
Treehouse: A Case For Carbon-Aware Datacenter Software
THOMAS ANDERSON, University of Washington-Seattle, USA
ADAM BELAY,Massachusetts Institute of Technology, USA
MOSHARAF CHOWDHURY, University of Michigan, USA
ASAF CIDON, Columbia University, USA
IRENE ZHANG,Microsoft Research and University of Washington-Seattle, USA

The end of Dennard scaling and the slowing of Moore’s Law has put the
energy use of datacenters on an unsustainable path. Datacenters are already
a significant fraction of worldwide electricity use, with application demand
scaling at a rapid rate. We argue that substantial reductions in the carbon
intensity of datacenter computing are possible with a software-centric ap-
proach: by making energy and carbon visible to application developers on a
fine-grained basis, by modifying system APIs to make it possible to make
informed trade offs between performance and carbon emissions, and by
raising the level of application programming to allow for flexible use of more
energy efficient means of compute and storage. We also lay out a research
agenda for systems software to reduce the carbon footprint of datacenter
computing.

CCS Concepts: • Hardware → Enterprise level and data centers power
issues; • Software and its engineering → Software design tradeoffs; •
General and reference→ Cross-computing tools and techniques.

Additional Key Words and Phrases: energy efficiency, carbon, energy prove-
nance, service-level agreements, microfunctions

1 INTRODUCTION
The pressing need for society to address global climate change has
caused many large organizations to begin to track and report their
aggregate greenhouse gas emissions, both directly caused by their
operations and indirectly caused through energy use and by supply
chains [24]. However, there are no standard software mechanisms
in place to track and and control emissions from information tech-
nology (IT). This lack of visibility is especially acute where multiple
applications share the same physical hardware, such as datacenters,
since carbon emissions today can only be accounted for at the server
or processor chip level, not at the software and application level.
In aggregate, datacenters represent a large and growing source

of carbon emissions; estimates place datacenters as responsible
for 1-2% of aggregate worldwide electricity consumption [32, 54].
Given rapidly-increasing demand for computing and data analy-
sis [48, 66], continual improvements are needed in the carbon effi-
ciency of computing to keep the climate impact of computing from
skyrocketing [32, 54, 55]. The end of Dennard scaling means that
exponential improvements in energy efficiency are no longer an
automatic consequence of Moore’s Law. Over the past few years,
various technologies have been introduced to improve matters—for
example, server consolidation and improvements in power distri-
bution. However, these steps will not be enough going forward
(Figure 1).

Authors’ addresses: Thomas Anderson, tom@cs.washington.edu, University of
Washington-Seattle, Seattle, Washington, USA; Adam Belay, Massachusetts Institute
of Technology, Cambridge, Massachusetts, USA, abelay@mit.edu; Mosharaf Chowd-
hury, University of Michigan, Ann Arbor, Michigan, USA, mosharaf@umich.edu; Asaf
Cidon, Columbia University, New York, New York, USA, asaf.cidon@columbia.edu;
Irene Zhang, Microsoft Research and University of Washington-Seattle, Redmond,
Washington, USA, irene.zhang@microsoft.com.

Co
m
pu

te
/M

W
 (l
og

)

1980 1990 2000 2010 2020 2030 2040

Slowing Moore’s Law →

End of
Dennard scaling

Application
Demand

Power distribution, server consolidation

Treehouse: Provenance, software bloat,
resource stranding, efficient hardware

Energy as a design discipline

NEED CONTINUOUS ENERGY IMPROVEMENT OVER TIME

Fig. 1. Application demand for computing is growing faster than circuit-level
energy efficiency. Treehouse takes a software-centric approach to reduce
this gap.
For cloud datacenter operators, a popular option is to construct

datacenters in locations with inexpensive, renewable power gen-
eration. Although a step forward, this is unlikely to be a complete
solution for several reasons. First, hardware manufacturing, assem-
bly and transportation, as well as the construction and maintenance
of the datacenter itself, are all energy and greenhouse gas intensive.
In fact, chip manufacturing alone is a significant and growing source
of the lifecycle greenhouse gas emissions of hyperscalar datacen-
ters [27]. Thus, we need to be efficient in both datacenter energy use
and utilization. Themost carbon efficient datacenter is one you don’t
need to build. Second, edge computing—placing computing near
customers—is increasingly popular as a way to improve application
responsiveness; these smaller scale datacenters are often located
in or near cities without access to dedicated green power sources.1
Because power is often much slower to provision than other parts
of IT, unconstrained use of energy by the computing industry could
outstrip our ability to build out and connect green power sources.
For example, provisioning interstate power lines to access remote
green energy often requires many years of advance planning. Fi-
nally, many companies continue to operate their own on-premise
datacenters; any solution must work for those deployments as well.

We propose Treehouse, a project whose goal is to build the foun-
dations for a new software infrastructure that treats energy and
carbon as a first-class resource, alongside traditional computing
resources like compute, memory, and storage. Today, developers
have almost no way to know how their engineering decisions affect
the climate. The goal of Treehouse is to enable developers and oper-
ators to understand and reduce greenhouse gases from datacenter
sources. We target all datacenter environments, including cloud,
edge computing, and on-premise environments.
We identify three new abstractions needed to enable develop-

ers to optimize their carbon footprint: (1) energy provenance, a
mechanism to track energy usage, (2) an interface for expressing
1About a half acre of solar panels, plus batteries, are needed to fully power a single
24x7 server rack [51].

