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A B S T R A C T

Polarized light microscopy is a large-area, high-resolution, high-throughput microstructural characterization
method for polycrystalline materials comprised of hexagonal close-packed crystals. Due to the fact that
polarized light microscopy only determines the orientation of a crystal’s c axis, it is necessary to assess the
applicability of this new characterization modality for use in integrated computational materials engineering
workflows for simulating the deformation response of polycrystalline materials. We present a computational
study in which the effect of this orientation ambiguity on the predictions of crystal plasticity finite element
simulations is quantified. We focus on an idealized polycrystalline sample with random texture, from which a
number of c axis-similar samples are generated, each with random rotations about each constituent crystal’s c
axis. We scrutinize the differences in stress field predictions between the reference sample and the randomly
altered samples during monotonic tensile tests, as well as the spatial differences in predictions. Our findings
indicate that differences are lowest in the elastic regime, and increase dramatically during the macroscopic
elastic–plastic transition. We further find that results do not exhibit a strong spatial dependence, indicating
that orientation and neighborhood are the primary causes of differences in stress field predictions.

1. Introduction

Modeling the deformation response of polycrystalline metals is of
great interest for engineering component design, material processing
design, and material design. Over the course of the last century, de-
formation modeling has progressed rapidly. Namely, the development
of various mean-field approaches in the 1920s/1930s [1,2] provided
upper- and lower-bounding limits to material behavior, while the de-
velopment of self-consistent models from the 1960s [3] through the
1990s [4] provided more refined results considering some grain neigh-
borhood effects. The development of full-field crystal plasticity finite
element modeling (CPFEM) in the 1990s and early 2000s [5–7], how-
ever, has afforded researchers the most accurate predictions of the
deformation response of polycrystalline aggregates to date. By explic-
itly considering high-fidelity representations of microstructures, as well
as the anisotropic elastic and plastic deformation response of crystals
(with varying degrees of complexity and physics considered), CPFEM
represents the most accurate approach for deformation modeling at the
scale of the polycrystal.
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Modern integrated computational materials engineering (ICME)
workflows rely on a wide range of experimental material characteriza-
tion tools at various length scales to inform the construction of virtual
polycrystals utilized in simulations [8–10]. Example uses of various
methods at various length scales include: transmission electron mi-
croscopy (TEM) to characterize intragrain precipitate distributions [11–
13]; scanning electron microscopy (SEM) and electron backscatter
diffraction (EBSD) to characterize grain sizes and shapes in two dimen-
sions, as well as crystallographic texture [14–16]; high energy X-ray
diffraction (HEXRD) to characterize three-dimensional grain maps [17–
19]. While TEM, SEM/EBSD, and HEXRD have each benefited in the
past decades from great leaps in knowledge, technology, and software,
they are still relatively esoteric methods that require highly skilled
professionals to properly gather data, require expensive equipment, and
are time-intensive for data collection and analysis. As modern ICME
workflows demand increased throughput to facilitate modern chal-
lenges (e.g., material design), new material characterization modalities
that offer promise to increase throughput (including ultrasonic [20–23]
and optical methods) become increasingly attractive.
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Regarding optical methods, polarized light microscopy (PLM) is
particularly attractive as a surrogate for EBSD [24,25]. Overall, PLM
provides sufficient resolution for materials science applications (es-
pecially at scales relevant to CPFEM simulations), though with data
collection rates that far outpace EBSD. PLM as a characterization
modality is not, however, without its limitations. First, PLM is suit-
able primarily for materials containing crystals exhibiting hexagonal
close-packed symmetry. Second, PLM orientation measurement is most
accurate when the sample possesses a wide range of crystallographic
orientations, somewhat limiting the technique to weakly textured ma-
terials [25]. The final limitation is that PLM is able to determine only
the orientation of the crystal’s c axis, but not the rotation about the
c axis [25,26]. In other words, there exists ambiguity in the crys-
tallographic orientation of the crystals. While the first and second
issues relate primarily to limitations regarding what materials may be
characterized, the latter issue relates to the degree to which a material
may be characterized.

Regarding the latter, in an effort to assess the viability of PLM as
a characterization method for CPFEM simulations, it is of interest to
determine the consequences of PLM orientation ambiguity on CPFEM
deformation predictions. In this study, we attempt to quantify the
statistical variability in the differences of the predicted stress fields
between a reference sample and a suite of altered samples with random
rotations about each crystal’s c axis (mimicking random guesses to the
full orientation as if they were unknown from PLM measurement). We
focus particularly on stress owing to its importance in yield, failure, and
fatigue criteria. We analyze the datasets in an effort to determine how
the differences in stress fields evolve as a function of the macroscopic
strain state, from elasticity, through the elastic–plastic transition, to
fully-developed plasticity.

Section 2 details the background and modeling methodology uti-
lized in this study, Section 3 details construction of virtual polycrys-
talline samples and the simulation suite performed in this study, Sec-
tion 4 details the analysis used to compare simulations and primary
results, Section 5 gives an in-depth look into the results and trends, and
Section 6 gives concluding remarks regarding PLM and its consequences
with regard to deformation modeling.

2. Background and methods

2.1. Polarized light microscopy

Large-area grain orientation mapping using PLM is growing in
popularity, especially for titanium alloys, due to the ease of sample
preparation combined with the ability to map large areas at a frac-
tion of the time compared to other techniques such as EBSD [27].
Current automated PLM systems provide a scan resolution below 1 �m,
which is coarser than electron microscope based methods but adequate
for many materials science and engineering applications—i.e., it is
of sufficient resolution to elucidate the geometric morphology of the
microstructure (grain sizes and shapes). However, the relatively fast
data collection rate of 150,000 pixels/second enables larger-area PLM
measurements in a shorter amount of time compared to EBSD [28].
Consequently, this facilitates the ability to characterize larger areas
of material, more points of material within a component, or a wider
array of samples/materials as compared to EBSD. Further, PLM relies
on relatively simple equipment compared to EBSD, reducing overall
system cost [25,26].

