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Summary: Modern empirical work in regression discontinuity (RD) designs often employs
local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth
choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by con-
struction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when
using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals
in terms of coverage error. We establish valid coverage error expansions for RBC confidence
interval estimators and use these results to propose new inference-optimal bandwidth choices
for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point
estimator is too large when the goal is to construct RBC confidence intervals with the smaller
coverage error rate. We further optimize the constant terms behind the coverage error to derive
new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions
also establish that RBC inference yields higher-order refinements (relative to traditional un-
dersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD
designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other
RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical
findings are illustrated with a Monte Carlo experiment and an empirical application, and the
main methodological results are available in R and Stata packages.

Keywords: Edgeworth expansions, coverage error, local polynomial regression, tuning pa-
rameter selection, treatment effects.

JEL codes: C14, C21.

1. INTRODUCTION

The regression discontinuity (RD) design is widely used in program evaluation, causal inference,
and treatment effect settings. (For general background on these settings, see Imbens and Rubin
(2015) and Abadie and Cattaneo (2018), and references therein.) In recent years, RD has become
one of the prime research designs for the analysis and interpretation of observational studies in
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Robust bias-corrected inference in RD designs 193

social, behavioural, biomedical, and statistical sciences. For introductions to RD designs, literature
reviews, and background references, see Imbens and Lemieux (2008), Lee and Lemieux (2010),
Cattaneo and Escanciano (2017), and Cattaneo et al. (2019, 2020).

Modern empirical work in RD designs often employs a mean square error (MSE) optimal
bandwidth for local polynomial estimation of and inference on treatment effects.! This MSE-
optimal bandwidth choice yields an MSE-optimal RD point estimator, but is by construction
invalid for inference. Robust bias-corrected (RBC) inference methods provide a natural solution
to this problem: RBC confidence intervals and related inference procedures remain valid even
when the MSE-optimal bandwidth is used (Calonico et al., 2014, 2019). In this paper, we show that
this choice of bandwidth is suboptimal when the goal is to construct RBC confidence intervals
with minimal coverage error (CE), and we establish a new bandwidth choice delivering CE-
optimal RBC confidence interval estimators or, analogously, minimizing the error in rejection
probability of the associated hypothesis testing procedures for RD treatment effects.

Our main results are valid coverage error expansions for local polynomial RBC confidence
interval estimators. The precise characterization offered by these expansions allows us to study
bandwidth selection in detail, and to propose several novel bandwidth choices that are opti-
mal for inference. First and foremost, we derive a CE-optimal bandwidth choice designed to
minimize coverage error of the interval estimator, which is a fundamentally different goal than
minimizing the MSE of the point estimator. The MSE- and CE-optimal bandwidths are therefore
complementary, as both can be used in empirical work to construct, respectively, optimal point
estimators and optimal inference procedures for RD treatment effects. For example, we find that
in the case of the popular local linear RD estimator, if the sample size is n = 500, then shrinking
the MSE-optimal bandwidth by approximately 27% leads to RBC confidence intervals with the
fastest coverage error decay rate. Further, we use our expansions to derive bandwidth choices that
trade off coverage error against interval length, which is conceptually analogous to trading size
and power of the associated statistical tests, while retaining asymptotically correct coverage (or
size control). Finally, by examining the leading constant terms of our coverage error expansions,
we can deliver novel optimal choices for the auxiliary bandwidth required for RBC inference.
We also provide plug-in, data-driven bandwidth selectors for use in practice, and illustrate their
performance with real and simulated data.

Our theoretical results prove that RBC confidence interval estimators have coverage error
strictly smaller (i.e., vanishing faster) than those of interval estimators based on undersmoothing,
as long as enough smoothness of the underlying conditional expectation functions is available
to at least characterize the MSE of the RD point estimator, the most natural case in empirical
applications. RBC intervals are as good as their undersmoothed counterparts when no additional
smoothness is available beyond what is needed to quantify the asymptotic bias of the t-test statistic.
These results, coupled with our bandwidth selectors, provide precise theory-based guidance for
empirical practice employing RD designs: RBC confidence interval estimators constructed with
the CE-optimal, and even with the MSE-optimal, bandwidth choice dominate the alternative
procedures in terms of coverage error performance.

Our main theoretical results focus on sharp RD designs with heteroskedastic data, covering both
levels (standard sharp RD design) as well as derivatives (kink and higher-order RD designs). The
latter case is of interest in, for example, Card et al. (2015, 2017), Dong and Lewbel (2015), Cerulli
etal. (2017), and Ganong and Jager (2018). We also discuss extensions to fuzzy, geographic, multi-

' See Imbens and Kalyanaraman (2012), Calonico et al. (2014), Arai and Ichimura (2016, 2018), Calonico et al.
(2019), and references therein. Cattaneo and Vazquez-Bare (2016) give a general discussion of bandwidth/neighbourhood
selection methods in RD designs.
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194 S. Calonico et al.

score, and multi-cutoff RD designs (Hahn et al., 2001; Papay et al., 2011; Keele and Titiunik,
2015; Cattaneo et al., 2016), as well as to clustered data and/or inclusion of pre-intervention
covariates (Lee and Card, 2008; Bartalotti and Brummet, 2017; Calonico et al., 2019). Our results
can also be applied to other RD methods and settings such as those considered in Xu (2017),
Dong (2019), Dong et al. (2019), Chiang et al. (2019), and He and Bartalotti (2019).

Finally, we remark that our discussion of inference-optimal bandwidth selection, as well as all
treatments of MSE-optimal choices are within the context of local polynomial methods (Fan and
Gijbels, 1996) under continuity assumptions of the underlying conditional expectation functions.
CE- and MSE-optimal bandwidth choices should not be used when the goal is to employ local
randomization assumptions in the context of RD designs (Cattaneo et al., 2015), because in
this setting the underlying assumptions are different and the targeted neighbourhood around the
cutoff is conceptually distinct. As such, the appropriate neighbourhood under local randomization
cannot be generated by MSE- or CE-optimal bandwidth choices, and other methods are more
appropriate: see Section 3 in Cattaneo et al. (2015) for one example. For further discussion of
these different assumptions and methodologies, as well as comparisons between neighbourhood
selectors, see Cattaneo and Vazquez-Bare (2016), Cattaneo et al. (2017), and Sekhon and Titiunik
(2017).

