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Summary: Modern empirical work in regression discontinuity (RD) designs often employs

local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth

choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by con-

struction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when

using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals

in terms of coverage error. We establish valid coverage error expansions for RBC confidence

interval estimators and use these results to propose new inference-optimal bandwidth choices

for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point

estimator is too large when the goal is to construct RBC confidence intervals with the smaller

coverage error rate. We further optimize the constant terms behind the coverage error to derive

new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions

also establish that RBC inference yields higher-order refinements (relative to traditional un-

dersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD

designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other

RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical

findings are illustrated with a Monte Carlo experiment and an empirical application, and the

main methodological results are available in R and Stata packages.

Keywords: Edgeworth expansions, coverage error, local polynomial regression, tuning pa-

rameter selection, treatment effects.

JEL codes: C14, C21.

1. INTRODUCTION

The regression discontinuity (RD) design is widely used in program evaluation, causal inference,

and treatment effect settings. (For general background on these settings, see Imbens and Rubin

(2015) and Abadie and Cattaneo (2018), and references therein.) In recent years, RD has become

one of the prime research designs for the analysis and interpretation of observational studies in
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social, behavioural, biomedical, and statistical sciences. For introductions to RD designs, literature

reviews, and background references, see Imbens and Lemieux (2008), Lee and Lemieux (2010),

Cattaneo and Escanciano (2017), and Cattaneo et al. (2019, 2020).

Modern empirical work in RD designs often employs a mean square error (MSE) optimal

bandwidth for local polynomial estimation of and inference on treatment effects.1 This MSE-

optimal bandwidth choice yields an MSE-optimal RD point estimator, but is by construction

invalid for inference. Robust bias-corrected (RBC) inference methods provide a natural solution

to this problem: RBC confidence intervals and related inference procedures remain valid even

when the MSE-optimal bandwidth is used (Calonico et al., 2014, 2019). In this paper, we show that

this choice of bandwidth is suboptimal when the goal is to construct RBC confidence intervals

with minimal coverage error (CE), and we establish a new bandwidth choice delivering CE-

optimal RBC confidence interval estimators or, analogously, minimizing the error in rejection

probability of the associated hypothesis testing procedures for RD treatment effects.

Our main results are valid coverage error expansions for local polynomial RBC confidence

interval estimators. The precise characterization offered by these expansions allows us to study

bandwidth selection in detail, and to propose several novel bandwidth choices that are opti-

mal for inference. First and foremost, we derive a CE-optimal bandwidth choice designed to

minimize coverage error of the interval estimator, which is a fundamentally different goal than

minimizing the MSE of the point estimator. The MSE- and CE-optimal bandwidths are therefore

complementary, as both can be used in empirical work to construct, respectively, optimal point

estimators and optimal inference procedures for RD treatment effects. For example, we find that

in the case of the popular local linear RD estimator, if the sample size is n = 500, then shrinking

the MSE-optimal bandwidth by approximately 27% leads to RBC confidence intervals with the

fastest coverage error decay rate. Further, we use our expansions to derive bandwidth choices that

trade off coverage error against interval length, which is conceptually analogous to trading size

and power of the associated statistical tests, while retaining asymptotically correct coverage (or

size control). Finally, by examining the leading constant terms of our coverage error expansions,

we can deliver novel optimal choices for the auxiliary bandwidth required for RBC inference.

We also provide plug-in, data-driven bandwidth selectors for use in practice, and illustrate their

performance with real and simulated data.

Our theoretical results prove that RBC confidence interval estimators have coverage error

strictly smaller (i.e., vanishing faster) than those of interval estimators based on undersmoothing,

as long as enough smoothness of the underlying conditional expectation functions is available

to at least characterize the MSE of the RD point estimator, the most natural case in empirical

applications. RBC intervals are as good as their undersmoothed counterparts when no additional

smoothness is available beyond what is needed to quantify the asymptotic bias of the t-test statistic.

These results, coupled with our bandwidth selectors, provide precise theory-based guidance for

empirical practice employing RD designs: RBC confidence interval estimators constructed with

the CE-optimal, and even with the MSE-optimal, bandwidth choice dominate the alternative

procedures in terms of coverage error performance.

Our main theoretical results focus on sharp RD designs with heteroskedastic data, covering both

levels (standard sharp RD design) as well as derivatives (kink and higher-order RD designs). The

latter case is of interest in, for example, Card et al. (2015, 2017), Dong and Lewbel (2015), Cerulli

et al. (2017), and Ganong and Jäger (2018). We also discuss extensions to fuzzy, geographic, multi-

1 See Imbens and Kalyanaraman (2012), Calonico et al. (2014), Arai and Ichimura (2016, 2018), Calonico et al.

(2019), and references therein. Cattaneo and Vazquez-Bare (2016) give a general discussion of bandwidth/neighbourhood

selection methods in RD designs.
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score, and multi-cutoff RD designs (Hahn et al., 2001; Papay et al., 2011; Keele and Titiunik,

2015; Cattaneo et al., 2016), as well as to clustered data and/or inclusion of pre-intervention

covariates (Lee and Card, 2008; Bartalotti and Brummet, 2017; Calonico et al., 2019). Our results

can also be applied to other RD methods and settings such as those considered in Xu (2017),

Dong (2019), Dong et al. (2019), Chiang et al. (2019), and He and Bartalotti (2019).

Finally, we remark that our discussion of inference-optimal bandwidth selection, as well as all

treatments of MSE-optimal choices are within the context of local polynomial methods (Fan and

Gijbels, 1996) under continuity assumptions of the underlying conditional expectation functions.

CE- and MSE-optimal bandwidth choices should not be used when the goal is to employ local

randomization assumptions in the context of RD designs (Cattaneo et al., 2015), because in

this setting the underlying assumptions are different and the targeted neighbourhood around the

cutoff is conceptually distinct. As such, the appropriate neighbourhood under local randomization

cannot be generated by MSE- or CE-optimal bandwidth choices, and other methods are more

appropriate: see Section 3 in Cattaneo et al. (2015) for one example. For further discussion of

these different assumptions and methodologies, as well as comparisons between neighbourhood

selectors, see Cattaneo and Vazquez-Bare (2016), Cattaneo et al. (2017), and Sekhon and Titiunik

(2017).

