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transect (Text S1 in Supporting Information S1). For error analysis, we allow these corrections for each indi-
vidual inventory estimate to have uncertainty amounting to ±100% of the correction (Text S2.3 in Supporting 
Information S1).

We show the corrected hemispheric ΔM APO for each airborne campaign in Figure 3 (points), with error bars 
representing 1σ uncertainty as a quadrature sum from the following sources: (a) measurement imprecision and 
reproducibility; (b) spread of Mθe values for different reanalysis products; (c) bias correction due to limited spatial 
and temporal coverage of the observations; and (d) the uncertainty of the land biosphere O2:CO2 exchange ratio. 
To assess uncertainties in the harmonic fits, we generate an ensemble of 2000 fits. Details of the uncertainty 
(error bars in Figure 3) analysis are presented in Text S2 in Supporting Information S1.

4.2. Results and Discussion of APO Inventories

In each hemisphere, the seasonal anomaly of APO inventory generally increases in spring and summer and 
decreases in fall and winter (Figure 3), consistent with air-sea fluxes of O2 driving the seasonal cycle of atmos-
pheric APO. In the Southern Hemisphere, the austral spring/summer rise is more rapid than the austral fall/
winter decrease by ∼1.5 months. In the Northern Hemisphere, due to a broad summer peak, the rising period is 
∼3 months shorter than that in the Southern Hemisphere.

Figure 3 and Table 1 show that the seasonal amplitude of atmospheric APO inventory in the Southern Hemi-
sphere (408 ± 41.2 Tmol) is significantly larger than in the Northern Hemisphere (274 ± 44.4 Tmol). The cycle 
in the Southern Hemisphere is heavily dominated by the first harmonic, and the phase indicated by the upward 
zero-crossing is 4 weeks later relative to the cycle in the Northern Hemisphere when measured relative to the 
hemispheric solstice date.

The period of seasonal maximum APO inventory is broader in the Northern Hemisphere than in the Southern 
Hemisphere. Similar broad maxima are seen at northern land stations (e.g., Hateruma Island at 24.1°N, Barrow 
at 71.3°N, and Alert at 82.5°N) and in the subtropical (20–40°N) Northwest Pacific, as shown by shipborne 
measurements (Nevison et al., 2015; Tohjima et al., 2012, 2019).

The annual average APO is lower in the Northern Hemisphere by 6.4 ± 1.11 per meg (93.3 ± 16.21 Tmol) rela-
tive to the Southern Hemisphere, based on the annual mean from the 2-harmonic fits. In comparison, Resplandy 
et al. (2016) reported a northern APO deficit of 10.4 ± 0.9 per meg using HIPPO data in the mid-troposphere 
between 40°N and 60°N, which they use to constrain the interhemispheric ocean heat flux, based on the close 
connection between APO and heat fluxes. These two estimates are not directly comparable because our esti-
mate includes data from lower latitudes, where we expect a smaller APO gradient between the two hemispheres 
(Resplandy et al., 2016).

Each APO seasonal inventory estimate has uncertainty up to ±72  Tmol (Error bars in Figure  3, details 
in Table S4 and S5 in Supporting Information  S1). Of the several contributions to the uncertainty, the 
dominant contribution is measurement imprecision and reproducibility, which is mainly limited by 
campaign-to-campaign calibration or sampling offsets. The corrections for limited coverage and the uncer-
tainty for corrections are small because we have sufficient observations across Mθe (or on θe) surfaces in the 
hemisphere and because the along-Mθe APO gradients are uniformly small (Figure 2a) in both high and low 
Mθe bins. For the low Mθe bins, the small gradient is due to rapid adiabatic APO mixing along Mθe. For the 
high Mθe bins, the small gradient can be partially attributed to the small magnitude of surface APO flux due 
to weak seasonal forcing.

Product Hemisphere Seasonal amplitude (Tmol) Maximum date Minimum date
Upward-zero 
crossing date

Airborne observation North 274 ± 44.4 207 ± 34.8 66 ± 10.4 140 ± 10.9

South 408 ± 41.2 66 ± 21.4 270 ± 8.7 349 ± 8.2

Table 1 

Statistics of the Seasonal Cycle of Tropospheric APO Inventory (Figure 3) From Two-Harmonic Fits (Annual Mean 

Removed) for Each Hemisphere Computed From Airborne Observations With Correction for Sparse Spatial and Temporal 
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to a period of longer (but weaker) APO outgassing in the Northern Hemisphere (Figure 5c). A similar summer 
plateau is clearly manifested in the CESM but is weak in the Jena inversion. This feature, however, is not observed 
in GKT (Figure 5d).