The rest of the paper proceeds as follows. Section 2 presents the RD setup and gives a brief,
but self-contained, introduction to standard estimation and inference methods. Section 3 gives
the main results of the paper: valid higher-order coverage error expansions for commonly used
confidence intervals as well as CE-optimal and related bandwidth choices. Section 4 discusses
implementation and other practical issues. Section 5 briefly outlines several extensions, while
numerical results using real and simulated data are reported in Section 6. Finally, Section 7
concludes. The supplemental appendix (SA, hereafter) contains all technical details and proofs,
as well as more discussion of methodological, implementation, and numerical issues. Calonico
et al. (2017) details general-purpose Stata and R software packages implementing our main
methodological results.

2. SETUP

We assume that the researcher observes a random sample (Y;, 7;, X;), i = 1,2, ..., n, where
Y; denotes the outcome variable of interest, 7; denotes treatment status, and X; denotes an
observed continuous score or running random variable, which determines treatment assignment
for each unit in the sample. In the canonical sharp RD design, all units with X; not smaller
than a known threshold ¢ are assigned to the treatment group and take up treatment, while all
units with X; smaller than ¢ are assigned to the control group and do not take up treatment, so
that 7; = 1(X; > c¢). Using the potential outcomes framework, ¥; = Y;(0) - (1 — T;) + Y;(1) - T;,
with Y;(1) and Y;(0) denoting the potential outcomes with and without treatment, respectively,
for each unit. The parameters of interest in sharp RD designs are either the average treatment
effect at the cutoff or its derivatives:
v
EY;(D) - Y;OIX; =x]|

X=c

T =T(c) =

axV

where here and elsewhere we drop evaluation points of functions when it causes no confusion.
With this notation, ty corresponds to the standard sharp RD estimand, while 7; denotes the sharp
kink RD estimand (up to scale). In Section 5, we discuss imperfect treatment compliance (i.e.,
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fuzzy RD designs) and other extensions of this basic RD setup. Identification of t,, as well as
estimation and inference using local polynomial regression methods, proceed under the following
standard regularity conditions.

ASSUMPTION 2.1 (RD) Forall x € [x;, x,], where x; < ¢ < x,, and t € {0, 1}: E[Y;(1)|X; =
x] is S = min{l, v} times continuously differentiable with an S derivative that is Holder-
continuous with exponent a € (0, 1]; the Lebesgue density of X;, f(x), and V[Y;(t)|X; = x] are
positive and continuous; E[Y:(0)|°|X; = x], 8§ > 8, is continuous; and the Lebesgue density of
(Y (1), X), fy,x(x), is positive and continuous.

’Flexible’ (i.e., nonparametric) local polynomial least squares estimators are the standard ap-
proach for estimation and inference in RD designs. The idea is to first choose a neighbourhood
around the cutoff ¢ via a positive bandwidth choice /4, and then employ (local) weighted polyno-
mial regression using only observations with score X; lying within the selected neighbourhood.
That is,

t,(h) = v'e, By ,(h) — vie B ,(h), v=0,1,2,..., p,

where e, denotes the conformable (v + 1)th unit vector, and B_, p(h) and B+, p(h) correspond to
the weighted least squares coefficients given by

B—,p(h) = argming g+ 21(0 > X;) (Yi —rp(X; — C)/ﬂ)z Kp(X; —¢),

i=1

- . - 2
Bi.p(h) = argming g, > 1c < X) (Y; = rp(Xi — ) B)” Ku(Xi —©).
i=1
withr,(x) = (1, x,---,x?) and K;,(-) = K(-/h)/ h for a kernel (weighting) function K (-). The
kernel is assumed to obey the following regularity conditions.

ASSUMPTION 2.2 (KERNEL) K(u) = 1(u < 0)k(—u) + 1(u > 0)k(u), wherek(-) : [0, 1] = R
is bounded and continuous on its support, positive (0,1), zero outside its support, and either is
constant or (1, K(u)r3,+1)(w)') is linearly independent on (—1, 1).

The kernel and bandwidth serve to localize the regression fit near the cutoff. The choice
of bandwidth, #, is the key parameter when implementing the RD estimator, and we discuss
this choice in detail below. The most popular choices of kernel are the uniform kernel and the
triangular kernel, which give equal weighting and linear down-weighting to the observations with
X; € [c — h, ¢ + h], respectively. Finally, although our results cover any choice of p > 0, the
preferred choice of polynomial order for point estimation is p = 1 (i.e., local-linear RD treatment
effect estimator) because of the poor behaviour of higher-order polynomial approximations at or
near boundary points. See Section 2.1.1 of Calonico et al. (2015) and Gelman and Imbens (2019)
for more discussion.

2.1. MSE-optimal bandwidth choice and point estimation

Selecting the bandwidth % or, equivalently, the neighbourhood around the cutoff ¢, is challenging
in applications. The default approach in modern empirical work is to minimize an approximation
to the MSE of the point estimator £, (/), or some other closely related quantity. Under standard
regularity conditions, the conditional MSE of £, (h) can be approximated as # — 0 and nh — oo

© 2020 Royal Economic Society.

020z dunp G0 uo 1senb Aq 1.205296/26 |/2/€ZAorSqe-a]oe/[08/Woo"dno-olwapeoe)/:Sdiy Wo.y papeojumod



196 S. Calonico et al.

as follows:

1
E[(,(h) — ©.)* X1, ..o, X, JRph® P22 B o ——— 2.1
nhl+2v

where Xp denotes an approximation in probability (see the SA for a precise statement), and where
¥ and % denote, respectively, approximations to the variance and bias of the £, (/).
Using (), the MSE-optimal bandwidth choice for the RD treatment effect estimator 7, (%) is

1/2p+3)
hyse = M n1/@p+3) (2.2)
21+ p —v)A? ’

where, of course, it is assumed that 8 # 0. Further details and exact formulas are given in the
SA to conserve space.