The rest of the paper proceeds as follows. Section 2 presents the RD setup and gives a brief,

but self-contained, introduction to standard estimation and inference methods. Section 3 gives

the main results of the paper: valid higher-order coverage error expansions for commonly used

confidence intervals as well as CE-optimal and related bandwidth choices. Section 4 discusses

implementation and other practical issues. Section 5 briefly outlines several extensions, while

numerical results using real and simulated data are reported in Section 6. Finally, Section 7

concludes. The supplemental appendix (SA, hereafter) contains all technical details and proofs,

as well as more discussion of methodological, implementation, and numerical issues. Calonico

et al. (2017) details general-purpose Stata and R software packages implementing our main

methodological results.

2. SETUP

We assume that the researcher observes a random sample (Yi, Ti, Xi)
′, i = 1, 2, . . . , n, where

Yi denotes the outcome variable of interest, Ti denotes treatment status, and Xi denotes an

observed continuous score or running random variable, which determines treatment assignment

for each unit in the sample. In the canonical sharp RD design, all units with Xi not smaller

than a known threshold c are assigned to the treatment group and take up treatment, while all

units with Xi smaller than c are assigned to the control group and do not take up treatment, so

that Ti = 1(Xi ≥ c). Using the potential outcomes framework, Yi = Yi(0) · (1 − Ti) + Yi(1) · Ti ,

with Yi(1) and Yi(0) denoting the potential outcomes with and without treatment, respectively,

for each unit. The parameters of interest in sharp RD designs are either the average treatment

effect at the cutoff or its derivatives:

τν = τν(c) =
∂ν

∂xν
E[Yi(1) − Yi(0)|Xi = x]

∣∣∣∣
x=c

,

where here and elsewhere we drop evaluation points of functions when it causes no confusion.

With this notation, τ0 corresponds to the standard sharp RD estimand, while τ1 denotes the sharp

kink RD estimand (up to scale). In Section 5, we discuss imperfect treatment compliance (i.e.,
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fuzzy RD designs) and other extensions of this basic RD setup. Identification of τν , as well as

estimation and inference using local polynomial regression methods, proceed under the following

standard regularity conditions.

ASSUMPTION 2.1 (RD) For all x ∈ [xl, xu], where xl < c < xu, and t ∈ {0, 1}: E[Yi(t)|Xi =

x] is S ≥ min{1, ν} times continuously differentiable with an S th derivative that is Hölder-

continuous with exponent a ∈ (0, 1]; the Lebesgue density of Xi , f (x), and V[Yi(t)|Xi = x] are

positive and continuous; E[|Yi(t)|
δ|Xi = x], δ > 8, is continuous; and the Lebesgue density of

(Y (t), X), fyt ,x(x), is positive and continuous.

’Flexible’ (i.e., nonparametric) local polynomial least squares estimators are the standard ap-

proach for estimation and inference in RD designs. The idea is to first choose a neighbourhood

around the cutoff c via a positive bandwidth choice h, and then employ (local) weighted polyno-

mial regression using only observations with score Xi lying within the selected neighbourhood.

That is,

τ̂ν(h) = ν!e′
ν β̂+,p(h) − ν!e′

ν β̂−,p(h), ν = 0, 1, 2, . . . , p,

where eν denotes the conformable (ν + 1)th unit vector, and β̂−,p(h) and β̂+,p(h) correspond to

the weighted least squares coefficients given by

β̂−,p(h) = argminβ∈Rp+1

n∑

i=1

1(c > Xi)
(
Yi − rp(Xi − c)′β

)2
Kh(Xi − c),

β̂+,p(h) = argminβ∈Rp+1

n∑

i=1

1(c ≤ Xi)
(
Yi − rp(Xi − c)′β

)2
Kh(Xi − c),

with rp(x) = (1, x, · · · , xp)′ and Kh(·) = K(·/h)/h for a kernel (weighting) function K(·). The

kernel is assumed to obey the following regularity conditions.

ASSUMPTION 2.2 (KERNEL) K(u) = 1(u < 0)k(−u) + 1(u ≥ 0)k(u), where k(·) : [0, 1] �→ R

is bounded and continuous on its support, positive (0,1), zero outside its support, and either is

constant or (1,K(u)r3(p+1)(u)′) is linearly independent on (−1, 1).

The kernel and bandwidth serve to localize the regression fit near the cutoff. The choice

of bandwidth, h, is the key parameter when implementing the RD estimator, and we discuss

this choice in detail below. The most popular choices of kernel are the uniform kernel and the

triangular kernel, which give equal weighting and linear down-weighting to the observations with

Xi ∈ [c − h, c + h], respectively. Finally, although our results cover any choice of p ≥ 0, the

preferred choice of polynomial order for point estimation is p = 1 (i.e., local-linear RD treatment

effect estimator) because of the poor behaviour of higher-order polynomial approximations at or

near boundary points. See Section 2.1.1 of Calonico et al. (2015) and Gelman and Imbens (2019)

for more discussion.

2.1. MSE-optimal bandwidth choice and point estimation

Selecting the bandwidth h or, equivalently, the neighbourhood around the cutoff c, is challenging

in applications. The default approach in modern empirical work is to minimize an approximation

to the MSE of the point estimator τ̂ν(h), or some other closely related quantity. Under standard

regularity conditions, the conditional MSE of τ̂ν(h) can be approximated as h → 0 and nh → ∞

C© 2020 Royal Economic Society.
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as follows:

E[(τ̂ν(h) − τν)2|X1, . . . , Xn]≈Ph2p+2−2ν
B

2 +
1

nh1+2ν
V , (2.1)

where ≈P denotes an approximation in probability (see the SA for a precise statement), and where

V and B denote, respectively, approximations to the variance and bias of the τ̂ν(h).

Using (), the MSE-optimal bandwidth choice for the RD treatment effect estimator τ̂ν(h) is

hMSE =

[
(1 + 2ν)V

2(1 + p − ν)B2

]1/(2p+3)

n−1/(2p+3), (2.2)

where, of course, it is assumed that B �= 0. Further details and exact formulas are given in the

SA to conserve space.

The infeasible MSE-optimal bandwidth choice hMSE can be used to construct an MSE-optimal

point estimator of the RD treatment effect τν , given by τ̂ν(hMSE). In practice, because V and B

involve unknown quantities, researchers rely on a plug-in estimator of the MSE-optimal bandwidth

hMSE, say ĥMSE, which is constructed by forming plug-in estimators (V̂ (b), B̂(b)) of (V ,B), for

some preliminary bandwidth b → 0; the formulas for V̂ (b) and B̂(b) are also given in the SA.