For demonstration, Fig. 1 depicts a PLM grain c axis orientation map
measured from a 25.4mm diameter Ti–7Al sample using the TiPolar-
S microscope manufactured by MRL Materials Resources, LLC. The
system offers interchangeable objective lenses and a 2D translation
stage, enabling measurement of samples with dimensions of up to
approximately 100 mm ù 125 mm. Though not as stringent, surface
polishing requirements sufficient for EBSD also suffice for PLM mea-
surement. The sample presented in Fig. 1 was prepared by polishing

Fig. 1. Example PLM image of a Ti–7Al sample with dimensions of approximately
5.3 mm ù 7.0 mm, shown with color scale depicting the orientation of the crystal
(0 0 0 1) direction with respect to the sample axes. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the surface using silicon carbide grinding papers (240 grit through 600
grit) followed by vibratory polishing on 50 nm colloidal silica. Measure-
ments were conducted using a 20ù objective lens with 4 ù 4 pixel
binning. This microscope configuration provides a 0.792 �m effective
pixel size after binning. Automated sample measurement spanned about
5 h for the region presented. We note that binning does not increase
measurement speed, but rather reduces the size of the resulting data.
The interchangeable objective lens can be paired with the desired pixel
binning size to achieve the desired final resolution.

The primary limitation with PLM, however, is its inability to mea-
sure the full crystallographic orientation of grains. For HCP materials,
PLM can determine the orientation of the c axis, but not the rotation
about the c axis. The orientation of the crystal is thus left partially
ambiguous. The consequence of this orientation ambiguity is perhaps
best understood by inspecting the Euler-Bunge parameterization [29].
Euler-Bunge angles follow a z*x*z convention—i.e., a rotation about
the z axis of the crystal (angle �1), followed by a rotation about the x
axis of the crystal (angle �), finally followed by a second rotation about
z axis of the crystal (angle �2) performed in succession. The utility of
this parameterization is that (for HCP crystals) the first two rotations
determine the orientation of the crystal’s c axis, while the third angle
describes the rotation about the crystal’s c axis. In other words, in the
Euler-Bunge convention, PLM is able to determine �1 and �, while �2
is left unknown.

We may also demonstrate the effects of PLM’s orientation ambiguity
by inspecting the bulk collection of orientations, or crystallographic
texture. When measuring orientations via PLM, we are left with the full
determination of only the (0 0 0 1) pole figure (PF). In other words, we
have access to the information of only one crystallographic fiber, which
is insufficient to construct a deterministic orientation distribution func-
tion (ODF) for generalized crystallographic textures. To visualize this,
we present an example case beginning with a known ODF, plotted
in the hexagonal fundamental region of Rodrigues space shown in
Fig. 2(a). For demonstration, we choose a simple point texture at the
origin of Rodrigues space (a ‘‘basal’’ texture). We plot the corresponding
(0 0 0 1) PF for this ODF in Fig. 2(b). Upon inverting this PF to an
ODF [30] – the result depicted in Fig. 2(c) – we are unable to invert
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Fig. 2. (a) Example orientation distribution function (ODF) plotted on in the hexagonal fundamental region of Rodrigues space showing the surface and select interior slices of the
fundamental region for a basal-type texture (i.e., a point texture centered at the origin of the fundamental region), (b) the corresponding (0 0 0 1) pole figure (PF) derived from the
known ODF plotted as a 2D stereographic projection, and (c) the ODF inverted from only the (0 0 0 1) PF, depicting a fiber texture. Scale bars are omitted in an effort to highlight
the character of the texture distributions rather than absolute magnitudes.

the correct initial ODF, as we have insufficient information regarding
the full orientations of the crystals. While the known ODF depicts a
point texture, the ODF as found by inverting the (0 0 0 1) depicts a fiber
texture (see: Appendix A, Figure 11 of [31] for a depiction of select
HCP fibers in Rodrigues space).

Overall, it is envisioned that PLM can be utilized in a CPFEM
workflow primarily to inform the generation of virtual samples in a
similar way as EBSD characterization data. In essence, grain maps
(revealing grain size, shape, and spatial distribution) can be utilized
to inform the geometric morphology of the virtual microstructure, and
measured orientations can inform the selection of virtual orientations.
Specifically regarding morphology, various studies have demonstrated
the established EBSD-to-CPFEM pipeline utilizing 2D surface scans to
inform 3D virtual sample generation, using either statistical [32,33]
or qualitative means [34]. Various other methods such as Schwartz–
Saltykov [35], oblique-sections [36], and the Markov approach [37]
aid in extension of 2D data to 3D samples. Regarding orientations,
EBSD data may be utilized to generate an ODF from which orientations
may be sampled [38,39], or measured orientations can be directly
utilized [40]. We assert that PLM can be used in a similar manner as
demonstrated for EBSD, with the caveat that orientations will not be
fully known (as described previously)—the consequence of which is
unknown and necessitates this study.

2.2. Crystal plasticity finite element method

To perform CPFEM simulations, we utilize the open source software
package FEPX (Finite Element Polycrystal Plasticity) [41,42]. FEPX
is a non-linear finite element solver capable of considering both the
anisotropic elastic and plastic deformation responses of high-fidelity
polycrystalline samples. FEPX considers ductile, quasi-static deforma-
tion and isothermal conditions, and is parallelized via OpenMPI to
facilitate large simulations. Generally, virtual polycrystalline samples
consist of O (100) to O (1000) of discrete grains, each discretized into
O (100) to O (1000) of elements (both the polycrystal and the attendant
finite element mesh are generated via Neper [43], whose capabilities
and uses are summarized later in Section 3.1). Here, we briefly describe
the basics of the kinematics and models employed in FEPX, and refer
the reader to [41] for an in-depth discussion of the kinematics, models,
and finite element implementation.