The infeasible MSE-optimal bandwidth choice hysg can be used to construct an MSE-optimal
point estimator of the RD treatment effect t,, given by %, (husz). In practice, because ¥ and %
involve unknown quantities, researchers rely on a plug-in estimator of the MSE-optimal bandwidth
hysg, say szSE, which is constructed by forming plug-in estimators (“/7 (b), %A’(b)) of (V', A), for
some preliminary bandwidth b — 0; the formulas for V4 (b) and @(b) are also given in the SA.
This approach gives a feasible, asymptotically MSE-optimal, RD point estimator #,(/ysg), and
is commonly used in empirical work. All other MSE-optimal bandwidth choices available in the
literature are also proportional to n~!/?P+3where the factor of proportionality depends on the
specific MSE objective function being optimized and/or other specific methodological choices.
See Imbens and Kalyanaraman (2012), Calonico et al. (2014), Arai and Ichimura (2016, 2018),
and Calonico et al. (2019) for concrete examples, and Cattaneo and Vazquez-Bare (2016) for
more general discussion.

2.2. Robust bias-corrected inference

The infeasible estimator 7, (hygg) and its data-driven counterpart fv(szSE) are MSE-optimal point
estimators of 7, in large samples. In empirical work, these point estimators are used not only to
construct the ’best guess’ of the unknown RD treatment effect t,, but also to conduct statistical
inference, in particular for forming confidence intervals for 7,. The standard approach employs
a Wald test statistic under the null hypothesis, and inverts it to form the confidence intervals.
Specifically, for some choice of bandwidth /4, the naive 7-test statistic takes the form

() -1

JP )

where it is assumed that T (h) ~ N(0, 1), at least in large samples, and hence the corresponding
confidence interval estimator for 7, is

. RAOTE | V(h)
Iys(h) = | T,(h) — 217 a- W , B(h) — Zg : m s
2 2

where z, denotes the (100« )-percentile of the standard normal distribution. Crucially, the confi-
dence interval Iyg(h) will only have correct asymptotic coverage, in the sense of P[t, € Iyg(h)] =
1 —a + o(1), if h obeys nh?P*3 — 0, that is, the bandwidth is *small enough’. In particular, the
MSE-optimal bandwidth is "too large’: it is easy to show that P[t, € Iys(huse)] # 1 — «, ren-
dering inference and confidence intervals based on the naive ¢-test statistic 7 (hysg) invalid.

T(h) =

© 2020 Royal Economic Society.
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An approach to resolve the invalidity of the confidence interval Iyg(hygg) is to undersmooth
(hence the US’ notation) by selecting a bandwidth ’smaller’ than hygg, or than ftMSE in practice,
when constructing the interval estimator. This approach, however, has at least two empirical and
theoretical drawbacks: (i) interval length is enlarged (that is, power is decreased) because fewer
observations are used; and (ii) undersmoothing is suboptimal in terms of the coverage error of
Iys(h). The first drawback is methodologically obvious, and we will discuss it further after the
new CE-optimal bandwidth choice is presented. The second drawback is formally established for
RD designs in the following section as part of our main results, using novel valid coverage error
expansions.

Bias correction is an alternative to undersmoothing. In the context of RD designs, Calonico
etal. (2014) introduced a robust bias-correction method to conduct statistical inference in general,
and to form confidence intervals in particular, which in its simplest form is given as follows:

fv,BC(h) — Ty

a2y

. | Dach) | Pac(h)
Iggc(h) = | 1)8c(h) —ZF a - nhB?ﬁ s Tuec(h) —za n;?“” )
2 2

where again exact formulas for .@(b) and ”/%C(h) are discussed in the SA. For inference, a key
feature is that “I/ABC(h) is an estimator of the variance of 7, zc(h), not of the variance of £,(h). For
implementation, B(b) depends on a local polynomial regression of order p + 1.

An important empirical and theoretical property of Izgc(h)isthat P[t, € Izpc(huse)] — | — @,
where the same bandwidth is used for both (optimal) point estimation and (suboptimal yet valid)
statistical inference. Furthermore, Calonico et al. (2014) showed that the interval estimator re-
mains valid under a wider set of bandwidth sequences, even when minimal additional smoothness
of the unknown regression functions is assumed, and it was found to perform much better than
other methods in both simulations and replication studies (Ganong and Jdger, 2018; Hyytinen
et al., 2018). In this paper we offer principled, theoretical results that explain the good numerical
properties of Irsc(h), and we also provide new concrete ways to improve its implementation
further. In the upcoming sections we present the following main results.

Trsc(h) = 2y mc(h) = t,(h) — B TP B(b),

and

(a) We establish that Izpc(/) has asymptotic coverage error that is no larger than Iyyg(h), and
is strictly smallern most practically relevant cases, even when the corresponding best
possible bandwidth is used to construct each confidence interval.

(b) We show that employing the MSE-optimal bandwidth Aygg to construct Izgc(h) is valid
but suboptimal in terms of coverage error.

(c) We derive new optimal bandwidth choices that minimize the coverage error of the RBC
confidence intervals. We discuss the consequences for interval length and how length
can be further optimized, including automatic, optimal auxiliary bandwidths.

We also discuss the implications of these results for empirical work and explore them numeri-
cally with real and simulated data.

© 2020 Royal Economic Society.
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3. MAIN RESULTS

Our main theoretical results are valid coverage error expansions for both Iys(h) and Izpc(h).
These are based on generic, valid Edgeworth expansions in the context of RD designs, which
could be used for other purposes, such as studying the error in rejection probability of hypothesis
tests. The generic results, and other technical details, are given in the SA.

To state our first main result, recall that Iyg(h) is constructed using ”I7(b), while Izgc(h)
is constructed using both ,@(b) and ”i/ABC(b), all of which are precisely described in the SA
(heuristically, they are consistent estimators of higher-order biases and variances of the RD point
estimator). In particular, b denotes the bandwidth used to construct the bias-correction estimate
@(b) and the associated variance estimate "/%c(b). An important quantity is p = h/b, which we
discuss in detail further below.