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
64

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3630614.3630626&domain=pdf&date_stamp=2023-10-25

applications’ service-level agreements (SLAs) to allow operators to
trade off performance and carbon consumption, and (3) 𝜇functions,
a fungible fine-grained unit of execution that enables more efficient
hardware utilization. We also lay out a research agenda to develop
mechanisms for reducing carbon footprint by: (1) reducing software
bloat, (2) interchanging computational resources, and (3) interchang-
ing memory resources. and (4) energy-aware scheduling policies.
Beyond our direct research agenda, we hope our efforts can inspire
the broader software systems community to focus much more on
datacenter carbon reduction.

2 TOWARDS CARBON-AWARE DATACENTER
SOFTWARE

Application developers today have few tools at their disposal to
write energy and carbon-efficient applications. First, they have no
good way to account for the amount of carbon their applications
are emitting. In addition, it is not clear what the carbon implications
would be of particular design choices (e.g., shifting their applica-
tion from a dedicated server to a shared server, or moving their
storage from disk to flash). While many cloud users do optimize
for lower cloud costs, cost does not equate to carbon impact. For
example, while an HDD is much cheaper to run than an SSD, it is
far more energy intensive. Similarly, FPGAs often provide only a
small speedup relative to CPU cores, but a factor of 10-70 improve-
ment in energy efficiency for a range of computationally intensive
applications [10, 11, 52, 57, 58, 63, 71].

Second, from the standpoint of the operator (e.g., the cloud provider
or a devops engineer in an on-premises data center), even if they
have some understanding of the energy consumption of particular
hardware resources (e.g., servers), reducing the energy or carbon
footprint of a workload may reduce performance. To avoid hurting
applications that are highly performance sensitive, operators must
be overly conservative.

Third, software applications today are typically provisioned in a
static set of bundled resources, which make it difficult to optimize
for higher resource utilization. For example, virtual machines or
containers typically come pre-allocated with a set of CPU cores,
memory capacity, and network and disk bandwidth. As modern
datacenter applications typically exhibit bursty and unpredictable
patterns at the microsecond-scale, this bundling of resources causes
applications to be inefficient and resource-wasteful.

In this section, we introduce a set of abstractions that we believe
will lay the foundations for solving these problems, to address these
problems. allow developers to track and optimize the energy and
carbon footprints of their applications.

2.1 Energy Provenance
In order to track and account for carbon emissions at the software
level, we need the ability to measure the energy provenance—the di-
rect and indirect energy use— of each application. Of course, energy
is not the only issue; other researchers are developing complemen-
tary tools for tracking the carbon intensity of energy in different
locations as well as the carbon impact of device fabrication [26].
An application not only directly consumes energy when it is

running user-level code, but it also consumes energy in the operating

system, in storage devices, and in the network interface and switches
along its path when it is communicating with a remote server, as
well as the energy used on its behalf at the remote server.

Since it is difficult to directly measure the lifecycle energy of indi-
vidual applications through hardware mechanisms alone, we believe
it will be necessary to use machine learning to estimate the energy
provenance of the application, given its resource usage. The input
(or features) of the model will be metrics that are easily measured
in software, including the network bandwidth (for switches and
network interface cards), bytes of storage and storage bandwidth
(for memory and persistent storage) and accelerator cycles, as well
as the type and topology of hardware the application runs on. The
model could be trained and validated by carefully measuring in a
lab environment how these performance metrics affect system-level
energy usage. Armed with accurate single-node energy provenance
estimates, we plan to annotate data center communication, such as
remote procedure calls (RPCs), much as cloud providers annotate
RPCs with debugging information today [19]. These lifecycle per-
application energy estimates, combined with estimates of the carbon
intensity of power generation in each location and the embodied
carbon for device fabrication, would give developers the needed
visibility into the impact of their design decisions. This is a neces-
sary first step to enlisting the developer community in achieving
computational energy and carbon efficiency.

2.2 Exposing Application-Level SLAs
Another barrier to carbon-efficient computing is that optimizations
that improve energy efficiency often hurt performance. Disabling
processor boost mode; moving less frequently used data from high
power DRAM to lower power non-volatile memory or solid-state
storage; turning off underutilized memory chips; moving computa-
tion from power-hungry general purpose processors to more effi-
cient dedicated hardware accelerators; powering down a fraction of
the network when it is not needed—these steps save energy but very
often come at the cost of worse system and application performance.

For application code, provided we address energy provenance, the
application developer can decide on the right tradeoff thatmeets user
performance expectations in the most energy- and carbon-efficient
manner possible. These optimizations are harder for systems code
that lacks any direct knowledge of application intent. Traditionally,
system designs have been evaluated in terms of response times and
throughput, and designers have been willing to use all available re-
sources regardless of the energy or carbon cost. While these designs
are often optimal for performance, they sacrifice energy and carbon
efficiency.