This approach gives a feasible, asymptotically MSE-optimal, RD point estimator τ̂ν(ĥMSE), and

is commonly used in empirical work. All other MSE-optimal bandwidth choices available in the

literature are also proportional to n−1/(2p+3), where the factor of proportionality depends on the

specific MSE objective function being optimized and/or other specific methodological choices.

See Imbens and Kalyanaraman (2012), Calonico et al. (2014), Arai and Ichimura (2016, 2018),

and Calonico et al. (2019) for concrete examples, and Cattaneo and Vazquez-Bare (2016) for

more general discussion.

2.2. Robust bias-corrected inference

The infeasible estimator τ̂ν(hMSE) and its data-driven counterpart τ̂ν(ĥMSE) are MSE-optimal point

estimators of τν in large samples. In empirical work, these point estimators are used not only to

construct the ’best guess’ of the unknown RD treatment effect τν , but also to conduct statistical

inference, in particular for forming confidence intervals for τν . The standard approach employs

a Wald test statistic under the null hypothesis, and inverts it to form the confidence intervals.

Specifically, for some choice of bandwidth h, the naı̈ve t-test statistic takes the form

T (h) =
τ̂ν(h) − τν√

V̂ (h)/(nh1+2ν)

,

where it is assumed that T (h) ∼ N (0, 1), at least in large samples, and hence the corresponding

confidence interval estimator for τν is

IUS(h) =

⎡
⎣ τ̂ν(h) − z

1−
α

2

·

√
V̂ (h)

nh1+2ν
, τ̂ν(h) − zα

2

·

√
V̂ (h)

nh1+2ν

⎤
⎦ ,

where zα denotes the (100α)-percentile of the standard normal distribution. Crucially, the confi-

dence interval IUS(h) will only have correct asymptotic coverage, in the sense of P[τν ∈ IUS(h)] =

1 − α + o(1), if h obeys nh2p+3 → 0, that is, the bandwidth is ’small enough’. In particular, the

MSE-optimal bandwidth is ’too large’: it is easy to show that P[τν ∈ IUS(hMSE)] �→ 1 − α, ren-

dering inference and confidence intervals based on the naı̈ve t-test statistic T (hMSE) invalid.

C© 2020 Royal Economic Society.
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An approach to resolve the invalidity of the confidence interval IUS(hMSE) is to undersmooth

(hence the ’US’ notation) by selecting a bandwidth ’smaller’ than hMSE, or than ĥMSE in practice,

when constructing the interval estimator. This approach, however, has at least two empirical and

theoretical drawbacks: (i) interval length is enlarged (that is, power is decreased) because fewer

observations are used; and (ii) undersmoothing is suboptimal in terms of the coverage error of

IUS(h). The first drawback is methodologically obvious, and we will discuss it further after the

new CE-optimal bandwidth choice is presented. The second drawback is formally established for

RD designs in the following section as part of our main results, using novel valid coverage error

expansions.

Bias correction is an alternative to undersmoothing. In the context of RD designs, Calonico

et al. (2014) introduced a robust bias-correction method to conduct statistical inference in general,

and to form confidence intervals in particular, which in its simplest form is given as follows:

TRBC(h) =
τ̂ν,BC(h) − τν√
V̂BC(h)/(nh1+2ν)

, τ̂ν,BC(h) = τ̂ν(h) − h1+p−ν
B̂(b),

and

IRBC(h) =

⎡
⎣ τ̂ν,BC(h) − z

1−
α

2

·

√
V̂BC(h)

nh1+2ν
, τ̂ν,BC(h) − zα

2

·

√
V̂BC(h)

nh1+2ν

⎤
⎦ ,

where again exact formulas for B̂(b) and V̂BC(h) are discussed in the SA. For inference, a key

feature is that V̂BC(h) is an estimator of the variance of τ̂ν,BC(h), not of the variance of τ̂ν(h). For

implementation, B̂(b) depends on a local polynomial regression of order p + 1.

An important empirical and theoretical property of IRBC(h) is that P[τν ∈ IRBC(hMSE)] → 1 − α,

where the same bandwidth is used for both (optimal) point estimation and (suboptimal yet valid)

statistical inference. Furthermore, Calonico et al. (2014) showed that the interval estimator re-

mains valid under a wider set of bandwidth sequences, even when minimal additional smoothness

of the unknown regression functions is assumed, and it was found to perform much better than

other methods in both simulations and replication studies (Ganong and Jäger, 2018; Hyytinen

et al., 2018). In this paper we offer principled, theoretical results that explain the good numerical

properties of IRBC(h), and we also provide new concrete ways to improve its implementation

further. In the upcoming sections we present the following main results.

(a) We establish that IRBC(h) has asymptotic coverage error that is no larger than IUS(h), and

is strictly smallern most practically relevant cases, even when the corresponding best

possible bandwidth is used to construct each confidence interval.

(b) We show that employing the MSE-optimal bandwidth hMSE to construct IRBC(h) is valid

but suboptimal in terms of coverage error.

(c) We derive new optimal bandwidth choices that minimize the coverage error of the RBC

confidence intervals. We discuss the consequences for interval length and how length

can be further optimized, including automatic, optimal auxiliary bandwidths.

We also discuss the implications of these results for empirical work and explore them numeri-

cally with real and simulated data.

C© 2020 Royal Economic Society.
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3. MAIN RESULTS

Our main theoretical results are valid coverage error expansions for both IUS(h) and IRBC(h).

These are based on generic, valid Edgeworth expansions in the context of RD designs, which

could be used for other purposes, such as studying the error in rejection probability of hypothesis

tests. The generic results, and other technical details, are given in the SA.

To state our first main result, recall that IUS(h) is constructed using V̂ (b), while IRBC(h)

is constructed using both B̂(b) and V̂BC(b), all of which are precisely described in the SA

(heuristically, they are consistent estimators of higher-order biases and variances of the RD point

estimator). In particular, b denotes the bandwidth used to construct the bias-correction estimate

B̂(b) and the associated variance estimate V̂BC(b). An important quantity is ρ = h/b, which we

discuss in detail further below.

THEOREM 3.1 (COVERAGE ERROR EXPANSIONS) Suppose Assumptions 2.1 and 2.2 hold,

that nh1+2ν/ log(nh)2+η → ∞ for η > 0, and ρ = h/b is bounded and bounded away from zero.