Could the phase asymmetry in the APO cycles between the hemispheres be caused by differences in the phasing 
of seasonal ocean warming and cooling? The simulated flux cycle from GKT, which is calculated by assuming 
air-sea O2 flux is in phase with ocean heat flux, does not support this hypothesis because it does not show such 
phase asymmetry between hemispheres (Figure 5d).

The phase asymmetry is likely caused by other physical and biogeochemical processes that drive the surface 
ocean O2 change. A significant factor may be differences in the timing of the spring bloom between hemispheres. 
Satellite-based chlorophyll concentrations suggest that the spring bloom is roughly one month earlier in the 
Northern Hemisphere compared to the Southern Hemisphere, with the bloom peaking in April and May over the 
mid-latitudes (30–50°N) of the North Atlantic and Pacific and peaking in November to January at mid-latitudes 
(30–50°S) of the Southern Hemisphere (Sapiano et al., 2012). The earlier spring-time O2 outgassing in the North-
ern Hemisphere may also be influenced by differences in O2 equilibration time scale in the mixed layer. As shown 
in de Boyer Montégut et al. (2004), the mixed layer depth in the mid-latitude Northern Hemisphere is between 
10 and 100 m in spring (April), whereas the depth in the mid-latitude Southern Hemisphere is generally between 
100 and 300 m in spring (October). Assuming a gas exchange velocity of 3 m day −1 and a difference in mixed 
layer depth of 100 m, the equilibration time in the Northern Hemisphere would be about 1 month faster than that 
in the Southern Hemisphere.

Figure 5. Seasonality of area-integrated daily air-sea APO fluxes in the Northern (a) and Southern (b) Hemispheres. We show our estimate of the flux cycle as 
black curves. The 1σ uncertainty (gray shading) is calculated as the standard deviation of 2000 iteration of 2-harmonic fit to flux estimates (for details see Text S3 in 
Supporting Information S1). For comparison, we also show the modeled daily air-sea APO fluxes from Jena (orange), GKT (red), and Community Earth System Model 
(blue). The first half-year is repeated. (c–f) Comparing the seasonal cycle of APO fluxes from airborne observations and other products in the Northern and Southern 
Hemisphere, with the cycle in the Southern Hemisphere shifted by 6 months (starting from July, see blue ticks on the bottom). The first half year is repeated. We note 
that only GKT is adjusted to have zero annual flux.
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The asymmetry in the breadth of the late summer and fall outgassing period (broader and stronger in the Northern 
Hemisphere) may be influenced by the presence of the shallow oxygen maximum (SOM) in the North Pacific 
(Hayward, 1994; Shulenberger & Reid, 1981), as noted by Ishidoya et al. (2016). The SOM is generated by the 
strong surface ocean stratification in the summer, which traps photosynthetically produced O2 below the mixed 
layer, delaying O2 outgassing until the fall, when the mixed layer deepens. The SOM is confirmed by Argo float 
measurements over the western subtropical North Pacific (17.7–20.2°N and 162–164.5°E), which show clear 
oxygen supersaturation beneath the mixed layer from May to November (Yang et al., 2017). We also find, in the 
CESM configuration, an oxygen supersaturation zone at around 40–60 m deep over the mid-latitude (20–45°N) 
of the Northern Pacific from July to October (not shown), suggesting that the summer-to-fall plateau in CESM is 
SOM-related. We could not find a similarly strong late summer and fall plateau in the Southern Hemisphere in 
both airborne-based flux estimates and the CESM, consistent with the summer mixed layer being deeper in the 
Southern Hemisphere (Kara et al., 2003).

The phase and SNO differences between hemispheres may also have contributed from tropical ocean fluxes. The 
CESM and the Jena inversion suggest clear seasonal fluxes in the 20°S–20°N band (Figure S7 in Supporting 
Information S1). The APO fluxes integrated over this band have similar phasing to fluxes in the extratropical 
Southern Hemisphere, with ocean APO uptake during the austral winter and outgassing during the austral 
summer. These tropical fluxes therefore contribute to a larger SNO in the Southern Hemisphere and smaller SNO 
in the Northern Hemisphere, while also contributing to earlier phasing in the north (Figure S7 in Supporting  
Information S1).

