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On Binscatter†

By Matias D. Cattaneo, Richard K. Crump, Max H. Farrell,  
and Yingjie Feng*

Binscatter is a popular method for visualizing bivariate relation-
ships and conducting informal specification testing. We study the 
properties of this method formally and develop enhanced visualiza-
tion and econometric binscatter tools. These include estimating con-
ditional means with optimal binning and quantifying uncertainty. We 
also highlight a methodological problem related to covariate adjust-
ment that can yield incorrect conclusions. We revisit two applica-
tions using our methodology and find substantially different results 
relative to those obtained using prior informal binscatter methods. 
General purpose software in Python, R, and Stata is provided. Our 
technical work is of independent interest for the nonparametric 
partition-based estimation literature. (JEL C13, C14, C18, C51, 
O31, R32)

The classical scatter plot is a fundamental visualization tool in data analysis. 
Given a sample of bivariate data, a scatter plot displays all ​n​ data points at their 
coordinates ​​(​x​ i​​, ​y​ i​​)​​, ​i  =  1, …, n​. By plotting every data point, one obtains a visual-
ization of the joint distribution of ​y​ and ​x​. When used prior to regression analyses, a 
scatter plot allows researchers to assess the functional form of the regression func-
tion, the variability around this conditional mean, and recognize unusual observa-
tions, bunching, or other anomalies or irregularities.

Classical scatter plots, however, have several limitations and have fallen out of 
favor. For example, with the advent of larger datasets, the cloud of points becomes 
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increasingly dense, rendering scatter plots uninformative. Even for moderately sized 
but noisy samples it can be difficult to assess the shape and other properties of 
the conditional mean function. Further, with increasing attention paid to privacy 
concerns, plotting the raw data may be disallowed completely. Another important 
limitation of the classical scatter plot is that it does not naturally allow for a visual-
ization of the relationship of ​y​ and ​x​ while controlling for other covariates, which is 
a standard goal in social sciences.

Binned scatter plots, or binscatters, have become a popular and convenient alter-
native tool in applied microeconomics for visualizing bivariate relations (see Starr 
and  Goldfarb 2020, and references therein, for an overview of the literature). A 
binscatter is made by partitioning the support of ​x​ into a modest number of bins and 
displaying a single point per bin, showing the average outcome for observations 
within that bin. This makes for a simpler, cleaner plot than a classical scatter plot, 
but it does not present the same information. While a scatter plot allows one to dis-
play the entirety of the data, a binscatter shows only an estimate of the conditional 
mean function. A binned scatter plot is therefore not an exact substitute for the clas-
sical scatter plot, but it can be used to judge functional form, provide a qualitative 
assessment of features such as monotonicity or concavity, and guide later regression 
analyses. Handling additional covariates correctly is a particularly subtle issue.

In this paper we introduce a suite of formal and visual tools based on binned 
scatter plots to restore, and in some dimensions surpass, the visualization benefits of 
the classical scatter plot. We deliver a fully featured toolkit for applications, includ-
ing estimation of conditional mean functions, visualization of variance and precise 
quantification of uncertainty, and formal tests of substantive hypotheses such as 
linearity or monotonicity. Our toolkit allows for characterizing key features of the 
data without struggling to parse the dense cloud of large datasets or sharing iden-
tifying information of individual data points. As a foundation for our results we 
deliver an extensive theoretical analysis of binscatter and related partition-based 
methods. We also highlight a prevalent methodological problem related to covariate 
adjustment present in prior binscatter implementations, which can lead to incorrect 
estimates and visualizations of the conditional mean, in both shape and support. 
We demonstrate how incorrect covariate adjustment in binscatter applications can 
mislead practitioners when assessing linearity or other hypothesized parametric or 
shape specifications of the unknown conditional mean.

The concept of a binned scatter plot is simple and intuitive: divide the data into ​
J  <  n​ bins according to the covariate ​x​, often using empirical ventiles, and then 
calculate the average outcomes among observations with covariate values lying in 
each bin. The final plot shows the ​J​ points ​​(​​x –​​j​​, ​​y –​​j​​)​​, the sample averages for units with ​​
x​ i​​​ falling within the ​j​th bin ( ​j  =  1, 2, …, J​). Further, by plotting only averages, 
discrete-valued outcomes are easily accommodated. The result is a figure which 
shares the conceptual appeal, visual simplicity, and some of the utility of a classical 
scatter plot.

In a binned scatter plot the ​J​ points are then used to visually assess the bivari-
ate relation between ​y​ and ​x​. Because each of the ​J​ points in a binned scatter plot 
shows a conditional average, i.e., the average outcome given that ​​x​ i​​​ falls into a spe-
cific bin, using the plot to examine the conditional mean is intuitive. The primary 
use is assessing the shape of this mean function: whether the relationship is linear, 
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monotonic, convex, and so forth. In applications, a roughly linear binscatter often 
precedes a linear regression analysis. Indeed, we provide formal results which jus-
tify such an approach in a principled, valid way.

Figure 1 shows an example of this construction using the data from Akcigit et al. 
(2021, 2022)—AGNS, hereafter. This recent paper will serve as a running example 
throughout the text to illustrate our main ideas and results using real data. AGNS 
study the effect of corporate and personal taxes on innovation in the United States 
over the twentieth century. Panel A of Figure 1 presents a raw scatter plot of log 
patents and the variable of interest, transformed marginal tax rates.1 Despite a sam-
ple size of about 3,000 observations it is difficult to draw any inferences about the 
data from the scatter plot. (Section IV studies a much larger dataset.) Panel B of 
Figure 1 shows a binned scatter plot being constructed, with the raw data in the 
background, and panel C isolates the binscatter, and overlays a linear regression fit. 

1 The authors use the logarithm of one minus the ninetieth percentile marginal tax rate or, equivalently, the log-
arithm of the ninetieth percentile marginal net of tax rate. This transformed variable implies that a positive relation 
between ​y​ and ​x​ implies that higher marginal tax rates are associated with lower quantity of innovation.

Figure 1. Illustration of Binned Scatter Plots

Notes: This figure illustrates the construction of a binned scatter plot using data from Akcigit et al. (2022). The 
dependent variable is the log number of patents per state per year, and the independent variable is the log of the 
marginal net of tax rate for ninetieth percentile earners. No control variables are included.
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Graphs like panel C of Figure 1, are often found in empirical papers. An important 
note is that although the binned scatter plot invites the viewer to “connect the dots”  
smoothly, the actual estimator is piecewise constant, as shown explicitly in Figure 1, 
panel D. Though graphically distinct, this is formally identical to the dots in panel  
C of Figure 1. Figure 1 also highlights the fact that although the averaging is useful 
for evaluating the conditional mean, it masks other features of the conditional dis-
tribution which may be important to the subsequent analysis. This presents a clear 
limitation to the usefulness of binscatter methods for visualization and analysis. 
Note how much information is lost in moving from Figure 1 panel B to C. Our later 
inference tools help to remedy this limitation by augmenting the binned scatter plot 
with formal uncertainty quantification.

It is common practice to use additional control variables and fixed effects when 
constructing a binscatter. The standard plots, like panel C of Figure 1, will often be 
made after “controlling” for a set of covariates. This turns out to be a subtle issue, 
as the controls affect the visualization as well as the degree of uncertainty. Even the 
common practice of adding a regression line to a binned scatter plot is not straight-
forward to do correctly. We highlight important methodological and theoretical 
problems with the commonly used practice of first “residualizing out” additional 
covariates before constructing a binscatter. This is only formally justified when the 
true function is linear. Instead we show that the shape and support of the conditional 
mean can be incorrect when employing common practice. Figure 2 shows the prac-
tical importance of this issue by revisiting AGNS. Their benchmark specifications 
study the relation between log patents and marginal tax rates utilizing a rich set of 
control variables including fixed effects (see Table  II and Figure I in AGNS). In 
their macro-level approach, the authors show that higher taxes negatively affect the 
quantity of innovation. Panel A of Figure 2 is inspired by Figure I(A) in AGNS. 
Comparing the x-axis to the raw scatter plot of Figure I(A) we see the distortion of 
the support. Panel B of Figure 2 is the correctly scaled plot in AGNS; it is essentially 
uninformative about the shape of the mean. Finally, panel C of Figure 2 shows the 
corresponding results using our corrected covariate-adjustment approach.

We provide an array of results and tools for binned scatter plots aimed at improv-
ing their empirical application. We improve on the estimation of conditional mean 
functions and provide tools for quantifying uncertainty. To facilitate our analysis, 
we first demonstrate that a binscatter is a nonparametric estimator, and we provide a 
modeling framework that enables formal analysis, allowing us to deliver new, more 
powerful methods and to resolve conceptual and implementation issues. We clarify 
precisely the parameters of interest in applications, both for visualization and formal 
inference. Our framework centers around a partially linear model, wherein we show 
how to control for additional variables in a principled and interpretable way, and 
discuss why prior implementations are not recommended.

Within our framework, we also discuss the choice of the number of bins, ​J​. We 
elucidate how the choice of ​J​ relates to the interpretation of the binscatter plot and 
its role in nonparametric estimation. When we use a binscatter to recover the condi-
tional mean function we must assume ​J​ grows with the sample size as is standard in 
semi- and nonparametric inference. In this case, we provide data-driven methods for 
an optimal choice of ​J​. We can also consider a fixed, user-chosen ​J​, which may yield 
a simple and appealing visualization of a coarsened version of the conditional mean. 
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For example, selecting ​J  =  10​ has a natural interpretation of comparing average 
outcomes in different deciles of the distribution of ​​x​ i​​​. Our results also apply in this 
case.

We then turn to uncertainty quantification. For visualization, we provide con-
fidence bands that capture the uncertainty in estimating the conditional mean or 
other functional parameters of interest. A confidence band is a region that contains 
the entire function with some preset probability, just as a confidence interval cov-
ers a single value, and is thus the proper tool for assessing uncertainty about the 
regression function. Confidence bands can be used to visually assess the plausibility 
of parametric functional forms, such as linearity. Confidence bands partly restore 
the uncertainty visualization capability of the classical scatter plot by capturing 
how certain we are about the functional form of the conditional mean. Further, our 
confidence bands are explicitly functions of the conditional heteroskedasticity in 
the underlying data. Delivering a valid confidence band requires novel theoretical 
results, which represent the main technical contribution of our work.

Panel A of Figure 3  shows a confidence band for AGNS, relying on our data-driven 
choice of ​J​ and robust bias correction methods to ensure the inference is valid. The 
binscatter itself is quite linear in appearance, in contrast with the original Figure 2, 
panel A. Moreover, panel B of Figure 3 shows that a linear function can be drawn 
within the confidence band (red line), so we can validly conclude that linearity is 
consistent with these data. In this case, our novel methods bolster the case for the 
paper’s original linear regression analysis. (In Section IV we show an application 
where linearity is not supported, but our methods nonetheless reinforce an empirical 
conclusion and extend it in economically interesting ways.)