To address this challenge, we aim to provide a way for application
developers to convey to systems code their tolerance (and/or desire)
for energy-saving optimizations. This is the equivalent of eco-mode
when driving a car. Together with data on the energy impact of using
different resources, the system designer and operator can make
informed choices as to how to schedule and place workloads. Once
system code can optimize its behavior along the energy-performance
Pareto curve, application developers can make informed choices to
meet their users’ carbon reduction goals.

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
65

microseconds milliseconds seconds minutes hours days

Real-time workloads;
OLTP;

Streaming;
AI/ML Inference

Interactive analytics;
OLAP;

Batch analytics;
Background jobs;

AI/ML Training

Our focus

Fig. 2. Treehouse focuses on reducing the carbon footprint for tasks with
sub-second SLAs, with optimizations within the same datacenter. Prior work
has considered relocating batch jobs (e.g., analytics) to datacenters with
greener sources of power or to greener periods of the day.

To this end, we believe we need to develop a new interface to ex-
pose application-level performance constraints (Service Level Agree-
ments, or SLAs) to systems software. This will enable a new class
of energy-aware systems-level optimizations. For highly latency-
sensitive operations, it may still make sense to use the highest-
performance solutions, even at high energy cost. But where there is
available slack in user expectations, we can use that flexibility to
choose the most energy-efficient solution consistent with meeting
user needs.

There is a large body of work on shifting long-running batch jobs
(e.g., MapReduce-style analytics) to a cleaner sources of energy [13–
15, 36, 37, 44, 49]. These type of tasks are the extreme end of the SLA
spectrum (depicted in Figure 2), and typically operate at time scales
of hours or even days. This provides enough slack to shift them to
geographically-remote datacenters or to different times of the day,
to take advantage of spatial or temporal availability of clean energy
(e.g., wind and solar). Our focus is on energy optimizations that can
also apply to applications with much tighter SLAs, at the millisecond
and even single-digit microsecond scale. For these applications, it
isn’t feasible to move the work to remote datacenters or to periods
of off-peak electricity generation.

2.3 Microfunctions
Despite the fact that many applications have highly dynamic re-
source usage, cloud applications today are often provisioned for
peak resource usage in coarse-grained and static ways. For example,
a virtual machine, container, or even serverless compute engine will
be provisioned statically, with, say, 4 cores, 32 GB of memory, etc.,
for seconds, minutes and hours at a time, while application demand
varies at much finer time-scales.

This leads to a high degree of resource stranding—compute, mem-
ory, and storage that is only lightly utilized, but which cannot be
used for other applications. Although many hardware devices have
low power modes, these are only of partial benefit. Even at low
load, power consumption is often half of the high load case [7], in
addition to the environmental impact of fabricating devices that on
average sit idle. Power efficiency per unit of application work is
maximized when system software keeps resources fully utilized.
Further, the most carbon-efficient option is to avoid doing work

that wasn’t needed in the first place. Existing datacenter software
stacks are bloated, with layers of functionality added over time and
kept for programmer speed and convenience rather than refactored
down to their essential purpose. In the old era of Dennard scaling,
inefficient layering could be addressed with time—every year, faster

and more energy-efficient computers would become available to
hide the impact of software bloat. With the end of Dennard scaling,
however, keeping old, inefficient software layers adds up.
We believe we need a new abstraction to address both software

bloat and resource stranding. First, we need a lightweight way to
provision resources at much finer time scales, choosing the most
energy efficient option that meets each application’s SLA. Second, to
achieve high utilization, we need to aggregate application resource
demands more effectively.
A New Abstraction for Fungible Compute Modern datacen-
ter applications are distributed at extremely fine granularities. For
example, each user-facing HTTP request received by Facebook or
Twitter spawns requests to dozens of microservices that lead to
thousands of individual RPCs to servers. As datacenter networks
get faster and in-memory microservices become more efficient (e.g.,
by using kernel-bypass), datacenter servers can increasingly process
and respond to requests in microseconds [8].

To accommodate microsecond-scale datacenter applications, we
need a new programming model with fine-grained resource alloca-
tion and low provisioning overheads. It must be efficient enough
to make adjustments at the microsecond-scale, so it can respond to
sudden workload changes [30, 46]. Reflecting its scale, we call this
abstraction for general-purpose fine-grained application provision-
ing microfunctions. Microfunctions are large enough to do useful
work (i.e., a few thousand cycles), while small enough to balance
resource usage quickly as shifts in load occur.
We plan to use an RPC-based API for 𝜇functions, including an

interface for the user to define SLAs, as well as an energy or carbon
budget. We also foresee opportunities to further increase efficiency
through computation shipping, allowing us to improve locality and
reduce data movement [38, 68]. Dynamically deciding when to move
data or computation will also enable new efficiency vs. performance
tradeoffs. Building upon the recent trend toward microservices, we
envision that full applications can be constructed by partitioning
their components into fine-grained units and running them as inde-
pendent 𝜇functions.
FaaS (Function-as-a-Service) or serverless frameworks, such as