Table 2 also provides annual APO fluxes, based on the secular components of the box model, yielding net global 
ocean APO uptake of 207 Tmol. The gain of APO in the global ocean is expected from the ocean uptake of anthro-
pogenic CO2, with small impact from a climate driven net outgassing of APO due to ocean heat uptake from the 
atmosphere (32 ± 19.6 Tmol net releasing per year) and aerosol-related APO outgassing due to ocean fertilization 
driven by atmospheric deposition of anthropogenic aerosol (8 ± 4.1 Tmol net releasing per year) (Resplandy 
et al., 2019). Here we estimate an annual ocean anthropogenic CO2 uptake of 2.7 ± 0.25 PgC (converted from 
247 ± 22.8 Tmol of APO) by subtracting the global climate-driven APO impact and aerosol-related impact from 
our global annual oceanic APO uptake estimates (for method see Text S4 in Supporting Information S1). Our 
estimation is close to the value (2.8 ± 0.4 PgC) reported in the Global Carbon Budget 2021 during the decade 
2011–2020 (Friedlingstein et al., 2022).

The hemispheric flux estimates are transport model-dependent because we use TM3 and ACTM models to 
correct for sparse spatial and temporal sampling and to derive leakage terms in the box model. This impact 
is small because the flux cycles are dominated by the atmospheric inventory change on the hemispheric scale 
(Figure S6 in Supporting Information S1). Using the TM3 model alone or ACTM alone only leads to a small 
SNO difference of 14 Tmol (4.1%) and 17 Tmol (3.3%) in the Northern and Southern Hemisphere, respectively 
(larger if using ACTM).

Can the airborne data resolve changes in the seasonal cycles over time? Comparing the SNO estimated using 
HIPPO (2009–2011) data alone or ATom (2016–2018) data alone (by harmonic fits to subsets of the transects), 
we find SNO of ATom is 5% and 2% larger than that of HIPPO in the Northern and Southern Hemisphere respec-
tively. These changes are not significant compared to uncertainties.

6. Comparisons to Other APO Flux Estimates

6.1. Comparison to GKT

We found systematic differences in seasonal amplitudes and phases between our airborne observation-based 
estimates and the GKT climatology (Figure  5). The comparison suggests that there are significant limita-
tions to GKT fluxes at the mid- to high-latitudes of the Northern Hemisphere, based on discrepancies in the 
seasonal phases of APO inventory cycle in the mid- to high Mθe bins (Figure S2 in Supporting Information S1). 
The O2 fluxes from the GKT climatology used dissolved O228 data with large gaps in spatial and temporal 
coverage, especially over the high latitudes (Najjar & Keeling, 1997). To interpolate these sparse data, Garcia 
and Keeling (2001) assumed  that O2 fluxes are exactly in phase with ocean heat fluxes at a constant ratio 
over large latitude bands, an approach which has known limitations (Bent,  2014; Sun et  al.,  2017). These 
limitations in the coverage of samplings and assumptions lead to a significant underestimate of the northern 
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Product Hem.
Max. fluxes (Tmol 

day −1) Max. date
Min. fluxes 

(Tmol day −1) Min. date SNO (Tmol)
Upward zero-crossing 

date
Annual flux 

(Tmol)

Airborne observation North 2.9 ± 0.83 135 ± 25.3 −4.4 ± 0.88 16 ± 11.9 342 ± 52.1 79 ± 14.4 −111 ± 34.7

South 4.7 ± 0.79 354 ± 14.1 −5.1 ± 0.86 214 ± 15.9 518 ± 52.6 284 ± 7.8 −96 ± 34.6

Jena inversion North 2.4 147 −3.3 5 311 77 −101

South 4.1 363 −4.1 200 471 283 −113

GKT North 2.3 183 −2.1 354 250 90 /

South 3.9 362 −3.5 174 430 271 /

CESM North 2.0 154 −3.6 21 312 92 −71

South 3.2 354 −4.2 206 415 281 −66

Note. We note that seasonal net outgassing (SNO) and upward zero-crossing date is calculated based on the flux cycles with annual mean flux removed.