The paper proceeds as follows. We next briefly review the related literature and 
summarize our technical contributions. Section I formalizes binned scatter plots as 

Figure 2. Covariate Adjustment

Notes: This figure illustrates the role of covariate adjustment in the construction of binned scatter plots using data 
from Akcigit et al. (2022). The dependent variable is the log number of patents per state per year, and the indepen-
dent variable is the log of the marginal net of tax rate for ninetieth percentile earners. The additional control vari-
ables are the lagged corporate tax rate, lagged population density, personal income per capita, and R&D tax credits, 
along with state and year fixed effects. The left plot is inspired by Figure I(A) in Akcigit et al. (2022) using 50, 
rather than 100, bins (when the corrected covariate adjustment is used there is insufficient variation in the variable 
of interest to feasibly accommodate the larger choice of bins). The middle plot is a correctly scaled version of the 
left plot. The right plot presents the binned scatter plot using the correct covariate adjustment approach. Binscatter 
estimates are based on weights of each state’s 1940 population count.
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a nonparametric estimator, including clarifying the parameter of interest and the 
correct method for adding control variables. Section II discusses the choice of the 
number of bins ​J​. Section III studies uncertainty quantification for both visualization 
and testing. Throughout, we use the application of AGNS for illustration. In addition, 
Section IV contains a second application, where we revisit Moretti (2021a, b). Both 
applications highlight the usefulness of our results in empirical settings. Section V 
presents our main theoretical results and further discussion of the technical contri-
butions of the paper. Finally, Section VI concludes. An online Appendix provides 
additional discussion and detail omitted from the main text, proofs of all our results, 
and a thorough account of our technical contributions. All of our methodological 
results are available in fully featured Stata, R, and Python packages (see Cattaneo et 
al. 2023a, Cattaneo et al. 2024, and https://nppackages.github.io/binsreg/).

Related Literature

Our paper fits into several literatures. Our work speaks most directly to the 
applied literature using binscatter methods, which is too large to enumerate here. 
Starr and  Goldfarb (2020) gives an overview and many references. Beyond bin-
scatter itself, binning has a long history in both visualization and formal estimation. 
The most familiar case is the classical histogram. Applying binning to regression 
problems dates back at least to the regressogram of Tukey (1961). The core idea 
has been applied in such diverse areas as climate studies, for nonlinearity detection 
(Schlenker and Roberts 2009); program evaluation, called subclassification (Stuart 
2010); empirical finance, called portfolio sorting (Cattaneo et al. 2020); and applied 
microeconomics, for visualization in bunching (Kleven 2016) and regression dis-
continuity designs (Cattaneo and Titiunik 2022).
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Notes: This figure illustrates uniform confidence bands using data from Akcigit et al. (2022). The dependent vari-
able, independent variable, and controls are the same as in Figure 2. Binscatter estimates are based on weights of 
each state’s 1940 population count using the optimal number of bins as described in Section II. Shaded regions 
denote 95 percent nominal confidence bands using a cluster-robust variance estimator with two-way clustering by 
year and state × five-year period.

https://nppackages.github.io/binsreg/
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In recent years, there has been related research looking at the importance and 
limitations of graphical analysis in different applied areas. For example, Korting 
et  al. (2023) conducts a field experiment to investigate the role of visual infer-
ence and graphical representation in regression discontinuity designs via RD plots 
(Calonico, Cattaneo, and Titiunik 2015). They conclude that unprincipled graphi-
cal methods could lead to misleading or incorrect empirical conclusions. Similar 
concerns regarding graphical analysis are raised by Freyaldenhoven et al. (2023) 
in the context of event study designs, where they proposed principled visualization 
methods. Graphical and visualization methods are also being actively discussed in 
the machine learning community (see Wang et al. 2021, and references therein, for 
an overview of the literature), where the importance of focusing on principled meth-
ods with well-understood properties for both in-sample and out-of-sample learning 
has been highlighted. Our paper contributes to this literature by offering princi-
pled approaches for visualization and inference employing binscatter methodology. 
Furthermore, well-executed visualization techniques can help with issues of statis-
tical nonsignificance in empirical economics employing big data (Abadie 2020).

Finally, our technical work contributes to the literature on nonparametric regres-
sion, particularly for uniform distributional approximations. Binning as a nonpara-
metric procedure has been studied in the past, but existing theory is insufficient 
for our purposes for two main reasons. First, the extant literature cannot generally 
accommodate data-driven bin breakpoints, such as splitting the support by empir-
ical quantiles. Such a choice of breakpoints generates random basis functions and 
so are not nested in previously obtained results on nonparametric series estima-
tors. Second, where results are available, they imply overly stringent conditions on 
smoothing parameters ruling out simple averaging within each bin (which amounts 
to local constant fitting) and are thus not applicable to binscatter. Circumventing 
these limitations with new theoretical results is crucial to directly study the empiri-
cal practice of binned scatter plots.

Györfi et al. (2002) gives a textbook introduction to binning in nonparametric 
regression, where the procedure is known as partitioning regression. Recent work on 
partitioning, always assuming known breakpoints, includes convergence rates and 
pointwise distributional approximations (Ling and Hu 2008; Cattaneo and Farrell 
2013), and uniform distributional approximations and robust bias correction meth-
ods (Cattaneo, Farrell, and Feng 2020). Partition regression is intimately linked to 
spline and wavelet methods, and the general results in our online Appendix treat 
these estimators as well, improving over earlier work by Shen, Wolfe, and Zhou 
(1998); Huang (2003); Belloni et al. (2015); Cattaneo, Farrell, and Feng (2020), 
and references therein. We discuss these technical contributions in more detail in 
Section V and in the online Appendix.

I.  Canonical Binscatter and Covariate Adjustments

The observed data is a random sample ​​(​y​ i​​, ​x​ i​​, ​w​ i​ ′ ​)​​, ​i  =  1, 2, …, n​, where ​​y​ i​​​ is the 
outcome, ​​x​ i​​​ is the main regressor of interest, and ​​w​i​​​ is a d-vector of other covariates 
(e.g., preintervention characteristics or fixed effects). A binscatter has three key ele-
ments: the binning of the support of the covariate ​​x​ i​​​, the estimation within each bin, 
and the way in which the controls ​​w​i​​​ are handled. We discuss each of these in turn.
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The partition of the support requires a choice of the number of bins, ​J​, as well as 
how to divide the space. The choice of ​J​ is the tuning parameter of this estimator, 
and in current practice it is often set independently of the data and equal to ​J  =  10​ 
or ​J  =  20​. We discuss the choice of ​J​ in Section II, but for now we take ​J  <  n​ 
as given. For the spacing of the ​J​ bins, we follow standard empirical practice and 
use the marginal empirical quantiles of ​​x​ i​​​. Let ​​x​ ​(i)​​​​ denote the ​i​-th order statistic of 
the sample ​​(​x​ 1​​, ​x​ 2​​, …, ​x​ n​​)​​ and ​​⌊ ⋅ ⌋​​ denote the floor operator. Then, the partitioning 

scheme is defined as ​​Δ ˆ ​  = ​ {​​ ˆ ​​1​​, ​​ ˆ ​​2​​, …, ​​ ˆ ​​J​​}​​, where

      ​​​       ˆ ​​j​​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​

​[​x​ ​(1)​​​, ​x​ ​(​⌊n/J⌋​)​​​)​,

​ 

if j  =  1;

​   ​[​x​ ​(​⌊n​( j−1)​/J⌋​)​​​, ​x​ ​(​⌊nj/J⌋​)​​​)​,​  if j  =  2, 3, …, J − 1;​     

​[​x​ ​(​⌊n​(J−1)​/J⌋​)​​​, ​x​ ​(n)​​​]​,
​ 

if j  =  J.

 ​​ ​

Each estimated bin ​​​ ˆ ​​j​​​ contains (roughly) the same number of observations 
​​N​ j​​  = ​ ∑ i=1​ n  ​​ ​1​​​ ˆ ​​j​​​​​(​x​ i​​)​​, where ​​1​​​​(x)​  =  1​{x  ∈  }​​ is the indicator function. The nota-
tion ​​Δ ˆ ​​ emphasizes that the partition is estimated from the data. Handling this ran-
domness requires novel nonparametric statistical theory (Section  V). Our theory 
can accommodate quite general partitioning schemes, both random and nonrandom, 
provided high-level conditions are satisfied. In some cases the bins may be deter-
mined by the empirical application (e.g., income ranges, or schooling levels), while 
in others equally spaced bins may be more appropriate. However, given the ubiquity 
of quantile binning in economics, we focus on ​​Δ ˆ ​​ as defined above.

We begin with the bivariate case, where there are no covariates ​​w​i​​​. Given the 
partition ​​Δ ˆ ​​, which encompasses a choice of the number of bins ​J​, a binscatter 
is the collection of ​J​ sample averages of the response variable: for each bin ​​​ ˆ ​​j​​​, 
we obtain ​​​y –​​j​​  = ​ (1/​N​ j​​)​​∑ i=1​ n  ​​ ​1​​​ ˆ ​​j​​​​​(​x​ i​​)​​y​ i​​​; under our assumptions ​​min​1≤ j≤J​​ ​N​ j​​  >  0​ with 
probability approaching one in large samples. These sample averages are plotted as 
a “scatter” of points along with another, parametric estimate of the regression func-
tion ​​υ​0​​​(​x​ i​​)​  =  E​[​y​ i​​ | ​x​ i​​]​​, often an ordinary least squares fit using the raw data. This 
construction is shown in Figure 1, panels B and C.

For fixed ​J​, under regularity conditions, a binscatter can be interpreted as esti-
mating ​​ξ​0​​​( j)​  =  E​[​y​ i​​ | ​x​ i​​  ∈ ​ ​j​​]​​, ​j  =  1, 2, …, J​, where ​​​j​​​ denotes the ​j​th bin based 
on the population quantiles of ​​x​ i​​​. This interpretation of the binscatter ignores the 
shape of the underlying conditional expectation within each bin, as it targets a likely 
misspecified constant model: ​​ξ​0​​​( j)​​ and ​​υ​0​​​(x)​​ can be quite different for different val-
ues ​x  ∈ ​ ​j​​​, except in special cases. If ​​x​ i​​​ was discrete with relatively few unique 
values, in which case binning would be unnecessary to begin with, or if the bins 
​​​1​​, ​​2​​, …, ​​J​​​ had a natural economic interpretation (e.g., income ranges), then the 
​J​-dimensional parameter ​​ξ​ 0​​  = ​​ (​ξ​0​​​(1)​, ​ξ​0​​​(2)​, …, ​ξ​0​​​(J)​)​ ′ ​​ could be of interest in 
applications. This parameter is intrinsically parametric in nature (for fixed ​J​) and, as 
discussed below, all the results in the paper apply to ​​ξ​ 0​​​ without modification.