AWS Lambda [6] share a similar notion by allowing developers to
express their jobs and get billed at the granularity of individual
function invocations. However, FaaS still operates on top of stati-
cally allocated resource containers, making it difficult to bin pack
the right combination of functions—in the face of variable resource
usage—to achieve high utilization. Some cloud providers compen-
sate by overcommitting functions to containers, but this leads to
inconsistent per-function performance [67]. In addition, FaaS suf-
fers from software bloat and high function startup times. The “cold
start” problem, in particular, can cause FaaS to take hundreds of
milliseconds or more to invoke a function [61]. This timescale is
many orders of magnitude too coarse to achieve balance during
fine-grained shifts in resource demand, while incurring far higher
energy and resource utilization overhead than is necessary. Finally,
FaaS is only designed to operate on a specific type of compute and
memory (namely, CPU and DRAM). It cannot take advantage of

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
66

more energy efficient options such as accelerators (e.g., GPUs, FP-
GAs, NICs) and heterogeneous forms of memory (e.g., persistent
memory).
Our goal for 𝜇functions is to provide a lightweight function ab-

straction, which is decoupled from any static grouping of resources,
such as a container or a VM. Instead, we aim to make 𝜇functions
completely fungible, consuming resources on-demand as they are
needed, with the ability to run on heterogeneous computing re-
sources.
Microsecond Scale Performance In order to exploit fine-grained
variations in resource usage and concurrency, we plan to support
microsecond-scale invocations of 𝜇functions, an improvement of
several orders of magnitude over existing serverless systems. We
must tackle two research challenges to spawn 𝜇functions this quickly.

First, the cold start problemmust be addressed to speed up invoca-
tions on machines that have not recently executed a particular func-
tion. One barrier is the high initialization cost of existing isolation
mechanisms. For example, even after sophisticated optimizations,
Amazon’s Firecracker still requires at least 125 milliseconds to start
executing a function environment [1]. Second, we must ensure that
𝜇function invocations themselves can start extremely quickly. A
major barrier to fast function invocation in existing FaaS systems is
that they rely on inefficient RPC protocols built on top of HTTP. In
addition, existing FaaS systems require a complex tier of dedicated
load balancing servers [1], which leads to significant delays.
Resource Disaggregation Resource disaggregation poses a solu-
tion to the fixed bundling of resources (in servers, virtual machines
or containers). While microsecond resource allocation helps to min-
imize the resources stranded by overprovisioning, it does not solve
the problem of bin packing application resource allocations onto
servers, leaving some resources still stranded. Disaggregating re-
sources reduces resource stranding at the cost of added latency. For
applications whose SLAs are designed to tolerate slightly longer
latencies, disaggregation enables the system to allocate exactly the
amount of compute, memory and storage each application requires
at the moment, from a shared pool. This allows idle resources to be
powered off to save energy without compromising application-level
SLAs.
There has been some progress on disaggregating resources, par-

ticularly for storage [4, 5, 21]. However, some resources, such as
memory and CPU, are still primarily consumed locally onmonolithic
servers. While there is a large body of research on trying to disaggre-
gate these resources [2, 3, 20, 25, 40, 59, 62], significant challenges re-
main for real-world adoption, including: security [64], isolation [70],
synchronization [45] and fault tolerance [42]. These challenges are
exacerbated especially in low-latency (i.e., microsecond-scale) set-
tings that are our focus.
Design Questions A key design question is whether to build
𝜇functions on top of Linux, and whether 𝜇functions need to be able
to support POSIX. While running 𝜇functions on top of Linux may
make it easier for existing applications to transition to 𝜇functions, it
comes at a high cost. In particular, Linux adds significant overhead
to I/O operations, and it is not the natural interface for writing a
distributed application across disaggregated resources. We plan to

𝝁function
scheduler

Application SLA and
performance metrics

CPUCPUCPUCPU

CPUCPUCPUFPGA

CPUCPUCPUDRAM

CPUCPUCPUNVM

Energy provenance

Disaggregated compute Disaggregated
memory/storage

Schedule memory
𝝁function

Schedule compute
𝝁function

Fig. 3. Depiction of the Treehouse scheduler. The scheduler takes as input
the available hardware resources and the function’s SLA. It then schedules in
the most energy-efficient way while still meeting SLAs, across the different
clusters of disaggregated resources.

pursue in parallel both research directions: (a) incrementally adapt
Linux to be more lightweight, as well as (b) pursue a clean-slate
non-POSIX OS design. We describe these efforts in Section 3.1.

2.4 Summary
To conclude, our three foundational abstractions allow developers to
define 𝜇functions that can operate on fungible resources at microsec-
ond time-scales. Developers can define SLAs for these 𝜇functions,
allowing the cloud operator to navigate the energy-performance
Pareto curve. Finally, the energy provenance of these 𝜇functions
would be tracked and accounted for at all times.

This process is depicted in Figure 3, where the Treehouse sched-
uler collects as input the energy provenance and the SLA of the
𝜇functions, and schedules them on the resource at a time that would
still meet their SLA while minimizing overall energy usage.

