Taylor & Francis
Taylor & Francis Group

Communications in Partial Differential Equations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/Ipde20

Recovery of a spatially-dependent coefficient from
the NLS scattering map

Jason Murphy

To cite this article: Jason Murphy (2023): Recovery of a spatially-dependent coefficient
from the NLS scattering map, Communications in Partial Differential Equations, DOI:
10.1080/03605302.2023.2241546

To link to this article: https://doi.org/10.1080/03605302.2023.2241546

@ Published online: 06 Aug 2023.

\]
Cl/ Submit your article to this journal &

||I| Article views: 20

A
h View related articles &'

@ View Crossmark data &'
CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=lpde20


https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2023.2241546
https://doi.org/10.1080/03605302.2023.2241546
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2023.2241546
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2023.2241546
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2023.2241546&domain=pdf&date_stamp=2023-08-06
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2023.2241546&domain=pdf&date_stamp=2023-08-06

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e IalyloFr & Francis
https://doi.org/10.1080/00927872.2023.2241546 aylor &Francis Group

‘ W) Check for updates‘

Recovery of a spatially-dependent coefficient from the NLS
scattering map

Jason Murphy

Department of Mathematics & Statistics, Missouri S&T, Rolla, MO, USA

ABSTRACT ARTICLE HISTORY
We follow up on work of Strauss, Weder, and Watanabe concerning Received 4 October 2022
scattering and inverse scattering for nonlinear Schrédinger equations ~ Accepted 24 July 2023

with nonlinearities of the form o (x) |u|Pu.
th nonlinearities of the form « (x)|u|Pu KEYWORDS

NLS; scattering; inverse
problem

1. Introduction

This note is intended to follow up on some previous works [1-4] concerning nonlinear
Schrédinger equations of the form

(8 + Au = a()|ulPu, (t,x) € R x RY (1.1)

in dimensions d > 1. These works considered the problems of (i) scattering for a suitable
class of data and (ii) the determination of the nonlinearity from knowledge of the scattering
map.

In [1], Strauss established a small-data scattering theory for (1.1) in H*, with p an integer
in the mass-supercritical regime (i.e. p > %), s sufficiently large, and @« € W>*°. The need
for high regularity was essentially a consequence of estimating solutions using the L°°-norm,
with the nonlinear term in the Duhamel formula being estimated directly via the dispersive
estimate. After establishing the small-data scattering theory, Strauss further demonstrated
that knowledge of the scattering map suffices to determine integrals of the form

/(ot|eim(p|peimg0,eiml//) dt
R

for test functions ¢ and v, which may be used to recover the coeflicient o pointwise. The
result of [1] was extended in works of Weder [2, 3], who considered equations of the form

o0
(9 + Ay = Vou+ ) Vitolul*u
k=ko

and used the small-data scattering map to determine the functions Vj, including the potential
Vo. The constant ko was chosen so that the lowest power in the nonlinearity exceeded the so-

called Strauss exponent (allowing for some mass-subcritical nonlinearities); scattering was

obtained in H*® for some integer s > g — 1 (s = 1ind = 1); and the coefficients were
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assumed to satisfy Vi € W>°°. Weder also relied primarily on dispersive estimates (of the
type obtained in [5]) to estimate the nonlinear terms.

In [4], Watanabe established a large-data H! scattering theory for (1.1) in the 3d inter-
critical regime (% <p < ﬁ) for (1.1) with decaying coeflicients « satistying a repul-
sivity condition. He then adapted techniques from [6] to the setting of (1.1), evaluating
the scattering map on data of the form ¢”*p with p > 1 to determine integrals of
the form

'/R(Ot(- +2t0) ol o, ¥) dt

for test functions ¢ and v, which then determine the X-ray transform of «.

Our first contribution is to revisit the approach of [1-3] and to lower the regularity
assumptions by utilizing Strichartz estimates instead of directly using the dispersive estimate.
This is similar to the approach taken in the related work [7], although in this latter work
the authors were primarily concerned with the analyticity of the scattering operator, and
correspondingly the results concerning NLS were restricted to the case p € 2N and « constant.
We further extend the work of [1, 2, 5] by establishing analogous results in the full mass-
subcritical regime.