When ​​x​ i​​​ is continuously distributed or exhibits many distinct values, and 
the binning structure has no useful economic interpretation in and of itself, 
it is more natural to view the binscatter as a nonparametric approximation of 
​​υ​0​​​(x)​  =  E​[​y​ i​​ | ​x​ i​​]​​ for appropriately chosen tuning parameter ​J​. This approach char-
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acterizes misspecification errors (within and across bins) as well as nonparametric 
uncertainty in a principled way. Thus, we formalize a binscatter as a nonparametric 
estimator of ​​υ​0​​​(x)​​ by recasting it as a piecewise constant fit: ​​υ ˆ ​​(x)​  = ​​ y –​​j​​​ for all 
​x  ∈ ​​  ˆ ​​j​​​, ​j  =  1, 2, …, J​. This is a least-squares series regression using a zero-degree 
piecewise polynomial. Formally, we define

(1)	​​ υ ˆ ​​(x)​  = ​ b ˆ ​​​(x)​ ′ ​ ​ξ ˆ ​, ​ ξ ˆ ​  = ​ arg min​ 
ξ∈​ℝ​​ J​

​ ​ ​  ∑ 
i=1

​ 
n

  ​​ ​​[​y​ i​​ − ​b ˆ ​​​(​x​ i​​)​ ′ ​ ξ]​​​ 2​,​

where ​​b ˆ ​​(x)​  = ​​ [​1​​​ ˆ ​​1​​​​​(x)​, ​1​​​ ˆ ​​2​​​​​(x)​, …, ​1​​​ ˆ ​​J​​​​​(x)​]​ ′ ​​ is the binscatter basis given by a ​J​-dimen-
sional vector of orthogonal indicator variables, that is, the ​j​-th component of ​​b ˆ ​​(x)​​ 
records whether the evaluation point ​x​ belongs to the ​j​-th bin in the partition ​​Δ ˆ ​​. 
This piecewise constant fit is shown in panel D of Figure 1, and from an economet-
ric point of view, is identical to the dots of Figure 1, panels B and C. In the online 
Appendix, we present results for a general polynomial fit within each bin, allowing 
for smoothness constraints across bins, which is useful to reduce misspecification 
bias.

A. Residualized Binscatter

We highlight an important methodological mistake with most applications of 
binscatter with covariates, including the Stata packages binscatter and binscatter2. 
Widespread empirical practice for covariate adjustment proceeds by first regress-
ing out the covariates ​​w​i​​​ from ​​x​ i​​​ and ​​y​ i​​​, and then applying the bivariate binscatter 
approach (1) to the residualized variables. This approach is heuristically motivated 
by the usual Frisch-Waugh-Lovell theorem for “regressing/partialling out” other 
covariates in linear regression settings.

From a nonparametric perspective, under regularity conditions, the residualized 
binscatter is consistent for

(2)	 ​E​[​y​ i​​ − L​(​y​ i​​ | ​w​i​​)​ ​|​​ ​x​ i​​ − L​(​x​ i​​ | ​w​i​​)​]​​,

with ​L​(​a​ i​​ | ​w​i​​)​  = ​ (1, ​w​ i​ ′ ​)​ ​​(E​[​​(1, ​w​ i​ ′ ​)​ ′ ​ ​(1, ​w​ i​ ′ ​)​]​)​​​ 
−1

​ E​[​​(1, ​w​ i​ ′ ​)​ ′ ​ ​a​ i​​]​​, and thus ​L​(​y​ i​​ | ​w​i​​)​​ and ​
L​(​x​ i​​ | ​w​i​​)​​ can be interpreted as the best (in mean square) linear approximations to, 
respectively, ​E​[​y​ i​​ | ​w​i​​]​​ and ​E​[​x​ i​​ | ​w​i​​]​​ (see Wooldridge 2010, Chapter 2). ​L​(​y​ i​​ | ​w​i​​)​​ and  
​L​(​x​ i​​ | ​w​i​​)​​ are, in general, misspecified approximations of the conditional expec-
tations ​E​[​y​ i​​ | ​w​i​​]​​ and ​E​[​x​ i​​ | ​w​i​​]​​. Unless the true model is linear, the probability 
limit in (2) is difficult to interpret and does not align with standard economic rea-
soning. Furthermore, the shape of the function in (2) and even its support may be 
incorrect, and therefore can lead to incorrect empirical findings. The same problems 
arise when interpreting residualized binscatter from a fixed-​J​ perspective or when ​​
x​ i​​​ is discrete.

We therefore refer to the popular residualized binscatter method for covariate 
adjustment as incorrect or inconsistent for two main reasons. First, even when 
assuming a semi-linear conditional mean function ​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​  = ​ μ​0​​​(​x​ i​​)​ + ​w​ i​ ′ ​ ​γ​0​​​, 
residualized binscatter does not, in general, consistently estimate ​​υ​0​​​(x)​​, ​​μ​0​​​(x)​​, or 
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​E​[​y​ i​​ | ​x​ i​​  =  x, ​w​i​​  =  w]​​ for some evaluation point ​w​, despite being motivated 
by standard least squares methods. Only when ​​μ​0​​​(x)​​ is linear does (2) reduce 
to ​​μ​0​​​(x)​​, which need not equal ​​υ​0​​​(x)​​ because ​E​[​y​ i​​ | ​x​ i​​]​  =  E​[E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​ | ​x​ i​​]​  = 
​μ​0​​​(​x​ i​​)​ + E​​[​w​i​​ | ​x​ i​​]​ ′ ​ ​γ​0​​​ under the semi-linear conditional mean structure. Therefore, 
from a point estimation and visualization perspective, residualized binscatter is not 
recommended for empirical work.

Second, from the perspective of assessing linearity or other shape features of 
the regression functions, the residualized binscatter is also not recommended. If 
​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​  = ​ μ​0​​​(​x​ i​​)​ + ​w​ i​ ' ​ ​γ​0​​​, with ​​μ​0​​​(x)​​ a linear function of ​x​, then the residualized 
binscatter plot will appear linear (for sufficiently large ​n​ and an appropriate choice 
of ​J​). However, linearity of the regression functions is only sufficient, not neces-
sary: for some nonlinear ​​μ​0​​​(​x​ i​​)​​ the plot will appear linear, while for other nonlinear 
​​μ​0​​​(​x​ i​​)​​ it will appear nonlinear. Thus, relying on residualized binscatter to assess lin-
earity is not recommended because researchers may incorrectly conclude that ​​μ​0​​​(​x​ i​​)​​ 
(and hence ​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​  = ​ μ​0​​​(​x​ i​​)​ + ​w​ i​ ′ ​ ​γ​0​​​ for some value of ​​w​i​​​) is linear from visual 
inspection or informal testing, thereby rendering subsequent empirical results based 
on a parametric linear regression potentially misleading.

Section SA-1.1 in the online Appendix presents two simple parametric examples 
illustrating the potential biases introduced by residualized binscatter. The first exam-
ple considers a Gaussian polynomial regression model, where ​​μ​0​​​(x)​  = ​ x​​  m​​ for some 
​m  ∈  ℕ​, ​d  =  1​, and ​​​(​y​ i​​, ​x​ i​​, ​w​ i​​)​ ′ ​  ∼  Normal​, and shows precisely how the differ-
ent parameters underlying the model can change the shape of ​​μ​0​​​(x)​​ as well as the 
concentration of ​​x​ i​​ − L​(​x​ i​​ | ​w​i​​)​​, thereby affecting visually and formally the “shape” 
and “support” of (2). The second example considers ​​μ​0​​​(x)​​ unrestricted, ​d  =  1​, 
​​w​ i​​  ∼  Bernoulli​, and ​​x​ i​​ | ​w​ i​​  =  0  ∼  Uniform​ and ​​x​ i​​ | ​w​ i​​  =  1  ∼  Uniform​ with dis-
joint supports, and shows how residualized binscatter can turn a nonlinear ​​μ​0​​​(x)​​ 
into a linear function in (2) with incorrect support. These analytical examples com-
plement our empirical applications (see Figure  2 and Figure  6), which illustrate 
with real data the detrimental effects of employing residualized binscatter for under-
standing the true form of the regression function relating the outcome ​​y​ i​​​ to ​​x​ i​​​ and ​​w​i​​​.

B. Covariate-Adjusted Binscatter

With only bivariate data ​​(​y​ i​​, ​x​ i​​)​​, the binscatter (1) naturally provides (a visualiza-
tion of) an estimate of the conditional mean function, ​​υ​0​​​(​x​ i​​)​  =  E​[​y​ i​​ | ​x​ i​​]​​, which has 
a straightforward interpretation. Controlling for additional covariates complicates 
interpretation: we want to visually assess how ​​y​ i​​​ and ​​x​ i​​​ relate while “controlling” for ​​
w​i​​​ in some precise sense. There is not a universal answer to this problem, and the 
empirical literature employing binscatter methods is usually imprecise.

Motivated by (1), a more principled way to incorporate the covariates ​​w​i​​​ into the 
binscatter is via semiparametric partially linear regression, as is commonly done in 
applied econometrics and program evaluation (Abadie and Cattaneo 2018; Angrist 
and Pischke 2008; Wooldridge 2010). We define the covariate-adjusted binscatter as

(3)	​​ μ ˆ ​​(x)​  = ​ b ˆ ​​​(x)​ ′ ​ ​β ˆ ​, ​ [​ ​β ˆ ​​ 
​γ ˆ ​

​]​  = ​  arg min​ 
β∈​ℝ​​ J​,γ∈​ℝ​​ d​

​​ ​ ∑ 
i=1

​ 
n

  ​​ ​​[​y​ i​​ − ​b ˆ ​​​(​x​ i​​)​ ′ ​ β − ​w​ i​ ′ ​ γ]​​​ 
2
​.​
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In this paper we take the semi-linear covariate-adjusted binscatter implementation 
(3) as the starting point of analysis, and thus view ​​ϒ ˆ ​​(​x​ i​​, ​w​i​​)​  = ​ μ ˆ ​​(​x​ i​​)​ + ​w​ i​ ′ ​ ​γ ˆ ​​ as the 
plug-in estimator of

(4)	 ​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​  = ​ μ​0​​​(​x​ i​​)​ + ​w​ i​ ′ ​ ​γ​0​​  = ​ ϒ​0​​​(​x​ i​​, ​w​i​​)​,​

where we assume the usual identification restriction that ​E​[var​(​w​i​​ | ​x​ i​​)​]​​ is pos-
itive definite. The imposed additive separability between ​​x​ i​​​ and ​​w​i​​​ of the condi-
tional mean function follows standard empirical practice, but affects interpretation 
in certain cases. Our theoretical results continue to hold under misspecification of 
​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​​, provided the probability limit of ​​ϒ ˆ ​​(​x​ i​​, ​w​i​​)​​ is interpreted as a 
best mean square approximation of ​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​​ using functions of the form  
​g​(x, w)​  =  μ​(x)​ + w′ γ​. More precisely, under regularity conditions, the best mean 
square approximation would be ​Proj​(​y​ i​​ | ​x​ i​​, ​w​i​​)​  = ​ μ​ 0​ ⋆​​(​x​ i​​)​ + ​w​ i​ ′ ​ ​γ​ 0​ ⋆​​ with

	​ ​μ​ 0​ ⋆​​(​x​ i​​)​  =  E​[​y​ i​​ | ​x​ i​​]​ − E​​[​w​i​​ | ​x​ i​​]​ ′ ​ ​γ​ 0​ ⋆​

and

	​ γ​ 0​ ⋆​  = ​​ {E​[var​(​w​i​​ | ​x​ i​​)​]​}​​​ 
−1

​ E​[cov​(​w​i​​, ​y​ i​​ | ​x​ i​​)​]​.​

In particular, ​​μ​ 0​ ⋆​​(​x​ i​​)​  = ​ μ​0​​​(​x​ i​​)​​ and ​​γ​ 0​ ⋆​  = ​ γ​0​​​ if (4) holds.
We adopt the semi-linear structure (4) throughout the paper because it is often 

invoked (explicitly or implicitly) for interpretation in empirical work. Cattaneo 
et al. (2023b) generalize binscatter methods to settings beyond the semi-linear con-
ditional mean, including quantile regression, other nonlinear models such as logistic 
regression, and first-order interactions with a discrete covariate (e.g., a subgroup 
indicator). Those generalizations allow for a richer class of semiparametric param-
eters of interest and associated binscatter methods.