First, FEPX considers a multiplicative decomposition of the defor-
mation gradient at each material point:

F = VeR<FP , (1)

where the total deformation gradient, F, is decomposed into an elastic
stretch (specifically the left elastic stretch tensor), Ve, a rotation, R<,
and a portion governed by the plastic response, FP .

Focusing first on elasticity, we assume that the elastic strains ✏e
present in the body are small: an apt assumption for metallic mate-
rials where the critical resolved shear stress is considerably less than
the elastic moduli. As such, the left elastic stretch tensor may be
approximated as:

Ve = I + ✏e. (2)

The stress is related to the strain via the constitutive relationship
(Hooke’s law):

⌧ = C✏e, (3)

where ⌧ is the Kirchhoff stress and C is the anisotropic stiffness matrix,
which is orientation dependent and is reduced due to the symmetry of
the crystal [44].

Focusing on plasticity, we employ a rate-dependent restricted-slip
power law [45] relationship for slip kinetics:

Ü�k = Ü�0
0

⌧k
⌧kc

1

1
m
sgn(⌧k), (4)

where Ü�k is the shear rate on the kth slip system, Ü�0 is a scaling
coefficient, ⌧ is the resolved shear stress, ⌧c is the critical resolved shear
stress, and m is the rate dependence parameter.

We evolve the critical resolved shear stress of each slip system via
a saturation model:

Ü⌧kc = h0

H

⌧ks ( Ü�) * ⌧kc
⌧ks ( Ü�) * ⌧k0

I

Ü� , (5)

where h0 is a scaling coefficient, ⌧s is the saturation critical resolved
shear stress, and Ü� is the sum of the absolute value of all shearing rates
at the material point (i.e., sum over k). We assume isotropic hardening,
where all slip systems harden such that (for HCP crystals) the ratios of
the initial strengths remain constant throughout deformation. This en-
sures that the single crystal yield surface retains its shape in deviatoric
stress space throughout plastic deformation.

We evolve the orientation of the crystal lattice (here parameterized
via the Rodrigues vector, r) via:

Ür = 1
2 (! + (! � r) r + ! ù r) , (6)

where ! is the lattice spin vector (itself ultimately dependent on both
Ü�k and R<, described in full in [41]).
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Fig. 3. (a) Grain size distribution, depicted as a histogram of the value d, the normalized equivalent grain diameter and (b) grain shape distribution, depicted as a histogram of
the value 1 * s, where s is the sphericity.

Fig. 4. (a) Virtual polycrystalline sample generated via Neper, depicting a highly-equiaxed grain morphology, and a random orientation distribution (colored via the standard IPF
color map for HCP crystals with respect to the sample z axis) and (b) corresponding (0 0 0 1) pole figure. This pole figure is identical for all simulations in the primary simulation
suite, owing to the similar c axis fields for each sample. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Simulations

In this section, we describe the generation of simulations to probe
the effects of orientation ambiguity on CPFEM deformation predictions.
We construct a suite of simulations, consisting of a reference simulation
and ten simulations in which each crystal is rotated by its c axis by
a random amount. The sample morphology is fixed from sample-to-
sample to isolate the effects of the rotation about the crystals’ c axes,
and an idealized sample is generated from hypothesized morphological
statistics (mimicking what could be gathered from experimental data).
Ultimately, the differences in predictions from simulation-to-simulation
compared to the reference allows for quantification of the consequence
of orientation ambiguity.

We are careful to note here the limitations of the present study. In
an effort to provide crucial first insight on the consequences of PLM
orientation ambiguity on CPFEM predictions, we limit the scope of the
simulation parameter space that we explore. Namely, we consider only
a single material, an equiaxed microstructure with randomly gener-
ated crystallographic orientations. Further, we consider only uniaxial
deformation to a state before the ductility limit of the sample. While
we anticipate that these simulation parameters (i.e., material system,

crystallographic texture, deformation history) could influence results,
understanding this behavior is best reserved for future studies with
more focus on these individual aspects.

3.1. Polycrystal and mesh generation

Here, we generate a virtual polycrystalline sample and its attendant
finite element mesh via Neper [42,43], which is capable of enacting sta-
tistical control of grain size and grain shape distributions as dictated by
user input. To gather a large amount of statistics per sample, we choose
to create a sample with 1000 grains. We opt for a sample containing
relatively equiaxed grains in an attempt to reduce microstructural
effects. This morphology is achieved by targeting a Dirac distribution
with a mean value of 1 for the normalized equivalent diameter, d
(i.e., grain size), and by targeting a lognormal distribution with a mean
of 0.145 and a standard deviation of 0.03 for the sphericity, s (or more
specifically a distribution of 1 * s). We choose a domain to be a cube
with side length 1mm (note that the crystal plasticity model described
in the preceding section contains no inherent length scale, and we
provide units herein for a sense of consistency). Statistics concerning
the distributions of grain size and shape for the polycrystal are depicted
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Table 1
Single crystal elastic constants for the ↵ phase of Ti–6Al–4V [32].
C11 (GPa) C12 (GPa) C13 (GPa) C44 (GPa)

169.7 88.7 61.7 42.5

Table 2
Plasticity modeling parameters for the ↵ phase of Ti–6Al–4V [32].
⌧0,b (MPa) ⌧0,p (MPa) ⌧0,⇡ (MPa) m Ü�0 (s*1) h0 (MPa) ⌧s (MPa)

390 468 663 0.01 1 190 530

in Fig. 3. We further plot the resulting virtual polycrystal sample in
Fig. 4(a).