THEOREM 3.1 (COVERAGE ERROR EXPANSIONS) Suppose Assumptions 2.1 and 2.2 hold,
that nh'+?" / log(nh)>*" — oo forn > 0, and p = h/b is bounded and bounded away from zero.

(a) If S > p + 1 and nh*’*3log(nh)'*" — 0, then

1
Plr, € Iys(h)] — (1 —a) = EQUS,I + nh3+2p=@Us,2 + hH—pQUSJ + €us

1
Plzy € Igpch)] — (1 —a) = EQRBC,I + €ys,

where eys = o(n~'h™1) + O(nh3+2p+2a 4 pltptay,
(b) If S = p+2and nh2r+s log(nh)H‘U — 0, then

1
Plzy € Izpc(h)] — (1 —a) = %QRBC,I + ”hSHPQRBc,Z + thrpo@RBc,S + €rae,

where €gge = O(nflhfl) + O(nh5+2p+2a + I’l2+p+a),

The n-varying, bounded quantities (2ys.¢, Zrpce), £ = 1,2, 3, are cumbersome and hence
further discussed in the SA.

This theorem establishes higher-order coverage error characterizations for the RD confidence
intervals Iyg(h) and Izgc(h), under two distinct smoothness regimes, controlled by S. (Coverage
error expansions under p — 0 are given in the SA because they require additional regularity
conditions.) In the first case, described in part (a), the two confidence intervals are compared
when the same level of smoothness is allowed. Specifically, we consider the setting where
smoothness is exhausted after the leading higher-order terms of the RD point estimator %, are
characterized, which is the minimal smoothness needed to compute the MSE-optimal bandwidth
husg, as commonly done in practice (see (2.1) and ()). Thus, in this regime, Izpc(/ugg) can be
formed, but no additional smoothness is available, which gives the least favourable setting for
robust bias-correction techniques. Part (a) shows, nonetheless, that even in this case, Igpc(h)
is never worse in terms of asymptotic coverage error than Iys(h), an important practical and
theoretical result.

From a practical point of view, researchers first select a polynomial order (usually p = 1), and
then form confidence intervals using some bandwidth choice (often an empirical implementation
of hygg). It is rarely the case that the underlying regression functions are not smoother than
what is exploited by the procedure. Part (b) discusses this case, and shows that Izpc(h) is strictly
superior to Iys(h) in terms of coverage error rates when additional smoothness is available. To
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Robust bias-corrected inference in RD designs 199

be specific, comparing parts (a) and (b), it is shown that the coverage error of Izgc(h) vanishes
faster than that of Iyg(h). This result gives strong theoretical justification for employing Irgc(h)
in empirical work.

The derivations in the SA also show that both Iy;s(h) and Izgc(h) exhibit higher-order boundary
carpentry thanks to the specific fixed-n variance estimators used; see Calonico et al. (2018) for
more discussion. This result is empirically important because it shows that the good boundary
properties possessed by local polynomial estimators in point estimation carry over to inference
under proper Studentization. Thus, our results formalize the crucial importance of using fixed-n
standard error formulas, as sometimes implemented in software for RD designs (Calonico et al.,
2017).

Finally, the expansions given in Theorem 3.1, as well as the underlying technical work presented
in the SA, are new to the literature. They cannot be deduced from results already available
(Calonico et al., 2018, 2019) because they apply to the difference of two local polynomial
estimates, ©,(h) = v!e;,&_, p(h) — v!e{,ﬁ_’ p(h), and higher-order terms of these differences are
not trivially expressible as differences or sums of terms for each component, unlike the case when
analysing first-order asymptotic approximations or MSE expansions. It is possible to upgrade
the results in the SA to also show that Izgc(h) is a coverage error optimal confidence interval
estimator, uniformly over empirically relevant classes of data-generating processes, employing
the optimality framework presented in Calonico et al. (2019). We do not provide details on this
result for brevity.

3.1. CE-optimal bandwidths and methodological implications

We now employ Theorem 3.1 to develop a CE-optimal bandwidth choice for RD designs. This
bandwidth choice will be made feasible in Section 4, where we address implementation issues in
detail. The following theorem is our second main result.

THEOREM 3.2 (COVERAGE ERROR OPTIMALITY) Suppose the conditions of Theorem 3.1(b)
hold. If Zrpcn # 00r Prpes # 0, then the robust bias-corrected CE-optimal confidence interval
is Igpc(hgec), where

. 1
hgpe = n_l/@ﬂ)), H = argming_ EQRBC,I + H5+2pe@RBC,2 + H2+pQRBC,3 .

The coverage obeys P[t, € Izpc(hree)] = 1 —a + O(n=CTP/G+p),

This theorem gives the CE-optimal bandwidth choice, izpc, and the corresponding CE-optimal
RBC confidence interval estimator, Irpc(hrsc). The optimal rate for the bandwidth sequence is
hgee o n~/G+P) along with the associated optimal constant .77, which cannot be given in closed
form (c.f. (2.2)). An analogous result is given in the SA for Iys(h), where it is shown that the
corresponding CE-optimal bandwidth choice is hys oc n~!/?*P) and with a different constant of
proportionality. Furthermore, this shows that P[z, € Iys(hys)] =1 — o + O(n=1+P/C+p)y and
therefore the RBC confidence interval estimator Izpc(hrpc) has a faster coverage error rate than
the best possible undersmoothed confidence interval Iys(hys).

Our results establish that hygg # hgpc 7# hug in rates (and constants, of course) for all p > 1,
and hygg < hrpc # hys for p = 0. That is, a bandwidth different from the MSE-optimal one
should be used when the goal is to construct confidence intervals with small asymptotic coverage
error whenever p > 1. More generally, focusing on the bandwidth choice and its consequences for
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coverage (interval length is addressed in the next section), we can offer three key methodological
conclusions for inference in RD designs.