(a) If S ≥ p + 1 and nh2p+3 log(nh)1+η → 0, then

P[τν ∈ IUS(h)] − (1 − α) =
1

nh
QUS,1 + nh3+2p

QUS,2 + h1+p
QUS,3 + εUS

P[τν ∈ IRBC(h)] − (1 − α) =
1

nh
QRBC,1 + εUS,

where εUS = o(n−1h−1) + O(nh3+2p+2a + h1+p+a).

(b) If S ≥ p + 2 and nh2p+5 log(nh)1+η → 0, then

P[τν ∈ IRBC(h)] − (1 − α) =
1

nh
QRBC,1 + nh5+2p

QRBC,2 + h2+p
QRBC,3 + εRBC,

where εRBC = o(n−1h−1) + O(nh5+2p+2a + h2+p+a).

The n-varying, bounded quantities (QUS,
,QRBC,
), 
 = 1, 2, 3, are cumbersome and hence

further discussed in the SA.

This theorem establishes higher-order coverage error characterizations for the RD confidence

intervals IUS(h) and IRBC(h), under two distinct smoothness regimes, controlled by S. (Coverage

error expansions under ρ → 0 are given in the SA because they require additional regularity

conditions.) In the first case, described in part (a), the two confidence intervals are compared

when the same level of smoothness is allowed. Specifically, we consider the setting where

smoothness is exhausted after the leading higher-order terms of the RD point estimator τ̂ν are

characterized, which is the minimal smoothness needed to compute the MSE-optimal bandwidth

hMSE, as commonly done in practice (see (2.1) and ()). Thus, in this regime, IRBC(hMSE) can be

formed, but no additional smoothness is available, which gives the least favourable setting for

robust bias-correction techniques. Part (a) shows, nonetheless, that even in this case, IRBC(h)

is never worse in terms of asymptotic coverage error than IUS(h), an important practical and

theoretical result.

From a practical point of view, researchers first select a polynomial order (usually p = 1), and

then form confidence intervals using some bandwidth choice (often an empirical implementation

of hMSE). It is rarely the case that the underlying regression functions are not smoother than

what is exploited by the procedure. Part (b) discusses this case, and shows that IRBC(h) is strictly

superior to IUS(h) in terms of coverage error rates when additional smoothness is available. To

C© 2020 Royal Economic Society.
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be specific, comparing parts (a) and (b), it is shown that the coverage error of IRBC(h) vanishes

faster than that of IUS(h). This result gives strong theoretical justification for employing IRBC(h)

in empirical work.

The derivations in the SA also show that both IUS(h) and IRBC(h) exhibit higher-order boundary

carpentry thanks to the specific fixed-n variance estimators used; see Calonico et al. (2018) for

more discussion. This result is empirically important because it shows that the good boundary

properties possessed by local polynomial estimators in point estimation carry over to inference

under proper Studentization. Thus, our results formalize the crucial importance of using fixed-n

standard error formulas, as sometimes implemented in software for RD designs (Calonico et al.,

2017).

Finally, the expansions given in Theorem 3.1, as well as the underlying technical work presented

in the SA, are new to the literature. They cannot be deduced from results already available

(Calonico et al., 2018, 2019) because they apply to the difference of two local polynomial

estimates, τ̂ν(h) = ν!e′
ν β̂+,p(h) − ν!e′

ν β̂−,p(h), and higher-order terms of these differences are

not trivially expressible as differences or sums of terms for each component, unlike the case when

analysing first-order asymptotic approximations or MSE expansions. It is possible to upgrade

the results in the SA to also show that IRBC(h) is a coverage error optimal confidence interval

estimator, uniformly over empirically relevant classes of data-generating processes, employing

the optimality framework presented in Calonico et al. (2019). We do not provide details on this

result for brevity.

3.1. CE-optimal bandwidths and methodological implications

We now employ Theorem 3.1 to develop a CE-optimal bandwidth choice for RD designs. This

bandwidth choice will be made feasible in Section 4, where we address implementation issues in

detail. The following theorem is our second main result.

THEOREM 3.2 (COVERAGE ERROR OPTIMALITY) Suppose the conditions of Theorem 3.1(b)

hold. If QRBC,2 �= 0 or QRBC,3 �= 0, then the robust bias-corrected CE-optimal confidence interval

is IRBC(hRBC), where

hRBC = H n−1/(3+p), H = argminH>0

∣∣∣∣
1

H
QRBC,1 + H 5+2p

QRBC,2 + H 2+p
QRBC,3

∣∣∣∣ .

The coverage obeys P[τν ∈ IRBC(hRBC)] = 1 − α + O(n−(2+p)/(3+p)).

This theorem gives the CE-optimal bandwidth choice, hRBC, and the corresponding CE-optimal

RBC confidence interval estimator, IRBC(hRBC). The optimal rate for the bandwidth sequence is

hRBC ∝ n−1/(3+p), along with the associated optimal constant H , which cannot be given in closed

form (c.f. (2.2)). An analogous result is given in the SA for IUS(h), where it is shown that the

corresponding CE-optimal bandwidth choice is hUS ∝ n−1/(2+p), and with a different constant of

proportionality. Furthermore, this shows that P[τν ∈ IUS(hUS)] = 1 − α + O(n−(1+p)/(2+p)), and

therefore the RBC confidence interval estimator IRBC(hRBC) has a faster coverage error rate than

the best possible undersmoothed confidence interval IUS(hUS).

Our results establish that hMSE �= hRBC �= hUS in rates (and constants, of course) for all p ≥ 1,

and hMSE � hRBC �= hUS for p = 0. That is, a bandwidth different from the MSE-optimal one

should be used when the goal is to construct confidence intervals with small asymptotic coverage

error whenever p ≥ 1. More generally, focusing on the bandwidth choice and its consequences for
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coverage (interval length is addressed in the next section), we can offer three key methodological

conclusions for inference in RD designs.

(1) MSE-optimal bandwidth. In this case, the researcher chooses h = hMSE ∝ n−1/(3+2p).

This choice of bandwidth is simple and very popular, but leads to first-order bias,

rendering IUS(h) invalid. On the other hand, TRBC(hMSE) ∼ N (0, 1) in large samples, and

hence IRBC(h) is still asymptotically valid. Theorem 3.1 quantifies the rate of coverage

error decay precisely, and we find:

P[τν ∈ IUS(hMSE)] − (1 − α) � 1,

P[τν ∈ IRBC(hMSE)] − (1 − α) � n− min{2,2+p}/(2+p).

