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ABSTRACT

In nonexperimental settings, the regression discontinuity (RD) design is one of the most credible identi-
fication strategies for program evaluation and causal inference. However, RD treatment effect estimands
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are necessarily local, making statistical methods for the extrapolation of these effects a key area for

development. We introduce a new method for extrapolation of RD effects that relies on the presence of
multiple cutoffs, and is therefore design-based. Our approach employs an easy-to-interpret identifying
assumption that mimics the idea of “common trends” in difference-in-differences designs. We illustrate our
methods with data on a subsidized loan program on post-education attendance in Colombia, and offer new
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evidence on program effects for students with test scores away from the cutoff that determined program
eligibility. Supplementary materials for this article are available online.

1. Introduction

The regression discontinuity (RD) design is one of the most
credible strategies for estimating causal treatment effects in
nonexperimental settings. In an RD design, units receive a score
(or running variable), and a treatment is assigned based on
whether the score exceeds a known cutoff value: units with
scores above the cutoff are assigned to the treatment condi-
tion, and units with scores below the cutoft are assigned to
the control condition. This treatment assignment rule creates
a discontinuity in the probability of receiving treatment which,
under the assumption that units’ average characteristics do not
change abruptly at the cutoff, offers a way to learn about the
causal treatment effect by comparing units barely above and
barely below the cutoff. Despite the popularity and widespread
use of RD designs, the evidence they provide has an impor-
tant limitation: the RD causal effect is only identified for the
very specific subset of the population whose scores are “just”
above or below the cutoft, and is not necessarily informative
or representative of what the treatment effect would be for
units whose scores are far from the RD cutoff. Thus, by its
very nature, the RD parameter is local and has limited external
validity.

We empirically illustrate the advantages and limitations of
RD designs employing a recent study of the Acceso con Cal-
idad a la Educacion Superior (ACCES) program by Melguizo,
Sanchez, and Velasco (2016). ACCES is a subsidized loan pro-
gram in Colombia, administered by the Colombian Institute for
Educational Loans and Studies Abroad (ICETEX), that provides
tuition credits to underprivileged populations for various post-
secondary education programs such as technical, technical-

professional, and university degrees. To be eligible for an ACCES
credit, students must be admitted to a qualifying higher edu-
cation program, have good credit standing and, if soliciting
the credit in the first or second semester of the higher educa-
tion program, achieve a minimum score on a high school exit
exam known as SABER 11. In other words, to obtain ACCES
funding students must have an exam score above a known
cutoff. Students who are just below the exam cutoff are deemed
ineligible, and therefore are not offered financial assistance. This
discontinuity in program eligibility based on the exam score
leads to a RD design: Melguizo, Sanchez, and Velasco (2016)
found that students just above the threshold in SABER 11 test
scores were significantly more likely to enroll in a wide variety
of post-secondary education programs. The evidence from the
original study is limited to the population of students around the
cutoff. This standard causal RD treatment effect is informative
in its own right but, in the absence of additional assumptions,
it cannot be used to understand the effects of the policy for
students whose test scores are outside the immediate neigh-
borhood of the cutoff. Treatment effects away from the cutoft
are useful for a variety of purposes, ranging from answering
purely substantive questions to addressing practically important
policy making decisions such as whether to roll-out the program
or not.

We propose a novel approach for estimating RD causal treat-
ment effects away from the cutoff that determines treatment
assignment. Our extrapolation approach is design-based as it
exploits the presence of multiple RD cutoffs across different
subpopulations to construct valid counterfactual extrapolations
of the expected outcome of interest, given different scores levels,
in the absence of treatment assignment. In sum, our approach
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imputes the average outcome in the absence of treatment of
a treated subpopulation exposed to a given cutoff, using the
average outcome of another subpopulation exposed to a higher
cutoff. Assuming that the difference between these two average
outcomes is constant as a function of the score, this imputation
identifies causal treatment effects at score values higher than the
lower cutoff.

The rest of the article is organized as follows. The next section
presents further details on the operation of the ACCES program,
discusses the particular program design features that we use for
the extrapolation of RD effects, and presents the intuitive idea
behind our approach. In that section, we also discuss related
literature on RD extrapolation as well as on estimation and infer-
ence. Section 3 presents the main methodological framework
and extrapolation results for the case of the “sharp” RD design,
which assumes perfect compliance with treatment assignment
(or afocus on an intention-to-treat parameter). Section 4 applies
our results to extrapolate the effect of the ACCES program on
educational outcomes, while Section 5 illustrates our methods
using simulated data. Section 6 presents an extension to the
“fuzzy” RD design, which allows for imperfect compliance.
Section 7 concludes. The supplemental appendix contains addi-
tional results, including further extensions and generalizations
of our extrapolation methods.

2. The RD Design in the ACCES Program

The SABER 11 exam that serves as the basis for eligibility to the
ACCES program is a national exam administered by the Colom-
bian Institute for the Promotion of Postsecondary Education
(ICFES), an institute within Colombia’s National Ministry of
Education. This exam may be taken in the fall or spring semester
each year, and has a common core of mandatory questions in
seven subjects—chemistry, physics, biology, social sciences, phi-
losophy, mathematics, and language. To sort students according
to their performance in the exam, ICFES creates an index based
on the difference between (i) a weighted average of the stan-
dardized grades obtained by the student in each common core
subject, and (ii) the within-student standard deviation across the
standardized grades in the common core subjects. This index is
commonly referred to as the SABER 11 score.

Each semester of every year, ICFES calculates the 1000 quan-
tiles of the SABER 11 score among all students who took the
exam that semester, and assigns a score between 1 and 1000 to
each student according to their position in the distribution—we
refer to these scores as the SABER 11 position scores. Thus, the
students in that year and semester whose scores are in the top
0.1% are assigned a value of 1 (first position), the students whose
scores are between the top 0.1% and 0.2% are assigned a value
of 2 (second position), etc., and the students whose scores are in
the bottom 0.1% are assigned a value of 1000 (the last position).
Every year, the position scores are created separately for each
semester, and then pooled. Melguizo, Sanchez, and Velasco
(2016) provided further details on the Colombian education
system and the ACCES program.