Given the working model (4), it remains to determine the (functional) parameter 
of interest. For visualization, a natural choice is a partial mean effect:

(5)	 ​​ϒ​0​​​(x)​  = ​ ϒ​0​​​(x, E​[​w​i​​]​)​  = ​ μ​0​​​(x)​ + E​​[​w​i​​]​ ′ ​ ​γ​0​​,​

which captures the average effect of ​​x​ i​​​ on ​​y​ i​​​ for units with covariates ​​w​i​​​ at their aver-
age value ​E​[​w​i​​]​​, and thus gives an intuitive notion of the mean relationship of ​​x​ i​​​ and ​​
y​ i​​​ after controlling for covariates ​​w​i​​​ at their average values. The plug-in estimator is

(6)	 ​​ϒ ˆ ​​(x)​  = ​ μ ˆ ​​(x)​ + ​w – ​′ ​γ ˆ ​​,

with ​​w – ​  = ​ (1/n)​​∑ i=1​ n  ​​ ​w​i​​​.
The structure imposed and the parameter considered are not innocuous, but lead 

to several advantages over other options. First, the target parameter in (5) has a 
natural partial mean interpretation because ​​ϒ​0​​​(x)​  = ​ ∫  ​ 

 
​​​ϒ​0​​​(x, w)​dF​(w)​  = ​ μ​0​​​(​x​ i​​)​ + 

E​​[​w​i​​]​ ′ ​ ​γ​0​​​, where ​F​(w)​  =  Pr​(​w​i​​  ≤  w)​​ is the marginal distribution function of the 
covariates. In addition, if ​​w​i​​​ is mean independent of ​​x​ i​​​, that is, if ​E​[​w​i​​ | ​x​ i​​]​  =  E​[​w​i​​]​​, 
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then ​​υ​0​​​(​x​ i​​)​  =  E​[​y​ i​​ | ​x​ i​​]​  =  E​[E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​ | ​x​ i​​]​  = ​ μ​0​​​(​x​ i​​)​ + E​​[​w​i​​ | ​x​ i​​]​ ′ ​ ​γ​0​​  = ​ ϒ​0​​​(​x​ i​​)​​. For 
example, if ​​x​ i​​​ is a randomly assigned treatment dose and ​​w​i​​​ are preintervention 
covariates, then ​​ϒ​0​​​(x)​​ corresponds to the dose-response average causal effect.

Second, ​​ϒ​0​​​(x)​​ matches the goal of examining potential nonlinearities (and other 
features) only along the ​​x​ i​​​ dimension. The goal in a binscatter analysis is to control 
for ​​w​i​​​, not to allow for (or discover) heterogeneity along these variables. This is why 
the covariates ​​w​i​​​ are typically controlled for linearly, and without interactions with ​​
x​ i​​​, in the post-visualization regression analysis.

Third, ​​ϒ​0​​​(x)​​ has practical advantages. To see why, consider the alternative of 
estimating the fully flexible conditional mean, ​E​[​y​ i​​ | ​x​ i​​, ​w​i​​]​​, and then integrating over 
the marginal distribution of ​​w​i​​​. Although we would avoid imposing any structure 
on the conditional mean function, this approach would be impractical in common 
empirical settings as it would require nonparametric estimation in many dimen-
sions. Taking the case of our running example to illustrate, AGNS control for 
four continuous variables, 49 state fixed effects, and 60 year fixed effects, so that 
​dim​(​w​i​​)​  =  113​. Furthermore, even when the partially linear model is adopted, 
there may still be a curse of dimensionality when interest lies in ​​μ​0​​​(x)​​ because 
​​υ​0​​​(​x​ i​​)​  = ​ μ​0​​​(​x​ i​​)​ + E​​[​w​i​​ | ​x​ i​​]​ ′ ​ ​γ​0​​​, implying that the potentially high-dimensional 
conditional expectation ​E​[​w​i​​ | ​x​ i​​]​​ needs to be estimated. For example, in AGNS 
this would require fitting 113 preliminary nonparametric regressions to estimate 
​E​[​w​i​​ | ​x​ i​​]​​.

Finally, because ​​ϒ​0​​​(x)​​ is a special case of the more general partial mean 
​x  ↦ ​ ϒ​0​​​(x, w)​  = ​ μ​0​​​(x)​ + w′ ​γ​0​​​ for some fixed value ​w​, it is possible to use other 
choices for the evaluation point ​w​. For example, setting the discrete components 
of ​w​ to a base category (such as zero) is a natural alternative. The choice of ​w​ will 
affect the interpretation of the estimand and the statistical properties of the estima-
tor: see Section SA-1.2 in the online Appendix for more discussion. In the remain-
der of the paper, we focus on ​​ϒ​0​​​(x)​​, but our theoretical results cover other choices 
of the evaluation point ​w​ (see Section V and the online Appendix).

Figure 2 showed how the results can change when using the correct and incorrect 
residualization (recall that panels A and B use the incorrect residualization). First, 
in panel A of Figure 2 the shape does not appear linear. Second, panel B of Figure 2 
shows the extreme compression of the support of the estimate using the incorrect 
residualization by restoring the proper scale. This generally comes about because 
the variability of both the dependent and independent variables of interest have been 
overly suppressed. Finally, panel C shows our estimator ​​ϒ ˆ ​​(x)​​ defined in (6), using 
the correct residualization (3). We can observe a much clearer shape of the estimate 
of the conditional expectation. In this case our methods give stronger visual support 
for the linear regression used by AGNS, in contrast to the apparent nonlinearity in 
the original binscatter. It is important to remember that although binscatters such as 
Figure 2 visually resemble conventional scatter plots of a dataset, the plotted dots 
are actually a point estimate of a function (though in the case of panels A and B of 
Figure 2, not necessarily a useful function, see (2)).

We can also accommodate covariates in the fixed-​J​ case in a principled way. In 
this case, the estimator ​​ϒ ˆ ​​(x)​​ remains the same but the estimand, ​​ϒ​0​​​(x)​​, is replaced 
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by its fixed-​J​ analogue: ​​Ξ​  0​​  = ​​ (​Ξ​  0​​​(1)​, ​Ξ​  0​​​(2)​, …, ​Ξ​  0​​​(J)​)​ ′ ​​ with ​​Ξ​  0​​​( j)​  =  b​​(x)​ ′ ​ ​β​J​​ + 
E​​[​w​i​​]​ ′ ​ ​γ​J​​​ for ​x  ∈ ​ ​j​​​ with

	​ ​[​ 
​β​J​​​ ​γ​J​​

​]​  = ​  arg min​ 
β∈​ℝ​​ J​,γ∈​ℝ​​ d​

​​ E​[​​(​y​ i​​ − b​​(​x​ i​​)​ ′ ​ β − ​w​ i​ ′ ​ γ)​​​ 
2
​]​​,

where ​b​(x)​  = ​​ [​1​​​1​​​​​(x)​, ​1​​​2​​​​​(x)​, …, ​1​​​J​​​​​(x)​]​ ′ ​​. Under mild regularity conditions, 
as the number of bins increases, each bin becomes smaller and thus the fixed-​J​ 
parameter ​​Ξ​  0​​​( j)​​ approximates ​​ϒ​0​​​(x)​​ for ​x  ∈ ​ ​j​​​ for all ​j  =  1, 2, …, J​ uniformly 
​​max​1≤ j≤J​​ ​sup​x∈​​j​​​​ ​|​Ξ​  0​​​( j)​ − ​ϒ​0​​​(x)​|​  →  0​ as ​J  →  ∞​. A small number of bins in finite 
samples, however, can make these parameters quite different due to misspecification 
errors induced by the local constant approximation within bins.

II.  Choosing the Number of Bins

The final element of the binscatter estimator to formalize is the choice of ​J​, 
the number of bins. It is common to encounter applications of binscatter where ​
J  =  JFIX​ for a fixed natural number ​JFIX​​​, regardless of the data features. For 
example, the default in the Stata packages binscatter and binscatter2 is ​JFIX= 20,​  
while AGNS used ​JFIX =  100​. As already mentioned, from a fixed ​J​ perspective, 
the canonical binscatter (1) estimates ​​ξ​ 0​​​ and the covariate-adjusted binscatter 
(3) estimates ​​Ξ​  0​​​, neither of which may be the parameter of interest in a specific 
application. For example, the two parameters ​​ξ​0​​​( j)​  =  E​[​y​ i​​ | ​x​ i​​  ∈ ​ ​j​​]​​ and ​​υ​0​​​(x)​​ for ​
x  ∈ ​ ​j​​​ can lead to substantially different interpretations from both statistical and 
economic perspectives within bin ​​​j​​​. Furthermore, when comparing across bins, 
​​(​ξ​0​​​( j)​ : j  =  1, 2, …, J)​​ can be substantially different from ​​(​υ​0​​​(x)​ : x  ∈  )​​. The 
choice of the tuning parameter ​J​ determines the interpretation of the binscatter plot 
and estimand. In this section, we illustrate these concepts and discuss the choice of ​
J​ in practice.

We view binscatter as a sequence of approximating models indexed by ​J​, where 
the larger ​J​ (more bins) is, the less bias but more variance the estimator will exhibit. 
In other words, we view binscatter as most useful when the focus is on recovery of ​​
υ​0​​​(x)​​ or ​​ϒ​0​​​(x)​​, allowing us to visualize and conduct inference on those unknown 
functions. It is only by recovering ​​υ​0​​​(x)​​ or ​​ϒ​0​​​(x)​​ that we can answer substantive 
questions regarding functional form or shape restrictions. In what is perhaps the 
leading case, if we wish to use a binscatter plot to precede a linear regression, then 
our interest is in whether ​​υ​0​​​(x)​​ or ​​ϒ​0​​​(x)​​ is linear, so we must recover the true func-
tion. Recovering the coarsened version, as with a fixed ​J  =  JFIX​, is not sufficient. 
The same reasoning applies to any statement regarding other shape constraints such 
as whether the relationship is monotonic or convex.

