org/10.1001/jamanetworkopen.2019.20010.
- Wisniewski, Janna M., Brigham Walker, Sarah Tinkler, Miron Stano, and Rajiv Sharma. 2021. "Mediators of discrimination in primary care appointment access." *Economics Letters* 200 (109744): 1-4. https://doi.org/10.1016/j.econlet.2021.109744.
- Ziedan, Engy, Kosali I. Simon, and Coady Wing. "Effects of State COVID-19 Closure Policy on Non-COVID-19 Health Care Utilization." NBER Working Paper 27621. https://doi.org/10.3386/w27621.

Figure 1: Structure of the Emails to MHPs

1.) [EMAIL SUBJECT LINE] Legend: (): denotes motivating verbiage, not exact phrasing Hi,/Hello, []: denotes randomized input
My name is 2) [NAME]. (I'm contacting you because) 3) [MENTAL HEALTH
CONCERN] (and would like to talk to a therapist). If transgender or non-binary: I am
4) [GENDER IDENTITY] and am looking for a therapist who is trans-friendly. 5)
[APPOINTMENT REQUEST].
6) [VALEDICTION]
2) [NAME]

Figure 2: Randomized Components of the Emails to MHPs

1) [EMAIL SUBJECT LINE]

- -Seeking therapy
- -Looking for a therapist
- Therapy inquiry

3) [MENTAL HEALTH CONCERN]

- -I've been feeling anxious lately.
- -I've been feeling stressed all the time.
- -I think I might be depressed.

4) **[GENDER IDENTITY]**

- -a transgender woman
- -a transgender man
- -non-binary

2) [NAME]

<u>Afr.-Am.</u> <u>Hispanic</u> <u>White</u>

Male-Coded First Names

Darius Alejandro Brian

DeShawn Luis Kevin

Female-Coded First Names

Ebony Mariana Amanda

Lakeisha Valentina Heather

Last Names

Washington Hernandez Anderson

Jefferson Garcia Thompson

5) [APPOINTMENT REQUEST]

-Can we set up an appointment? -When could I see you?

6) [VALEDICTION]

-Sincerely, -Thanks, -Best, -[None]

Notes: Ethnic and race specific first names are from Barlow and Lahey (2018), Gaddis (2017)

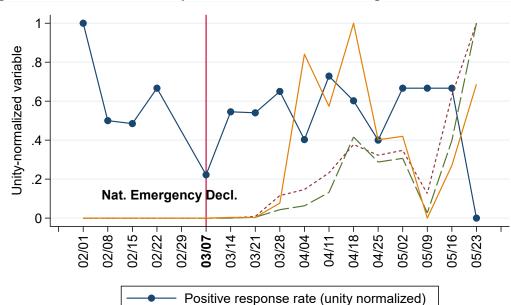


Figure 3: COVID-19 Intensity Measures and Positive Response Rates Over Time

Notes: To calculate each time series, we calculate weekly positive response rates, COVID-19 cases, and COVID-19 deaths. We then apply a unity normalization (also known as min-max feature scaling) to all variables, which allows them to be more easily compared over time, given the wildly different units for each variable. Each variable is normalized to a range of 0 to 1, using the formula $Y' = \frac{Y - Y_{min}}{Y_{max} - Y_{min}}$.

COVID-19 cases (unity normalized) COVID-19 deaths (unity normalized) Excess deaths (unity normalized) Table 1: Descriptive Statistics and Coding of MHP Responses into Positive Outcome Variables