In this sharp RD design, the running variable is the SABER
11 position score, denoted by X; for each unit i in the sample,
and the treatment of interest is receiving approval of the ACCES

credit. Between 2000 and 2008, the cutoff to qualify for an
ACCES credit was 850 in all Colombian departments (the largest
subnational administrative unit in Colombia, equivalent to U.S.
states). To be eligible for the program, a student must have a
SABER 11 position score at or below the 850 cutoff.

2.1. The Multi-Cutoff RD Design

In the canonical RD design, a single cutoff is used to decide
which units are treated. As we noted above, eligibility for the
ACCES program between 2000 and 2008 followed this template,
since the cutoff was 850 for all students. However, in many
RD designs, the same treatment is given to all units based on
whether the RD score exceeds a cutoff, but different units are
exposed to different cutoffs. This contrasts with the assignment
rule in the standard RD design, in which all units face the same
cutoff value. RD designs with multiple cutoffs, which we call
multi-cutoff RD designs, are fairly common and have specific
properties (Cattaneo et al. 2016).

In 2009, ICFES changed the program eligibility rule, and
started employing different cutoffs across years and depart-
ments. Consequently, after 2009, ACCES eligibility follows a
multi-cutoft RD design: the treatment is the same throughout
Colombia—all students above the cutoft receive the same finan-
cial credits for educational spending—but the cutoff that deter-
mines treatment assignment varies widely by department and
changes each year, so that different sets of students face different
cutoffs. This design feature is at the core of our approach for
extrapolation of RD treatment effects.

2.2. The Pooled RD Effect of the ACCES Program

Multi-cutoff RD designs are often analyzed as if they had a
single cutoff. For example, in the original analysis, Melguizo,
Sanchez, and Velasco (2016) redefined the RD running variable
as distance to the cutoff, and analyzed all observations together
using a common cutoft equal to zero. In fact, this normalizing-
and-pooling approach (Cattaneo et al. 2016), which essentially
ignores or “averages over” the multi-cutoft features of the design,
is widespread in empirical work employing RD designs. See the
supplemental appendix for a sample of recent papers that ana-
lyze RD designs with multiple cutofts across various disciplines.

We first present some initial empirical results using the
normalizing-and-pooling approach as a benchmark for later
analyses. The outcome we analyze is an indicator for whether
the student enrolls in a higher education program, one of sev-
eral outcomes considered in the original study by Melguizo,
Sanchez, and Velasco (2016). To maintain the standard defini-
tion of RD assignment as having a score above the cutoft, we
multiply the SABER 11 position score by —1. We focus on the
intention-to-treat effect of program eligibility on higher edu-
cation enrollment, which gives a sharp RD design. We discuss
an extension to fuzzy RD designs in Section 6. We focus our
analysis on the population of students exposed to two different
cutoffs, —850 and —571.

For our main analysis, we employ statistical methods for
RD designs based on recent methodological developments in



Calonico, Cattaneo, and Titiunik (2014, 2015), Calonico, Cat-
taneo, and Farrell (2018, 2020a, 2020b), Calonico et al. (2019),
and references therein. In particular, point estimators are con-
structed using mean squared error (MSE) optimal bandwidth
selection, and confidence intervals are formed using robust
bias correction (RBC). We provide details on estimation and
inference in Section 3.2.

Figure 1 reports two RD plots of the data, reporting linear
and quadratic global polynomial approximations. Using RBC
local polynomial inference, Table 1 reports that the pooled RD
estimate of the ACCES program treatment effect on expected
higher education enrollment is 0.125, with corresponding 95%
RBC confidence interval [0.012,0.219]. These results indicate

Table 1. Main empirical results for ACCES loan eligibility on post-education
enrollment.

Robust BC inference

Estimate Bw Eff. N p-Value 95% Cl

RD effects

C = -850 0.137 71.7 71 0.007 [0.036,0.232]

C=-571 0.169 136.3 133 0.103 [—0.039,0.428]

Weighted 0.156 204 0.021 [0.025,0.314]

Pooled 0.125 147.6 291 0.029 [0.012,0.219]
Naive difference

e (—650) 0.756 240.1 441

p (—650) 0.706 131.2 202

Difference 0.050 0.179 [—0.020,0.107]
Bias

e (—850) 0.525 549 54

iy (—850) 0.667 144.2 230

Difference —0.142 0.004 [—0.274, —0.054]
Extrapolation

7¢(—650) 0.191 0.001 [0.080,0.336]

NOTES: Local polynomial regression estimation with MSE-optimal bandwidth selec-
tors and robust bias corrected inference. See Calonico, Cattaneo, and Titiunik
(2014) and Calonico, Cattaneo, and Farrell (2018) for methodological details,
and Calonico et al. (2017) and Cattaneo, Titiunik, and Vazquez-Bare (2020a) for
implementation. “Eff. N"indicates the effective sample size, that is, the sample size
within the MSE-optimal bandwidth. “Bw” indicates the MSE-optimal bandwidth.
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that, in our sample, students who barely qualify for the ACCES
program based on their SABER 11 score are 12.5 percentage
points more likely to enroll in a higher education program
than students who are barely ineligible for the program. These
results are consistent with the original positive effects of ACCES
eligibility on higher education enrollment rates reported in
Melguizo, Sanchez, and Velasco (2016). However, the pooled
RD estimate only pertains to a limited set of ACCES appli-
cants: those whose scores are barely above or below one of the
cutoffs.

Cattaneo et al. (2016) showed that the pooled RD estimand
is a weighted average of cutoff-specific RD treatment effects for
subpopulations facing different cutoffs. The empirical results for
the pooled and cutoft-specific estimates can be seen in the upper
panel of Table 1. In our sample, the pooled estimate of 0.125 is a
(linear in large samples) combination of two cutoff-specific RD
estimates, one for units facing the low cutoff —850 and one for
units facing the high cutoft —571. We provide a detailed analysis
of these estimates in Section 4. These cutoff-specific estimates
are not directly comparable, as these magnitudes correspond
not only to different values of the running variable but also to
different subpopulations. We discuss next how the availability
of multiple cutoffs can be exploited to learn about treatment
effects far from the cutoff in the context of the ACCES policy
intervention.