Consistent nonparametric estimation of ​​υ​0​​​(x)​​ or ​​ϒ​0​​​(x)​​ requires ​J​ to diverge with 
the sample size, but neither too rapidly nor too slowly. To remove the approxima-
tion bias, a sufficiently large ​J​ is required to overcome the limited flexibility of 
the constant fit within bins: intuitively, as ​J​ diverges, the bin width collapses, and 
​​ξ​0​​​( j)​  =  E​[​y​ i​​ | ​x​ i​​  ∈ ​ ​j​​]​  ≈ ​ υ​0​​​(x)​​ for ​x  ∈ ​ ​j​​​ because the width of the bin ​​​j​​​ shrinks 
as ​J​ increases. However, the variance of the estimator increases with ​J​ because vari-
ance is controlled by the bin-specific sample sizes, which are roughly ​n/J​. Thus, 
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as is familiar in nonparametric estimation, we face a bias-variance trade-off when 
choosing ​J​. Figure 4 illustrates this bias-variance trade-off in our running applica-
tion. In panel A we use ​𝙹  =  5​. If we consider this choice as fixed, we can use these 
results to, for example, compare the productivity of those subject to the highest 
quintile of all tax rates on high earners to those in areas where taxes on high earn-
ers are in the lowest quintile. But for the purpose of nonparametric estimation and 
inference, the estimator is over smoothed: the number of bins is too small to remove 
sufficient bias. At the other extreme, panel C uses 50 bins, and the estimator is under 
smoothed (too wiggly) to provide a reliable visualization of the conditional mean.

A wide range of choices for ​J​ will, in large sample theory, ensure that both bias 
and variance are adequately controlled and thus yield a consistent estimator and 
valid distributional approximation. However, such rate restrictions are not informa-
tive enough to guide practice. It is therefore important to have tight guidance for 
empirical research. To accomplish this, we develop a selector for ​J​ that is optimal in 
terms of integrated mean square error (IMSE). As is standard in nonparametrics, the 
IMSE-optimal ​J​ balances variance and (squared) bias, resulting in

(7)	 ​​J​ IMSE​​  = ​​ ⌈​​​​(​ 2 ​​n​​ _ ​​n​​
 ​)​​​ 

1/3
​ ​n​​ 1/3​​⌉​​​.​

The terms ​​​n​​​ and ​​​n​​​ capture the asymptotic variance and (squared) bias of the bin-
scatter, respectively. We give complete expressions in the online Appendix. All that 
matters at present is that (i) both are generally bounded and bounded away from 
zero under minimal assumptions, (ii) the variance accounts for heteroskedasticity 
and clustering, and (iii) both incorporate the additional covariates appropriately, 
so that the optimal ​J​ depends on the presence of ​​w​i​​​. A formal IMSE expansion is 
discussed in Section V and given in Theorem SA-3.4 in the online Appendix, along 
with a uniform consistency result in Corollary SA-3.1, which has the same rate up 
to a ​log​(J)​​ factor. A feasible version, ​​​J ˆ ​​IMSE​​​, is straightforward to implement. Details 
are given in Section SA-4 in the online Appendix.
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Figure 4. Choice of ​J​ 

Notes: This figure illustrates the role of the choice of ​J​ using data from Akcigit et al. (2022). The dependent vari-
able, independent variable, and controls are the same as in Figure 2. The left and right plots show a binned scatter 
plot with ​J  =  5​ and ​J  =  50​, respectively. The middle plot shows the binned scatter plot using the optimal choice 
of ​J  =  11​ based on a cluster-robust variance estimator with two-way clustering by year and state × five-year 
period. Binscatter estimates are based on weights of each state’s 1940 population count.
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The formula for ​​J​ IMSE​​​ intuitively reflects the trade-off as depicted in Figure 4. If 
the data are highly variable ​​​n​​​ will be large, driving down ​​J​ IMSE​​​, so that each bin has 
a large sample size. On the other hand, if ​​μ​0​​​(x)​​ is highly nonsmooth, ​​​n​​​ will be large, 
and more bins are required to adequately remove bias. Panel B of Figure 4 shows 
our feasible IMSE-optimal choice in the data of AGNS, where we find ​​​J ˆ ​​IMSE​​  =  11​. 
With this choice, we obtain a visualization and optimal nonparametric estimation of ​​
μ​0​​​(x)​​ and ​​ϒ​0​​​(x)​​. We will also base our uncertainty visualization and quantification 
around this implementation, to ensure validity, as we detail in the next section.

Even if a fixed ​J  =  𝙹​ is chosen for an application, the data-driven choice ​​​J ˆ ​​IMSE​​​ 
can provide a useful benchmark to understand better the bias-variance trade-off 
underlying the binscatter implementation. For example, choosing a ​𝙹​ that is much 
larger than ​​​J ˆ ​​IMSE​​​ will yield a binscatter that is likely to exhibit considerably more 
variability than bias, given the data generating process. Thus, the data-driven 
choice ​​​J ˆ ​​IMSE​​​ can help applied researchers discipline and improve their fixed ​J  =  𝙹​ 
binscatter implementations.

In the remainder of the paper we focus on the covariate-adjusted binscatter esti-
mate (6) implemented using ​​J​ IMSE​​​, or its fixed-​J​ analogue when appropriate for con-
creteness. Our technical results in the online Appendix accommodate other choices 
of ​J​ as a function of the sample size with and without covariate-adjustment, thereby 
covering, in particular, the canonical binscatter estimate (1) implemented using its 
corresponding ​​J​ IMSE​​​. See Section V for a brief overview.

III.  Quantifying Uncertainty

We provide both visualization and analytical tools to capture the uncertainty 
underlying the mean estimate ​​ϒ ˆ ​​(x)​  = ​ μ ˆ ​​(x)​ + ​w – ​′ ​γ ˆ ​​, valid simultaneously for all 
values of ​x  ∈  ​. This uniformity over ​x  ∈  ​ is required both to answer the sub-
stantive questions of interest in empirical work and to provide a correct visualization 
of the uncertainty for the function ​​ϒ​0​​​(x)​​. Uniform inference theory is a major tech-
nical contribution of this paper (see Section V and the online Appendix). Confidence 
bands directly enhance the visualization capabilities of binned scatter plots by sum-
marizing and displaying the uncertainty around the estimate ​​ϒ ˆ ​​(x)​​. Loosely speaking, 
a confidence band is simply a confidence “interval” for a function, and is interpreted 
much like a traditional confidence interval.

A typical confidence interval for a single parameter (such as a mean or regression 
coefficient) is a range between two endpoint values that, in repeated samples, covers 
the true parameter with a prespecified probability. The width of a confidence interval 
increases with the uncertainty in the data. Intuitively, the interval shows the val-
ues of the parameter that are compatible with the data. For example, if the interval 
contains zero, then zero is a plausible value for the true parameter. That is, the null 
hypothesis of zero cannot be rejected.

A confidence band is essentially the same, but as a function of ​x​, and can there-
fore be directly plotted. It is the area between two endpoint functions that contains 
all the functions ​​ϒ​0​​​(x)​​ that are compatible with the data for some preset proba-
bility. Matching the use of a confidence interval, the band can be used to evaluate 
hypotheses. For example, if the band contains a linear function, then linearity is a 
plausible form for ​​μ​0​​​(x)​​ (as in Figure 3, panel B). That is, the null hypothesis that ​x​ 
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enters ​​ϒ​0​​​(x)​​ linearly cannot be rejected. The same logic can be used for other shape 
restrictions: if the band contains monotonic functions, then monotonicity of ​​ϒ​0​​​(x)​​ 
is consistent with the data. This is illustrated below. Thus, adding a confidence band 
is an important step in any binscatter, to visually assess and communicate the uncer-
tainty, just as the addition of standard errors is an important step and good empirical 
practice in any regression analysis. The reader can see not only the estimate of the 
relationship (the “dots” of the binscatter), but also the uncertainty surrounding this 
estimate.

The construction and theory of our confidence bands also intuitively match 
standard confidence intervals. First, our confidence bands reflect the underlying 
heteroskedastic variance in the data uniformly over the support of ​​x​ i​​​. While the 
visualizations do reflect these quantities, they are not directly shown or formally 
accounted for. This is analogous to how a simple confidence interval for the mean 
reflects only estimation uncertainty about the parameter, even though the interval 
depends on the variance of the data. For visualizing the “spread” and detecting out-
liers conditional quantiles may be more useful (see Cattaneo et al. 2023b). Second, 
the upper/lower endpoint functions are given by the point estimate plus/minus a 
critical value times a standard error. In this way, the width of the band at any point 
depends on the overall uncertainty and the heteroskedasticity.

Before presenting the confidence band formulation, we must be precise about the 
object we intend to cover with the confidence band. If ​J​ is taken as fixed, the param-
eter is ​​Ξ​  0​​​, and inference is parametric because there is no misspecification bias for 
that parameter. However, as explained before, in many applications the parameter 
of interest will not be ​​Ξ​  0​​​ but rather ​​ϒ​0​​​(x)​​, leading to unavoidable misspecification 
errors introduced by the binscatter approximation to the true function. Thus, we 
focus on a band to cover the function ​​ϒ​0​​​(x)​​ given in (5). It is only in this case that 
the band can be used to assess properties of the function of interest. Testing linear-
ity (prior to a regression analysis) is the most common use case, but binned scatter 
plots are also utilized to assess other shape restrictions (see, for example, Shapiro 
and Wilson 2021 or Feigenberg and Miller 2021). Regardless of the application, the 
band must be constructed from a nonparametric perspective (i.e., assuming ​J​ diverg-
ing to account explicitly for misspecification error).

To ensure validity of the nonparametric confidence band, we will use ​​J​ IMSE​​​ given 
in (7) together with debiasing to remove the first-order nonparametric misspecifica-
tion bias introduced by employing the IMSE-optimal binscatter. More specifically, 
we employ a simple application of the standard robust bias correction method for 
debiasing (Calonico, Cattaneo, and Farrell 2018; Cattaneo, Farrell, and Feng 2020; 
Calonico, Cattaneo, and Farrell 2022). Section V discusses the theoretical founda-
tions, and the online Appendix provides all the details, while here we describe the 
key ideas heuristically. The confidence band for ​​ϒ​0​​​(x)​​ is

(8)	 ​​​I ˆ ​​RBC​​​(x)​  = ​ [​​ϒ ˆ ​​BC​​​(x)​ ± ​𝔠​RBC​​ ⋅ ​√ 
_______

 ​​Ω ˆ ​​RBC​​​(x)​/n ​]​,​

where ​​​ϒ ˆ ​​BC​​​(x)​​ denotes the covariate-adjusted debiased binscatter estimator of 
​​ϒ​0​​​(x)​​, ​​​Ω ˆ ​​RBC​​​(x)​/n​ is its variance estimator, and ​​𝔠​RBC​​​ is the appropriate quantile 
to make the confidence band uniformly valid. The exact formulas are given in 
Section  V. Intuitively, ​​​ϒ ˆ ​​BC​​​(x)​  = ​ ϒ ˆ ​​(x)​ − ​bias ˆ ​​ (​ϒ ˆ ​​(x)​)​​, where ​​bias ˆ ​​ (​ϒ ˆ ​​(x)​)​​ denotes 
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the bias correction, and ​​​Ω ˆ ​​RBC​​​(x)​/n  = ​ var ˆ ​​ (​​ϒ ˆ ​​BC​​​(x)​)​​ is an estimator of the vari-
ance of ​​​ϒ ˆ ​​BC​​​(x)​​ not just of ​​ϒ ˆ ​​(x)​​. The key idea underlying the robust bias correc-
tion method is that debiasing introduces additional estimation uncertainty that must 
be incorporated explicitly into the standard error formula. While there are many 
ways of debiasing the IMSE-optimal point estimator ​​ϒ ˆ ​​(x)​​, a simple one proceeds 
by fitting a constrained linear regression within each bin where the estimated coeffi-
cients are restricted to ensure that the binscatter estimator is continuous; that is, the 
constraints force the piecewise linear fits within bins to be connected at the bound-
ary of the bins. This construction ensures that the associated confidence bands are 
also continuous. More details are given in Section V and in the online Appendix.