		Binary C	Coding		Gender	Identity	Ra	ce and Ethni	city
Outcome	Description	Default	Alt.	Overall	Cisgender	Trans or non-binary	White	African American	Hispanic
Appointment Offer	The MHP explicitly offers an appointment.	+	+	33.3%	33.2%	33.4%	33.4%	32.4%	34.0%
Call or Consultation Offer	The MHP offers to speak on the phone but does not offer an appointment.	+	+	23.3%	27.3%	19.6%	24.6%	23.2%	20.5%
Screening Question	The MHP requests additional information but does not offer an	-	+	6.0%	7.1%	5.0%	5.9%	7.0%	5.0%
Referral	appointment. The MHP gives a referral, but does not offer an appointment.	-	+	4.8%	3.8%	5.8%	4.9%	5.9%	3.2%
Waitlist	The MHP offers to put the prospective patient on a waitlist.	-	-	2.1%	1.3%	2.9%	2.1%	0.7%	0.4%
Rejection	The MHP rejects the prospective patient and does not offer an alternative provider.	-	-	6.0%	6.5%	5.6%	5.8%	6.6%	5.5%
No Response	No response from the MHP within one week.	-	-	24.5%	20.9%	27.6%	23.0%	24.0%	28.2%
			N	1,000	480	520	500	270	230

Notes: These categorizations are mutually exclusive. For example, a response is coded as an appointment offer even if a referral is also provided. Our default binary coding treats appointment offer and call or consultation offer as the only positive outcomes, while our alternative binary coding also considers screening questions and referrals as positive outcomes.

Table 2. Positive Response Rates by Gender Identity

Response Rates by Trans/Cis Status:	Positive	Negative	Total		
Cisgender	60.6% (291)	39.4% (189)	480		
Transgender or Non-binary	52.8% (275)	47.2% (245)	520		
Total	56.6% (566)	43.4% (434)	1,000		
Test of independence, p-value	0.013				
Response Rates by Gender Identity:					
Cisgender Men	61.6% (191)	38.4% (119)	310		
Cisgender Women	58.8% (100)	41.2% (70)	170		
Transgender Men	50.7% (71)	49.3% (69)	140		
Transgender Women	55.8% (95)	44.2% (75)	170		
Non-binary	51.9% (109)	48.1% (101)	210		
Tests of independence, p-values	Cis men	Cis women	Trans men	Trans women	Non- binary
Cisgender Men					
Cisgender Women	0.551				
Transgender Men	0.030	0.154	• • •		
Transgender Women	0.222	0.585	0.365	•••	
Non-binary	0.028	0.179	0.828	0.441	•••

Notes: Responses are coded as positive if the MHP's response was an appointment offer or a call or consultation offer. P-values come from a t-test (two-sided).

Table 3. Positive Response Rates by Race or Ethnicity

	· · · · · · · · · · · · · · · · · · ·	
Positive	Negative	Total
58.0% (290)	42.0% (210)	500
55.5% (150)	45.5% (120)	270
54.8% (126)	45.2% (104)	230
56.6% (566)	43.4% (434)	1,000
White	African American	Hispanic
	•••	•••
0.514	•••	
0.415	0.862	•••
	58.0% (290) 55.5% (150) 54.8% (126) 56.6% (566) White 0.514	58.0% (290) 42.0% (210) 55.5% (150) 45.5% (120) 54.8% (126) 45.2% (104) 56.6% (566) 43.4% (434) White African American 0.514

Notes: Responses are coded as positive if the MHP's response was an appointment offer or a call or consultation offer. P-values come from a t-test (two-sided).

Table 4. Positive Response by Race or Ethnicity, for Cisgender and Transgender or Non-Binary Patients Separately

