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ABSTRACT

Barseghyan and Molinari give sufficient conditions for semi-nonparametric point identification of param-
eters of interest in a mixture model of decision-making under risk, allowing for unobserved hetero-
geneity in utility functions and limited consideration. A key assumption in the model is that the het-
erogeneity of risk preferences is unobservable but context-independent. In this comment, we build on
their insights and present identification results in a setting where the risk preferences are allowed to be
context-dependent.
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1. Introduction

Barseghyan and Molinari (2023) offer identification results of
risk preferences based on observed bundle choices of decision
makers in insurance markets. (See also Barseghyan, Molinari,
and Thirkettle (2021) for related work and background refer-
ences.) Their economic model allows for multiple preference
types, unobserved heterogeneity within each type, and unob-
served heterogeneity in (random) consideration sets at the bun-
dle level. (See Cattaneo et al. (2020), Barseghyan et al. (2021),
and Cattaneo et al. (2023) for background references on random
attention and related models.) In particular, Barseghyan and
Molinari (2023) consider decision-making under uncertainty
for bundle choices (e.g., collision and comprehensive auto insur-
ance deductibles), allowing for different utility models via a
finite mixture of preference types, where each preference type
is parameterized with random coefficients. The mixing proba-
bilities for different types are context-independent; that is, for
each decision maker, the same utility function is employed in all
contexts.

Barseghyan and Molinari’s (2023) key identification insight
is to exploit a single-crossing property of the utility models,
together with the assumption that prices enter the utility calcu-
lation but variations thereof are independent of the preference
type, the random utility parameter, and the consideration set
formation. Then, assuming there exists sufficient variation in
prices, they are able to “match” decision makers of different
preference types to marginal price changes in different contexts,
and semi-nonparametric point identification of the parameters
of interest (i.e., the share of preference types and distributions of
the random utility parameters) can be achieved from observed
choice bundles only.

A key assumption in their model is that the heterogeneity
of risk preferences is unobservable but context-independent
(in other words, risk behaviors are consistent across environ-
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ments). While this assumption is the central tenet of classical
behavioral models under risk, a large body of evidence doc-
uments robust evidence for context-dependent risk behavior
(Camerer 1995, 1998). For example, individuals can be seen
as risk-averse for gambles involving significant gains or small
losses and risk-seeking for gambles involving small gains or
significant losses, also known as the “fourfold pattern” of risk
preferences (Markowitz 1952; Tversky and Kahneman 1992).
Moreover, MacCrimmon and Wehrung (1986, 1990) docu-
mented that the degree of risk-taking of the same individ-
ual is influenced by decision environments such as games of
chance/gambling, financial investing, business decisions, and
personal decisions. Hence, it is more natural to allow for risk
preferences to be malleable and domain-specific (Weber, Blais,
and Betz 2002).

Motivated by the aforementioned theoretical and empiri-
cal evidence from behavioral sciences, in this comment, we
enhance the model of Barseghyan and Molinari (2023) to allow
for context-dependent risk behavior by permitting the mixing
probability entering the finite mixture of preference types to be
context-dependent. To be precise, our model introduces a new
type of decision makers who employ different utility functions
(and, therefore, different random utility parameters) for risk
assessment across contexts. Due to the presence of such decision
makers, the mixed derivative of the observed choice probability
with respect to price variations in different contexts will not be
zero, meaning that we can no longer “match” decision makers of
different types to price variations in different contexts.

To achieve semi-nonparametric identification, we build on
the insight of Barseghyan and Molinari (2023), and observe
that context-independent preference may lead to nonsmooth
responses to price variations. To provide some intuition, con-
sider a decision maker who uses the same utility function for
risk assessment in all contexts, and she chose products with
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high deductibles (i.e., low prices). As price variations across
contexts are not perfectly correlated, products in some contexts
can be considered “cheap,” while in other contexts are more
“expensive.” The decision maker will only react to price changes
in contexts where the costs are already low. In other words,
her decision to purchase high-deductible products cannot be
simultaneously binding in all contexts. On the other hand, if
she employs different utility functions across contexts, then it
is possible that all her choices are binding, in which case the
choice behavior will react to price variations in all contexts. We
thus present an identification strategy based on discontinuity in
derivatives.

The remainder of this comment proceeds as follows. Sec-
tion 2 reviews the key identification insights from Barseghyan
and Molinari (2023) under full attention, and then presents
identification results for context-dependent preferences leverag-
ing those insights. Section 3 extends our identification results
for context-dependent preferences to settings with random and
limited consideration. Section 4 concludes.

2. Identification under Full Consideration

Weemploy the notation in Barseghyan andMolinari (2023) with
minimal modifications, and we also adopt their assumptions
throughout this comment with the exception of their Assump-
tion 2.2, which we aim to generalize.