Our results rely on standard regularity conditions for valid uniform distribution the-
ory with robust bias correction discussed in Section V, and the online Appendix gives 
results under more general, and in some cases weaker, conditions. More precisely, for 
​α  ∈ ​ (0, 1)​​, we show that

(9)	 ​Pr​(​ϒ​0​​​(x)​  ∈ ​​ I ˆ ​​RBC​​​(x)​, ∀ x  ∈    )​  →  1 − α​,

giving formal validity, that is, in repeated samples the area covers the true function ​​
ϒ​0​​​(x)​​ with a prespecified probability ​1 − α​. Recall that ​​ϒ​0​​​(x)​​, by definition, uses 
the mean of ​​w​i​​​; other possible choices and their impact on the confidence band are 
discussed in Section SA-1.2 of the online Appendix.

The result in (9) shows how to add valid confidence bands to any binned scatter 
plot. This visual assessment of uncertainty is an important step in any analysis. Our 
discussion focused on the nonparametric uncertainty quantification when employing 
the IMSE-optimal binscatter constructed using ​J  = ​ J​ IMSE​​​ bins and debiasing using 
within-bin linear regression, but our theoretical results remain valid more generally 
for other choices of ​J​ and debiasing approaches. Furthermore, the bands continue to 
be valid when ​J  =  𝙹​ is fixed provided the estimand ​​ϒ​0​​​(x)​​ is switched to its fixed-​
J​ analogue ​​Ξ​  0​​​. In this latter case, robust bias correction is not technically needed 
because the misspecification error is removed by assumption (i.e., by redefining the 
parameter of interest).

If ​​x​ i​​​ is discrete, or the researcher is content with the coarsened version of the 
parameter ​​Ξ​  0​​​ under a fixed-​J​ approach, our results provide (uniformly) valid infer-
ence for the covariate-adjusted outcome mean conditional on falling in each bin. 
This amounts to adding pointwise confidence intervals to a plot—which is common 
practice in many uses—and making corrections for multiple testing. These can be 
used directly to assess uncertainty about the mean for a masspoint of ​​x​ i​​​ (or within a 
given quantile range), but cannot be used to assess functional features of the regres-
sion function ​​ϒ​0​​​(x)​​ as a whole.

Figure 5 compares these two cases, fixed-​J​ versus large-​J​, using the data of AGNS. 
Panel A of Figure 5 shows confidence bands for ​𝙹  =  5​, with the interpretation of 
studying the conditional expectation of log patents given marginal tax rates in a spe-
cific quintile controlling for additional covariates (i.e., ​​Ξ​  0​​​). As we saw in  panel A 
of Figure 4, the point estimates are all relatively similar across quintiles and, in fact, 
we cannot rule out that all five conditional means are the same. This can be gleaned 
by the dashed horizontal line in panel A of Figure 5 which comfortably sits in all 
five shaded regions. In panel B of Figure 5 we consider inference on ​​ϒ​0​​​(x)​​ using 
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the optimal choice of ​J​ (as in Figures 3 and 4). We have already discussed that the 
confidence band is consistent with a linear relation between the variables. However, 
we can also highlight classes of functions that the confidence band excludes. The 
dashed horizontal line is set to the upper bound of the confidence band at the small-
est value of ​x​ in the support. We can immediately observe that the confidence band 
rules out any horizontal lines, i.e., we can reject that log patents have no relationship 
with marginal tax rates. This horizontal line is also a useful visual cue to evaluate 
the class of monotonically decreasing functions. Clearly, we can also reject a mono-
tonically decreasing relation between the two variables. Figure 5 illustrates that the 
use of confidence bands for investigating the attributes of the true functional form is 
simple and straightforward.

In addition to employing confidence bands for testing substantive hypotheses about ​​
ϒ​0​​​(x)​​ such as positivity, monotonicity, or concavity, we develop formal hypothesis 
testing based on canonical binscatter methods in the online Appendix for complete-
ness. These methods are also available in our companion software implementations 
(Cattaneo et al. 2023a), and can be used to complement the empirical analysis based 
on canonical binscatter discussed previously, offering potential power improvements 
as well as more precise econometric conclusions (e.g., formal p-values). Since using 
the confidence bands for testing is already a valid, easy, and intuitive economet-
ric methodology for empirical work employing canonical binscatter, we offer fur-
ther technical discussion of the companion formal hypothesis testing methods for 
parametric specification and shape restrictions in Cattaneo et al. (2023b), covering  
generalized binscatter methods based on both least squares and other loss functions 
(e.g., quantile or logistic regression).
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Figure 5. Quantifying Uncertainty: The Role of J

Notes: ​​This figure illustrates uniform confidence bands using data from Akcigit et al. (2022). The dependent vari-
able, independent variable, and controls are the same as in Figure 2. The left plot presents a confidence band for ​​
Ξ​  0​​​ whereas the right plot shows the confidence band for ​​ϒ​0​​​(x)​​. Binscatter estimates are based on weights of each 
state’s 1940 population count. Shaded regions denote 95 percent nominal confidence bands using a cluster-robust 
variance estimator with two-way clustering by year and state × five-year period.
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IV.  Another Empirical Illustration

As an additional empirical application we revisit Moretti (2021a), which exam-
ined the relation between the productivity of top inventors and high-tech clusters, 

Panel A. Raw scatter plot Panel B. Fig. 4 of Moretti (2021)
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Figure 6. Relation between Productivity of Top Inventors and High-Tech Clusters

Notes: This figure uses the data from Moretti (2021). The dependent variable is the log number of patents per inven-
tor per year, and the independent variable is the log cluster size. The top-left plot shows a raw scatter plot of the data. 
The top-right plot replicates Figure 4 in Moretti (2021) which controls for year, research field, and city effects while 
the middle-left plot shows the implied estimated conditional mean function (2.2). The incorrect residualization ver-
sus the semi-linear specification introduced in Section I (both for 40 bins) is shown in the middle-right chart. The 
bottom-left chart uses the optimal choice of ​J​ introduced in Section II. The bottom-right chart again uses the optimal 
choice of ​J​ but for the main specification of Moretti (2021, Table 3, column 8). Shaded regions denote 95 percent 
confidence bands using a cluster-robust variance estimator with clustering by city × field.
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where clusters are defined as activity in a city of a specific research field (e.g., com-
puter scientists in Silicon Valley). The paper estimates an elasticity of number of 
patents in a year with respect to cluster size of 0.0676. The statistically significant 
positive relationship aligns with the empirical observation that increasingly large 
subsidies are being offered by states and localities for high-tech firms to relocate 
within their regions.

We begin our analysis with a raw scatter plot of the data (top-left panel of 
Figure 6). With close to one million observations, the scatter plot is both dense and 
uninformative. In the top-right plot we replicate Figure 4 in Moretti (2021a) which 
is a binned scatter plot controlling for year, research field, and city effects. It is intu-
itive to view and interpret this figure as one would a conventional scatter plot—a 
cloud of points with a regression line fit to the “data”—and we would conclude that 
there may be a positive but noisy relationship between these two variables. This 
interpretation is tempting, and indeed the very name “binscatter” invites this, but as 
previously discussed it is incorrect: the dots here are not data points but estimates of 
the conditional mean function.

This is emphasized in panel C of Figure 6 which is the implied estimate of the 
conditional mean function. This plot is formally identical to the figure in the original 
paper (Figure 6, panel B), but visually very different; moreover, assuming that the 
wiggly step function is well-approximated by a line seems inappropriate. However, 
there are two issues here: the incorrect residualization has been performed and 
the number of bins is too large, leading to substantial undersmoothing. Panel D 
of  Figure 6 addresses the former issue, applying our corrected approach to covari-
ates overlaying the incorrectly residualized version now at the correct scale, making 
the difference starker. Correctly adjusting for covariates presents a much clearer 
picture of the empirical conclusions to be drawn from the data than do Figure 6,  
panels B and C.

This visual pattern is even more apparent in the bottom-left plot where we uti-
lize the IMSE-optimal choice of ​J​ (​​J​ IMSE​​  =  18​). Now, the point estimate of the 
conditional expectation function is thrown into sharper relief. For smaller cluster 
sizes, the conditional expectation appears roughly flat whereas for larger cluster 
sizes, the estimate rises sharply. This gives the appearance of a nonlinear relation 
between productivity and high-tech clusters. We can formalize this conclusion by 
utilizing the associated confidence band also shown in Figure 6, panel E. We clearly 
reject the null of no relationship between the variables as the confidence band does 
not contain a horizontal line. Furthermore, we can also clearly reject linearity as 
no linear function can be wholly enveloped by the confidence band. However, we 
fail to reject convexity given the shape of the confidence band. Taken in sum, these 
results suggest a nonlinear relation between the number of patents and cluster size. 
Panel F of Figure 6  replicates this analysis for the main specification in Moretti 
(2021a, Table 3, column 8) which includes 11 different fixed effects. We draw the 
same conclusions, with strong evidence against a linear functional form. This added 
nuance to the results of Moretti (2021a) obtained through our new tools is not incon-
sequential. Taken at face value, it would imply that states and localities which have 
only small clusters of inventors might have to offer very generous incentives in order 
to grow their cluster size sufficiently large to generate the positive agglomeration 
effects presented in Moretti (2021a).
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V.  Theoretical Foundations

The online Appendix reports our novel theoretical results for partitioning-based 
estimators with semi-linear covariate-adjustment and random binning based on 
empirical quantiles, which provide all the necessary econometric tools to formally 
study canonical and covariate-adjusted binscatter least squares methods. This sec-
tion overviews those results, and discusses them in connection with the previous 
sections.