3.2. Orientation generation

Generally, orientations in FEPX are considered on a per-element
basis (i.e., in the presence of initial intragranular misorientation) or on
a per-grain basis (i.e., each element in the grain is assigned the same
orientation, assuming each grain is a single crystal). Here, we opt for
the latter paradigm to simplify the influences at play. We again utilize
Neper to generate and assign the orientations. In this first effort, we
assume a random orientation distribution function applied randomly
to all grains in an effort to span the fundamental region of Rodrigues
space (i.e., probe a wide range of orientations) and to randomize
neighborhood effects (i.e., no preferential neighboring orientations, or
microtexture). The resulting distribution of orientations is depicted
as an (0 0 0 1) pole figure in Fig. 4(b). Furthermore, we visualize the
orientations on the finite element mesh of the virtual microstructure
using the standard IPF color map, depicted in Fig. 4(a).

3.3. Modeling parameters

We choose the ↵ phase of Ti–6Al–4V owing to its HCP crystal
structure, the extensive attention it has been given in literature and
the resulting high degree of confidence in its elastic/plastic behavior
and modeling parameters [32,34,46], and its applicability as a surro-
gate for the class of Ti–Al alloys. Additionally, Ti–6Al–4V possesses a
moderate degree of elastic and plastic anisotropy. The crystal plasticity
parameters for the ↵ phase of Ti–6Al–4V are shown in Tables 1 and 2,
where Table 1 lists elastic constants of the ↵ phase of Ti–6Al–4V, while
Table 2 lists the plastic modeling parameters [47].

3.4. Boundary conditions and deformation history

We choose to employ so-called ‘‘minimal’’ boundary conditions to
apply uniaxial tensile deformation with minimally invasive constraints
(i.e., an attempt to minimize the number of fixed nodes while disal-
lowing unconstrained rigid body motion and rotation, see: [48]). To
apply deformation, we fix all nodes on one face in the tensile direction,
while applying a non-zero velocity to all nodes of the opposing face (we
refer to these two faces collectively as the ‘‘control surfaces’’). The other
surfaces were left traction free. The boundary conditions are displayed
in a simplified schematic in Fig. 5. Here, we choose the z axis as the
tensile axis.

Regarding the deformation history, we impose a constant strain rate
of 1 ù 10*3 s*1 (i.e., fully within the quasi-static regime) in an attempt
to mitigate large rate dependency effects on the deformation response.
Velocities are calculated internally in FEPX to satisfy the applied strain
rate. FEPX applies a load history in discrete steps. We apply these steps
to a sufficient maximum strain and at a sufficient resolution to allow
for consideration of the deformation response at various representative
points of the deformation history. In particular, we will present data at
macroscopic strain states of 0.4% (in the macroscopic elastic regime),

Fig. 5. A schematic depicting the minimal boundary conditions as applied to the
polycrystal in this study. The loading direction is in the sample ‘‘z’’ direction, and the
velocities on the ‘‘z’’ surfaces are applied to all nodes on those surfaces. The two nodes
with additional boundary conditions pin the sample to prevent rigid body translation
and rotation. Figure reproduced from the FEPX documentation [48].

Fig. 6. Stress–strain curve of the reference simulation, depicting the overall mechanical
behavior of the polycrystal. The 0.2% offset yield point is depicted, along with the four
macroscopic states of interest at 0.4%, 0.8%, 1.5%, and 4.0% strain—i.e., two points
nominally in the elastic regime, and two points nominally in the plastic regime.

0.8% (shortly before macroscopic yield), 1.5% (shortly after the elastic–
plastic transition), and 4% (near the ductility limit). A representative
macroscopic stress–strain curve (of the reference simulation described
below in Section 3.5) is shown in Fig. 6, with the macroscopic states of
interest marked along the deformation history.

3.5. Simulation suite

To determine the effect that orientation ambiguity has on the de-
formation response as predicted via CPFEM, we perform a suite of
simulations where the crystallographic orientations are purposefully
altered from a reference sample. In total, we generate one reference
sample, and ten altered samples. In the ten altered samples, all as-
pects are held fixed compared to the reference sample except for the
crystallographic orientations.



0DWHULDOLD �� ������ ������

�

L. van Wees et al.

Fig. 7. Distributions of stress differences between a single altered simulation and the reference simulation at 1.5% macroscopic strain at (a) the element scale, and (b) the grain
scale. Lognormal fits to the data (solid lines, scale on left vertical axes) are overlayed atop the raw data (histograms, scale on right vertical axes).

We generate the orientations in the ten altered samples directly from
the orientations of the reference sample. The Euler-Bunge convention is
chosen for parameterization, such that we have univariate control over
the rotation about each crystal’s c axis via alteration of the third Euler-
Bunge angle, �2 (see Section 2.1). In each altered sample, we randomly
change each grain’s orientation separately by rotating �2 by a random
amount within ��2 = ±30˝, the range of which we choose to constrain
the rotation of each crystal within a local fundamental zone (i.e., any
rotation outside of this range is a symmetric equivalent to a rotation
within the range). Overall, each sample is thus c-axis-similar: i.e., the c
axis field across the domain of each sample is identical, but the rotation
about the c axis for each crystal in each sample is different. As such,
all simulations will have an identical (0 0 0 1) pole figure (depicted in
Fig. 4(b)). Each sample is meant to mimic a random assignment of the
third Euler-Bunge angle as if it was unknown (here within the bounds
of fundamentally similar orientations from the reference simulation for
sake of simplification of analysis).

We hypothesize that differences between the predictions of the
reference simulation and those of the altered simulations during the
early stages of deformation (i.e., in the presence of low plasticity), will
be low owing to the transversely isotropic nature of elasticity in HCP
crystals [44,49,50]. However, as plasticity becomes more prevalent, we
hypothesize that predictions in stress fields may become more variable
(with respect to the reference) as plasticity evolves and deformation
proceeds with granular reorientation trajectories that deviate further
from the reference. In other words, the path-dependent nature of
plasticity at the local scale may lead to stress predictions which deviate
more considerably from the reference than in the nominally elastic
regime.