2.3. Using the Multi-Cutoff RD Design for Extrapolation

Our key contribution is to exploit the presence of multiple RD
cutoffs to extrapolate the standard RD average treatment effects
(at each cutoff) to students whose SABER 11 scores are away
from the cutoff actually used to determine program eligibility.
Our method relies on a simple idea: when different units are
exposed to different cutoffs, different units with the same value
of the score may be assigned to different treatment conditions,
relaxing the strict lack of overlap between treated and control
scores that is characteristic of the single-cutoft RD design.

Q
-

0.9

0.8

0.7

Prob. Higher-Ed. Enrollment
0.6
)

0.5

0.4

T T
-500 0 500
Normalized Saber 11 Score

T
1000

(b) Global Quadratic Fit

Figure 1. Normalizing-and-pooling RD Plot of ACCES loan eligibility on post-education enrollment. NOTES: RD plot constructed using evenly spaced binning and global
linear (left) and quadratic (right) polynomial fits for normalized (to zero) and pooled (across cutoffs) score variable. See Calonico, Cattaneo, and Titiunik (2015) and Cattaneo
et al. (2016) for methodological details, and Calonico et al. (2017) and Cattaneo, Titiunik, and Vazquez-Bare (2020a) for implementation.
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For example, consider the simplest multi-cutoff RD design
with two cutoffs, £ and /i, with { < /i, where we wish to estimate
the average treatment effect at a point x € (£, /). Units exposed
to [ receive the treatment according to 1(X; > (), where X;
is unit’s i score and 1(.) is the indicator function, so they are
all treated at X = X. However, the same design contains units
who receive the treatment according to 1(X; > /i), so they are
controls at both X = x and X = (. Our idea is to compare the
observable difference in the control groups at the low cutoft £,
and assume that the same difference in control groups occurs
at the interior point x. This allows us to identify the average
treatment effect for all score values between the cutoffs £ and /.

Our identifying idea is analogous to the “parallel trends”
assumption in difference-in-difference designs (see, e.g.,
Abadie 2005, and references therein), but over a continuous
dimension—that is, over the values of the continuous score
variable X;.

2.4. Related Literature

We contribute to the causal inference and program evaluation
literatures (Imbens and Rubin 2015; Abadie and Cattaneo 2018)
and, more specifically, to the methodological literature on RD
designs. See Imbens and Lemieux (2008), Cattaneo, Titiunik,
and Vazquez-Bare (2017), Cattaneo, Titiunik, and Vazquez-
Bare (2020b), and Cattaneo, Idrobo, and Titiunik (2019, 2020),
for literature reviews, background references, and practical
introductions.

Our article adds to the recent literature on RD treatment
effect extrapolation methods, a nonparametric identification
problem in causal inference. This strand of the literature can be
classified into two groups: strategies assuming the availability of
external information, and strategies based only on information
from within the research design. Approaches based on external
information include Mealli and Rampichini (2012), Wing and
Cook (2013), Rokkanen (2015), and Angrist and Rokkanen
(2015). The first two papers rely on a pre-intervention measure
of the outcome variable, which they use to impute the treated-
control differences of the post-intervention outcome above the
cutoff. Rokkanen (2015) assumed that multiple measures of the
running variable are available, and all measures capture the same
latent factor; identification relies on the assumption that the
potential outcomes are conditionally independent of the avail-
able measurements given the latent factor. Angrist and Rokka-
nen (2015) relied on pre-intervention covariates, assuming that
the running variable is ignorable conditional on the covariates
over the whole range of extrapolation. All these approaches
assume the availability of external information that is not part
of the original RD design.

In contrast, the extrapolation approaches in Dong and Lew-
bel (2015) and Bertanha and Imbens (2020) require only the
score and outcome in the standard (single-cutoff) RD design.
Dong and Lewbel (2015) assume mild smoothness conditions
to identify the derivatives of the average treatment effect with
respect to the score, which allows for a local extrapolation of the
standard RD treatment effect to score values marginally above
the cutoff. Bertanha and Imbens (2020) exploit variation in
treatment assignment generated by imperfect treatment compli-
ance imposing independence between potential outcomes and

compliance types to extrapolate a single-cutoff fuzzy RD treat-
ment effect (i.e., a local average treatment effect at the cutoff)
away from the cutoff. Our paper also belongs to this second type,
as it relies on within-design information, using only the score
and outcome in the multi-cutoff RD design.

Cattaneo et al. (2016) introduced the causal Multi-cutoff RD
framework, which we employ herein, and studied the prop-
erties of normalizing-and-pooling estimation and inference in
that setting. Building on that paper, Bertanha (2020) discusses
estimation and inference of an average treatment effect across
multi-cutofts, assuming away cutoff-specific treatment effect
heterogeneity. Neither of these papers addressed the topic of RD
treatment effect extrapolation across different levels of the score
variable, which is the main goal and innovation of the present
article.

All the papers mentioned above focus on extrapolation of RD
treatment effects away from the cutoff by relying on continuity-
based methods for identification, estimation and inference,
which are implemented using local polynomial regression (Fan
and Gijbels 1996). As pointed out by a reviewer, an alterna-
tive approach to analyzing RD designs is to employ the local
randomization framework introduced by Cattaneo, Frandsen,
and Titiunik (2015). This framework has been later used in
the context of geographic RD designs (Keele, Titiunik, and
Zubizarreta 2015), principal stratification (Li, Mattei, and Mealli
2015), and kink RD designs (Ganong and Jager 2018), among
other settings. More recently, this alternative RD framework was
expanded to allow for finite-sample falsification testing and for
local regression adjustments (Cattaneo, Titiunik, and Vazquez-
Bare 2017). See also Sekhon and Titiunik (2016, 2017) for fur-
ther conceptual discussions, Cattaneo, Titiunik, and Vazquez-
Bare (2020b) for another review, and Cattaneo, Idrobo, and
Titiunik (2020) for a practical introduction.