We study a covariate-adjusted estimator with more flexible basis functions allow-
ing for polynomial fitting within bins and smoothness constraints across bins. The 
​p​-th order polynomial, ​​(s − 1)​​-times continuously differentiable, covariate-adjusted 
extended binscatter estimator is

(10)	 ​​​μ ˆ ​​​ ​(v)​​​(x)​  = ​​ b ˆ ​​ p,s​ 
​(v)​​​​(x)​ ′ ​ ​β ˆ ​, ​ [​ ​β ˆ ​​ 

​γ ˆ ​
​]​  = ​ arg min​ 

β,γ
​ ​ ​  ∑ 

i=1
​ 

n

  ​​ ​​[​y​ i​​ − ​​b ˆ ​​p,s​​​​(​x​ i​​)​ ′ ​ β − ​w​ i​ ′ ​ γ]​​​ 
2
​,

	 0  ≤  v, s  ≤  p.​

where ​​​b ˆ ​​p,s​​​(x)​  = ​​ T ˆ ​​s​​​[​b ˆ ​​(x)​ ⊗ ​​(1, x, …, ​x​​  p​)​ ′ ​]​​, ​​​T ˆ ​​s​​​ is a ​​[​(p + 1)​J − ​(J − 1)​s]​ × 
​(p + 1)​J​ matrix of linear restrictions ensuring that the ​​(s − 1)​​-th derivative 
of the estimate is continuous, ​⊗​ denotes the Kronecker product, and ​​g​​ ​(v)​​​(x)​  = 
​(​d​​  v​/d ​x​​ v​)​g​(x)​​. (See Section  SA-2 for further details.) For example, ​s  =  1​ returns 
a continuous but nondifferentiable function (​​​T ˆ ​​1​​​ constrains the polynomial fits 
within bins to be connected at the boundary of the bins), while ​s  =  0​ gives 
a discontinuous function (​​​T ˆ ​​0​​​ is the identity matrix). The form of ​​​T ˆ ​​s​​​ is given in 
the online Appendix, and it depends on the estimated quantiles. If ​p  =  0​ (forc-
ing ​s  =  v  =  0​), then (10) reduces to (3) because ​​​b ˆ ​​  0,0​​​(x)​  = ​ b ˆ ​​(x)​​ which is 
equivalent to the Haar basis or a zero-degree spline. The additional general-
ity of allowing for polynomial basis functions, beyond piecewise constant func-
tions, is useful for estimating derivatives of the function of interest (​v  >  0​), as 
well as for reducing the smoothing bias of the estimator. The online Appendix 
treats the general case ​0  ≤  v, s  ≤  p​, but in the paper we only consider ​s  =  p​, 
with ​p  =  0​ for binscatter estimation and ​p  ≥  1​ for inference, and thus we set 
​​​b ˆ ​​p​​​(x)​  = ​​ b ˆ ​​p,p​​​(x)​​ to simplify notation (and note that ​​b ˆ ​​(x)​  = ​​ b ˆ ​​  0​​​(x)​  = ​​ b ˆ ​​  0,0​​​(x)​​). More 
specifically, the implementations of robust bias correction discussed in Section III 
sets ​​(p, s, v)​  = ​ (1, 1, 0)​​.

The following assumption gives a simplified version of the conditions imposed 
in the online Appendix.

ASSUMPTION 1: The sample ​​(​y​ i​​, ​x​ i​​, ​w​ i​ ′ ​)​​, ​i  =  1, 2, …, n​, is i.i.d. and satisfies (4). 
The functions ​​μ​0​​​(x)​​ and ​E​[​w​i​​ | ​x​ i​​  =  x]​​ are ​​(p + 2)​​-times continuously differentia-
ble. The covariate ​​x​ i​​​ has a Lipschitz continuous density function ​​f ​X​​​(x)​​ bounded away 
from zero on the compact support ​​. The minimum eigenvalue of ​var​[​w​i​​ | ​x​ i​​  =  x]​​ 
is uniformly bounded away from zero. For ​​ϵ​i​​  = ​ y​ i​​ − ​μ​0​​​(​x​ i​​)​ − ​w​ i​ ′ ​ ​γ​0​​​, ​​​​σ​​ 2​​(x)​  = 
E​[​ϵ​ i​ 2​ | ​x​ i​​  =  x]​​ is Lipschitz continuous and bounded away from zero, and 
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​E​[∥​w​i​​​∥​​ 4​ | ​x​ i​​  =  x]​​, ​E​[​ϵ​ i​ 4​ | ​x​ i​​  =  x]​​, and ​E​[​ϵ​ i​ 2​ | ​x​ i​​  =  x, ​w​i​​  =  w]​​ are uniformly 
bounded, where ​∥ ⋅ ∥​ is the Euclidean norm.

Section  SA-3.1 presents new technical lemmas for random partitions based on 
empirical quantiles. Those results include general characterizations of the “regu-
larity” of the random partitioning scheme (Lemmas SA-3.1 and SA-3.2) and of the 
associated random basis functions (Lemmas SA-3.3 and SA-3.4). These results give 
sharp control on the underlying random binning scheme of binscatter methods.

Sections SA-3.2–SA-3.7 study large sample point estimation and distributional 
properties of the extended covariate-adjusted binscatter estimator. Preliminary tech-
nical results include: (i) technical lemmas for the Gram matrix (Lemma SA-3.5), 
asymptotic variance (Lemmas SA-3.6 and SA-3.7), approximation error (Lemma 
SA-3.8), and covariate adjustments (Lemma SA-3.9); (ii) stochastic linearization 
and uniform convergence rates (Theorem SA-3.1 and Corollary SA-3.1) and vari-
ance estimation (Theorem SA-3.2); and (iii) pointwise distributional approxima-
tion (Theorem SA-3.3). All these results explicitly account for the random binning 
scheme.

Using our new technical results, Section  SA-3.5 also establishes a density- 
weighted IMSE expansion of the binscatter estimator (Theorem SA-3.4). Letting ​

IMSE​[​​ϒ ˆ ​​​ ​(v)​​]​  = ​ ∫ 
 
​ 
 
​​E​[​​(​​ϒ ˆ ​​​ ​(v)​​​(x)​ − ​ϒ​ 0​ 

​(v)​​​(x)​)​​​ 
2
​ | ​x​ 1​​, …, ​x​ n​​, ​w​1​​, …, ​w​n​​]​ ​f ​X​​​(x)​𝑑x​, a sim-

plified version of our general result follows.

THEOREM 1 (IMSE): Let Assumption 1 hold, ​0  ≤  v  ≤  p​, ​J log​(J)​/n  →  0​, and 

​n  ​J​​ −4p−5​  →  0​. Then, ​IMSE​[​​ϒ ˆ ​​​ ​(v)​​]​  = ​ (​J​​ 1+2v​/n)​​​n​​​(p, s, v)​ + ​J​​ −2​(p+1−v)​​ ​​n​​​(p, s, v)​ + 
​o​   Pr​​​(​J​​ 1+2v​/n + ​J​​ −2​(p+1−v)​​)​​, where ​​​n​​​(p, s, v)​​ and ​​​n​​​(p, s, v)​​ are nonrandom, ​n​-vary-
ing bounded sequences (see Section SA-3.5).

Optimizing the leading terms over ​J​ gives the optimal choice ​​J​ IMSE​​​(p, s, v)​​, and 
specializing it to ​p  =  s  =  v  =  0​ gives (7). Feasible IMSE-optimal tuning param-
eter selection is discussed in Section SA-4. All these results explicitly account for 
the random binning scheme and the covariate adjustment.

Section SA-3.6 reports our most noteworthy novel technical result: a conditional 
strong approximation for the extended binscatter estimator, which circumvents a 
fundamental lack of uniformity of the random binning basis ​​​b ˆ ​​p​​​(x)​​, while still deliv-
ering a sufficiently fast uniform coupling, requiring only ​​J​​   2​/n  →  0​ (up to ​log​(n)​​ 
terms). In fact, if a subexponential moment restriction holds for ​​ϵ​i​​​, it suffices that ​
J/n  →  0​ (up to ​log​(n)​​ terms). Our rate conditions not only improve on previous 
results in the literature, but also allow for canonical binscatter (i.e., there exists a 
sequence ​J  →  ∞​ such that bias and variance are simultaneously controlled even 
when ​p  =  s  =  0​).

The starting point is the Studentized t-statistic that centers and scales the extended 
binscatter estimator ​​​ϒ ˆ ​​​ ​(v)​​​(x)​  = ​​ μ ˆ ​​​ ​(v)​​​(x)​ + 1​{v  =  0}​​w – ​′ ​γ ˆ ​​ of the extended parame-

ter of interest ​​ϒ​ 0​ 
​(v)​​​(x)​  = ​ μ​ 0​ 

​(v)​​​(x)​ + 1​{v  =  0}​E​​[​w​i​​]​ ′ ​ ​γ​0​​​. We index important objects 
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with ​p​ (recall that ​s  =  p​ in the paper, but the online Appendix treats the general 
case). We study the t-statistic

	​ ​T​ p​​​(x)​  = ​ 
​​ϒ ˆ ​​​ ​(v)​​​(x)​ − ​ϒ​ 0​ 

​(v)​​​(x)​
  _____________  

​√ 
______

 ​Ω ˆ ​​(x)​/n ​
 ​ ,​

where ​​Ω ˆ ​​(x)​  = ​​ b ˆ ​​ p​ 
​(v)​​​​(x)​ ′ ​ ​​Q ˆ ​​​ −1​ ​Σ ˆ ​ ​​Q ˆ ​​​ −1​ ​​b ˆ ​​ p​ 

​(v)​​​(x)​​, ​​Q ˆ ​  = ​ (1/n)​​∑ i=1​ n  ​​ ​​b ˆ ​​p​​​(​x​ i​​)​​​b ˆ ​​p​​​​(​x​ i​​)​ ′ ​​, and ​​Σ ˆ ​  = 
​(1/n)​​∑ i=1​ n  ​​ ​​b ˆ ​​p​​​(​x​ i​​)​​​b ˆ ​​p​​​​(​x​ i​​)​ ′ ​ ​​[​y​ i​​ − ​​b ˆ ​​p​​​​(​x​ i​​)​ ′ ​ ​β ˆ ​ − ​w​ i​ ′ ​ ​γ ˆ ​]​​​ 

2
​​. We seek a distributional approx-

imation for the entire stochastic process ​​(​T​ p​​​(x)​ : x  ∈    )​​ because this allows 
us to study the visualization and econometric properties of the entire binscatter 
fit ​​(​​ϒ ˆ ​​​ ​(v)​​​(x)​ : x  ∈    )​​ simultaneously. Using this strong approxima-
tion we can compute the critical values for valid confidence bands and 
hypothesis testing. Our approach gives a simple, tractable method for 
computing critical values based on random draws from the Gaussian 
distribution.