3 RESEARCH AGENDA
We now describe a specific agenda that builds upon the Treehouse
foundational abstractions to reduce datacenter carbon impact, by
allowing software systems to make carbon-aware decisions.

3.1 Minimizing Software Bloat
Inefficient software layers can be found in system-level building
blocks shared across applications, including data movement, data
(un)marshalling, memory allocation, and remote procedure call han-
dling. In a cluster-wide profiling study at Google, it was found
that these common building blocks consume about 30% of all cy-
cles; the Linux kernel, including thread scheduling and network
packet processing, consumes an additional 20% of all cycles [33]. In
other words, shared software infrastructure is significant enough
to account for almost half of all CPU cycles available in a typical
datacenter.

We propose two steps to address software bloat. The first step is
to continue optimizing the many layers of the IT software stack that
we have inherited. Many of these layers were designed for systems
where I/O took milliseconds to complete. We need a fundamental
redesign of the software stack for fast I/O (networking and storage)
devices.

One direction is to use Linux as a control plane for backward com-
patibility, but allow applications efficient direct access to I/O [9, 56].

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
67

Widely-used bypass technologies include RDMA and DPDK [65]
for network bypass as well as Optane and SPDK [29] for storage
bypass. Although more work is needed to understand how best to
integrate these technologies with the kernel, studies have shown
that operating system overheads can be slashed while still provid-
ing traditional kernel functions such as centralized scheduling, file
system semantics, and performance isolation [35, 39, 53, 69]. A com-
plementary approach is to move user-defined functions written in
a type-safe language into the Linux kernel, to allow customization
closer to the hardware [16, 22, 50, 72].
A longer-term solution is to offload parts of the data path to

more powerful and lower-energy I/O hardware. For example, both
Amazon and Microsoft Azure offload to hardware the packet re-
writing needed for cloud virtualization [18, 34]. This minimizes
the energy cost of the added abstraction. We need to extend this
approach to other layers of the systems stack to truly reduce the
software energy drain from management systems. For example, we
are designing an open-source, reconfigurable hardware networking
stack to reduce energy use of frequently used operating system and
runtime functions.

Ultimately, we believe we will need a new energy-optimized oper-
ating system kernel and runtime system for datacenters architected
to take advantage of energy-efficient hardware acceleration. This
may be either as a clean-slate design or by incrementally replacing
parts of the Linux kernel [43]. By raising the level of abstraction
from POSIX to 𝜇functions, we make it easier to support these more
radical designs.

3.2 Interchangeable Compute
Datacenter applications are often designed to take advantage of a
specific type of compute engine. Traditional applications typically
assume they are running on CPUs, while many machine learning
applications rely on accelerators like GPUs, TPUs, and FPGAs, with
new options emerging every month. In many cases, an application’s
energy consumption can be significantly reduced, while still meeting
its SLA, if the application used a different less energy-intensive
computing resource.
For example, FPGAs are often much more energy efficient than

CPUs on the same computation. However, for highly dynamic
workloads with tight timing limits, CPUs are often used instead
because they can be quickly configured and/or reallocated as de-
mand changes. We believe we can obtain the best of both worlds by
making it possible to run 𝜇functions in hybrid mode—using CPUs to
meet transient and short-term bursts with FPGAs used to meet the
more stable and predictable portion of the workload. Because FP-
GAs, like CPUs, are at their peak energy efficiency at full utilization,
this means transparently scaling FPGAs up and down much like
we do today for CPUs. To reduce engineering costs of maintaining
multiple implementations, we aim to develop an intermediate rep-
resentation (IR) that can be converted to run on a broad spectrum
of accelerators (e.g., similar to what TVM [12] does for machine
learning); cloud customers will then be able to tradeoff between
agility and energy efficiency as they see fit.

Fig. 4. Pareto frontier of energy usage-vs-tail latency. For example, DRAM
and SSD are located at opposite corners in this graph.

3.3 Interchangeable Memory
Similar to interchangeable compute devices, DRAM, NVRAM, SSD,
and HDD can all be interchanged to some degree: while DRAM is
volatile, in many use cases non-volatility is not a strict requirement.
Each offers a different operating point in the tradeoff between energy
efficiency and tail latency, as shown schematically in Figure 4. Even
within a particular technology, there are often energy tradeoffs,
such as in the choice between single and multi-level cell encodings
on SSDs.
Another trend is towards microsecond-scale networks, such as

CXL and RDMA. This can allow memory resources to be more
effectively disaggregated, reducing both the cost and energy waste
of resource stranding. Combined with high-performance storage
technologies, such as 3D XPoint (e.g., Intel Optane SSD [28]) or SLC
NAND (e.g., Samsung Z-SSD [60]) which offer microsecond-scale
access times, significant amounts of energy (and carbon) can be
saved by shifting data that is currently stored on DRAM to lower-
power nearby storage.

We propose to design a general-purpose system that interchanges
memory for lower power storage, without affecting the application’s
SLAs while staying within an energy budget. Such a system would
need to automatically identify which data should sit in DRAM, and
which part in storage, based on the 𝜇function’s timeliness constraint,
its read and write access patterns, and its access granularity. In
addition, we can also employ intelligent caching and prefetching to
mask reduced DRAM use [47].