(2) CE-optimal bandwidth for IUS(h). While ad-hoc undersmoothing of hMSE is a possible

method for fixing the first-order coverage distortion of IUS(h), a more theoretically

founded choice is to use h = hUS ∝ n−1/(2+p), which is also a valid choice for IRBC(h).

In fact, this choice yields the same coverage error rate for both intervals:

P[τν ∈ IUS(hUS)] − (1 − α) � n−(1+p)/(2+p),

P[τν ∈ IRBC(hUS)] − (1 − α) � n−(1+p)/(2+p).

(3) CE-optimal bandwidth for IRBC(h). Finally, the researcher can also choose h = hRBC ∝

n−1/(3+p). This bandwidth choice is again too ’large’ for IUS(h), and hence leads to a

first-order coverage distortion, but is optimal for IRBC(h):

P[τν ∈ IUS(hRBC)] − (1 − α) � 1,

P[τν ∈ IRBC(hRBC)] − (1 − α) � n−(2+p)/(3+p).

The first point formalizes that an MSE-optimal bandwidth is always a valid choice for robust

bias-correction inference, with the coverage error rates depending on the polynomial order p.

Crucially, for any p ≥ 1, the robust bias-corrected interval IRBC(hMSE) will never achieve the

fastest decay in coverage error, and therefore hMSE must always be undersmoothed if the goal is

to construct confidence intervals for the RD treatment effect with the fastest vanishing coverage

error rate. In Sections 4 and 5, we employ this insight to propose simple rule-of-thumb CE-optimal

bandwidth choices.

The last two points above re-emphasize the advantages of RBC inference: IUS(hUS) and

IRBC(hUS) exhibit the same coverage error rates, which are suboptimal relative to IRBC(hRBC).

In other words, IRBC(hRBC) should be preferred to all the other alternatives discussed above, when

the goal is to construct CE-optimal confidence intervals in RD designs where smoothness of the

underlying regression functions is not binding. This is one of the main theoretical and practical

findings of this paper.

3.2. Interval length

An obvious concern is that the improvements in coverage offered by robust bias correction may

come at the expense of larger (average) interval length. However, we now show that this is not the

case. By symmetry, the (squared) length of the intervals IUS(h) and IRBC(h) take the same form:

|IUS(h)|2 = 4 · z2
α

2

·
V̂ (h)

nh1+2ν
and |IRBC(h)|2 = 4 · z2

α

2

·
V̂BC(h)

nh1+2ν
.
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Table 1. L2-optimal ρ.

p Kernel

Triangular Epanechnikov Uniform

0 0.778 0.846 1

1 0.850 0.898 1

2 0.887 0.924 1

3 0.909 0.940 1

4 0.924 0.950 1

Note: Computed by minimizing the L2 distance between the RBC induced equivalent

kernel and the optimal variance-minimizing equivalent kernel obtained by Cheng et al.

(1997) for ν = 0.

Thus, comparing asymptotic length amounts to examining the rate of contraction, n−1h−1−2ν ,

and the limiting variance constants, V̂ (h) →P V and V̂BC(h) →P VBC, which we show in the SA

depend on the ’equivalent kernel’ function induced by the choice of K(·) and ρ (and p). See Fan

and Gijbels (1996, Section 3.2.2) for more discussion on equivalent kernels in local polynomial

estimation.

First, regarding the contraction rate of the confidence intervals, the formal comparison follows

directly from the discussion above: robust bias correction can accommodate, and will optimally

employ, a slower vanishing bandwidth (i.e., h is ’larger’) than undersmoothing, and hence IRBC(h)

will contract more quickly (i.e., nh1+2ν → ∞ faster than with undersmoothing). This result

formalizes the heuristic idea that using a larger bandwidth leads to more observations being

used and hence improved power. To be precise, we have |IRBC(hRBC)|2 � n−(2+p)/(3+p) compared

with |IUS(hUS)|2 � n−(1+p)/(2+p). It is also instructive to note that |IRBC(hMSE)|2 � n−(2p+2)/(2+p)

and |IRBC(hUS)|2 � n−(1+p)/(2+p), which agrees with the above discussion regarding the impact

of using hMSE, hUS, and hRBC to construct the interval estimators. The intervals IUS(hMSE) and

IUS(hRBC) do not have correct asymptotic coverage.

Second, it is possible to optimize the asymptotic variance constant entering the length of the

RBC confidence interval, as a function of K(·) and the quantity ρ = h/b. We can then select

these two optimally to minimize the asymptotic constant portion of interval length. Specifically,

Cheng et al. (1997) show that the asymptotic variance of a local polynomial point estimator at

a boundary point is minimized by employing the uniform kernel K(u) = 1(|u| ≤ 1). If IRBC(h)

is formed choosing K(u) to be uniform, it follows immediately that ρ = 1 is optimal, as with

this choice the induced equivalent kernel becomes pointwise equal to the optimal equivalent

kernel. For other choices of kernel K(·) we can derived the optimal choice of ρ, depending

on p, by minimizing the L2 distance between the induced equivalent kernel and the optimal

variance-minimizing equivalent kernel. See the SA for all technical details.

In particular, for ν = 0, we computed the L2-optimal ρ for two popular kernels in RD ap-

plications: the triangular kernel K(u) = (1 − |u|)1(|u| ≤ 1), which Cheng et al. (1997) show is

MSE-optimal (i.e., optimal from a point estimation perspective), and the Epanechnikov kernel.

Table 1 gives the results. These ρ∗ optimal choices do not depend on the data, and thus are

immediately implementable. For example, in the leading empirical case of p = 1 and triangular

weighting, ρ∗ = 0.850 is the recommended choice minimizing the asymptotic variance and hence

the interval length of IRBC(h). We explore the numeric properties of these choices in Section 6.
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4. DATA-DRIVEN IMPLEMENTATIONS

We now discuss several implementable CE-optimal and related bandwidth selectors, building on

our theoretical and methodological results. We focus exclusively on data-driven implementations

of IRBC(h), that is, in constructing a data-driven version of hRBC and other related bandwidth

selectors for RBC inference. We first present two main approaches to selecting the CE-optimal

bandwidth choice: (a) a rule-of-thumb (ROT) based on an implementation of the MSE-optimal

choice hMSE, generically denoted by ĥMSE; and (b) a direct plug-in (DPI) rule based on estimating

the unknown quantities QRBC,
, 
 = 1, 2, 3, and solving the optimization problem in Theorem 3.2.