4. Results

To begin, we define a metric to quantify the difference in stress
predictions for a randomly altered sample against a reference sample:

� = Ò��Ò
Ò É�Ò � 100, (7)

a percentage, where É� is the Cauchy stress tensor for the reference
sample, and �� is the difference between the reference sample stress
tensor and the stress tensor for an altered sample, or:

�� = É� * �. (8)

The magnitude of the stress tensors is generally calculated as a scaling
of the tensor inner product, or:

Ò�Ò =
u

3
2� : �, (9)

and is utilized for both the difference tensor and the reference stress
tensor in Eq. (7).

This difference metric may be applied at various scales. For the
study at hand, we choose to calculate � at the element scale (�elt),
the grain scale (�gr), and the domain scale (�dom), by utilizing the
elemental stresses, the volume-weighted grain-averaged stresses, and
the volume-weighted domain-averaged stresses, respectively. Volume
weighted averages are calculated as:

Ñ� =
nelt
…

i=1

Vi
Vtot

�i, (10)

where Ñ� is a volume-averaged stress quantity (which may be used
directly in Eqs. (7)–(9)), nelt refers to the number of elements per grain
or the number of elements in the domain and Vtot refers to either a
grain volume or the domain volume, when calculating grain-averaged
stresses or domain-averaged stresses, respectively. The calculation of
the differences at various scales facilitates insight into the effect of
c axis ambiguity at various scales, where certain predictions or com-
parisons may take place. For example, certain fatigue models may
be influenced by local behavior and would be more susceptible to
variability at the element scale, while comparisons to high-energy X-ray
diffraction experiments will take place at the grain scale.

To motivate a reduction in amount of data to be presented in coming
sections, we first present a histogram containing distributions of �elt and
�gr (Figs. 7(a) and (b), respectively) at a macroscopic strain of 1.5%.
The lognormal distribution fit is overlayed on each plot, and we note
that it corresponds to the raw histograms to a generally acceptable
degree. Consequently, for sake of clarity in the presentation of data
herein, we choose to depict probability density functions using lognor-
mal distributions rather than the raw histograms. Further, as shown in
Fig. 8 which depicts the lognormal distributions of �elt and �gr for all 10
altered simulations at a macroscopic strain of 1.5%, we note that the
results from simulation-to-simulation show little appreciable difference.
Since the statistical results for each sample are similar, we conclude
that each individual sample is representative of the population. Con-
sequently, we will present data from only a single altered sample
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Fig. 8. Lognormal distribution fits of stress differences between all ten altered simulations and the reference simulation at 1.5% macroscopic strain at (a) the element scale, and
(b) the grain scale. Insets in each plot offer detail near the distribution peaks.

Table 3
Domain scale stress differences at the four macroscopic strain states of interest.
✏ (%) �dom (%)

0.4 0.001
0.8 0.002
1.5 0.166
4.0 0.185

compared to the reference sample for sake of clarity and brevity. This
is further exemplified through inspection of the macroscopic behavior
of the samples, specifically the elastic modulus (120.44 ± 0.037 GPa),
yield stress at 0.2% offset strain (1005.58 ± 1.41 MPa) and stress at 5%
strain (1168.82 ± 2.35 MPa), where the low standard deviations indicate
nearly identical macroscopic behavior in all 11 samples.

In sum, Fig. 9 depicts the lognormal distributions of �elt and �gr at
the macroscopic strain states of interest (see: Section 3.4) considering
every element in the domain of the sample. Additionally, since the error
calculations in Eqs. (7) through (9) result in a single scalar value, the
results for �dom are presented not in a figure, but Table 3.

5. Discussion

5.1. Sample-to-sample differences

As initially discussed in Section 4, we observe that the differences
from sample-to-sample is low. The data presented in Fig. 8 (for sake
of brevity and clarity, we plot the data from multiple simulations at
only one macroscopic state) indicate that there is little difference in
the statistical distributions for each altered sample (as showcased at a
single macroscopic strain state for sake of clarity). We determine that
each sample is statistically representative of the population. Recall that
each sample has a random rotation, ��2, about each crystal’s c axis, as
altered from the reference simulation. These results do not necessarily
indicate that different rotations result in the same local differences,
but simply that the distribution of differences is statistically similar.
This lends confidence to the choice of 1000 grains in the domain of
the polycrystal, which is sufficient in providing stable statistics from
sample-to-sample for the microstructure chosen in this study.

5.2. Element scale differences

We next inspect the distributions of differences in the stress states
on an element-by-element basis. Fig. 9(a) depicts the distributions of
stress differences at the element scale for the four strain states of
interest as depicted in Fig. 6. We first note the general trends with
regard to the distributions. Namely, in the elastic regime, the mean
differences are generally low, with mean values of 1.13% and 3.82% at
0.4% and 0.8% macroscopic strain, respectively. As we enter the plastic
regime, the mean differences begin to increase more dramatically, with
mean values of 13.43% and 23.23% at 1.5% and 4.0% macroscopic
strain, respectively. We further observe that as the macroscopic strain
increases, so too does the spread in the distributions. At low strain
states in the elastic regime, the distributions are relatively tight, with
standard deviations of 0.48% and 2.31% at 0.4% and 0.8% macroscopic
strain, respectively. In the plastic regime, we observe much broader
distributions, with standard deviations of 6.15% and 11.01% at 1.5%
and 4.0% macroscopic strain, respectively. Overall, we interpret the
lower differences in the elastic regime as a function of the transversely
isotropic nature of hexagonal crystals. As the amount of plasticity
increases across the domain of the sample, so too does the difference
in stresses owing to the potential for different slip systems to activate
as a function of orientation difference from reference.

5.3. Grain scale differences

Considering volume-weighted grain-averaged stresses (see Eq. (10)),
we observe similar trends as those observed in the element scale
analysis. Fig. 9(b) depicts the distributions of stress differences at the
grain scale for the four strain states of interest. We again observe that
as the macroscopic strain increases, so too does the mean in the stress
differences, with mean values 0.87%, 2.77%, 8.58%, and 12.29% at
0.4%, 0.8%, 1.5%, and 4.0% macroscopic strain, respectively. Further,
as we increase the macroscopic strain, the spread in the difference
distributions also increase, with standard deviations of 0.39%, 1.71%,
3.66%, and 5.18% at 0.4%, 0.8%, 1.5%, and 4.0% macroscopic strain,
respectively. Considering these values, we again note that there is a
large increase in stress differences at or shortly after the elastic–plastic
transition.