The randomness of the partition ​​Δ ˆ ​​ (which is inherited by the basis functions 
themselves) is not just ruled out by the assumptions of prior work, but rather it 
is not even possible to obtain a valid strong approximation for the entire stochas-
tic process ​​(​T​ p​​​(x)​ : x  ∈    )​​ exactly because this randomness causes uniformity to 
fail. As an alternative, we establish a conditional Gaussian strong approximation 
as the key building block for uniform inference. Heuristically, our strong approx-
imation begins by establishing the following two approximations uniformly over 
​x  ∈  ​:

	​ ​√ _ n ​​[​​ϒ ˆ ​​​ ​(v)​​​(x)​ − ​ϒ​ 0​ 
​(v)​​​(x)​]​ ​ ≈​ Pr​​ ​​ b ˆ ​​ p​ 

​(v)​​​​(x)​ ′ ​ ​​Q ˆ ​​​ −1​ ​  1 _ ​√ _ n ​ ​ ​ ∑ 
i=1

​ 
n

  ​​ ​​b ˆ ​​p​​​(​x​ i​​)​​ϵ​i​​​

​	​ ≈​d​​ ​​ b ˆ ​​ p​ 
​(v)​​​​(x)​ ′ ​ ​​Q ˆ ​​​ −1​ ​​Σ ˆ ​​​ 1/2​ ​N​ p+J​ ⋆ ​ ,​

where ​​N​ p+J​ ⋆ ​ ​ denotes a ​​(p + J)​​-dimensional standard Gaussian random vector, inde-
pendent of the data. The first approximation is a stochastic linearization (Theorem 
SA-3.1) and directly implies the variance formula ​​Ω ˆ ​​(x)​​. This step is reminiscent 
of standard least squares algebra. The second approximation corresponds to a con-
ditional coupling (Theorems SA-3.5 and SA-3.6). It is not difficult to show that  
​​Q ˆ ​​ and ​​Σ ˆ ​​ are sufficiently close in probability to well-defined nonrandom matrices in 
the necessary norm (Lemma SA-3.5 and Theorem SA-3.2). However, ​​​b ˆ ​​ p​ 

​(v)​​​(x)​​ fails 
to be close in probability to its nonrandom counterpart uniformly in ​x  ∈  ​ due 
to the sharp discontinuity introduced by the indicator functions entering the bin-
ning procedure. Nevertheless, inspired by the work in Chernozhukov, Chetverikov 
and Kato (2014a, b), our approach circumvents that technical hurdle by first devel-
oping a strong approximation that is conditionally Gaussian, retaining some of 
the randomness introduced by ​​Δ ˆ ​​, and then using such coupling to deduce a dis-
tributional approximation for specific functionals of interest (e.g., suprema); see 
Section SA-3.6 for details.
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We state the formal results in two steps: the first derives an infeasible strong 
approximation and the second shows that, given the data, a feasible version can be 
constructed.

THEOREM 2 (Feasible Strong Approximation): Let Assumption 1 hold and let 
​​{​a​   n​​ : n  ≥  1}​​ be a sequence of nonvanishing constants such that ​​n​​ −1/2​ J​​(log J)​​​ 2​ + 
​J​​ −1​ + n  ​J​​ −2p−3​  =  o​(​a​ n​ −2​)​​. Then, on a properly enriched probability space, there 
exists a standard Gaussian random vector ​​N​p+J​​​, of length ​p + J​, such that for any ​
ξ  >  0​,

	​ Pr​(​sup​ 
x∈

​ ​ ​|​T​ p​​​(x)​ − ​Z ​p​​​(x)​|​  >  ξ ​a​ n​ −1​)​  =  o​(1)​, ​ Z ​p​​​(x)​  = ​ 
​​b ˆ ​​ p​ 

​(v)​​​​(x)​ ′ ​ ​Q​ 0​ −1​ ​Σ​ 0​ 
1/2​
  ____________  

​√ 
_

 Ω​(x)​ ​
 ​ ​ N​p+J​​.​

Also, there exists a standard Gaussian random vector ​​N​ p+J​ ⋆ ​ ​, of length ​p + J​, inde-
pendent of the data ​D  = ​ {​(​y​ i​​, ​x​ i​​, ​w​ i​ ′ ​)​ : i  =  1, 2, …, n}​​, such that for any ​ξ  >  0​,

​Pr​(​sup​ 
x∈

​ ​ ​|​​Z ˆ ​​p​​​(x)​ − ​Z ​p​​​(x)​|​  >  ξ ​a​ n​ −1​ ​|​​ 𝐃)​  = ​ o​  Pr​​​(1)​,  ​​Z ˆ ​​p​​​(x)​  = ​ 
​​b ˆ ​​ p​ 

​(v)​​​​(x)​ ′ ​ ​​Q ˆ ​​​ −1​ ​​Σ ˆ ​​​ 1/2​
  ____________  

​√ 
____

 ​Ω ˆ ​​(x)​ ​
 ​ ​ N​ p+J​ ⋆ ​ .​

This result forms the basis of the inference tools proposed in our paper. In princi-
ple, we can now approximate the distribution of any functional of the t-statistic pro-
cess ​​T​ p​​​(x)​​ using a plug-in approach based on ​​​Z ˆ ​​p​​​(x)​​. This prescription is easy to put 
into practice, because it depends only on Gaussian draws and the already-computed 
elements ​​​b ˆ ​​p​​​(x)​​, ​​Q ˆ ​​, ​​Σ ˆ ​​, and ​​Ω ˆ ​​(x)​​, and therefore the process ​​​Z ˆ ​​p​​​(x)​​ is simple to simu-
late. For example, the distribution of ​​sup​x∈  ​​ ​|​T​ p​​​(x)​|​​ is well approximated by that of ​​
sup​x∈  ​​ ​|​​Z ˆ ​​p​​​(x)​|​​, conditional on the data, and we can use this to obtain critical values 
for testing or forming confidence bands.

However, and crucially for applied practice, one must choose ​J​ such that the 
approximation is valid. In addition, ideally, the choice of ​J​ would be optimal in 
some way and the resulting inference would be robust to small fluctuations in ​J​. The 
IMSE-optimal choice ​​J​ IMSE​​​(p, s, v)​​ cannot be directly used, as it is too “small” to 
remove enough bias for the t-statistic ​​T​ p​​​(x)​​ to be correctly centered. Feasible imple-
mentation of ​​J​ IMSE​​​(p, s, v)​​ would also require additional smoothness assumptions, 
rendering the resulting point estimator ​​​ϒ ˆ ​​​ ​(v)​​​(x)​​ suboptimal from a point estimation 
minimax perspective (Tsybakov 2009). Different approaches for tuning parame-
ter selection are available in the literature, including undersmoothing or ignoring 
the bias (Hall and  Kang 2001), bias correction (Hall 1992), robust bias correc-
tion (Calonico, Cattaneo, and  Farrell 2018, 2022), and Lepski’s method (Lepski 
and Spokoiny 1997; Birgé 2001). In this paper, we employ robust bias correction 
based on an IMSE-optimal binscatter, that is, without altering the partitioning 
scheme ​​Δ ˆ ​​ used. This inference approach is easy to implement and more robust 
to the choice of ​J​: for a choice of ​p​, we construct the binscatter (point) estimate  
​​​ϒ ˆ ​​​ ​(v)​​​(x)​​ based on the random binning ​​Δ ˆ ​​ using the (feasible) method of 
Section II, and then for inference we employ ​​T​ p+1​​​(x)​​. Thus, in Section III, we set  
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​J  = ​ J​ IMSE​​​(0, 0, 0)​​, ​p  =  s  =  1​, ​v  =  0​, ​​​ϒ ˆ ​​BC​​​(x)​  = ​ ϒ ˆ ​​(x)​​, ​​​Ω ˆ ​​RBC​​​(x)​  = ​ Ω ˆ ​​(x)​​, and ​​
𝔠​RBC​​  =  inf​{c  ∈ ​ ℝ​+​​ : Pr​(​sup​x∈  ​​ |​​Z ˆ ​​1​​​(x)​|  ≤  c ​|​​ 𝐃)​  ≥  1 − α}​​.

All our results explicitly account for the random binning scheme and the 
semi-linear covariate-adjustment with random evaluation point. Another notewor-
thy novel result in Section  SA-3.6 is the proof technique to transform our strong 
approximation results (Theorem SA-3.5), and their feasible versions (Theorem 
SA-3.6), into statements about the Kolmogorov distance for the suprema and related 
functionals of the t-statistic processes of interest (Theorem SA-3.7). Our technical 
approach again circumvents a fundamental lack of uniformity of the random binning 
basis ​​​b ˆ ​​ p​ 

​(v)​​​(x)​​, while still delivering a sufficiently fast uniform coupling, requiring 
only ​​J​​   2​/n  →  0​ (up to ​log​(n)​​ terms). Our proof technique can also be used to ana-
lyze other functionals such as the ​​L ​p​​​ distance, Kullback-Leibler divergence, and 
arg max statistic.

Finally, from a theoretical point of view, the rate conditions of Theorem 2 are 
seemingly minimal and improve on prior results. In fact, it can be shown that when ​​
a​   n​​  = ​ √ 

_
 log n ​​ and a subexponential moment restriction holds for the error term, it 

suffices that ​J/n  =  o​(1)​​, up to ​log n​ terms. In contrast, a strong approximation of 
the t-statistic process for general series estimators was obtained based on Yurinskii 
coupling in Belloni et al. (2015), which requires ​​J​​   5​/n  =  o​(1)​​, up to ​log n​ terms. 
Alternatively, a strong approximation of the supremum of the t-statistic process can be 
obtained under weaker rate restrictions, such as the requirement of ​J/​n​​ 1−2/ν​  =  o​(1)​​  
used by Chernozhukov, Chetverikov, and Kato (2014a), up to ​log n​ terms, where ​
ν​ is related to the moment assumptions imposed in the online Appendix, but their 
result applies exclusively to the suprema of the stochastic process. Our theoreti-
cal improvements have direct practical consequences as the rate conditions are 
weak enough to accommodate the canonical binscatter (i.e., the piecewise constant ​
p  =  0​ estimator), which would otherwise not be possible. See the online Appendix 
for more details.

VI.  Conclusion

Data visualization is a powerful device for effectively conveying empirical results 
in a simple and intuitive form. Binned scatter plots have become a popular tool to 
present a flexible, yet cleanly interpretable, estimate of the relationship between an 
outcome and a covariate of interest. However, despite their visual simplicity and con-
ceptual appeal, there has been no work to establish that they provide a high-quality, 
or even accurate, visualization of the data. This hampers their reliability and usabil-
ity in applications.

We introduce a suite of formal and visual tools based on binned scatter plots to 
improve, and in some cases correct, empirical practice. Our methods offer novel 
visualization tools, principled covariate adjustment, estimation of conditional mean 
functions, visualization of variance and precise uncertainty quantification, and tests 
of hypotheses such as linearity or monotonicity. We illustrate our methods with 
two substantive empirical applications, revisiting recently published papers (Akcigit 
et  al. 2022; Moretti 2021a) in economics, and show, in particular, the pitfalls of 
employing binned scatter methods incorrectly in practice. Further, our empirical 
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reanalysis showcases how applying binned scatter plots correctly can strengthen 
the empirical findings in those papers. All of our results are fully implemented in 
publicly available software (Cattaneo et al. 2023a).

In this paper our focus is on binned scatter plots, and hence the case of a sca-
lar variable ​​x​ i​​​. However, all of our results (including covariate adjustment) extend 
immediately to cover the case where ​dim​(​x​ i​​)​  >  1​. One important application is a 
heat map, which is used in applied work to show some feature of the conditional 
distribution of ​​y​ i​​​ (the “heat”) given positioning in two-dimensional space (the 
“map”). For recent examples, see Crawford, Shcherbakov, and Shum (2019) and 
Greenwood et al. (2022). Finally, the results herein cover conditional means only, 
while Cattaneo et al. (2023b) treats nonlinear settings such as conditional quantiles 
and other nonlinear features.
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