We then discuss other choices that trade off coverage error and interval length, leveraging our

coverage error expansions (Theorem 3.1).

The discussion below focuses on the main bandwidth h, which is the crucial choice in ap-

plications. For ρ = h/b, i.e., the auxiliary bandwidth b, we consider three choices: (a) ρ = 1,

for any kernel, which corresponds to the practically relevant case h = b; (b) ρ = ρ∗ discussed

above (Table 1); and (c) ρ = h/b estimated from the data by replacing h and b with plug-in

estimators, ĥMSE and b̂MSE, of the MSE-optimal choices for the point estimator and the bias cor-

rection, respectively. The first two choices of ρ are fully automatic once h is chosen; the third

requires a data-driven implementation of b as well. The form of bMSE can be found by selecting

(ν, p) appropriately and referring to (2.2). For example, for τ0 and p = 1, (ν, p) = (2, 2) when a

quadratic approximation is used for bias correction. See the SA for details.

4.1. ROT bandwidth choice

A simple strategy to construct a feasible bandwidth selector that yields the optimal coverage error

decay rate is to rescale an existing choice so that the rate agrees with hRBC. We call this the ROT

approach. For ĥMSE, a data-driven implementation of hMSE, we simply set

ĥrot
RBC

= n−p/((2p+3)(p+3)) ĥMSE.

It is immediate that ĥrot
RBC

∝ hRBC, and therefore this empirical choice has the optimal rate of

decay and yields an interval IRBC(ĥrot
RBC

) with the fastest possible coverage error decay. As an

example, for the popular local-linear RD estimator (p = 1) and a sample of size n = 500, the

MSE-optimal bandwidth selector ĥMSE is shrunk by 100(1 − n−1/20)% ≈ 27% to obtain RBC

confidence intervals with the fastest coverage error decay rate.

Feasible MSE-optimal bandwidths are widely available in software: see Calonico et al. (2017),

and references therein, for second-generation plug-in choices satisfying ĥMSE/hMSE →P 1. Fol-

lowing this, ρ is selected according to the options above (ρ = 1, ρ = ρ∗, or ρ = ρ̂). It is worth

noting that, despite the constants being suboptimal in this approach, the ’direction’ of the trade-

off is still correct in the sense that if the bias is small relative to higher moments, the CE- and

MSE-optimal bandwidths will increase, and ĥrot
RBC

reflects this.

4.2. DPI bandwidth choice

Our second approach to constructing fully data-driven CE-optimal bandwidth choices employs

plug-in estimators of the unknown constants underlying hRBC in Theorem 3.2. While this band-

width choice does not have a closed-form solution in general, it is easy to form plug-in (consistent)

estimators of the quantities QRBC,
, 
 = 1, 2, 3, for any ν, p, kernel, and ρ. Given these estimators,
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the DPI bandwidth selector yielding CE-optimal RBC inference is

ĥRBC = Ĥ n−1/(3+p), Ĥ = argminH>0

∣∣∣∣
1

H
Q̂RBC,1 + H 5+2p

Q̂RBC,2 + H 2+p
Q̂RBC,3

∣∣∣∣ ,

where Q̂RBC,
 →P QRBC,
, 
 = 1, 2, 3, are discussed in the SA. Again, ρ is chosen afterwards

according to the three options above (ρ = 1, ρ = ρ∗, or ρ = ρ̂).

Estimating the quantities QRBC,
, 
 = 1, 2, 3, is straightforward. These are expressed in pre-

asymptotic form, so constructing the estimators boils down to replacing marginal expectations

by sample averages and employing pilot bandwidth choices. Natural choices of pilot bandwidths

are the corresponding MSE-optimal bandwidth selectors, already implemented in the literature.

It is easy to show (see the SA for discussion) that, under regularity conditions, the DPI band-

width selector will be consistent in the sense that ĥRBC/hRBC →P 1. The resulting data-driven

RBC confidence intervals will be CE-optimal, given the choice of point estimator and enough

smoothness of the unknown regression functions.

4.3. Coverage error and interval length trade-off

It is natural to have a preference for shorter intervals that still have good coverage properties. Our

main results allow us to discuss formally such a trade-off, and to propose alternative bandwidth

choices reflecting it. Larger bandwidths (i.e., smaller values of γ when h = Hn−γ ) yield on

average shorter intervals: as already highlighted, one of the strengths of RBC inference is that

it allows for, and will optimally employ, a larger bandwidth relative to the best undersmoothing

procedure. Thus, we may seek to use a bandwidth larger than hRBC that reduces interval length,

while still retaining good coverage properties.

We consider the generic bandwidth choice hTO = HTOn
−γTO , for constants HTO > 0 and

γTO > 0, where ’TO’ stands for ’trade-off’. First we set the exponent γTO. For valid inference,

Theorem 3.1 requires that γTO lie in (1/(5 + 2p), 1), and Theorem 3.2 gives hRBC � n−1/(p+3).

For any bandwidth smaller than this (h � hRBC), both coverage error and length can be reduced

with a larger bandwidth, and hence we restrict attention to

1

5 + 2p
< γTO ≤

1

3 + p
. (4.1)

Any choice in this range is valid in the sense that coverage error vanishes asymptotically and

length is reduced compared with what γRBC = 1/(p + 3) would give.

To choose the constant HTO we characterize more precisely the trade-off we are making. It is

perhaps not surprising that this will be about balancing, in a certain way, bias- and variance-type

terms. This is also true for CE and MSE minimization, because all three methods deal with, at

heart, similar fundamental quantities, but in every case the specific manifestation is different. The

particulars in this case are described as follows.