(1) MSE-optimal bandwidth. In this case, the researcher chooses i = hygg oc n= /320,
This choice of bandwidth is simple and very popular, but leads to first-order bias,
rendering Iyg(h) invalid. On the other hand, Tggc(hysg) ~ N(0, 1) in large samples, and
hence Irpc(h) is still asymptotically valid. Theorem 3.1 quantifies the rate of coverage
error decay precisely, and we find:

Plry € Iys(huse)] — (1 —a) < 1,
Plt, € Izsc(huse)] — (1 — ) < p~ min22EP/240),

(2) CE-optimal bandwidth for Iy;s(k). While ad-hoc undersmoothing of /ysz is a possible
method for fixing the first-order coverage distortion of Iyg(h), a more theoretically
founded choice is to use & = hyg oc n~/@+P) which is also a valid choice for Izgc(h).
In fact, this choice yields the same coverage error rate for both intervals:

Pty € Tus(hus)] — (1 — @) < n~FP/EHP)
Pty € Inpc(hys)] — (1 — ) < n~ /P,

(3) CE-optimal bandwidth for Izg-(h). Finally, the researcher can also choose i = hgpe
n~!/G3+P)_ This bandwidth choice is again too ’large’ for Iys(h), and hence leads to a
first-order coverage distortion, but is optimal for Izgc(h):

Plt, € lys(hree)] — (1 — ) < 1,
Plr, € Irgclhrec)] — (1 — @) < n~FPIGER),

The first point formalizes that an MSE-optimal bandwidth is always a valid choice for robust
bias-correction inference, with the coverage error rates depending on the polynomial order p.
Crucially, for any p > 1, the robust bias-corrected interval Igpc(hyse) Will never achieve the
fastest decay in coverage error, and therefore hysz must always be undersmoothed if the goal is
to construct confidence intervals for the RD treatment effect with the fastest vanishing coverage
error rate. In Sections 4 and 5, we employ this insight to propose simple rule-of-thumb CE-optimal
bandwidth choices.

The last two points above re-emphasize the advantages of RBC inference: Iys(hys) and
Irec(hys) exhibit the same coverage error rates, which are suboptimal relative to Izpc(figpc)-
In other words, Izgc(hrec) should be preferred to all the other alternatives discussed above, when
the goal is to construct CE-optimal confidence intervals in RD designs where smoothness of the
underlying regression functions is not binding. This is one of the main theoretical and practical
findings of this paper.

3.2. Interval length

An obvious concern is that the improvements in coverage offered by robust bias correction may
come at the expense of larger (average) interval length. However, we now show that this is not the
case. By symmetry, the (squared) length of the intervals Iys(h) and Izpc(h) take the same form:

7 (h) Yac(h)
losP =424 - —50n and hee(h)® =4+ 24 - — o,

o
2 2
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Table 1. L,-optimal p.

p Kernel
Triangular Epanechnikov Uniform
0 0.778 0.846 1
1 0.850 0.898 1
2 0.887 0.924 1
3 0.909 0.940 1
4 0.924 0.950 1

Note: Computed by minimizing the L, distance between the RBC induced equivalent
kernel and the optimal variance-minimizing equivalent kernel obtained by Cheng et al.
(1997) for v = 0.

Thus, comparing asymptotic length amounts to examining the rate of contraction, n='h=!=2",
and the limiting variance constants, ¥ (h) —p ¥ and ”I/ABc(h) —p Vs, which we show in the SA
depend on the "equivalent kernel’ function induced by the choice of K(-) and p (and p). See Fan
and Gijbels (1996, Section 3.2.2) for more discussion on equivalent kernels in local polynomial
estimation.

First, regarding the contraction rate of the confidence intervals, the formal comparison follows
directly from the discussion above: robust bias correction can accommodate, and will optimally
employ, a slower vanishing bandwidth (i.e., % is "larger’) than undersmoothing, and hence Izgc(h)
will contract more quickly (i.e., nh'*?” — oo faster than with undersmoothing). This result
formalizes the heuristic idea that using a larger bandwidth leads to more observations being
used and hence improved power. To be precise, we have |Izgc(hgpc)|? < n=C+P/G+P) compared
with |Iys(hys)|? < n=FTP/EHP) Tt is also instructive to note that |Izpc(hugg)|> < n~GP+2/C+p)
and |Irpc(hys)|? < n=U+P/@HP) which agrees with the above discussion regarding the impact
of using hygg, hus, and hgge to construct the interval estimators. The intervals Iyg(hyge) and
Iys(hgee) do not have correct asymptotic coverage.

Second, it is possible to optimize the asymptotic variance constant entering the length of the
RBC confidence interval, as a function of K(-) and the quantity p = h/b. We can then select
these two optimally to minimize the asymptotic constant portion of interval length. Specifically,
Cheng et al. (1997) show that the asymptotic variance of a local polynomial point estimator at
a boundary point is minimized by employing the uniform kernel K (1) = 1(Ju| < 1). If Izgc(h)
is formed choosing K (u) to be uniform, it follows immediately that p = 1 is optimal, as with
this choice the induced equivalent kernel becomes pointwise equal to the optimal equivalent
kernel. For other choices of kernel K(-) we can derived the optimal choice of p, depending
on p, by minimizing the L, distance between the induced equivalent kernel and the optimal
variance-minimizing equivalent kernel. See the SA for all technical details.

In particular, for v = 0, we computed the L,-optimal p for two popular kernels in RD ap-
plications: the triangular kernel K (u) = (1 — |u|)1(Ju| < 1), which Cheng et al. (1997) show is
MSE-optimal (i.e., optimal from a point estimation perspective), and the Epanechnikov kernel.
Table 1 gives the results. These p* optimal choices do not depend on the data, and thus are
immediately implementable. For example, in the leading empirical case of p = 1 and triangular
weighting, p* = 0.850 is the recommended choice minimizing the asymptotic variance and hence
the interval length of Izgc(h). We explore the numeric properties of these choices in Section 6.

© 2020 Royal Economic Society.