or ron-binary rations separately			
Response rates for cisgender only:	Positive	Negative	Total
White	61.5% (160)	38.5% (100)	260
African American	60.7% (85)	39.3% (55)	140
Hispanic	57.5% (46)	42.5% (34)	80
Total	60.6% (291)	39.4% (189)	480
Test of independence, p-values	White	African American	Hispanic
White	•••	•••	•••
African American	0.872	•••	•••
Hispanic	0.519	0.642	•••
Response rates for transgender or non-	binary only:		
White	54.2% (130)	47.8% (110)	240
African American	50.0% (65)	50.0% (65)	130
Hispanic	53.3% (80)	46.7% (70)	150
Total	52.9% (275)	47.1% (245)	520
	, ,	, ,	
Test of independence, p-values	White	African American	Hispanic
White			
African American	0.445		
Hispanic	0.873	0.579	
-			
Transgender or non-binary vs. Cisgend	ler: Tests of inde	ependence, p-values	
	Cisgender	Cisgender	Cisgender
	White	African American	Hispanic
Transgender or Non-binary White	0.096	•••	
Transgender or Non-binary African American	0.030	0.077	•••
Transgender or Non-binary Hispanic	0.105		0.547

Notes: Responses are coded as positive if the MHP's response was an appointment offer or a call or consultation offer. P-values come for a t-test (two-sided).

Table 5: Differences in Positive Response Rates, Results for Aggregated Groups and by Mental Health Concern

	(1)	(2)	(3)	(4)	(5)
Transgender or non-binary	-0.0761**	-0.0674*	-0.0348	-0.0240	0.0260
Transgender of non-omary	(0.0375)	(0.0366)	(0.0432)	(0.0443)	(0.0405)
African American	-0.0243	-0.0225	-0.1089**	-0.1148**	-0.1302***
	(0.0444)	(0.0431)	(0.0432)	(0.0440)	(0.0364)
Hispanic	-0.0191	-0.0274	-0.0209	-0.0458	-0.1072**
	(0.0462)	(0.0472)	(0.0526)	(0.0545)	(0.0481)
Depression		-0.0205	0.0449	0.0641	0.0925
•		(0.0416)	(0.0503)	(0.0534)	(0.0570)
Anxiety		-0.1039**	-0.0012	0.0233	0.0114
•		(0.0493)	(0.0524)	(0.0532)	(0.0505)
State fixed effects:			X	X	X
Week sent fixed effects:				X	X
Day of the week sent fixed effects:					X
N	1,000	1,000	1,000	1,000	1,000
Adjusted R ²	0.00360	0.00783	0.0293	0.0303	0.0421

Notes: Regression estimates based on the linear probability model in equation (1). The mean positive response rate for the excluded group (cisgender White prospective patients) is 61.5%. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 6: Differences in Positive Response Rates, Results by Gender Identity

	(1)	(2)	(3)	(4)
Transgender or non-binary	0.0260 (0.0405)			
Binary transgender		0.0319 (0.0459)		
Trans women			0.0004 (.0577)	0.0072 (0.0587)
Trans men			-0.008 (.0634)	-0.0047 (0.0641)
Non-binary		0.0116 (0.0611)	-0.0209 (0.0634)	•••
Non-binary female first name		•••	•••	-0.0391 (0.0788)
Non-binary male first name				0.0091 (0.0885)
Cisgender women		•••	-0.1005** (.0483)	-0.1009** (0.0487)
All African American	-0.1302*** (0.0364)	-0.1310*** (0.0360)	-0.1471*** (0.0371)	-0.1446*** (0.0374)
All Hispanic	-0.1072** (0.0481)	-0.1072** (0.0487)	-0.0996** (0.0439)	-0.1039** (0.0452)
N Adjusted R ²	1,000 0.0421	1,000 0.0412	1,000 0.0409	1,000 0.0400

Notes: All regressions include the controls in column (5) of Table 5: mental health concern (depression, anxiety, stress), state fixed effects, day of the week sent fixed effects, and week sent fixed effects. Column (1) repeats the results from column (5) in Table 5 for ease of interpretation. The mean positive response rate for the excluded group (cisgender White men) is 68.3%. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 7: Differences in Positive Response Rates, Intersectional Results by Trans/Cisgender Status and Race/Ethnicity