2.1. Model and Identification Insight

We assume there are two contexts (i.e., choice problems),
indexed by I and II, and the decision maker has to choose
between two (risky) alternatives within each context. We label a
decision maker by i, and the prices she faces in the two contexts
are xIi and x

II

i , respectively. As we show below, the identification
of the parameters will rely on exogenous variation of prices. The
decision maker’s utility function can be either Uνi(·) or Uωi(·),
with probability α and 1 − α, respectively. The risk preference
parameters, νi and ωi, are realized from distributions F and G,
respectively, with supports [0, ν̄] and [0, ω̄].

Given the price xIi (or xIIi ), and the assumptions imposed
by Barseghyan and Molinari (2023), there exists a unique risk
preference parameter value such that the decision maker is
indifferent between the two options. Formally, we define for
type-ν decision makers:

νi ≤ V
1,1
2,1 (x

I

i ) ⇔ bundle I1,1 is preferred to I2,1 with utility Uνi (·),

νi ≤ V
1,1
1,2 (x

II

i ) ⇔ bundle I1,1 is preferred to I1,2 with utility Uνi (·),

which is possible when the utility function exhibits single cross-
ing property (Barseghyan and Molinari 2023, Assumption 2.4).

We recall that V
�,q
k,r (·) denotes the cutoff level for νi at which the

agent is indifferent between bundles I�,q and Ik,r . In general,
the cutoff value would depend on both prices, xIi and xIIi , but
thanks to the “narrow bracketing” assumption (Barseghyan and
Molinari 2023, Assumption 2.3), V1,1

2,1 (·) is only a function of x
I

i ,

andV1,1
1,2 (·) is only a function of x

II

i . Similarly, we can also define
the cutoff values for type-ω decision makers:

ωi ≤ W
1,1
2,1 (x

I

i ) ⇔ bundle I1,1 is preferred to I2,1 with utility Uωi (·),

ωi ≤ W
1,1
1,2 (x

II

i ) ⇔ bundle I1,1 is preferred to I1,2 with utility Uωi (·).

From the above definitions, type-ν decisions makers will
choose bundle I1,1 if and only if νi ≤ V

1,1
2,1 (x

I

i ) and νi ≤

V
1,1
1,2 (x

II

i ), and similarly for type-ω decision makers. In other
words, the choice probability satisfies the following:

P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

(1)

= αP

[

νi ≤ V
1,1
2,1 (x

I

i ) ∧ V
1,1
1,2 (x

II

i )

∣

∣

∣
xIi , x

II

i

]

+ (1 − α)P

[

ωi ≤ W
1,1
2,1 (x

I

i ) ∧ W
1,1
1,2 (x

II

i )

∣

∣

∣
xIi , x

II

i

]

= αF
(

V
1,1
2,1 (x

I

i ) ∧ V
1,1
1,2 (x

II

i )

)

+ (1 − α)G
(

W
1,1
2,1 (x

I

i ) ∧ W
1,1
1,2 (x

II

i )

)

,

where a ∧ b = min{a, b}. See Panel (a) and (b) of Figure 1 for
an illustration. Barseghyan and Molinari (2023) establish point
identification of (α, F,G) as follows. Take some v in the support
of F, and assume we can find a price combination (xIi , x

II

i ) such
that

v = V
1,1
2,1 (x

I

i ) < V
1,1
1,2 (x

II

i ) and W
1,1
2,1 (x

I

i ) > W
1,1
1,2 (x

II

i ).

(2)

Then, combining (1) and (2),

P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

= αF
(

V
1,1
2,1 (x

I

i )

)

+ (1 − α)G
(

W
1,1
1,2 (x

II

i )

)

.

Since an infinitesimal change in xIi will not alter the inequalities
in (2), the following derivative is identifiable at v:

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

= αf (v),

where f is the Lebesgue density of F. The equality above is intu-
itive: under (2), type-ν marginal decision makers will be more
sensitive to price changes in context I, while type-ω marginal
decisionmakers react to prices changes in contextII. Therefore,
a change in xIi will affect the threshold V

1,1
2,1 (x

I

i ), which in turn
affects the fraction of type-ν decision makers who will choose
the I1,1 bundle. Another key observation is that the threshold
function, xIi �→ V

1,1
2,1 (x

I

i ), can be computed once the analyst has
chosen the utility function class {Uν : ν ∈ [0, ν̄]}; that is, we can
directly exploit the variation in the threshold V

1,1
2,1 (x

I

i ).
If the conditions in (2) are met for all v ∈ [0, ν̄], then

f (·) and the mixing probability α are identifiable. An analogous
argument can be used to identify g(·) (the density of G). This
result is formally established in Theorem 3.1 of Barseghyan and
Molinari (2023).