Comparing to the element scale analysis, we find that overall both
the means and the standard deviations of the distributions are consid-
erably lower in all cases at the grain scale. Our interpretation of this
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Fig. 9. Lognormal distribution fits of stress differences between the first altered simulation and the reference simulation for the four macroscopic strain states of interest at (a)
the element scale, and (b) the grain scale.

Fig. 10. Depictions of the datasets utilized in the analyses considering (a) removal of grains abutting the control surface, and (b) removal of grains along all domain surfaces.
Grains are colored identically to those in Fig. 4(a), utilizing the inverse pole figure colormap in that image. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

trend is that each grain, thus, has a heterogeneous distribution of stress
differences at the element scale, which is obscured when averaged at
the grain scale. In other words, outlier values will be averaged-out, and
the resulting distributions at the grain scale will overall shift downward
in terms of differences.

5.4. Domain scale differences

Considering volume-weighted domain-averaged stress, we observe
somewhat similar trends as in both the element scale analysis and the
grain scale analysis. The calculated differences in the domain-averaged
stress between the altered simulation and the reference simulation at
the four strain states of interest are presented in Table 3. The differ-
ences in the stress state are again lower in the nominally elastic regime
than those in the plastic regime. We note that the differences in the
stresses are much smaller at the domain scale than at either the element
scale or the grain scale. We interpret these values in light of the fact
that the texture of the samples are random. Random rotations about
the c axis of each crystal will itself result in a random texture. With a

sufficient number of grains within the domain, it should be expected
that the overall macroscopic response of the sample will be similar, as
demonstrated. This may not be the case for samples displaying non-
random textures, where random rotations about the c axis of each
crystal may have more appreciable impact on the texture of the sample.
However, based on the general trend of results when moving ‘‘upward’’
in scales, we still expect that overall the domain scale results will be
smaller than those at both the elemental and grain scales.

5.5. Investigation of spatial variation

We now probe the data sets to investigate whether there is a correla-
tion between spatial location and a difference in stress prediction in an
attempt to narrow down primary influences on behavior. The analysis
in this section is focused on the removal of select elements from the
data sets to see if the distributions in stress differences exhibit different
character (quantitatively and qualitatively) than those when consid-
ering all data points within the domain. We consider three different
cases: the first where grains on the control surface (and their associated
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Fig. 11. Lognormal distribution fits of stress differences between the first altered simulation and the reference simulation for the four macroscopic strain states of interest and
considering the removal of grains abutting the control surface from analysis at (a) the element scale, and (b) the grain scale.

Fig. 12. Lognormal distribution fits of stress differences between the first altered simulation and the reference simulation for the four macroscopic strain states of interest and
considering the removal of grains abutting all domain surfaces from analysis at (a) the element scale, and (b) the grain scale.

elements) are removed from the data set for analysis (Section 5.5.1), the
second where grains on all surfaces of the domain including traction
free surfaces (and their associated elements) are removed from the
data set for analysis (Section 5.5.2), and the third where the elements
along grain boundaries are removed from the data set for analysis
(Section 5.5.3).

5.5.1. Removing control surfaces
Here, we repeat the primary statistical analysis, though with a

data set reduced by removing grains on the control surface of the
sample from consideration in the analysis. Particularly, this analysis
will reveal if there are any undue influences due to the boundary
conditions on the sample, which will be most acute and evident in
the grains which abut the surfaces where the boundary conditions are
applied. As we describe in Section 3.4, the axial control surfaces are the
sample z surfaces (i.e., the surfaces where ±z is the normal). Fig. 10(a)
depicts the grains remaining in the domain. We select all remaining

elements for our calculations, and in particular we note that the domain
scale results consider only these remaining elements. This provides
further justification for the use of probability density functions over
histograms, as they may be directly compared against reduced data sets,
whereas histograms will necessarily have lower counts owing to the
reduction in number of elements or grains making comparisons more
difficult.

Distributions of stress differences at the element scale for the re-
maining elements are depicted in Fig. 11(a), distributions of grain
scale stress differences are depicted in Fig. 11(b), and domain scale
differences are summarized in Table 4. We again report all results
by comparing only the first sample to the reference sample, and at
the same four macroscopic strain states of interest. Means of the
element scale distributions in Fig. 11(a) are calculated to be 1.13%,
3.90%, 13.46%, and 23.27%, while standard deviations are calculated
as 0.48%, 2.34%, 6.08%, and 10.89% at 0.4%, 0.8%, 1.5%, and 4.0%
macroscopic strain, respectively. Means of the grain scale distributions
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Table 4
Domain scale stress differences at the four macroscopic strain states of interest for
analysis with grains abutting control surfaces removed from consideration.
✏ (%) �dom (%)

0.4 0.003
0.8 0.036
1.5 0.201
4.0 0.218

Table 5
Domain scale stress differences at the four macroscopic strain states of interest for
analysis with grains abutting free surfaces removed from consideration.
✏ (%) �dom (%)

0.4 0.021
0.8 0.030
1.5 0.378
4.0 0.416

in Fig. 11(b) are calculated to be 0.87%, 2.83%, 8.59%, and 12.30%,
while standard deviations are calculated as 0.39%, 1.72%, 3.67%, and
5.15% at 0.4%, 0.8%, 1.5%, and 4.0% macroscopic strain, respectively.
We observe that the distributions of stress differences at the elemental
and grain scales are seemingly not appreciably altered, with mean
values at both the elemental and grain scales roughly corresponding to
those gathered in the analysis considering the full domain as presented
in Sections 5.2 and 5.3. Likewise, the spreads in the data do not exhibit
appreciable difference from those in the full dataset. Finally, while
domain scale values show some reduction in differences, it is already
at such a relatively small scale that we do not place much significance
in these findings, especially considering the results at both the element
and the grain scale. Consequently, we interpret these results to mean
that the distributions of stress differences within the grains abutting
the control surfaces are roughly equivalent to those in the main body
of the sample, indicating that boundary conditions have little influence
on the observed results.