Local randomization RD methods implicitly give extrapo-
lation within the neighborhood where local randomization is
assumed to hold because they assume a parametric (usually
constant) treatment effect model as a function of the score.
However, those methods cannot aid in extrapolating RD treat-
ment effects beyond such neighborhood without additional
assumptions, which is precisely our goal. Since local random-
ization methods explicitly view RD designs as local randomized
experiments, we can summarize the key conceptual distinc-
tion between that literature and our paper as follows: available
local randomization methods for RD designs have only internal
validity (i.e., within the local randomization neighborhood),
while our proposed method seeks to achieve external validity
(i.e., outside the local randomization neighborhood), which we
achieve by exploiting the presence of multiple cutoffs (akin to
multiple local experiments) together with an additional identi-
tying assumption within the continuity-based approach to RD
designs (i.e., parallel control regression functions across cutoffs).

Our core extrapolation idea can be developed within the local
randomization framework, albeit under considerably stronger
assumptions. To conserve space, in the supplemental appendix,
we discuss multi-cutoff extrapolation of RD treatment effects
using local randomization ideas, and develop randomization-
based estimation and inference methods (Rosenbaum 2010;
Imbens and Rubin 2015). We also empirically illustrate these
methods in the supplemental appendix.



3. Extrapolation in Multi-Cutoff RD Designs

We assume (Y;, X;,C;,D;), i = 1,2,...,n,is an observed ran-
dom sample, where Y; is the outcome of interest, X is the score
(or running variable), C; is the cutoff indicator, and D; is a treat-
ment status indicator. We assume the score has a continuous
positive density fx(x) on the support J. Unlike the canonical
RD design where the cutoff is a fixed scalar, in the multi-cutoff
RD design the cutoff faced by unit i is the random variable C;
taking values in a set ¢ C JC. For simplicity, we consider two
cutoffs: C = {(,h}, with({ < fi and [,/ € JC. Extensions to
more than two cutoffs and to geographic and multi-score RD
designs are conceptually straightforward, and hence discussed
in the supplemental appendix.

The conditional density of the score at each cutoft is fx|c (x|c),
¢ € C.Insharp RD designs treatment assignment and status are
identical, and hence D; = 1(X; > C;). Section 6 discusses an
extension to fuzzy RD designs. Finally, we let Y;(1) and Y;(0)
denote the potential outcomes of unit i under treatment and
control, respectively, and Y; = D;Y;(1) + (1 — D;)Y;(0) is the
observed outcome.

The potential outcome regression functions are pg.(x) =
E[Yi(d)|Xi = x, C; = c], for d = 0, 1. We express all parameters
of interest in terms of the “response” function

.(x) = E[Y;(1) — Y;(0) | X; = x,C; = c]. (D

This function measures the treatment effect for the subpop-
ulation exposed to cutoff ¢ when the running variable takes
the value x. For a fixed cutoff ¢, it records how the treatment
effect for the subpopulation exposed to this cutoff varies with
the running variable. As such, it captures a key quantity of
interest when extrapolating the RD treatment effect. The usual
parameter of interest in the standard (single-cutoft) RD design
is a particular case of t.(x) when cutoff and score coincide

te(0) = E[Yi(1) — Yi(0) | Xi = ¢, Ci = c] = p1,¢(0) — po,c(©).

It is well known that, via continuity assumptions, the function
7.(x) is nonparametrically identifiable at the single point x =
¢. Our approach exploits the presence of multiple cutoffs to
identify this function at other points on a portion of the support
of the score variable.

Figure 2 contains a graphical representation of our extrapo-
lation approach for multi-cutoff RD designs. In the plot, there
are two populations, one exposed to a low cutoft £, and another
exposed to a high cutoft /i. The RD effects for each subpopula-
tion are, respectively, 7/ ({) and 74 (/1). We seek to learn about the
effects of the treatment at points other than the particular cutoff
to which units were exposed, such as the point x in Figure 2.
Below, we develop a framework for the identification of 7/ (x)
for { < x < fi so that we can assess what would have been the
average treatment effect for the subpopulation exposed to the
cutoff { at score values above ¢ (illustrated by the effect 7/ (X) in
Figure 2 for the intermediate point X; = Xx).

In our framework, the multiple cutoffs define different sub-
populations. In some cases, the cutoff to which a unit is exposed
depends only on characteristics of the units, such as when
the cutoffs are cumulative and increase as the score falls in
increasingly higher ranges. In other cases, the cutoff depends
on external features, such as when different cutoffs are used in
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Figure 2. Estimands of interest with two cutoffs.

different geographic regions or time periods. This means that,
in our framework, the cutoff C; acts as an index for different
subpopulation “types,” capturing both observed and unobserved
characteristics of the units.

Given the subpopulations defined by the cutoft values actu-
ally used in the multi-cutoff RD design, we consider the effect
that the treatment would have had for those subpopulations had
the units had a higher score value than observed. This is why,
in our notation, the index for the cutoff value is fixed, and the
index for the score is allowed to vary and is the main argument of
the regression functions. This conveys the idea that the subpop-
ulations are defined by the multiple cutoffs actually employed,
and our exercise focuses on studying the treatment effect at
different score values for those predefined subpopulations. For
example, this setting covers RD designs with a common running
variable but with cutoffs varying by regions, schools, firms, or
some other group-type variable. Our method is not appropriate
to extrapolate to populations outside those defined by the multi-
cutoff RD design.

3.1. Identification Result

The main challenge to the identification of extrapolated treat-
ment effects in the single-cutoff (sharp) RD design is the lack
of observed control outcomes for score values above the cutoff.
In the multi-cutoff RD design, we still face this challenge for a
given subpopulation, but we have other subpopulations exposed
to higher cutoff values that, under some assumptions, can aid in
solving the missing data problem and identify average treatment
effects. Before turning to the formal derivations, we illustrate the
idea graphically.

Figure 3 illustrates the regression functions for the popula-
tions exposed to cutoffs { and /i, with the function 1 4 (x) omit-
ted for simplicity. We seek an estimate of 7/ (x), the average effect
of the treatment at the point x € ({, /) for the subpopulation
exposed to the lower cutoff (. In the figure, this parameter is rep-
resented by the segment ab. The main identification challenge is
that we only observe the point a, which corresponds to 11 (x),
the treated regression function for the population exposed to ,
but we fail to observe its control counterpart o (x) (point b),
because all units exposed to cutoff £ are treated at any x > [. We
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Yi 4

Figure 3. RD extrapolation with constant bias (B(() = B(X)).