020z dunp G0 uo 1senb Aq 1.205296/26 |/2/€ZAorSqe-a]oe/[08/Woo"dno-olwapeoe)/:Sdiy Wo.y papeojumod



202 S. Calonico et al.

4. DATA-DRIVEN IMPLEMENTATIONS

We now discuss several implementable CE-optimal and related bandwidth selectors, building on
our theoretical and methodological results. We focus exclusively on data-driven implementations
of Izpc(h), that is, in constructing a data-driven version of hzpc and other related bandwidth
selectors for RBC inference. We first present two main approaches to selecting the CE-optimal
bandwidth choice: (a) a rule-of-thumb (ROT) based on an implementation of the MSE-optimal
choice hysg, generically denoted by /iysg; and (b) a direct plug-in (DPI) rule based on estimating
the unknown quantities Zrpc ¢, £ = 1, 2, 3, and solving the optimization problem in Theorem 3.2.
We then discuss other choices that trade off coverage error and interval length, leveraging our
coverage error expansions (Theorem 3.1).

The discussion below focuses on the main bandwidth 4, which is the crucial choice in ap-
plications. For p = h/b, i.e., the auxiliary bandwidth b, we consider three choices: (a) p = 1,
for any kernel, which corresponds to the practically relevant case & = b; (b) p = p* discussed
above (Table 1); and ©p= h/b estimated from the data by replacing 4 and b with plug-in
estimators, hMSE and bMSE, of the MSE-optimal choices for the point estimator and the bias cor-
rection, respectively. The first two choices of p are fully automatic once % is chosen; the third
requires a data-driven implementation of b as well. The form of bygg can be found by selecting
(v, p) appropriately and referring to (2.2). For example, for 7o and p = 1, (v, p) = (2, 2) when a
quadratic approximation is used for bias correction. See the SA for details.

4.1. ROT bandwidth choice

A simple strategy to construct a feasible bandwidth selector that yields the optimal coverage error
decay rate is to rescale an existing choice so that the rate agrees with hrgc. We call this the ROT
approach. For hygg, a data-driven implementation of hygg, we simply set

EE;E — P/ (@p+3)(p+3) ilMSE

It is immediate that 535 o hzgc, and therefore this empirical choice has the optimal rate of
decay and yields an interval IRBc(iz}ggg) with the fastest possible coverage error decay. As an
example, for the popular local-linear RD estimator (p = 1) and a sample of size n = 500, the
MSE-optimal bandwidth selector hyeg is shrunk by 100(1 — n~129% ~ 27% to obtain RBC
confidence intervals with the fastest coverage error decay rate.

Feasible MSE-optimal bandwidths are widely available in software: see Calonico et al. (2017),
and references therein, for second-generation plug-in choices satisfying szSE / husg —p 1. Fol-
lowing this, p is selected according to the options above (p = 1, p = p*, or p = p). It is worth
noting that, despite the constants being suboptimal in this approach, the direction’ of the trade-
off is still correct in the sense that if the bias is small relative to higher moments, the CE- and
MSE-optimal bandwidths will increase, and 253 reflects this.

4.2. DPI bandwidth choice

Our second approach to constructing fully data-driven CE-optimal bandwidth choices employs
plug-in estimators of the unknown constants underlying hgpc in Theorem 3.2. While this band-
width choice does not have a closed-form solution in general, it is easy to form plug-in (consistent)
estimators of the quantities Zgpc ¢, £ = 1, 2, 3, for any v, p, kernel, and p. Given these estimators,
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the DPI bandwidth selector yielding CE-optimal RBC inference is
A . . i 1 . A A
hgpe = H ”fl/aﬂ)), H = argming . EQREC,I + HSJFZPQRBC,Z + H2+pc@RBc,3 s

where QARBC,Z —p Zrecs, £ = 1,2, 3, are discussed in the SA. Again, p is chosen afterwards
according to the three options above (p = 1, p = p*, or p = p).

Estimating the quantities Zrpc ¢, £ = 1, 2, 3, is straightforward. These are expressed in pre-
asymptotic form, so constructing the estimators boils down to replacing marginal expectations
by sample averages and employing pilot bandwidth choices. Natural choices of pilot bandwidths
are the corresponding MSE-optimal bandwidth selectors, already implemented in the literature.
It is easy to show (see the SA for discussion) that, under regularity conditions, the DPI band-
width selector will be consistent in the sense that szBC /hzec —p 1. The resulting data-driven
RBC confidence intervals will be CE-optimal, given the choice of point estimator and enough
smoothness of the unknown regression functions.

4.3. Coverage error and interval length trade-off

It is natural to have a preference for shorter intervals that still have good coverage properties. Our
main results allow us to discuss formally such a trade-off, and to propose alternative bandwidth
choices reflecting it. Larger bandwidths (i.e., smaller values of y when h = Hn™") yield on
average shorter intervals: as already highlighted, one of the strengths of RBC inference is that
it allows for, and will optimally employ, a larger bandwidth relative to the best undersmoothing
procedure. Thus, we may seek to use a bandwidth larger than hgpc that reduces interval length,
while still retaining good coverage properties.

We consider the generic bandwidth choice hro = Hpon 7™, for constants Hpo > 0 and
yro > 0, where *TO’ stands for trade-off’. First we set the exponent yro. For valid inference,
Theorem 3.1 requires that yo lie in (1/(5 + 2p), 1), and Theorem 3.2 gives hgpc < n~1/(P+3),
For any bandwidth smaller than this (& < hggc), both coverage error and length can be reduced
with a larger bandwidth, and hence we restrict attention to

b < < b 4.1)

5+2p =34y '
Any choice in this range is valid in the sense that coverage error vanishes asymptotically and
length is reduced compared with what yrsc = 1/(p + 3) would give.

To choose the constant Hro we characterize more precisely the trade-off we are making. It is
perhaps not surprising that this will be about balancing, in a certain way, bias- and variance-type
terms. This is also true for CE and MSE minimization, because all three methods deal with, at
heart, similar fundamental quantities, but in every case the specific manifestation is different. The
particulars in this case are described as follows.