5.5.2. Removing free surfaces
Here, we perform a similar analysis as in the preceding section, but

now by reducing the data set by removing grains on the traction free
surfaces of the sample from consideration in the analysis, again in an
attempt to see if there is any bias of stress differences in these regions.
This will specifically exclude grains which abut the x and y surfaces
of the sample. Fig. 10(b) depicts the grains remaining in the domain.
Again, domain scale results consider only the remaining elements in
the data-set.

Overall, we again observe that the distributions of stress differences
at the element scale, grain scale, and domain scale all depict similar
trends as when considering the entire domain volume. Means of the
element scale distributions in Fig. 12(a) are calculated to be 1.15%,
3.83%, 13.67%, and 23.65%, while standard deviations are calculated
as 0.48%, 2.22%, 6.08%, and 10.86% at 0.4%, 0.8%, 1.5%, and 4.0%
macroscopic strain, respectively. Means of the grain scale distributions
in Fig. 12(b) are calculated to be 0.90%, 2.80%, 8.98%, and 13.10%,
while standard deviations are calculated as 0.40%, 1.66%, 3.75%, and
5.28% at 0.4%, 0.8%, 1.5%, and 4.0% macroscopic strain, respectively.
Domain scale statistics are summarized in Table 5. Overall, this in-
dicates that the grains abutting the free surfaces have roughly the
same distributions as the grains within the volume of the domain, as
their removal does not alter the character of the distributions of stress
differences, indicating that free surfaces have little influence on the
observed results.

5.5.3. Removing grain boundaries
Here, we repeat the analysis on the data set with elements in

the vicinity of grain boundaries removed in an effort to determine

Fig. 13. A plot of a slice through the center of the finely-meshed 100 grain polycrystal,
depicting the levels at which elements reside relative to the grain boundary, where
‘‘level 0’’ refers to elements that abut a grain boundary, ‘‘level 1’’ refers to elements
which abut elements that abut the grain boundary, and so on. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

the effects of grain-to-grain interaction. We achieve this by ranking
the degree of locality of elements with respect to grain boundaries,
which allows us to consider the removal of ‘‘level 0’’ elements (those
directly touching the boundary), ‘‘level 1’’ elements (those touching
elements which themselves touch the boundary), and so on, akin to
peeling layers from an onion. For the 1000 grain polycrystal used
in the preceding portions of the paper, we chose a mesh such that
there were approximately 100 elements per grain (i.e., approximately
100,000 total elements within the domain). This was meant to facilitate
relatively rapid simulations for the 11 simulation test suite. However,
for that mesh, we find that the overwhelming majority of elements are
‘‘level 0’’, with only 16 elements greater than ‘‘level 0’’. This does not
offer a significant number of elements from which to draw meaningful
conclusions.

Consequently, for this section we generate a new virtual polycrystal.
Using the same methods as described in Section 3, we generate a
polycrystalline sample with identical parameters (grain size, shape dis-
tributions, crystallographic texture) as the 1000 grain sample, but with
100 grains and a finer mesh to provide sufficient resolution for grains
containing multiple layers of elements. We plot a slice of the interior
of the polycrystal in Fig. 13, where the colors depict the element level
(i.e., their relative position with respect to the grain boundary). We
note that since we are removing elements from the grains and the
domains, both the grain-averaged stresses and the domain-averaged
stresses are calculated using only the remaining elements.

Overall, we observe that the distributions of stress variation at the
element scale, grain scale, and domain scale do not differ considerably
as compared to the entire domain volume. After the removal of the
first layer elements, we compute the means of the element scale dis-
tributions in Fig. 14(a) as 1.02%, 3.88%, 11.83%, and 20.28%, and
the standard deviations as 0.46%, 2.35%, 5.63%, and 9.39% at 0.4%,
0.8%, 1.5%, and 4.0% macroscopic strain, respectively. For the grain
scale distributions in Fig. 14(b), we compute the means as 0.88%,
3.00%, 7.78%, and 10.54%, and the standard deviations as 0.43%,
1.74%, 3.38%, and 4.10% at 0.4%, 0.8%, 1.5%, and 4.0% macroscopic
strain, respectively. For the removal of the first two layers of elements,
we find the means of the element scale distributions to be 0.98%,
3.75%, 11.28%, and 19.32%, and the standard deviations to be 0.44%,
2.22%, 5.13%, and 8.49% at 0.4%, 0.8%, 1.5%, and 4.0% macroscopic
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Fig. 14. Lognormal distribution fits of stress differences between the first altered simulation and the reference simulation for the four macroscopic strain states of interest and
considering the removal of the first layer of elements abutting the grain boundaries from analysis at (a) the element scale, and (b) the grain scale.

Fig. 15. (a) Two grains at opposite corners of the sample domain with identical orientations, and (b) their local grain neighborhoods.

strain. We find the grain scale distributions to have means of 0.90%,
3.13%, 8.38%, and 11.95%, with standard deviations of 0.43%, 1.79%,
3.60%, and 4.55% at 0.4%, 0.8%, 1.5%, and 4.0% macroscopic strain,
respectively. We omit the figures as they do not change appreciably
from the case of one boundary layer removed. Removing three layers
of elements yields similar trends at the element and grain scales, and
the results are omitted for sake of brevity. Domain scale statistics for
the removal of one and two grain boundary layers are summarized
in Table 6. Collectively, the data indicates that the elements residing
at the grain boundaries have similar distributions as those interior to
the grain, indicating that the rigid grain interaction does not have
appreciable influence on the observed trends.