Table 2 

Statistical Indices of the Seasonal Cycle of Air-Sea APO Fluxes From Two-Harmonic Fits for Each Hemisphere Computed From Airborne Observations, Jena Inversion, GKT, and Community Earth 

System Model
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winter-time O2 uptake (Figure 5a). We find that, in the Labrador Sea, the Garcia and Keeling (2001) clima-
tology yields a winter-time  (October to March) O2 uptake of 9.1  mol  m −2, compared to more recent esti-
mates of 22.1 ± 2.5 mol m −2 for 2016 (Atamanchuk et al., 2020) and 29.1 ± 3.8 mol m −2 for 2015 (Koelling 
et al., 2017).

6.2. Comparison to Jena APO Inversion

We find relatively good agreement between our hemispheric flux estimates and from the Jena inversions 
(Figure 5 and Table 2). The most obvious differences in the Northern Hemisphere are the too weak northern 
summer plateau and too small northern winter-time oceanic APO uptake. The too small winter-time uptake 
in inversion estimates based on surface data relative to airborne-based estimates is also found in Resplandy 
et al. (2016), and is attributed to an underestimation of the vertical mixing by the atmospheric transport models 
over the north Atlantic. In the Southern Hemisphere, we find evident differences in atmospheric APO seasonal 
cycles in individual Mθe bins, where the Jena-TM3 shows a smaller change in APO amplitude from low to high 
Mθe than the observations (Figure S2 in Supporting Information S1). This discrepancy may point to the TM3 
model overestimating mixing (across Mθe) in the Southern Hemisphere. This interpretation is also supported by 
a comparison (not shown) between the Jena inversion and shipboard measurements over the Western Pacific 
from 5°S to 24°S from Tohjima et al. (2012), where the Jena inversion yields amplitudes that are too large by 
up to 40%.

6.3. Comparison to CESM

In the Northern Hemisphere, the CESM shows a too weak spring (MAM) APO outgassing of ∼1.5 Tmol day −1 
but too large fall (SON) outgassing of ∼1.2 Tmol day −1 (Figure 5a). These discrepancies may result from limi-
tations in the combination of modeled spring-summer export production and fall-time ventilation, as seen in an 
earlier version of CESM (Nevison et al., 2015). Nevison et al. (2015) pointed out that fall deep water ventilation 
in multiple Earth System Models is too weak, which reduces the transport of O2-depleted deep water into the 
surface ocean during the northern fall.

In the Southern Hemisphere, the seasonal phases of the CESM are close to airborne observations, but peak-to-peak 
amplitude and SNO are lower than the airborne results.

7. Summary and Outlook

We use APO observations from two recent airborne projects, HIPPO and ATom, to resolve climatological seasonal 
APO tropospheric distributions (Section 3), tropospheric inventories (Section 4), and air-sea fluxes (Section 5) at 
the hemispheric scale. Airborne observations are organized on a mass-weighted moist isentropic coordinate (Mθe) 
as an alternative to latitude to analyze atmospheric distributions and compute tropospheric inventories.

The airborne data resolve clear seasonal APO changes within and between hemispheres (Figure 2). The seasonal 
amplitude is larger in the Southern Hemisphere and is larger in the high-latitudes (low Mθe) of each hemisphere. 
The seasonal phase also shows a clear gradient over latitudes (Mθe). In the Northern Hemisphere, we find an 
earlier phase in the lowest latitude (highest Mθe), whereas in the Southern Hemisphere, we find an earlier phase 
in the high latitude (lowest Mθe). These different patterns are also observed at surface stations and shipboard 
measurements over the Pacific Ocean (Keeling et al., 1998; Tohjima et al., 2012).

We also compute hemispheric-scale air-sea fluxes from hemispheric inventories using a 2-box model (Appendix A) 
that accounts for the surface APO flux, the inter-hemispheric APO exchange, and the troposphere-stratosphere 
APO exchange. We compare our box-model inverted flux to other model- and observation-based products, such 
as the Jena APO inversion (updates of Rödenbeck et al., 2008), the Garcia and Keeling (2001) O2 flux climatol-
ogy, and one configuration of CESM, to identify limitations in these products (Section 6).

Our estimates of air-sea APO fluxes (Figure 5) show clear seasonal cycles in both hemispheres, with the ocean 
releasing APO in the spring and summer and taking up APO in the fall and winter. The cycle in the Northern 
Hemisphere has a smaller seasonal amplitude, an earlier (relative to the hemispheric solstice date), and a longer 
period of net outgassing (Figure 5) compared to the cycle in the Southern Hemisphere, suggesting differences 
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