	(1)	(2)
Transgender or non-binary	0.0260 (0.0405)	
and White	•••	0.1196** (0.0526)
and African American		-0.1337** (0.0546)
and Hispanic		-0.0430 (0.0604)
Cisgender		
and African American		0.0008 (0.0572)
and Hispanic		-0.0243 (0.0625)
All African American	-0.1302*** (0.0364)	
All Hispanic	-0.1072** (0.0481)	
N Adjusted R ²	1,000 0.0421	1,000 0.0447

Notes: See the notes to Table 6. Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 8: Differences in Positive Response Rates, Intersectional Results by Gender Identity and Race/Ethnicity

	(1)
Transgender women	
and White	0.1365*
***************************************	(0.0789)
and African American	-0.0905
······································	(0.0872)
and Hispanic	-0.3603***
and Inspanie	(0.0806)
Transgender men	(0.0000)
and White	0.1765
and White	(0.1117)
and African American	-0.1389
and I miletioni	(0.1058)
and Hispanic	-0.0326
and Inspanie	(0.0983)
Non-binary	(0.0703)
and White	0.0198
and White	(0.0768)
and African American	-0.3966***
···uiru / III/ouir / III/ouir	(0.1230)
and Hispanic	-0.0224
	(0.0656)
Cisgender women	(0.0000)
and White	0.0995
	(0.0921)
and African American	-0.1312
	(0.1086)
and Hispanic	-0.0674
1	(0.1205)
Cisgender men	()
and African American	0.0976
	(0.0770)
and Hispanic	0.0063
1	(0.0829)
	. ,
N	1,000
Adjusted R ²	0.0447

Notes: See the notes to Table 6. The coefficient for cisgender African American men (cisgender White women) is statistically significantly different from the coefficient for cisgender African American women with a p-value of 0.0288 (0.094). Standard errors, clustered at the patient level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 9: State-Level COVID-19 Intensity (Cases and Deaths) and

Appointment Offer Rates

	(1)	(2)	(3)	(4)
D. H	-0.0747*			
Daily cases	(0.0436)	•••	•••	•••
D. H., 4, 44,	0.0430)			
Daily deaths	(0.0499)	•••	•••	•••
1-week lagged daily cases	(0.0499)	-0.0560		
i week lagged daily eases		(0.0833)		
1-week lagged daily deaths	•••	0.0784		•••
		(0.0737)		
2-week lagged daily cases			0.0545	•••
			(0.1201)	
2-week lagged daily deaths			0.1468	•••
			(0.1262)	
3-week lagged daily cases	•••			-0.0108
				(0.1356)
3-week lagged daily deaths	•••	• • •		0.1881
				(0.1498)
N	1,000	1,000	1,000	1,000
Adjusted R ²	0.0442	0.0433	0.0433	0.0432

Notes: Regressions based on the regression in Table 7, column (2), but with these daily case and death variables added. Standard Errors, clustered at the state level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 10: State-Level COVID-19 Intensity (Weekly Excess Deaths) and Appointment Offer Rates

	(1)	(2)	(3)	(4)
Weekly excess deaths	-0.0484 (0.0348)			
1-week lagged weekly excess deaths	•••	-0.0257 (0.0308)	•••	•••
2-week lagged weekly excess deaths	•••	•••	0.0081 (0.0228)	•••
3-week lagged weekly excess deaths			•••	-0.0115 (0.0277)
N	1,000	1,000	1,000	1,000
Adjusted R ²	0.0453	0.0441	0.0438	0.0438

Notes: Regressions based on the regression in Table 7, column (2), but with these daily case and death variables added. Standard Errors, clustered at the state level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 11: Moderating Effects of State-Level COVID-19 Intensity (Cases and Deaths) on Discrimination