Our second contribution is to extend the results of [4] to the mass-critical and mass-
subcritical regime in dimensions d > 3. We follow essentially the same strategy to recover «
from the scattering map. In contrast to [4], however, we formulate the original scattering prob-
lem as a small-data problem in a suitable weighted space. This construction directly provides
us with the key estimate needed to control the nonlinear error term in the reconstruction
argument. The formulation as a small-data problem also removes the need for any sign or
repulsivity conditions on the coefficient. After presenting our approach, we will also discuss
some challenges associated to this problem in the mass-supercritical regime.

Our main results appear below as follows:

o Theorem 3.1 - small-data scattering in H Lin the intercritical case;

o Theorem 3.2 - small-data scattering in L? in the mass-critical and mass-subcritical case;

+ Theorem 3.3 - scattering in L? in the mass-critical and mass-subcritical case with boosted
data;

o Theorem 4.1 and Corollary 4.2 - recovery of the nonlinearity from the scattering map in

the setting of Theorems 3.1 and 3.2;

o Theorem 4.3 and Corollary 4.4 - recovery of the nonlinearity from the scattering map in

the setting of Theorem 3.3.

Our results fit in the broader context of the recovery of the nonlinear terms from scattering
data for nonlinear dispersive equations. For some further results of this type (primarily in the
NLS setting), we refer the reader to [2, 3, 5, 7-16]. We also mention the related works [17, 18],
which considered the recovery of spatially-dependent coefficients in the nonlinearity using
particular solutions rather than the scattering map.

2. Preliminaries

We write A < B to denote the inequality A < CB for some C > 0. We denote dependence on
parameters by subscripts, e.g. A < Bmeans A < CB for some C = C(£) > 0. We utilize the
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standard space-time Lebesgue spaces, i.e.
”u”L?L;(Ix]Rd) = ” |lu(t,-) ”L;(Rd) ”L?(I)’
where I C R is some time interval. We use W " for the Sobolev space with norm
lullwrr = lluller + [IVullr

We write ¢’ for the Holder dual of g. The Fourier multiplier operator with symbol m is denoted
by m(iV). Finally, we write (x) = /1 + |x|?.

The free Schrodinger group is denoted e
initial data: for v € R,

itA We have the following identity for boosted

[ "] (x) = e—ilvlzfeiv‘x[eim(p](x — 2tv). (2.1)
The Schrodinger group also obeys the following dispersive estimates
. _d j
le" Sl <12 lels e ele = el

which (by interpolation) yield the following (Lorentz-improved) estimates

i _(d_d
le**@llr2 S 117E" Pl e 2<7 < oo (22)
We will also make use of the standard Strichartz estimates for ¢4
admissible if 2 < g,r < o0, %1 + ‘—: = %, and (g, 1, d) # (2,00,2).

. We call a pair (g,7)

Theorem 2.1 (Strichartz estimates, [19-21]). For any admissible (q,1) and any ¢ € L?, we
have

itA
1 pll 17 ety S Nl

For any admissible (g, 1) and (q,7) and F € L?,Lfg (R x RY), we have

t
‘/ e “IAE(s) ds
—0oQ0

2.1. Weighted estimate for boosted data

S IIF

q.# .
LILL(RxRA) L{ Lz RxR)

The following estimate concerning boosted solutions to the linear Schrodinger equation will
play a key role in Theorems 3.3 and 4.3. The estimate is modeled closely after estimates
appearing in [4, 6, 22].

Given s € [0, %l), we introduce the space X* (R%) via the norm

lellxs = 102 + ||IVI5¢|IL%- (23)

Proposition 2.2. Let q: R — C satisfy |q(x)| < (x) ™ for some s € (0, g). Then

llge™®e” gl < () llollxs  uniformlyin t € R.