Table 2. Segments and corresponding parameters in Figure 2.

Segment Parameter Description
ab () = w6 — por®) Extrapolation parameter
— — of interest
Observable  Unobservable
bc BX) = porx) — pop) Control facing £ vs.
— — control facing /i, at
Unobservable  Observable X =%
i =
ac (X)) +BX) = w1 X) — popX) Treated facing (' vs.
— — control facing £, at
Observable  Observable X =%
i =
ed B(t) = wpor () — mop(l) Control facing ( vs.
— —— control facing £, at
Observable  Observable 4

Xi={

use the control group of the population exposed to the higher
cutoff, £, to infer what would have been the control response at
x of units exposed to the lower cutoft (. At the point X; = X,
the control response of the population exposed to £ is g4 (),
which is represented by the point ¢ in Figure 3. Since all units in
this subpopulation are untreated at x, the point ¢ is identified
by the average observed outcomes of the control units in the
subpopulation £ at x.

Of course, units facing different cutoffs may differ in both
observed and unobserved ways. Thus, there is generally no
reason to expect that the average control outcome of the pop-
ulation facing cutoff /i will be a good approximation to the
average control outcome of the population facing cutoff (. This
is captured in Figure 3 by the fact that puo,/(x) = b # ¢ =
o, (%). This difference in untreated potential outcomes for
units facing different cutoffs can be interpreted as a bias driven
by differences in observed and unobserved characteristics of the
different subpopulations, analogous to “site selection” bias in
multiple randomized experiments. We formalize this idea with
the following definition.

Definition 1 (Cutoff bias). B(x,c,c’) = oc(x) — po (x), for
¢, € C. There is bias from exposure to different cutoffs if
B(x,c,d) # 0 for some ¢, € C,c # ¢ and for some
xeX.

Table 2 defines the parameters associated with the corre-
sponding segments in Figure 3. The parameter of interest, 7/(X),
is unobservable because we fail to observe 11 ¢ (x). If we replaced
o, (%) with 1o 4 (x), we would be able to estimate the distance
ac. This distance, which is observable, is the sum of the parame-
ter of interest, 7/ (X), plus the bias B(X, ¢, ¢) that arises from using
the control group in the /i subpopulation instead of the control
group in the ( subpopulation. Graphically, ac = ab + bc. Since
we focus on the two-cutoft case, we denote the bias by B(x) to
simplify the notation.

We use the distance between the control groups facing the
two different cutoffs at a point where both are observable, to
approximate the unobservable distance between them at x—that
is, to approximate the bias B(x). As shown in the figure, at (, all
units facing cutoff /i are controls and all units facing cutoff £ are
treated. But under standard RD assumptions, we can identify
o, (0) using the observations in the { subpopulation whose
scores are just below (. Thus, the bias term B((), captured in
the distance ed, is estimable from the data.

Graphically, we can identify the extrapolation parameter
77 (X) assuming that the observed difference between the control
functions o, () and o4 (+) at £ is constant for all values of the
score:

ac —ed = {10 () — poi @)} — {10 () — pos ()}
{7r(%) + B(X)} — {B(0)}
T (X).

We now formalize this intuitive result employing standard
continuity assumptions on the relevant regression functions. We
make the following assumptions.

Assumption 1 (Continuity). [iq.(x) is continuous in x € [(, ]
ford = 0,1 and for all c.

The observed outcome regression functions are (.(x) =
E[Y;|X; = x,C; = c], forc € C = {[,/i}, and note that
by standard RD arguments poc(c) = limgpo pe(c + €) and
p1,c(c) = limg o pe(c + €). Furthermore, o (x) = s (x) and
mie(x) = pe(x) forallx € (£, R).

Our main extrapolation assumption requires that the bias not
be a function of the score, which is analogous to the parallel
trends assumption in the difference-in-differences design.

Assumption 2 (Constant bias). B({) = B(x) forall x € ((, k).

While technically our identification result only needs this
condition to hold at x = X, in practice it may be hard to
argue that the equality between biases holds at a single point.
Combining the constant bias assumption with the continuity-
based identification of the conditional expectation functions
allows us to express the unobservable bias for an interior point,
X € ((, h), as a function of estimable quantities. The bias at the
low cutoff { can be written as

B(() =lim pe (L + &) — s (0).
e10
Under Assumption 2, we have

por(X) = up(x) + B(), x € ((h),



that is, the average control response for the { subpopulation at
the interior point x is equal to the average observed response for
the /i subpopulation at the same point, plus the difference in the
average control responses between both subpopulations at the
low cutoff £. This leads to our main identification result.

Theorem 1 (Extrapolation). Under Assumptions 1 and 2, for any
pointx € ((, 1),

7 (%) = pe(X) — [us (%) + B(O)].

This result can be extended to hold for x € ((,/] by
using side limits appropriately. In Section 3.3, we discuss two
approaches to provide empirical support for the constant bias
assumption. We extend our result to fuzzy RD designs in Sec-
tion 6, and allow for nonparallel control regression functions
and pre-intervention covariate-adjustment in the supplemental
appendix.

While we develop our core idea for extrapolation from “left
to right,” that is, from a low cutoff to higher values of the score,
it follows from the discussion above that the same ideas could
be developed for extrapolation from “right to left” Mathemati-
cally, the problem is symmetric and hence both extrapolations
are equally viable. However, conceptually, there is an impor-
tant asymmetry. Theorem 1 requires the regression functions
for control units to be parallel over the extrapolation region
(Assumption 2), while a version of this theorem for “right to left”
extrapolation would require that the regression functions for
treated units be parallel. These two identifying assumptions are
not symmetric because the latter effectively imposes a constant
treatment effect assumption across cutoffs (for different values
of the score), while the former does not because it pertains to
control units only.