Recall from Section 3.2 that the length of IRBC(h) does not depend on the bias, only on

the variance, and, more precisely, scales as the standard deviation. Thus, squared length is

proportional to variance and is therefore analogous to the first term in coverage error, which

captures variance (and other centred moment) errors, but not bias. Furthermore, for the range

in (4.3), the third term of coverage error is of higher order relative to the other two. Therefore,

we can view a trade-off of interval length against coverage error as comparing the second term

of coverage error (the squared scaled bias) against a variance-type term: the square of interval

length, which not only changes the constants involved but also properly adjusts for any ν ≥ 0
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because |IRBC(h)|2 � n−1h−1−2ν . The leading constant portions of coverage error and length are

H 5+2pQ̂RBC,2 and 4z2
α
2

V̂BCH
−1−2ν , respectively, where V̂BC and Q̂RBC,2 are preliminary feasible

estimators of VBC and QRBC,2. Therefore, we select the constant HTO in hTO = HTOn
−γTO as

ĤTO = arg minH>0 W × H 5+2p
Q̂RBC,2 + (1 − W ) × H−1−2ν4z2

α

2

V̂BC

=

»
¼¼¼½

1 − W

W

1 + 2ν

5 + 2p

4z2
α

2

V̂BC

Q̂RBC,2

¾
¿¿¿À

1

6 + 2p + 2ν

,

for a researcher-chosen weight W ∈ (0, 1). In Section 6 we find that ĥTO = ĤTOn
−γTO (and

its infeasible counterpart hTO) behaves as expected, with the natural choice of W = 1/2 and

γTO = 0.1964, the midpoint of (4.3) for p = 1.

5. EXTENSIONS

We briefly discuss several extensions of our main results. Unlike results based on first-order

asymptotic approximations, establishing valid higher-order Edgeworth expansions in the settings

of this section would require non-trivial additional work beyond the scope of this paper. Never-

theless, following the logic and results above, we can provide simple ROT bandwidth choices

targeting inference, based on already-available MSE-optimal bandwidth selectors.

5.1. Other RD designs

In the context of fuzzy (and fuzzy kink) RD designs, the estimand and estimator are ratios of

sharp RD design estimands and estimators, respectively. First-order asymptotic approximations

follow directly from standard linearization methods, and although the validity of the coverage

error expansion can be similarly proven to hold, this is no help in computing the terms of the

expansion. That is, even though the linearization error has no effect on the first-order asymptotic

approximation, it can have a direct effect on the Edgeworth and coverage error expansions.

Without capturing the effect of the linearization, full derivation of inference optimal bandwidths

is not possible. However, in this context we propose the following ROT bandwidth:

h̆rot
RBC

= n−p/((2p+3)(p+3)) h̆MSE,

where h̆MSE denotes an implementation of the MSE-optimal bandwidth for the fuzzy (or fuzzy

kink) RD estimator. Sharp, fuzzy, and kink RD designs also arise in geographic, multi-score, and

multi-cutoff RD settings (Papay et al., 2011; Keele and Titiunik, 2015; Cattaneo et al., 2016), and

the results in this paper can also be used in those cases directly.

5.2. Clustered data

When the data exhibit clustering, first-order asymptotic results can be easily extended to account

for clustered sampling where (a) each unit i belongs to exactly one of G clusters and (b) G → ∞

and Gh → ∞ (see Bartalotti and Brummet, 2017; Calonico et al., 2019). Since MSE-optimal
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bandwidth choices in this context are available and fully implemented, the corresponding ROT

implementation is

ȟrot
RBC

= G−p/((2p+3)(p+3)) ȟMSE,

where now G denotes the number of clusters, and ȟMSE denotes an implementation of the MSE-

optimal bandwidth accounting for clustering. RBC confidence intervals are formed using this

bandwidth choice, together with appropriate (cluster-robust) standard error estimators.

5.3. Pre-intervention covariates

Calonico et al. (2019) employ first-order asymptotics to characterize formally the implications of

including pre-intervention covariates in the estimation of and inference for RD treatment effects.

Again, this is not sufficient for higher-order expansions, and the inclusion of covariates will

impact the coverage error expansion, making it impossible to derive a fully optimal bandwidth

from existing results. However, a ROT bandwidth selector in this context is

h̃rot
RBC

= n−p/((2p+3)(p+3)) h̃MSE,

where n denotes the sample size and h̃MSE denotes an implementation of the MSE-optimal

bandwidth accounting for the inclusion of additional pre-intervention covariates. RBC confidence

intervals are formed using this bandwidth choice, together with appropriate covariate-adjusted

standard error estimators.

6. NUMERICAL RESULTS

We present empirical evidence highlighting the performance of the new RD bandwidth selection

and inference methods developed. We consider a Monte Carlo experiment and an empirical

application, both employing the dataset of Ludwig and Miller (2007) used to study the effect of

Head Start assistance on child mortality. This canonical dataset was employed before by Calonico

et al. (2014), Cattaneo et al. (2017) and Calonico et al. (2019), where further institutional and

descriptive information is provided.

6.1. Monte Carlo experiment

The simulations use n = 500 i.i.d. draws, i = 1, 2, ..., n, from the model

Yi = m(Xi) + εi, Xi ∼ 2B(2, 4) − 1, εi ∼ N (0, σ 2
ε ),

where B(α, β) denotes a beta distribution with parameters α and β, and the regression function

m(x) is obtained from the Head Start data. Specifically, we estimate the regression function using

a fifth-order polynomial with separate coefficients for Xi < c and Xi > c, where Xi is a poverty

index and c = 59.1984 is the RD cutoff point. This estimation leads to

m(x) =

{
3.71 + 2.30x + 3.28x2 + 1.45x3 + 0.23x4 + 0.03x5 if x < c

0.26 + 18.49x − 54.81x2 + 74.30x3 − 45.02x4 + 9.83x5 if x ≥ c
,

with σε = 0.6136.

We consider 5,000 replications, and report empirical coverage and average interval length for

a variety of inference procedures. Specifically, Table 2 considers undersmoothing (IUS(h)) and
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Table 2. Empirical coverage and average interval length of 95% confidence intervals.

Bandwidth Empirical coverage Interval length

h ρ̂ US RBC: ρ̂ ρ∗ ρ = 1 US RBC: ρ̂ ρ∗ ρ = 1

hMSE 0.154 0.520 92.7 94.5 93.6 92.8 1.14 1.28 1.50 1.64

ĥMSE 0.174 0.571 88.7 93.7 93.4 93.0 1.08 1.24 1.42 1.55

h̃MSE 0.173 0.571 88.9 93.7 93.6 93.0 1.08 1.24 1.43 1.56

hRBC 0.145 0.492 93.1 94.6 93.5 92.6 1.17 1.31 1.55 1.69

ĥRBC 0.163 0.535 88.7 93.6 91.0 90.5 1.15 1.32 1.50 1.64

hrot
RBC 0.113 0.381 94.0 94.7 93.0 91.9 1.35 1.46 1.79 1.94

ĥrot
RBC 0.127 0.418 92.4 94.3 93.4 92.2 1.28 1.39 1.69 1.83

h̃rot
RBC 0.127 0.416 92.5 94.3 93.1 92.1 1.28 1.39 1.69 1.84

hT O 0.203 0.686 88.8 94.2 93.9 93.4 0.98 1.19 1.30 1.42

ĥT O 0.172 0.566 87.3 93.6 90.9 90.7 1.11 1.31 1.46 1.59

Note: US denotes undersmoothed confidence interval, IUS(h), and RBC denotes robust bias-corrected confidence interval,

IRBC(h). Procedures are computed using the triangular kernel, p = 1, and HC3 variance estimation. Recall that ρ̂ =

ĥ/b̂MSE for corresponding bandwidth selectors ĥ (given in the table), and ρ∗ = 0.850 (Table 1).