We begin with a mismatch-type estimate (also found in [6, 22]).

Lemma 2.3. Let g € Cfo(Rd) satisfy suppg C {|&| < N} for some N > 1. Lett € R and
suppose S, S' C R? are measurable sets satisfying

dist(S,S) = R > 4N|t|. (2.4)
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Then for any £ > 0,
lxse" g (V) xsllzrz Seg (1 +R7E

The estimate is uniform int € R.

Proof We begin by observing that for a bounded continuous function m, we have

Ixsm@V) xsllpz—r2 S min{llmll oo, [l L1 (x> r) -

The L* bound follows from the Plancherel identity. For the remaining estimate, one may
proceed by expanding the definition of

IxsmGV)xsfll32s  f € L%
and using Young’s inequality
W@ = 51 OF + @]

The presence of the cutofts and the assumption (2.4) allow for the restriction to |x| > R in
the L!-norm of 7. We refer the reader to [22, Lemma 2.1] for further details.
g2
In the present setting, we take m(§) = e HtIEl g(£) and seek to estimate

i (x) = / XM o) dg, x| > R.

According to our assumptions, the phase has no stationary points, and hence repeated
integration by parts leads to bounds of the form Cy|x — 2t£| ¢ for arbitrary £. In the present
setting, we have

lx — 2t&| > |x| — 2t[§] = 3|x| = IR,
and hence we obtain
- —¢
Il 1 ay=r) Se R

forany £ > 0. O

Proof of Proposition 2.2 We let v € R?\{0} and s € (0, ¢). By (2.1), it is enough to show that

lg(- + 2tv)e™ 2ol 2 S (t9) S llgllxs. (2.5)

We use the standard Littlewood-Paley projections to split ¢ into low and high frequencies.
In particular, we write

¢ =P_Np + PNy, N:=1l.
We first estimate the low frequencies. We set
S = {lx| < 1gltvl}
and use the triangle inequality to obtain
laC + 260" P<nglizz < llq(- + 2M)e" Pyl — X512 (2:6)
+ 111 — xs(- 4 200)1q(- + 2tv)e"* Py x50 12 2.7)
+ lxs(- + 2t)q(- 4 2tv)e" Poy x5l 2. (2.8)
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For (2.6), we estimate
llg(- + 2tV)eitAP§N[1 — xslellr2 S ||‘Z||L°°||(P||L2(|x|>T1()|tV|)
ST el

which is acceptable.
For (2.7), we use the decay assumption on g to obtain

11 = xsC +2t)1g(- + 2tv)e" Py xsollz < (09) Sll@ll 2,

which is acceptable.
For (2.8) we introduce

S = {lx+2tv| < 351171}
and observe that
dist(S, S) > |v|t = AN]t].
Thus, Lemma 2.3 implies that
Ixs(- +2m)q(- + 20" Pan xsoll> < gl llxs €™ P<n xsell 2
S llellre,

which is acceptable.
It remains to estimate the high frequencies. As it is straightforward to obtain the bound

¢ + 2" 2Ponol2 S gl liele S Il

it suffices to obtain the [tv|~° bound. To this end, we use Holder’s inequality (in Lorentz
spaces), the dispersive estimate (2.2), the embedding L — L2 for r < 2, and Bernstein’s
inequality (recalling |v| = 4N) to obtain

itA — it A
lqC- +20)e"2Ponelie S )TN g Ne™ Ponegll
s Ld=2s’
ST IPNell 2,
Ld+2s’
SIVITINVERl 2 s
Ld+2s

which is acceptable. 0

3. The direct problem

In this section we prove several scattering results for (1.1). We first establish scattering for
small data in Sobolev spaces. We utilize standard contraction mapping arguments based on
Strichartz estimates (see e.g. [23]). In the intercritical regime (% <p< ﬁ), the coefficient
o and its gradient are estimated in L*°. In the mass-subcritical regime (p < %) we impose a
decay assumption on «.