3.2. Estimation and Inference

We estimate all (identifiable) conditional expectations p g -(x) =
E[Yi(d)|X; = x,C; = c] using nonparametric local poly-
nomial methods, employing second-generation MSE-optimal
bandwidth selectors and robust bias correction inference meth-
ods. See Calonico, Cattaneo, and Titiunik (2014), Calonico,
Cattaneo, and Farrell (2018, 2020a, 2020b), and Calonico et al.
(2019) for more methodological details, and Calonico et al.
(2017) and Calonico, Cattaneo, and Farrell (2019) for software
implementation. See also Hyytinen et al. (2018), Ganong and
Jager (2018), and Dong, Lee, and Gou (2020) for some recent
applications and empirical testing of those methods.

To be more precise, a generic local polynomial estimator is

e (x) = eyB g (x), where

n
B (x) = argmin Z(Yi —1,(X; — 0)'b)*
beRPH!

Xi — X
K (T) 1(C; = o) 1(D; = d),

ey is a vector with a one in the first position and zeros in the rest,
r,(-) is a polynomial basis of order p, K(-) is a kernel function,
and h a bandwidth. For implementation, we set p = 1 (local-
linear), K to be the triangular kernel, & to be a MSE-optimal

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION @ 1947

bandwidth selector, unless otherwise noted. Then, given the
two cutoffs { and /i and an extrapolation point x € ((, ], the
extrapolated treatment effect at x for the subpopulation facing
cutoft £ is estimated as

T (X) = (%) — flos (%) — floe(0) + fos (D).

The estimator 7/ (x) is a linear combination of nonparametric
local polynomial estimators at boundary and at interior points
depending on the choice of x and data availability. Hence, opti-
mal bandwidth selection and robust bias-corrected inference
can be implemented using the methods and software mentioned
above. By construction, {4¢(-) and figs(-) are independent
because the observations used for estimation come from dif-
ferent subpopulations. Similarly, fo,(-) and ft1,(-) are inde-
pendent since the first term is estimated using control units
whereas the second term uses treated units. On the other hand,
in finite samples, [1o4(£) and fip4(X) can be correlated if the
bandwidths used for estimation overlap (or, alternatively, if {
and x are close enough), in which case we account for such cor-
relation in our inference results. More precisely, V[7,(x)|X] =
Vi1 G 1XI+ Vo @) X1+ Vit (0O1X]+ Vo (€)X] -
Z(DOV(ﬂ()ﬁ (l)), ﬂo)ﬁ (J_C) |X), where X = (Xl,Xz, . ,Xn)/.

Precise regularity conditions for large sample validity of our
estimation and inference methods can be found in the references
given above. The replication files contain details on practical
implementation.

3.3. Assessing the Validity of the Identifying Assumption

Assessing the validity of our extrapolation strategy should be
a key component of empirical work using these methods. In
general, while the assumption of constant bias is not testable,
this assumption can be tested indirectly via falsification. While a
falsification test cannot demonstrate that an assumption holds, it
can provide persuasive evidence that an assumption is implausi-
ble. We now discuss two strategies for falsification tests to probe
the credibility of the constant bias assumption that is at the
center of our extrapolation approach.

The first falsification approach relies on a global polynomial
regression. We test globally whether the conditional expectation
functions of the two control groups are parallel below the lowest
cutoff. One way to implement this idea, given the two cutoff
points { < /i, is to test § = 0 based on the regression model

Y, =a+ B1(C; =h) + I'p(Xi),}’ + 1(C; = /i)rp(Xi)’S + u;,
Elu;lX;, Ci] =0,

only for units with X; < (. In words, we employ a pth
order global polynomial model to estimate the two regression
functions E[Y;|X; = xX; < (,C; = (] and E[Y;|X; =
x,X; < [,C; = h], separately, and construct a hypothesis test
for whether they are equal up to a vertical shift (i.e., the null
hypothesis is Hp : § = 0). This approach is valid under standard
regularity conditions for parametric least squares regression.
This approach could also be justified from a nonparametric
series approximation perspective, under additional regularity
conditions.

The second falsification approach employs nonparametric
local polynomial methods. We test for equality of the derivatives
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of the conditional expectation functions for values x < (.
Specifically, we test for Ml(,l)(x) = /Lfil)(x) for all x < (, where
/L;I)(x) and /,L;II)()C) denote the derivatives of E[Y;|X; = x, X; <
(,Ci = (land E[Yi|X; = x,X; < (,C; = h], respectively.
This test can be implemented using several evaluation points, or
using a summary statistic such as the supremum. Validity of this
approach is also justified using nonparametric estimation and
inference results in the literature, under regularity conditions.

4, Extrapolating the Effect of Loan Access on College
Enroliment

We use our proposed methods to investigate the external validity
of the ACCES program RD effects. As mentioned above, our
sample has observations exposed to two cutoffs, / = —850 and
h = —571. We begin by extrapolating the effect to the point
X = —650; our focus is thus the effect of eligibility for ACCES
on whether the student enrolls in a higher education program
for the subpopulation exposed to cutoff 850 when their SABER
11 score is 650.

As described in Section 2.1, the observations facing cutoff
{ correspond to years 2000-2008, whereas observations facing
cutoff /i correspond to years 2009 and 2010. Our identification
assumption allows these two groups to differ in observable and
unobservable characteristics so long as the difference between
the conditional expectations of their control potential outcomes
is constant as a function of the running variable. In addition,
our approach relies on the assumption that the underlying
population does not change over time (which is implicit in our
notation). We offer empirical support for these assumptions in
two ways. First, we implement the tests discussed in Section 3.3
to assess the plausibility of Assumption 2. In addition, Sec-
tion SA-2 in the supplemental appendix shows that our results
remain qualitatively unchanged when restricting the empirical
analysis to the period 2007-2010, which reduces the (potential)
heterogeneity of the underlying populations over time.

We begin by assessing the validity of our constant bias
assumption with the methods described in Section 3.3. The

[sX¢]
non
o

Prob. Higher-Ed. Enrollment
040 0.45 050 055 060 065 0.70
1

T T T T
-900 -850 -800 -750

Saber 11 Score

T T
-1000  -950

(a) Global Polynomial Approach

Table 3. Parallel trends test: global polynomial approach.