5.6. Orientations and grain neighborhoods

Finally, we inspect the trends regarding the influence of orientations
and grain neighborhoods. To this end, we generate a reference sample
that is a special case of that described in Section 3—i.e., a 1000-
grain sample with random orientations. In this case, however, two
grains at opposite corners of the mesh are chosen and given identical

Table 6
Domain scale stress differences at the four macroscopic strain states of interest for
analysis with element layers along the grain boundaries removed from consideration,
for three levels of grain boundary layers removed.
1 Layer 2 Layers

✏ (%) �dom (%) ✏ (%) �dom (%)

0.4 0.063 0.4 0.062
0.8 0.375 0.8 0.358
1.5 0.667 1.5 0.674
4.0 0.475 4.0 0.514

orientations. In the altered simulation, we apply the same rotation, ��2,
about the c axis for these two grains, while the rest of the grains in the
mesh are assigned random values of ��2, as before. In other words,
these two grains share identical reference orientations and identical
altered orientations, but their grain neighborhoods are both different
in the reference sample and have varying degrees of rotation in the
altered sample. We plot the grains and their neighborhoods from the
reference simulation in Figs. 15(a) and (b), respectively. These samples
(reference and altered) are used for the following analysis.
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Fig. 16. (a) A depiction of the grain scale stress differences as a function of ��2, and (b) probability density functions for the two grains with identical reference and altered
orientations (Fig. 15(a)), where Grain 1 has a mean of 15.06% and standard deviation of 4.59%, and grain 2 has a mean of 17.18% and a standard deviation of 5.55%. Both
plots depict data at 4% macroscopic strain.

First, we inspect the differences, �gr, as a function of ��2 in an
effort to illuminate potential orientation effects. We find that there is
a propensity for grains with a higher ��2 to exhibit a larger difference
at the grain scale, as shown in Fig. 16(a), which depicts data at a
macroscopic strain of ✏ = 4%. Generally, when ��2 is low, �gr has
lower magnitude than when ��2 approaches ±30˝, indicating a positive
correlation between the difference in rotation about the c axis with
difference in stress state. However, there are relatively wide spreads in
data. Even at ��2 = 0, �gr ranges from approximately 2.5% to greater
than 10%, while at ��2 = ±30 this range is approximately 5% to 30%.
This indicates, broadly, neighborhood effects.

To further understand the effects of orientation and neighborhood,
we inspect Fig. 16(b), which depicts lognormal fits to the elemen-
tal differences, �elt, for the two grains of interest in Fig. 15(a) at a
macroscopic strain of ✏ = 4%. Here, the distributions have similar
character, but with noticeable differences. Namely, their means show
non-negligible difference—15.06% compared to 17.18%—as well as
their standard deviations—4.59% compared to 5.55%, respectively. If
�elt was entirely influenced by orientation alone, we would expect
these curves to perfectly overlap, as the grains share identical reference
and altered orientations. While the distributions are relatively close
– indeed indicating an influence of orientation – the appreciable de-
gree of difference between the curves indicates a strong influence of
neighboring grains.

6. Conclusion

We have presented a study probing the consequences of orientation
ambiguity in polarized light microscopy (PLM) characterization when
utilized as a tool to inform virtual polycrystals in crystal plasticity finite
element simulations. An idealized microstructure was developed to
serve as a reference simulation, from which random c-axis-similar sam-
ples were generated. We performed deformation simulations on each
sample, applying identical deformation histories, and the stress fields
were compared to assess PLM’s applicability to CPFEM deformation
modeling. Overall, simulation results reveal:

• In the elastic regime, the stress predictions between the reference
simulation and the altered simulations compare to an acceptable
degree, often with a mean difference of less than 5%. This is at-
tributed to the transverse isotropic elastic nature of HCP crystals.
However, as crystallographic slip becomes more prevalent across

the domain of the sample (i.e., through the elastic–plastic transi-
tion), the stress field predictions in the altered simulations deviate
considerably from the predictions of the reference simulation.

• The character of the distributions of stress differences is affected
by the scale being considered. At the element scale, the difference
distributions had both the highest means and standard devia-
tions. At the grain scale, we observe that the difference distribu-
tions exhibited noticeably smaller means and standard deviations
(i.e., less deviation from the reference simulation). Finally, the
domain scale consistently exhibited small differences (though this
is somewhat attributed to the random texture considered in this
study).

• There is no significant spatial correlation of differences in the
stress predictions. When removing the grains along the control
surface boundaries, grains along the free surfaces, or elements
along grain boundaries from analysis, we do not observe an
appreciable change in the distributions of stress differences.

• Both orientations and neighborhoods are observed to influence
the differences observed between the altered and reference sam-
ples. Further study is necessary to fully explore this result, per-
haps using novel graph-based methods [51].

Overall, the results indicate that PLM may have differing degrees
of applicability at different scales for consideration (and thus different
predictions). At the element scale (i.e., intragrain), the ambiguity in the
rotation about the c axis leads to relatively large differences in stress
predictions. Models or predictions that rely on local values (e.g., fatigue
or fracture) may find such degrees of variability unacceptable. As the
scale is increased to the grain scale, the results become somewhat more
acceptable, which could (for example) serve to help inform methods
such as HEXRD, which returns grain-averaged results. Domain scale, or
macroscopic results, tend to give acceptable predictions, though further
study is necessary regarding the influence of texture and other aspects.

Finally, we again note that the limitations of this study – primarily
the inspection of an equiaxed, randomly textured sample subjected to
monotonic loading – were important to provide first insight into conse-
quences of PLM orientation ambiguity on CPFEM predictions, but leave
a wide swath of parameter space untouched. Further study is necessary
to understand the effects of these simulation parameters. As such, we
are not confident in a complete understanding of behavior, and reserve
suggestion regarding whether CPFEM simulations can unequivocally be
informed by PLM characterization, or how to choose the full orientation
if PLM is to be used.
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