3.4 Energy-Aware Scheduling
So far, we have separately considered interchangeable compute and
interchangeable memory resources. For the most part, we have also
assumed that the total energy consumption is given as a constraint
for those optimizations. However, any realistic application requires
both computation and storage. We need to consider how to find the
Pareto frontier of an application’s energy-performance curve by co-
optimizing both sets of interchangeable resources in a disaggregated
environment, while taking energy sources and 𝜇function SLAs into
account.

Given that a 𝜇function can run on multiple interchangeable com-
pute devices and the computation device may have choices to use
one of the many storage mediums, one direction would be extend-
ing well-known multi-commodity flow-based resource allocation
formulations [17, 31, 41] for determining the best combination of

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
68

A1

A2

A3

R1

R2

R3

R4

R5

A11

A12
A21

A13

A31

DRAM

A11

A12

A21

A13

A31

SSD

Interchangeable
Compute

Fig. 5. An example multi-commodity flow-based formulation for cost-
performance optimization at time 𝑡 .

interchangeable resources to use. Figure 5 gives a simple exam-
ple. There are 𝜇functions from three applications: 𝐴1, 𝐴2, and 𝐴3
(three commodities with different colors), each of which can run
on one of the five compute resources (𝑅1 . . . 𝑅5) with different –
already-profiled and known – speedups. At time 𝑡 , each 𝜇function
can read and write pertinent data (e.g.,, 𝐴1 needs three objects 𝐴11–
𝐴13) from/to two interchangeable storage devices (the availability of
data for reading can be captured by the presence/absence of edges
between a compute device and corresponding data in that storage
medium). Now one can represent the problem of optimizing for
total energy consumption for these simple 𝜇functions as the sum
of all edge costs for each 𝜇function (with appropriate constraints
to avoid oversubscribing each compute device) – minimizing the
total cost across all 𝜇functions will ensure that the overall energy
consumption is minimized. By appropriately setting the costs of
the edges and objective functions, we can consider trading off en-
ergy consumption for application performance and vice versa. The
primary challenge of such optimization-based approaches is the
speed at which we can determine placements—a few microseconds
may not be enough. Approximation- and/or memoization-based are
more likely to succeed.

Whatwe highlighted so far deals onlywith assignments of 𝜇functions
to interchangeable compute andmemory/storage at a particular time
instant. However, one-shot device assignment is just the beginning
of the scheduling problem; we must also schedule 𝜇functions over
time without violating their SLAs. The key here will likely be to
take advantage of deadline-based and altruistic scheduling solutions
[23] to effectively leverage available slack. We can consider dividing
time into fixed-length scheduling windows, pack 𝜇functions with
smaller slack within the current window, and push 𝜇functions with
larger slack into future windows. This would maximize our ability
to convert application flexibility over timeliness into lower energy
and carbon use.

4 CONCLUSION
The end of Dennard scaling and the slowing of Moore’s Law has
led to an inflection point with respect to the impact the computing
industry on the world’s ecology. Computing is still a small fraction
of global energy use, but we can no longer count on automatic ad-
vances in the energy-efficiency of computing to compensate for the

rapid upward spiral in computing demand. To continue to reap the
benefits of computing without endangering the planet, we need to
treat energy efficiency as a first class design goal. The Treehouse
project aims to address this challenge by building tools that help
application developers understand the implications of their design
decisions on energy and carbon use, by adapting interfaces to make
timeliness requirements explicit to allow for informed system-level
tradeoffs of energy versus time, and by reducing the energy cost
of commonly used abstractions. More broadly, we believe that the
systems software research community can and must play a con-
structive role in reducing the impact of computing on the planet,
as we make the transition to abundant carbon-free energy over the
next few decades.

ACKNOWLEDGMENTS
We would like to thank Simon Peter for suggesting Figure 1. This
work is supported by grants from the National Science Founda-
tion (2104243, 2104292, 2104398, and 2104548), VMware, and Cisco
Systems.

REFERENCES
[1] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and

D. Popa. Firecracker: Lightweight virtualization for serverless applications. In
USENIX NSDI, pages 419–434, 2020.

[2] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. Novaković, A. Ra-
manathan, P. Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and
M. Wei. Remote Regions: A simple abstraction for remote memory. In USENIX
ATC, 2018.

[3] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera, A. Panda,
S. Ratnasamy, and S. Shenker. Can far memory improve job throughput? In ACM
EuroSys, 2020.

[4] Amazon. Amazon Elastic Block Store. https://aws.amazon.com/ebs/.
[5] Amazon. Amazon Web Services. https://aws.amazon.com/s3/.
[6] AWS Lambda. https://aws.amazon.com/lambda/.
[7] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Com-

puter, 40(12):33–37, 2007.
[8] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan. Attack of the killer

microseconds. Commun. ACM, 60(4):48–54, 2017.
[9] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion. IX:

A protected dataplane operating system for high throughput and low latency. In
USENIX OSDI, pages 49–65, 2014.

[10] D. Chen and D. Singh. Using OpenCL to evaluate the efficiency of CPUs, GPUs
and FPGAs for information filtering. In FPL, pages 5–12, 2012.