Throughout the rest of the paper, we will regularly make use of the admissible pair

2d(p+2

(note that we will restrict to p > 2 in dimension d = 1).
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Theorem 3.1. Let d > 1 and suppose p satisfies

4 4
I<pP=<g5 d=3
isp< de { 2},
Let o be a continuous function with o, Va € L°°. There exists n = n(p, |a|lyre) > 0

sufficiently small that for any u_ € H' with ||u_| g < n, there exists a unique global solution
uto (1.1) and final state u, € H! satisfying

: itA _
lull gyt ey S lu=llgn - and - lim flu®) — " Puslm =0, (32)

where (g, 1) is as in (3.1).
Proof Let u_ € H'. We will prove that if ||u_|| g is sufficiently small, the map
t
ur> du) =e"u_ — i/ eI u(s) [Pu(s) ds (3.3)
—o0

is a contraction on a suitable metric space. To this end, we define
X=(u:R xR C| l[ull gy irgpa < 2CHu—llpn},
which we equip with the metric
d(u,v) = llu = Vil 150 e

The constant C encodes implicit constants appearing in estimates such as Strichartz estimates
and Sobolev embedding. Throughout the proof, all space-time norms will be taken over R x
R¢ unless indicated otherwise.

We define r, = w and observe that by Sobolev embedding

s —4d_2
lellpze S MV Feully S Nullyr,  where  se = 5 — 2 €[0,1].

Now let u € X. By Strichartz estimates, Holder’s inequality, the chain and product rules,
we have
10 g2 S Nl + el g

SNl + (lelize + [Vellzoe) full? lfeell g1

LI

p+1

Sl + Bl S e + Il -

Liwy
It follows that for ||u_||; sufficiently small, & : X — X.

Given u, v € X, we similarly estimate
e = vlggyg S Nl = VPVl g

S ||05||L°°{||“||Lq e Iy Ml — vilpag

LiLE
S N[yl = vl
~ =1 LIy
which shows that @ is a contraction provided ||u—_|| 1 is sufficiently small.
We conclude that & has a unique fixed point u € X, yielding the desired solution to

(1.1). The convergence e "2yu(t) - u_in H' ast — —oo follows by construction and
the estimates above. To prove the existence of a scattering state as t — 00, we estimate as
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above to obtain

p+1

—itA _ —isA <
le™™ utt) = e @l < erle + IVelwo)lullyy o o

— 0 as s,t— oo

Thus {e~#*Au(t)} is Cauchy and so converges to a unique u; € H' ast — oo. O

We next consider the mass-subcritical regime. Assuming that o belongs to a suitable

Lebesgue space, we can first establish scattering for small L? data. In fact, this result (as well

as Theorem 3.3) allows for p to go below the usual long-range exponent p = %

Theorem 3.2. Let d > 1 and suppose p satisfies

0<p<?% d>2

2<p<4 d=1.

2d
Let o be a continuous function witha € L NL*=% . Then there existsn = n(p, ||| 27dd) >0
L4-p

sufficiently small that for any u_ € L with ||u_|| > < n, there exists a unique global solution u
to (1.1) and final state u, € L? satisfying

< - _itA _
gy S -l and  lim fu() — ezl 2 = 0, (3.4)
where (g, 1) is as in (3.1).
Proof We show that ® defined in (3.3) is a contraction on the complete metric space
X={u:RxR?— C| leell 97 rxray < 2CHu—lI2},
with metric given by
d(u,v) = |lu— V”L?L;(Rx]l{d)'

Once again C encodes implicit constants appearing in the estimates below.
The essential step is the following nonlinear estimate: by Strichartz estimates and Holder’s
inequality, we have

t
H/ eI (0 [u(s) Pu(s) ds

S llafulPull g,
L, t o

1
< o ullPt
S ||L% Il ||Lth;

With this estimate in hand, the proof exactly parallels that of Theorem 3.1. The constraint

_2d_
p > 2inind = 1is necessary to use the space L] L" for u (see (3.1)) as well as the space L™
for o O