2.2. Context-Dependent Risk Assessment

As an attempt to allow the preference to depend on the con-
text (choice problem), assume the population consists of three
types:

(i) type-ν individuals always employ the utility function Uνi

for decision making, where νi ∼ F;
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Figure 1. Choice behavior of different types of decision makers.
Panel (a): Type-ν decision makers employ Uνi for risk assessments in both contexts (context I along the horizontal axis and II along the vertical axis). They will choose

the bundle I1,1 if the parameter νi is below bothV
1,1
2,1 (xIi ) andV

1,1
1,2 (xIIi ), as illustrated by the dark gray segment of the 45-degree line. Panel (b): Type-ω decision makers

employ Uωi for risk assessments in both contexts. They will choose the bundle I1,1 if the parameter ωi is below bothW
1,1
2,1 (xIi ) andW

1,1
1,2 (xIIi ), as illustrated by the dark

gray segment of the 45-degree line. Panel (c): With context-dependent preference, the decision maker will choose I1,1 if νi is belowV
1,1
2,1 (xIi ) andωi is belowW

1,1
1,2 (xIIi ),

as illustrated by the dark gray rectangular area.

(ii) type-ω individuals always employ the utility function Uωi

for decision making, where ωi ∼ G;
(iii) individuals of the last type employ context-dependent risk

assessment, that is, they use different utility functions, Uνi

and Uωi for decision making in context I and II, respec-
tively.

The unknown proportions of the three types are α, β , and 1 −

α − β , respectively. This extension can also be understood as
context-dependent mixing probabilities, since now the fraction
of decision makers employing the utility function Uνi will be
context specific: 1 − β for context I and α for context II.

Since decisionmakers of the third type are equippedwith two
(random) utility functions, we have to specify how the random
utilities are generated. This is done in the following assumption.

Assumption 1. For decision makers employing different utility
functions for the two contexts, their random utilities are gener-
ated from some joint distribution C(F(ν),G(ω)), where F and
G are the marginal distribution of νi and ωi and C(·, ·) is a
continuously differentiable copula function.

The choice behaviors of the first two groups have been ana-
lyzed previously. For individuals of the third type that we just
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introduced, they will pick bundle I1,1 if νi ≤ V
1,1
2,1 (x

I

i ) and

ωi ≤ W
1,1
1,2 (x

II

i ). By Assumption 1,

P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

(3)

= αF
(

V
1,1
2,1 (x

I

i ) ∧ V
1,1
1,2 (x

II

i )

)

+βG
(

W
1,1
2,1 (x

I

i ) ∧ W
1,1
1,2 (x

II

i )

)

+ (1 − α − β)C
(

F
(

V
1,1
2,1 (x

I

i )

)

,G
(

W
1,1
1,2 (x

II

i )

))

.

See Panel (c) of Figure 1 for an illustration.
In this model of context-dependent risk assessment, we can

point identify the mixing probabilities and the distribution of
the risk parameters, (α,β , F,G,C), following the core idea in
Barseghyan and Molinari (2023). Consider some v in the sup-
port of F where one can find price combinations such that the
following holds:

v = V
1,1
2,1 (x

I

i ) = V
1,1
1,2 (x

II

i ) and W
1,1
2,1 (x

I

i ) > W
1,1
1,2 (x

II

i ).

(4)

Since the threshold functions, V
�,q
k,r (·) and W

�,q
k,r (·) are continu-

ous, it is possible to break the equality V1,1
2,1 (x

I

i ) = V
1,1
1,2 (x

II

i ) by
slight variation in xIIi without affecting the second constraint in
(4). That is,

lim
V

1,1
1,2 (xIIi )↓v

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

=
{

α + (1 − α − β)C1

(

F(v),G
(

W
1,1
1,2 (x

II

i )

))}

f (v), (5)

lim
V

1,1
1,2 (xIIi )↑v

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

=
{

(1 − α − β)C1

(

F(v),G
(

W
1,1
1,2 (x

II

i )

))}

f (v), (6)

where C1(·, ·) is the derivative of the copula function with
respect to its first argument. Therefore, the discontinuity-in-
derivative formula gives

lim
V

1,1
1,2 (xIIi )↓v

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

− lim
V

1,1
1,2 (xIIi )↑v

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

= αf (v),

which provides identification of f (·) and the mixing probability
α if there is enough variation in prices such that (4) can be
constructed for all v in the support. We summarize our findings
in the following theorem.

Theorem 1. Let Assumptions 2.1, 2.3, and 2.4 in Barseghyan and
Molinari (2023) and ourAssumption 1 hold. In addition, assume
there is enough variation in prices, xIi and xIIi , such that (4) is
feasible for all v in the support of F. Then α and F are identified.