[11] D. Chen and D. Singh. Fractal video compression in OpenCL: An evaluation of
CPUs, GPUs, and FPGAs as acceleration platforms. In ASP-DAC, pages 297–304,
2013.

[12] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al. TVM: An automated end-to-end optimizing compiler for
deep learning. In USENIX OSDI, pages 578–594, 2018.

[13] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy efficiency for large-scale
MapReduce workloads with significant interactive analysis. In ACM EuroSys,
pages 43–56, 2012.

[14] Y. Chen, A. Ganapathi, and R. H. Katz. To compress or not to compress - compute
vs. IO tradeoffs for MapReduce energy efficiency. In ACM SIGCOMMWorkshop
on Green networking, pages 23–28, 2010.

[15] D. Cheng, P. Lama, C. Jiang, and X. Zhou. Towards energy efficiency in hetero-
geneous Hadoop clusters by adaptive task assignment. In IEEE ICDCS, pages
359–368, 2015.

[16] P. Enberg, A. Rao, and S. Tarkoma. Partition-aware packet steering using XDP
and eBPF for improving application-level parallelism. In Proceedings of the 1st
ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms, pages
27–33, 2019.

[17] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-
commodity flow problems. In IEEE FOCS, pages 184–193, 1975.

[18] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chandrappa, S. Chaturmo-
hta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri,
S. Raindel, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma,

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
69

Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure
accelerated networking: SmartNICs in the public cloud. In USENIX NSDI, 2018.

[19] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker. X-trace: A pervasive network
tracing framework. In USENIX NSDI, 2007.

[20] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy,
and S. Shenker. Network requirements for resource disaggregation. In USENIX
OSDI, 2016.

[21] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu, L. Yan, F. Feng,
Y. Zhuang, F. Liu, P. Liu, X. Liu, Z. Wu, J. Wu, Z. Cao, C. Tian, J. Wu, J. Zhu,
H. Wang, D. Cai, and J. Wu. When cloud storage meets RDMA. In USENIX NSDI,
2021.

[22] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller. BMC: Accelerating mem-
cached using safe in-kernel caching and pre-stack processing. In USENIX NSDI,
pages 487–501, 2021.

[23] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altruistic
scheduling in multi-resource clusters. In USENIX OSDI, pages 65–80, 2016.

[24] Greenhouse gas corporate accounting and reporting standard. https://ghgprotocol.
org/corporate-standard, 2021.

[25] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient memory disag-
gregation with Infiniswap. In USENIX NSDI, 2017.

[26] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks, and C.-J. Wu.
ACT: Designing sustainable computer systems with an architectural carbon
modeling tool. In ISCA, page 784–799, 2022.

[27] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei, D. Brooks, and C.-J. Wu.
Chasing carbon: The elusive environmental footprint of computing, 2021.

[28] Intel Optane SSD 9 Series. https://www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series.html.

[29] Intel Corporation. Storage performance development kit. http://www.spdk.io.
[30] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala, V. R. Narasayya,

H. Herodotou, P. Tomita, A. Chen, J. Zhang, and J. Wang. PerfIso: Performance iso-
lation for commercial latency-sensitive services. In USENIX ATC, pages 519–532,
2018.

[31] M. Isard, V. Prabhakaran, J. Currey, U.Wieder, K. Talwar, and A. Goldberg. Quincy:
fair scheduling for distributed computing clusters. In ACM SOSP, pages 261–276,
2009.

[32] N. Jones. How to stop data centres from gobbling up the world’s electricity.
Nature, 561(7722):163–167, 2018.

[33] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley, G. Wei, and
D. M. Brooks. Profiling a warehouse-scale computer. In ISCA, pages 158–169,
2015.

[34] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishnamurthy. High
performance packet processing with FlexNIC. In ACM ASPLOS, pages 67–81,
2016.

[35] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and T. E.
Anderson. TAS: TCP acceleration as an OS service. In ACM EuroSys, pages
24:1–24:16, 2019.

[36] K. Kim, F. Yang, V. M. Zavala, and A. A. Chien. Data centers as dispatchable loads
to harness stranded power. IEEE Transactions on Sustainable Energy, 8(1):208–218,
2016.

[37] A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. E. Culler, and R. H. Katz. Integrat-
ing renewable energy using data analytics systems: Challenges and opportunities.
IEEE Data Engineering Bulletin, 34(1):3–11, 2011.

[38] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci, and R. Stutsman. Splinter:
Bare-metal extensions for multi-tenant low-latency storage. In USENIX OSDI,
pages 627–643, 2018.

[39] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson. Strata: A cross
media file system. In ACM SOSP, Oct. 2017.

[40] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang,
A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and P. Ran-
ganathan. Software-defined far memory in warehouse-scale computers. In
ASPLOS, 2019.

[41] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu. AlloX: Compute allocation in hybrid
clusters. In ACM EuroSys, pages 31:1–31:16, 2020.

[42] Y. Lee, H. A. Maruf, M. Chowdhury, A. Cidon, and K. G. Shin. Hydra : Resilient
and highly available remote memory. In USENIX FAST, 2022.