We next establish a mass-critical and mass-subcritical scattering theory for a class of data
adapted to the setting of [4], namely, data of the form u_ = ¢"*¢ with |v| > 1. By working
with a suitably weighted space (and imposing further decay assumptions on «), we can recast
the scattering problem for such data as a small-data problem.
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Givena > 0 and s € [0, ¢) we introduce the space X** via the norm

l@llxas = IIVI@l2 + llellxss (3.5)

where X* is as in (2.3). To simplify the formulas below, we also introduce the parameter
4—p(d—2
c=cp.d) = SHP (3.6)
Theorem 3.3. Letd > 3and0 <p < 5 Let o satisfy

4—dp d
max{ ; p(d %> Tp(d= 2)}<c7<5 (3.7)

and suppose that « is a continuous function satisfying

2d(p42)

(x)PTVOy e L0 (3.8)

Let ¢ € X'°. For |v| sufficiently large, there exists a unique global solution to (1.1) and final
state uy € L? satisfying

1
1)~ ull e S P llelixe (3.9)

RxRd) ~
and
iv-x

lim |u(t) — e’muille =0, where u_ =e"*gp.
t—+o00

Proof We wish to close a contraction mapping argument for the map ® in (3.3) in the space
= (W R xR > C (0 “ul g < 201 72 pllr)
with metric
d(u,v) = [[{x)~7[u — e

The constant C encodes implicit constants appearing in several inequalities, including the
Strichartz estimates and the inequality in Proposition 2.2.

We begin with the linear term in the definition of ® (see (3.3)). By Holder’s inequality, we
have

”(x> co itA zvx o 1tA 1vx itA wx

e llpe S )™ oll'

olille
L Ld 2

Using (2.1) and Sobolev embedding, we obtain
itA iv-x < itA < .
le™"e™ el 20 Slleell 20 S Nl
while Proposition 2.2 implies
) =7 e e 2 £ (v 7 llgllxe
Thus, by (3.7) and a change of variables, we obtain

1

—co itA iv- - -

[{x)" ¢ el”(/)llLf;H < lve) CGHL€+2”(/)”X1'" S P lgllxe
X
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We turn to the nonlinear estimate. We will use the same Strichartz pair (q,r) as in the
proofs of Theorems 3.1 and 3.2; see (3.1). We also observe that (3.7) guarantees

2d(p+2)
(x)7% e L +% .

Thus, given u € Y, we use Holder’s inequality, Strichartz estimates, and (3.8) to obtain

t
(x)_w/ eI ulPu(s) ds
—0o0

p+
L t,x

S )TN 2d+2)

~

t
/ eI () [ulPu(s) ds
—00

L = Ly
S llalulful g,
< (p+1co —co, Pt < - p+l
S ) ol 2ape [0 ull7p S VP2 @M1
L 4—dp Lt,x

Choosing |v| sufficiently large we obtain ¢ : ¥ — Y.
Using similar estimates, we find that for u,v € Y,

1)~ 1@ @) = 2l pi2
STl sapin (1) ™ ullpra + 1) TVI, 2}
[ 4—ap tx tx
X 1) [ = vl 2
tx

_r B
< P ™ = V]l s
t,.x

so that @ is a contraction provided |v| is sufficiently large. We therefore obtain the global
solution u to (1.1) satisfying (3.9).

The L? convergence e *2u(t) — u_ ast — —oo follows from the estimates above. It
remains to prove the existence of the L2 scattering state u4. In fact, by the estimates above,
we have

—itA _ ,—isA < 4
e~ Au(t) — e *Lu@l < lalulul g, oo

< x)"“ y p+1
SIS

ass,t — 00, which yields the result. O

4, Theinverse problem

Theorems 3.1, 3.2, and 3.3 show that under suitable assumptions on (p, o) we can define final
states uy corresponding to data u_ via the solution to (1.1). We denote the scattering map
sending u_ to u4 by

H! in Theorem 3.1,

S=Spa:A—
L?  in Theorems 3.2 and 3.3.