By symmetry, the same argument applied to W
1,1
2,1 (·) and

W
1,1
1,2 (·) can be used to point identify (β ,G), and subsequently

the copula function C.

3. Context-Dependent Risk Assessment with Limited

Consideration

To allow for context-dependent risk assessments with limited
consideration is a nontrivial task. In particular, the notation
quickly becomes cumbersome. In this section, we thus make a
simplifying assumption on the support of the consideration sets.

Assumption 2. LetO(·) be the probability measure representing
random consideration. Let

O{1,2}×{1,2} := O({I�,q : �, q = 1, 2}), (7)

O{�}×{1,2} := O({I�,q : q = 1, 2}), � = 1, 2, (8)

O{1,2}×{q} := O({I�,q : � = 1, 2}), q = 1, 2, (9)

O{�}×{q} := O({I�,q}), �, q = 1, 2. (10)

Then,

O{1,2}×{1,2} +
∑

�=1,2

O{�}×{1,2} +
∑

q=1,2

O{1,2}×{q}

+
∑∑

�,q=1,2

O{�}×{q} = 1.

For example, O{1,2}×{1,2} is the probability of full attention
(i.e., the chance that the decision maker pays attention to both
options, 1 and 2, in both contexts). Similarly, O{1,2}×{2} is the
probability that she pays attention to both 1 and 2 in I but
only 2 in II. The assumption rules out consideration sets such
as {I1,1, I2,2}, which simplifies the notation and presentation.
Assumption 2 is not necessary for our identification results.
In particular, if consideration bundles such as {I1,1, I2,2} were
allowed, then we would only need to specify how individuals of
the third type (see Section 2.2) make decisions.

Under Assumption 2, the choice probability for bundle I1,1
can be written as

P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

= α

{

O{1,2}×{1,2}F
(

V
1,1
2,1 (x

I

i ) ∧ V
1,1
1,2 (x

II

i )

)

+ O{1,2}×{1}F
(

V
1,1
2,1 (x

I

i )

)

+ O{1}×{1,2}F
(

V
1,1
1,2 (x

II

i )

)

+ O{1}×{1}

}

+ β

{

O{1,2}×{1,2}G
(

W
1,1
2,1 (x

I

i ) ∧ W
1,1
1,2 (x

II

i )

)

+ O{1,2}×{1}G
(

W
1,1
2,1 (x

I

i )

)

+ O{1}×{1,2}G
(

W
1,1
1,2 (x

II

i )

)

+ O{1}×{1}

}

+ (1 − α − β)

{

O{1,2}×{1,2}C
(

F
(

V
1,1
2,1 (x

I

i )

)

,G
(

W
1,1
1,2 (x

II

i )

))

+ O{1,2}×{1}F
(

V
1,1
2,1 (x

I

i )

)

+ O{1}×{1,2}G
(

W
1,1
1,2 (x

II

i )

)

+ O{1}×{1}

}

.
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As in Barseghyan and Molinari (2023), it is also possible
to allow the random consideration, O(·), to depend on the
type of decision makers. In other words, the three types of
decision makers (Section 2.2) will be equipped with differ-
ent random consideration measures, say O(i)(·), O(ii)(·), and
O(iii)(·). We abstract away from this generalization to save
notation.

Now assume (4) is possible for some v in the support of F,
then the discontinuity-in-derivative formula yields:

lim
V

1,1
1,2 (xIIi )↓v

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

− lim
V

1,1
1,2 (xIIi )↑v

∂

∂V
1,1
2,1 (x

I

i )
P

[

I1,1 chosen
∣

∣

∣
xIi , x

II

i

]

= αO{1,2}×{1,2}f (v).

We summarize the identification result in the following
theorem.

Theorem 2. Let Assumptions 2.1, 2.3, and 2.4 in Barseghyan and
Molinari (2023) and our Assumptions 1 and 2 hold. In addition,
assume there is enough variation in prices, xIi and x

II

i , such that
(4) is feasible for all v in the support of F. Then αO{1,2}×{1,2} and
F are identified.

4. Conclusion

Barseghyan and Molinari (2023) introduced and studied an
interesting model of decision-making under risk, allowing for
unobserved heterogeneity in utility functions and consideration
set formation, where the mixing probability parameter deter-
mining the risk profile for each decision maker is unknown
but context-independent. They provided insightful identifica-
tion results of parameters of interest (the distribution of the
random coefficient distributions and the context-independent
mixing probability). Motivated by the abundant theoretical and
empirical behavioral literature, we enhanced Barseghyan and
Molinari’s (2023) model to allow for context-dependent random
utility. More precisely, we allowed for the mixing probability
entering the finite mixture of preference types to be context-
dependent. We then built on their identification approach to
establish semi-nonparametric point identification of parameters
of interest.
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