[43] J. Li, S. Miller, D. Zhuo, A. Chen, J. Howell, and T. Anderson. An incremental
path towards a safer OS kernel. In ACM HotOS, page 183–190, 2021.

[44] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew. Greening geographical
load balancing. ACM SIGMETRICS Performance Evaluation Review, 39(1):193–204,
2011.

[45] T. Ma, M. Zhang, K. Chen, Z. Song, Y. Wu, and X. Qian. AsymNVM: An efficient
framework for implementing persistent data structures on asymmetric nvm
architecture. In ACM ASPLOS, pages 757–773, 2020.

[46] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli, M. Dalton,
N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. E. Olson, E. Rubow, M. Ryan, K. Springborn, P. Turner, V. Valancius,
X. Wang, and A. Vahdat. Snap: a microkernel approach to host networking. In
ACM SOSP, pages 399–413, 2019.

[47] H. A. Maruf and M. Chowdhury. Effectively prefetching remote memory with
leap. In USENIX ATC, 2020.

[48] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey. Recalibrating global data
center energy-use estimates. Science, 367(6481):984–986, 2020.

[49] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi. Energy-aware
scheduling of MapReduce jobs for big data applications. IEEE Transactions on
Parallel and Distributed Systems, 26(10):2720–2733, 2014.

[50] S. Miller, K. Zhang, M. Chen, R. Jennings, A. Chen, D. Zhuo, and T. Anderson.
High velocity kernel file systems with Bento. In USENIX FAST, pages 65–79, Feb.
2021.

[51] National renewable energy laboratory: Land use by system technology. https:
//www.nrel.gov/analysis/tech-size.html.

[52] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T.
Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh. Can FPGAs
beat GPUs in accelerating next-generation deep neural networks? In FPGA, page
5–14, 2017.

[53] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan. Shenango:
Achieving high CPU efficiency for latency-sensitive datacenter workloads. In
USENIX NSDI, pages 361–378, 2019.

[54] F. Pearce. Energy hogs: can world’s huge data centers be made more efficient?
Yale Environment, 360, 2018.

[55] M. Pesce. Cloud computing’s coming energy crisis. IEEE Spectrum, 2021.
[56] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. Anderson,

and T. Roscoe. Arrakis: The operating system is the control plane. In USENIX
OSDI, pages 1–16, 2014.

[57] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y.
Kim, S. Lanka, E. Peterson, A. Smith, J. Thong, P. Y. Xiao, D. Burger, J. Larus, G. P.
Gopal, and S. Pope. A reconfigurable fabric for accelerating large-scale datacenter
services. In ISCA, pages 13–24, June 2014.

[58] M. Qasaimeh, K. Denolf, J. Lo, K. A. Vissers, J. Zambreno, and P. H. Jones. Com-
paring energy efficiency of CPU, GPU and FPGA implementations for vision
kernels. In ICESS, pages 1–8, 2019.

[59] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay. AIFM: High-performance,
application-integrated far memory. In USENIX OSDI, pages 315–332, Nov. 2020.

[60] Samsung Z-SSD. https://www.samsung.com/semiconductor/ssd/z-ssd/.
[61] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,

C. Tresness, M. Russinovich, and R. Bianchini. Serverless in the wild: Characteriz-
ing and optimizing the serverless workload at a large cloud provider. In USENIX
ATC, 2020.

[62] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A disseminated, distributed
OS for hardware resource disaggregation. In USENIX OSDI, 2018.

[63] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh. From high-level deep neural models to FPGAs. InMICRO, pages
1–12, 2016.

[64] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang. Securing RDMA for high-
performance datacenter storage systems. In USENIX HotCloud, July 2020.

[65] The Linux Foundation Projects. Data plane development kit. https://www.dpdk.
org/.

[66] A. Vahdat. Coming of Age in the Fifth Epoch of Distributed Computing. https:
//www.youtube.com/watch?v=27zuReojDVw.

[67] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift. Peeking behind the
curtains of serverless platforms. In USENIX ATC, pages 133–146, 2018.

[68] J. You, J. Wu, X. Jin, and M. Chowdhury. Ship compute or ship data? Why not
both? In USENIX NSDI, pages 633–651, 2021.

[69] I. Zhang, J. Liu, A. Austin, J. Stephenson, and A. Badam. I’m not dead yet! the
role of the operating system in a kernel-bypass era. In ACM HotOS, April 2019.

[70] Y. Zhang, Y. Tan, B. Stephens, andM. Chowdhury. Justitia: Software multi-tenancy
in hardware kernel-bypass networks. In USENIX NSDI, 2022.

[71] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry. Achieving 100Gbps
intrusion prevention on a single server. In OSDI, pages 1083–1100, Nov. 2020.

[72] Y. Zhong, H. Wang, Y. J. Wu, A. Cidon, R. Stutsman, A. Tai, and J. Yang. BPF for
storage: An exokernel-inspired approach. In ACM HotOS, 2021.

ACM SIGENERGY Energy Informatics Review Volume 3 Issue 3, October 2023
70