Discrimination	(1)	(2)	(3)	(4)
	(1)	(-)	(6)	(1)
Transgender or non-binary	0.1078*	0.1082*	0.1477**	-0.2309
1100008000001 01 11011 010001	(0.0625)	(0.0621)	(0.0658)	(0.1943)
African American	-0.0169	-0.0117	-0.0016	-0.3833*
	(0.0595)	(0.0650)	(0.0677)	(0.1909)
Hispanic	0.0332	0.0432	0.0419	-0.3307*
•	(0.0598)	(0.0547)	(0.0678)	(0.1934)
Trans. or non-binary x	-0.2267**	-0.2297**	-0.2602***	0.1640
A-A or Hispanic	(0.0901)	(0.0876)	(0.0939)	(0.2329)
1				
COVID-19 daily cases	-0.0810*	-0.0795	-0.0449	-1.7000**
•	(0.0439)	(0.0517)	(0.2803)	(0.7930)
COVID-19 daily deaths	0.0766	0.0502	-0.0667	2.6330**
·	(0.0501)	(0.0697)	(0.3607)	(1.2536)
African American x	•••	•••	0.0327	1.5099**
COVID-19 daily cases			(0.2552)	(0.6950)
COVID 10 doily dooths	•••	•••	0.0827	-2.4625**
COVID-19 daily deaths			(0.3509)	(1.1769)
Hispanic x	•••	•••	0.0865	1.7524**
COVID-19 daily cases			(0.2371)	(0.7797)
•	•••	•••	-0.1386	-2.9013**
COVID-19 daily deaths			(0.2810)	(1.2379)
Trans. or non-binary x	•••		-0.3242	1.4038*
COVID-19 daily cases			(0.2198)	(0.7744)
	•••	•••	0.3716	-2.4233*
COVID-19 daily deaths			(0.2218)	(1.2111)
A A II TEND		0.0000		1 7000**
A-A or Hispanic x TNB xCOVID-19 daily cases	•••	0.0980	•••	-1.7098** (0.7004)
COVID-19 daily cases		(0.1564) -0.0255		(0.7004) 2.8734**
COVID-19 daily deaths	•••	(0.1256)	•••	(1.1668)
50 (115 1) dully double		(0.1250)		(1.1000)
N	1,000	1,000	1,000	1,000
Adjusted R ²	0.0452	0.0443	0.0450	0.0482
J				

Notes: Regression includes state, day of week, and week sent fixed effects. Standard Errors, clustered at the state level, in parentheses. * p < 0.10, *** p < 0.05, **** p < 0.01.

Table 12: Moderating Effects of State-Level COVID-19 Intensity (Weekly Excess Deaths) on Discrimination

	(1)	(2)	(3)	(4)
Transgender or non-binary	0.1073*	0.1094*	0.1378**	0.1458*
, and the second	(0.0591)	(0.0564)	(0.0592)	(0.0750)
African American	-0.0021	0.0056	0.0315	0.0386
	(0.0574)	(0.0618)	(0.0600)	(0.0722)
Hispanic	0.0549	0.0516	0.0906	0.0989
-	(0.0612)	(0.0613)	(0.0657)	(0.0778)
Trans. or non-binary x	-0.2158**	-0.2118**	-0.2596***	-0.2688***
A-A or Hispanic	(0.0893)	(0.0848)	(0.0890)	(0.0933)
Weekly excess deaths	-0.0527	-0.0764**	-0.1491**	-0.1809
,	(0.0349)	(0.0340)	(0.0698)	(0.1961)
African American x			0.1488***	0.1875
weekly excess deaths			(0.0394)	(0.1951)
Hispanic x		•••	0.0634	0.0974
weekly excess deaths			(0.0631)	(0.1977)
Trans. or non-binary x		•••	0.0762	0.1102
weekly excess deaths			(0.0522)	(0.2026)
A-A or Hispanic x TNB x		0.1070***		-0.0416
weekly excess deaths		(0.0378)		(0.2049)
N	1,000	1,000	1,000	1,000
Adjusted R ²	0.0460	0.0481	0.0477	0.0467

Notes: Regression includes state, day of week, and week sent fixed effects. Standard Errors, clustered at the state level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.