Estimate p-value
Constant 5.534 0.159
Score 0.010 0.220
Score? 0.000 0.245
1(C=h) 5.732 0.779
1(C = h) x Score 0.012 0.790
1(C = A) x Score? 0.000 0.795
N 257
F-test 0.919

NOTES: Global (quadratic) polynomial regression with interactions to test for paral-
lel trends between control regression functions for low (C = () and high (C = /)
cutoffs. Estimation and inference is conducted using standard parametric linear
least squares methods. F-test refers to a joint significance test that the coefficients
associated with 1(C = ), 1(C = A) x Score and 1(C = £) x Score? are
simultaneously equal to zero.

Table 4. Parallel trends test: local polynomial approach.

Robust BC inference

Estimate Bw p-value 95%Cl
M@ —000025 589 098  [-0.0179,0.0176]
w0 0.00042 154.6 0977  [—0.0015,0.0014]
Difference  —0.00066 0988  [—0.0180,0.0177]

NOTES: Local polynomial methods for testing equality of first derivatives of control
regression functions for low (C = () and high (C = #) cutoffs, over a grid
of points below the low (C = () cutoff. Estimation and robust bias corrected
inference is conducted using methods in Calonico, Cattaneo, and Farrell (2018,
2020a), implemented via the general purpose software described in Calonico,
Cattaneo, and Farrell (2019).

results can be seen in Tables 3 and 4. Specifically, Table 3 reports
results employing global polynomial regression, which does
not reject the null hypothesis of parallel trends. Figure 4(a)
offers a graphical illustration. Table 4 shows the results for the
local polynomial approach, which again does not reject the
null hypothesis. Additionally, Figure 4(b) plots the difference in
derivatives (solid line) between groups estimated nonparamet-
rically at ten evaluation points below ¢, along with pointwise
robust bias-corrected confidence intervals (dashed lines). The
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(b) Local Polynomial Approach

Figure 4. Parallel trends test. NOTES: Panel (a) plots regression functions estimated using a quadratic global polynomial regression. Panel (b) plots the difference in
derivatives at several points, estimated using a local quadratic polynomial regression (solid line). The gray area represents the RBC 95% (pointwise) confidence intervals.
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(a) Effect at Cutoff 850
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(b) Effect at Cutoff 571
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Figure 5. RD and extrapolation effects of ACCES loan eligibility on higher education enrollment. NOTES: Panels (a) and (b) show the RD plots for the cutoff-specific effects
at the low and high cutoff, respectively. Panel (c) shows the nonparametric local-polynomial estimates of the regression functions for the low-cutoff (solid black line) and
high-cutoff (gray line) groups. The dashed line represents the nonparametric local-polynomial estimate of the imputed regression function for control units facing the low

cutoff.

figure reveals that the difference in derivatives is not significantly
different from zero.

As discussed in Section 2.2 and Table 1, the pooled RD
estimated effect is 0.125 with a RBC confidence interval of
[0.012,0.219]. The single-cutoff effect at —850 is 0.137 with 95%
RBC confidence interval of [0.036, 0.232], and the effect at —571
is somewhat higher at 0.169, with 95% RBC confidence interval
of [—0.039, 0.428]. These estimates based on single-cutoffs are
illustrated in Figures 5(a) and (b), respectively.

In finite samples, the pooled estimate may not be a weighted
average of the cutoff-specific estimates as it contains an addi-
tional term that depends on the bandwidth used for estimation
and small sample discrepancies between the estimated slopes for
each group. This is evident in Table 1, where the pooled estimate
does not lie between the cutoff specific estimates. This additional
term vanishes as the sample size grows and the bandwidths
converge to zero, yielding the result in Cattaneo et al. (2016). To
provide further evidence on the overall effect of the program,
we also estimated a weighted average of cutoff-specific effects
using estimated weights. This average effect equals 0.156 with
a RBC confidence interval of [0.025, 0.314]. Since this estimate
is a proper weighted average of cutoff-specific effects, it may
give a more accurate assessment of the overall effect of the
program.

The extrapolation results are illustrated in Figure 5(c) and
reported in the last two panels of Table 1. At the —650 cutoff, the
treated population exposed to cutoff —850 has an enrollment
rate of 0.756, while the control population exposed to cutoff
—571 has a rate of 0.706. This naive comparison, however,
is likely biased due to unobservable differences between both
subpopulations. The bias, which is estimated at the low cutoff
—850, is —0.142, showing that the control population exposed
to the —850 cutoff has lower enrollment rates at that point
than the population exposed to the high cutoft —571 (0.525 vs.
0.667). The extrapolated effect in the last row corrects the naive
comparison according to Theorem 1. The resulting extrapolated
effect is 0.756 — (0.706 — 0.142) = 0.191 with RBC confidence
interval of [0.080, 0.336].

The choice of the point —650 is simply for illustration
purposes, and indeed considering a set of evaluation points

for extrapolation can give a much more complete picture of
the impact of the program away from the cutoff point. In
Figures 6(a) and (b), we conduct this analysis by estimating
the extrapolated effect at 14 equidistant points between —840
and —580. The effects are statistically significant, ranging from
around 0.14 to 0.25.

5. Simulations

We report results from a simulation study aimed to assess the
performance of the local polynomial methods described in
Section 3.2. We construct (o (x) as a fourth-order polynomial
where the coefficients are calibrated using the data from our
empirical application, and poe(x) = pos(x) + A. Based on
our empirical findings, we set A = —0.14 and an extrapolated
treatment effect of 7¢(X) 0.19. We consider three sample
sizes: N 1000 (“small N”), N 2000 (“moderate N”),
and N = 5000 (“large N”). To assess the effect of unbalanced
sample sizes across evaluation points/cutoffs, our simulation
model ensures that some evaluation points/cutoffs have fewer
observations than others. In particular, the available sample
size to estimate 1, (£) is always less than a third of the sample
size available to estimate wy(x). We provide all details in the
supplemental appendix to conserve space.

The results are shown in Table 5. The robust bias-corrected
95% confidence interval for 77 (x) has an empirical coverage rate
of around 91% in the “small N” case. This is because one of
the parameters, ¢ (£), is estimated using very few observations.
The empirical coverage rate increases slightly to 92% in the
“moderate N” case, and to about 94% in the “large N” case.
In sum, in our Monte Carlo experiment, we find that local
polynomial methods can yield estimators with little bias and
RBC confidence intervals with accurate coverage rates for RD
extrapolation.