Recall from Section 3.2 that the length of Izpc(h) does not depend on the bias, only on
the variance, and, more precisely, scales as the standard deviation. Thus, squared length is
proportional to variance and is therefore analogous to the first term in coverage error, which
captures variance (and other centred moment) errors, but not bias. Furthermore, for the range
in (4.3), the third term of coverage error is of higher order relative to the other two. Therefore,
we can view a trade-off of interval length against coverage error as comparing the second term
of coverage error (the squared scaled bias) against a variance-type term: the square of interval
length, which not only changes the constants involved but also properly adjusts for any v > 0
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because |Izgc(h)|? < n~'h~172". The leading constant portions of coverage error and length are
H2P D and 472 Yo H™'72", respectively, where #5c and Zggc o are preliminary feasible
2

estimators of #zc and Zggc 2. Therefore, we select the constant Hro in Ao = Hron 7™ as
Hypo =argming_o W x H>*?? Dpper + (1 — W) x H 72422, Yo
2
1
422, Yo\ 6 + 2p + 2v
I1-W142v >
W 5+2p QRBC,Z

for a researcher-chosen weight W € (0, 1). In Section 6 we find that szO = I:ITOIFVTO (and
its infeasible counterpart hro) behaves as expected, with the natural choice of W = 1/2 and
yro = 0.1964, the midpoint of (4.3) for p = 1.

5. EXTENSIONS

We briefly discuss several extensions of our main results. Unlike results based on first-order
asymptotic approximations, establishing valid higher-order Edgeworth expansions in the settings
of this section would require non-trivial additional work beyond the scope of this paper. Never-
theless, following the logic and results above, we can provide simple ROT bandwidth choices
targeting inference, based on already-available MSE-optimal bandwidth selectors.

5.1. Other RD designs

In the context of fuzzy (and fuzzy kink) RD designs, the estimand and estimator are ratios of
sharp RD design estimands and estimators, respectively. First-order asymptotic approximations
follow directly from standard linearization methods, and although the validity of the coverage
error expansion can be similarly proven to hold, this is no help in computing the terms of the
expansion. That is, even though the linearization error has no effect on the first-order asymptotic
approximation, it can have a direct effect on the Edgeworth and coverage error expansions.
Without capturing the effect of the linearization, full derivation of inference optimal bandwidths
is not possible. However, in this context we propose the following ROT bandwidth:

EEEE = n P/ @I p
where /iysge denotes an implementation of the MSE-optimal bandwidth for the fuzzy (or fuzzy
kink) RD estimator. Sharp, fuzzy, and kink RD designs also arise in geographic, multi-score, and

multi-cutoff RD settings (Papay et al., 2011; Keele and Titiunik, 2015; Cattaneo et al., 2016), and
the results in this paper can also be used in those cases directly.

5.2. Clustered data
When the data exhibit clustering, first-order asymptotic results can be easily extended to account
for clustered sampling where (a) each unit i belongs to exactly one of G clusters and (b) G — oo

and Gh — oo (see Bartalotti and Brummet, 2017; Calonico et al., 2019). Since MSE-optimal
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bandwidth choices in this context are available and fully implemented, the corresponding ROT
implementation is

EEEE — G P/(@p+3)(p+3) fleSE,

where now G denotes the number of clusters, and leMSE denotes an implementation of the MSE-
optimal bandwidth accounting for clustering. RBC confidence intervals are formed using this
bandwidth choice, together with appropriate (cluster-robust) standard error estimators.

5.3. Pre-intervention covariates

Calonico et al. (2019) employ first-order asymptotics to characterize formally the implications of
including pre-intervention covariates in the estimation of and inference for RD treatment effects.
Again, this is not sufficient for higher-order expansions, and the inclusion of covariates will
impact the coverage error expansion, making it impossible to derive a fully optimal bandwidth
from existing results. However, a ROT bandwidth selector in this context is

ﬁigg — p—P/(Cp+3)(p+3) ﬁMSE,

where n denotes the sample size and hygg denotes an implementation of the MSE-optimal
bandwidth accounting for the inclusion of additional pre-intervention covariates. RBC confidence
intervals are formed using this bandwidth choice, together with appropriate covariate-adjusted
standard error estimators.

6. NUMERICAL RESULTS

We present empirical evidence highlighting the performance of the new RD bandwidth selection
and inference methods developed. We consider a Monte Carlo experiment and an empirical
application, both employing the dataset of Ludwig and Miller (2007) used to study the effect of
Head Start assistance on child mortality. This canonical dataset was employed before by Calonico
et al. (2014), Cattaneo et al. (2017) and Calonico et al. (2019), where further institutional and
descriptive information is provided.

6.1. Monte Carlo experiment

The simulations use n = 500 i.i.d. draws, i = 1, 2, ..., n, from the model
Yi=mX)+e,  Xi~2BQ2,4—1, & ~N(Oa)),

where B(«, B) denotes a beta distribution with parameters « and 8, and the regression function
m(x) is obtained from the Head Start data. Specifically, we estimate the regression function using
a fifth-order polynomial with separate coefficients for X; < ¢ and X; > ¢, where X; is a poverty
index and ¢ = 59.1984 is the RD cutoff point. This estimation leads to

3.71 +2.30x + 3.28x2 + 1.45x3 + 0.23x* + 0.03x3 ifx <c
0.26 4+ 18.49x — 54.81x2 + 74.30x3 — 45.02x* + 9.83x° ifx >c

with o, = 0.6136.
We consider 5,000 replications, and report empirical coverage and average interval length for
a variety of inference procedures. Specifically, Table 2 considers undersmoothing (/yg(h)) and

m(x) =
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Table 2. Empirical coverage and average interval length of 95% confidence intervals.