RBC (IRBC(h)) confidence intervals for different choices of bandwidths h and parameter ρ. In

all cases, we consider a local-linear RD estimator (p = 1) with the triangular kernel and ’HC3’

heteroskedasticity consistent standard errors, motivated by the fact that the least-squares residuals

are on average too small (see the SA for more).

The results in Table 2 are organized as follows. The table presents three groups by row: (a) pro-

cedures employing MSE-optimal bandwidth choices (hMSE, ĥMSE, h̃MSE); (b) procedures employ-

ing CE-optimal bandwidth choices (hRBC, ĥRBC, h
rot

RBC
, ĥrot

RBC
, h̃rot

RBC
); and (c) procedures employing

trade-off bandwidth choices (hTO, ĥTO). Quantities without hats or tildes correspond to infeasible

bandwidth choices, quantities with hats denote feasible implementations (DPI without label, or

ROT with corresponding label), and quantities with tildes denote feasible implementations with

covariate adjustment. For the latter the model includes, as a predetermined covariate, percentage

of urban population in 1960.

The table also presents three groups by columns: (a) ’Bandwidth’ reports infeasible or average

feasible bandwidth choices (recall ρ̂ = ĥ/b̂MSE with ĥ as appropriate); (b) ’Empirical coverage’

reports coverage of IUS(h) and of IRBC(h) for three choices of ρ = h/b; and (c) ’Interval length’

reports the average length of the same four distinct confidence intervals (undersmoothing and

three implementations of RBC indexed by the choice of ρ). Further implementation details are

given in the SA.

All the findings emerging from the simulation study are in qualitative agreement with the main

theoretical results from our paper. Confidence intervals based on undersmoothing, IUS(h), did not

exhibit good coverage properties, while those based on RBC, IRBC(h), performed well. While the

MSE-optimal bandwidth selectors also worked well, the CE-optimal bandwidth selectors offered

some empirical refinements in terms of coverage error. Furthermore, the bandwidth selector based

on coverage error and interval length trade-off discussed in Section 4.3 also performed well. Other

empirical findings are in line with our theoretical and methodological discussions.
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Table 3. Head Start empirical application.

Point

estimate Bandwidth RBC confidence intervals

ĥ ρ̂ ρ̂ ρ∗ ρ = 1

ĥMSE −2.409 6.81 0.635 [ −5.46 , −0.1] [ −5.88 , −0.44] [ −6.41 , −1.09]

h̃MSE −2.473 6.98 0.651 [ −5.21 , −0.37] [ −5.78 , −0.69] [ −6.54 , −1.39]

ĥRBC −3.311 4.467 0.416 [ −6.14 , −0.82] [ −6.53 , −1.09] [ −6.23 , −0.27]

ĥrot
RBC −3.273 4.581 0.427 [ −6.12 , −0.78] [ −6.57 , −1.16] [ −6.26 , −0.39]

h̃rot
RBC −3.526 4.696 0.438 [ −6.13 , −1.25] [ −7.06 , −1.75] [ −6.93 , −1.23]

Note: Procedures are computed using the triangular kernel, p = 1, and HC3 variance estimation. Recall that ρ̂ = ĥ/b̂MSE
for bandwidth selectors ĥ (given in the table), and ρ∗ = 0.850 (Table 1).

6.2. Empirical application

To complement the Monte Carlo experiment, we also employed the Head Start data to illustrate the

performance of our new bandwidth selection and inference methods using a realistic empirical

application. Specifically, we study the RD treatment effect of Head Start assistance on child

mortality following the original work of Ludwig and Miller (2007). See also Cattaneo et al.

(2017) for a recent re-examination of the empirical findings using modern RD methodology.

In this application, the unit of analysis is a U.S. county, and eligibility into Head Start assistance

was based on each county’s poverty index in 1960. The RD design naturally emerges by the

assignment rule to the program: Ti = 1(Xi ≥ c), where Xi denotes the 1960 poverty index

of county i and c = 59.1984 was the federally mandated cutoff point. The outcome variable

considered is mortality rates per 100,000 for children between 5 and 9 years old, with Head

Start-related causes, during the period 1973–1983.

The main empirical results are presented in Table 3. We first report the sharp RD treatment

effect estimator using a local-linear estimator (p = 1) with triangular kernel and MSE-optimal

bandwidth. In line with previous findings, we obtain τ̂0(ĥMSE) = −2.409 with ĥMSE = 6.81. Next,

we compute several RBC confidence intervals with different choices of bandwidths h and ρ,

including the new inference procedures proposed in this paper. In all cases, the empirical results

are in qualitative agreement and confirm an RD treatment effect that is statistically different from

zero.

7. CONCLUSION

This paper presented two main results for RD designs, which have concrete, practical implications

for empirical work. First, we established valid coverage error expansions of naı̈ve and RBC

confidence intervals for RD treatment effects, and showed that the latter confidence intervals

never have asymptotically larger coverage errors and can indeed offer higher-order refinements

whenever the underlying regression functions are smooth enough (arguably the most relevant

case in applications). Thus, this result offers concrete guidance for empirical work in RD designs

by ranking competing confidence interval estimators encountered in practice.

Second, using our coverage error expansions, we also developed CE-optimal bandwidth choices

and discussed how to implement them in practice. In the same way that MSE-optimal bandwidths
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deliver MSE-optimal point estimators for RD treatment effects, our new CE-optimal bandwidth

choices deliver inference-optimal confidence intervals in the sense that their coverage error is the

smallest possible given the choice of point estimator used. This second result also offers concrete

empirical guidance for applied work using RD designs, providing a companion bandwidth choice

to be used when forming confidence intervals for RD treatment effects.
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