6. Extension to Fuzzy RD Designs

The main idea underlying our extrapolation methods can be
extended in several directions that may be useful in other appli-
cations. We briefly discuss an extension to fuzzy RD designs
employing a continuity-based approach. In the supplemental
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Figure 6. Extrapolation treatment effects. NOTES: Panel (a) shows local-linear estimates of the regression functions using an IMSE-optimal bandwidth for the control and
treated groups facing cutoff £ (black solid lines) and for the control group facing cutoff / (solid gray line). The dashed line represents the extrapolated regression function
for the control group facing cutoff £. Panel (b) shows local-linear extrapolation treatment effects estimates at 14 equidistant evaluation points between —840 and —580.

The gray area represents the RBC 95% (pointwise) confidence intervals.

Table 5. Simulation results.

Point estimation RBC inference

Eff. N Bias Var RMSE Cov.(95%)
Small N
e () 234 0.001  0.0213  0.146 0.890
e (X) 78.0 —0.007 0.0015 0.039 0.937
wp (0) 140.9 —0.001 0.0008 0.029 0.945
wp (%) 101.6 —0.010 0.0012  0.036 0.937
T (X) 0.002 0.0247 0.157 0.905
Moderate N
e (€) 43.0 —0.001 0.0134 0.116 0.905
e (X) 136.9 —0.005  0.0008  0.029 0.945
s (£) 279.4 —0.000 0.0004 0.020 0.950
s (X) 2137 —0.012 0.0005 0.026 0.949
70 (X) 0.008  0.0150  0.123 0.917
Large N
e () 108.6 0.001  0.0050  0.071 0.933
e (X) 288.0 —0.003 0.0004 0.020 0.945
s (0) 681.9 —0.000 0.0002 0.013 0.953
wp (%) 517.5 —0.012  0.0002  0.019 0.951
T (X) 0.007 0.0058 0.076 0.939

NOTES: Local polynomial regression estimation with MSE-optimal bandwidth selec-
tors and robust bias corrected inference. See Calonico, Cattaneo, and Titiunik
(2014) and Calonico, Cattaneo, and Farrell (2018) for methodological details,
and Calonico et al. (2017) and Cattaneo, Titiunik, and Vazquez-Bare (2020a) for
implementation. “Eff. N” indicates the effective sample size, that is, the sample
size within the MSE-optimal bandwidth. Results from 10,000 simulations.

appendix, we discuss other extensions: covariate adjustments
(i.e., ignorable cutoff bias), score adjustments (i.e., polynomial-
in-score cutoff bias), many multiple cutoffs, and multiple scores
and geographic RD designs.

In the fuzzy RD design, treatment compliance is imperfect,
which is common in empirical applications. For simplicity, we
focus on the case of one-sided (treatment) noncompliance: units
assigned to the control group comply with their assignment
but units assigned to treatment status may not. This case is
relevant for a wide array of empirical applications in which

program administrators are able to successfully exclude units
from the treatment, but cannot force units to actually comply
with it.

We employ the fuzzy multi-cutoff RD framework of Catta-
neo et al. (2016), which builds on the canonical framework of
Angrist, Imbens, and Rubin (1996). Let D;(x, ¢) be the binary
treatment indicator and x < x. We define compliers as units
with D;(x,¢) < Dj(x, ¢), always-takers as units with D;(x,¢c) =
D;(x, ¢) = 1, never-takers as units with D;(x, ¢) = D;(x,¢) = 0,
and defiers as units with D;(x,c) > Dj(x,c). We assume the
following conditions:

Assumption 3 (Fuzzy RD design).

1. Continuity: E[Y;(0)|X; = x,C = c] and E[(Yi(1) —
Y;(0))Dj(x, ¢)|X; = x, C; = c] are continuous in x for all c.

. Constant bias: B({) = B(x) forallx € ((, /).

. Monotonicity: D;(x, c) < Dj(x,¢c) for all i and for all x < X.

. One-sided noncompliance: D;(x,c) = 0 for all x < c.

w

The conditions are standard in the fuzzy RD literature and
used to identify the local average treatment effect (LATE), which
is the treatment effect for units that comply with the RD assign-
ment. The following result shows how to recover a LATE-type
extrapolation parameter in this fuzzy RD setting.

Theorem 2. Under Assumption 3,
pe(X) — [us (%) + B(O)]
E[Di|X,' =X, C,' = f]

Cl‘ = l’,D,-(x, [)) = 1].

=E[Y;(1) - Y;(0)|X; = x,

The left-hand side can be interpreted as an “adjusted” Wald
estimand, where the adjustment allows for extrapolation away
from the cutoff point . More precisely, this theorem shows that
under one-sided (treatment) noncompliance we can recover
the average extrapolated effect on compliers by dividing the



adjusted intention-to-treat parameter by the proportion of
compliers.

7. Conclusion

We introduced a new framework for the extrapolation of RD
treatment effects when the RD design has multiple cutoffs. Our
approach relies on the assumption that the average outcome
difference between control groups exposed to different cutoffs
is constant over a chosen extrapolation region. Our method
does not require any information external to the design, and
can be used whenever two or more cutoffs are used to assign the
treatment for different subpopulations, which is a very common
feature in many RD applications. Our main extrapolation idea
can also be used in settings with more than two cutoffs, multi-
scores RD designs (Papay, Willett, and Murnane 2011; Reardon
and Robinson 2012), and geographic RD designs (Keele and
Titiunik 2015). In addition, our main idea can be extended to
the RD local randomization framework introduced by Catta-
neo, Frandsen, and Titiunik (2015) and Cattaneo, Titiunik, and
Vazquez-Bare (2017). These additional results are reported in
the supplemental appendix for brevity.

Supplementary Materials

The supplemental appendix includes a description of RD empirical papers
with multiple cutoffs, further extensions and generalizations of our main
methodological results, and omitted proofs and derivations. In addition,
it outlines an extension of our methods to the RD local randomization
framework.
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