Bandwidth Empirical coverage Interval length

h D US RBC: 7 p* p=1 US RBC: 7 pr p=1
hyse 0.154 0520 927 945 936 928 1.14 1.28 150 l.04
Ruse 0.174 0.571  88.7 93.7 934 930 1.08 124 142 155
Ryse 0.173 0.571 889 93.7 93.6 93.0 1.08 124 143 1.56
hrgc 0.145 0492 93.1 946 935 926 1.17 .31 1.55 1.69
hrse 0.163 0.535 887 93.6 91.0 905 1.15 1.32 150 l.o4
ke 0.113 0381 94.0 947 930 919 135 146 179 194
ﬁ%c 0.127 0418 924 943 934 922 1.28 1.39 1.69 1.83
Z;"éc 0.127 0416 925 943 931 921 1.28 139 1.69 1.84
hro 0.203 0.686 88.8 942 939 934 0098 .19 130 142
hro 0.172  0.566  87.3 93.6 909 90.7 1.11 1.31 146 1.59

Note: US denotes undersmoothed confidence interval, Iys(h), and RBC denotes robust bias-corrected confidence interval,
Irpc(h). Procedures are computed using the triangular kernel, p = 1, and HC3 variance estimation. Recall that p =
h/busg for corresponding bandwidth selectors / (given in the table), and p* = 0.850 (Table 1).

RBC (Izsc(h)) confidence intervals for different choices of bandwidths 4 and parameter p. In
all cases, we consider a local-linear RD estimator (p = 1) with the triangular kernel and "HC3’
heteroskedasticity consistent standard errors, motivated by the fact that the least-squares residuals
are on average too small (see the SA for more).

The results in Table 2 are organized as follows. The table presents three groups by row: (a) pro-
cedures employing MSE-optimal bandwidth choices (hysg, szSE, huse); (b) procedures employ-
ing CE-optimal bandwidth choices (Agsc, firsc, hEst, leﬁgé, legg'é); and (c) procedures employing
trade-off bandwidth choices (hro, szO). Quantities without hats or tildes correspond to infeasible
bandwidth choices, quantities with hats denote feasible implementations (DPI without label, or
ROT with corresponding label), and quantities with tildes denote feasible implementations with
covariate adjustment. For the latter the model includes, as a predetermined covariate, percentage
of urban population in 1960.

The table also presents three groups by columns: (a) ’'Bandwidth’ reports infeasible or average
feasible bandwidth choices (recall p = /i /bysg with h as appropriate); (b) *Empirical coverage’
reports coverage of Iyg(h) and of Ixsc(h) for three choices of p = h/b; and (c) ’Interval length’
reports the average length of the same four distinct confidence intervals (undersmoothing and
three implementations of RBC indexed by the choice of p). Further implementation details are
given in the SA.

All the findings emerging from the simulation study are in qualitative agreement with the main
theoretical results from our paper. Confidence intervals based on undersmoothing, Iy;5(/), did not
exhibit good coverage properties, while those based on RBC, Izpc(h), performed well. While the
MSE-optimal bandwidth selectors also worked well, the CE-optimal bandwidth selectors offered
some empirical refinements in terms of coverage error. Furthermore, the bandwidth selector based
on coverage error and interval length trade-off discussed in Section 4.3 also performed well. Other
empirical findings are in line with our theoretical and methodological discussions.
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Table 3. Head Start empirical application.

207

Point
estimate Bandwidth RBC confidence intervals
n 7 7 p* p=1
EMSE —2.409 6.81 0.635 [ —5.46,—0.1] [ —5.88, —0.44] [ —-6.41,—1.09]
hyse —2.473 6.98 0.651 [ =5.21, —0.37] [ -5.78 , —0.69] [ —6.54, —1.39]
hre —3.311 4.467 0.416 [ —6.14, —0.82] [ —6.53,—1.09] [ —6.23, -0.27]
E’R"gc —3.273 4.581 0.427 [ —6.12, —0.78] [ —6.57,—1.16] [ —6.26, —0.39]
W e —3.526 4.696 0.438 [—6.13, —1.25] [=7.06, —1.75] [ —6.93, —1.23]

Note: Procedures are computed using the triangular kernel, p = 1, and HC3 variance estimation. Recall that p = //bygg
for bandwidth selectors / (given in the table), and p* = 0.850 (Table 1).

6.2. Empirical application

To complement the Monte Carlo experiment, we also employed the Head Start data to illustrate the
performance of our new bandwidth selection and inference methods using a realistic empirical
application. Specifically, we study the RD treatment effect of Head Start assistance on child
mortality following the original work of Ludwig and Miller (2007). See also Cattaneo et al.
(2017) for a recent re-examination of the empirical findings using modern RD methodology.

In this application, the unit of analysis is a U.S. county, and eligibility into Head Start assistance
was based on each county’s poverty index in 1960. The RD design naturally emerges by the
assignment rule to the program: 7; = 1(X; > ¢), where X; denotes the 1960 poverty index
of county i and ¢ = 59.1984 was the federally mandated cutoff point. The outcome variable
considered is mortality rates per 100,000 for children between 5 and 9 years old, with Head
Start-related causes, during the period 1973—1983.

The main empirical results are presented in Table 3. We first report the sharp RD treatment
effect estimator using a local-linear estimator (p = 1) with triangular kernel and MSE-optimal
bandwidth. In line with previous findings, we obtain #y(/iysg) = —2.409 with fiysz = 6.81. Next,
we compute several RBC confidence intervals with different choices of bandwidths /4 and p,
including the new inference procedures proposed in this paper. In all cases, the empirical results
are in qualitative agreement and confirm an RD treatment effect that is statistically different from
Zero.

7. CONCLUSION

This paper presented two main results for RD designs, which have concrete, practical implications
for empirical work. First, we established valid coverage error expansions of naive and RBC
confidence intervals for RD treatment effects, and showed that the latter confidence intervals
never have asymptotically larger coverage errors and can indeed offer higher-order refinements
whenever the underlying regression functions are smooth enough (arguably the most relevant
case in applications). Thus, this result offers concrete guidance for empirical work in RD designs
by ranking competing confidence interval estimators encountered in practice.

Second, using our coverage error expansions, we also developed CE-optimal bandwidth choices
and discussed how to implement them in practice. In the same way that MSE-optimal bandwidths
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deliver MSE-optimal point estimators for RD treatment effects, our new CE-optimal bandwidth
choices deliver inference-optimal confidence intervals in the sense that their coverage error is the
smallest possible given the choice of point estimator used. This second result also offers concrete
empirical guidance for applied work using RD designs, providing a companion bandwidth choice
to be used when forming confidence intervals for RD treatment effects.
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