The proof of Theorem 3.1 shows that we may take

A={pecH": lellgr < n}  in Theorem 3.1,



10 J. MURPHY

with n = n(p, a) sufficiently small. Similarly, we may take
A={pel?*: lell;z2 < n} in Theorem 3.2,

with n = n(p, «) sufficiently small. Finally, choosing o > 0 satisfying (3.7), the proof of
Theorem 3.3 shows that we may take

A= U ("¢ : lollxie <M, |v| > CMPT?}  in Theorem 3.3,
M=>0

where C = C(p, ) is sufficiently large.
In all cases, we have the following implicit formula for S:

Su_ =u_ — i/ e BalulPu(r) dt,
R

where u is the solution to (1.1) that scatters backward in time to u_. We wish to show that
knowledge of S on A is sufficient to determine the nonlinearity in (1.1).

We first consider the case of Theorems 3.1 and 3.2 and prove a result similar to the one
appearing in [1]. Essentially, we will show that the scattering map admits an expansion at
zero and identify the leading term.

Theorem 4.1. Let (d,p,«) satisfy the assumptions of Theorems 3.1 or 3.2 Let S denote the

corresponding scattering map. Let

c H! in the case of Theorem 3.1,
v L*  inthe case of Theorem 3.2,

and let v € L?. Then
lim ie=PTV((S — D(ep), ) = /R (ale"tplPe™p, ey dt.

Proof Given ¢ > 0 sufficiently small, we set u_ = ¢ € A and let u be the corresponding
solution to (1.1) constructed in Theorems 3.1 or 3.2. We write

i((S—D(ep), ¢¥) = f (a|ulPu, ") dt
R
— 8p+1 A(a|eitA(p|PeitA¢)eitAw> dt
+ /(a[lulpu — | eplPelPeql, ey dt. (4.1)

To complete the proof, we will show that the final term satisfies |(4.1)| = o(ef*1).
We begin by using the Duhamel formula (cf. (3.3)) to obtain the estimate

(4D)] S ey [[ul? + 1" epl?] [u— " Pep]llp

t
aeey[lulf + e Pepl?] |:f

—00

S

eI o ulPu(s) ds]

!

t,x
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We first consider the setting of Theorem 3.1. Using the estimates appearing in the proof of
that theorem, we apply Holder’s inequality, Strichartz estimates, and (3.2) to obtain

t
f I |ulPus) ds
0

it A it A
S llef WIILqu[Ilulqu et lle wIILq rc]llotlulpull

(D] S el eyl +1e el 1l ¢

Ll
'y

2p+1 ~ 2p+1
Svlgleply S e,

which is acceptable.
We next consider the setting of Theorem 3.2. Applying the estimates used to prove that
theorem and (3.4), we obtain

t
(D] S e il +16" el | [ 09 alubucs) s
x 0

LI
itA itA P
S el za N0 g [0l + N, Dl
2p+l 2p+1
S ||¢||L2||8<PII S et
which is acceptable. O

In the next result, we consider (1.1) with nonlinearities o|u|’u and &lulf’ u. We define the
corresponding scattering maps S : A — L>and § : A — L% with A, A defined as in the
beginning of this section. We note that A N A # @ (for example, this intersection contains a
small ball centered at 0 in H'). We prove that if S and S agree on their common domain, then

p=panda =a.

Corollary 4.2. Letd > 1 and suppose (p, o) and (p, @) satisfy the assumptions of Theorems 3.1
or 3.2. Suppose further that a, & are not identically zero. Let S : A — L* and S : A — L? denote
the corresponding scattering maps.

IfS(f) = S(f) forallf e AN A, thenp = p and a = a.

Proof Given ¢ € S\{0}, we define

Cla,p,p) == //a(x)|eitA(p|p+2 dx dt.
The proof of Theorem 4.1 implies that
(S —D(2ep), 9) = 2P Cla p,0) + O™,
(S — D(ew), @) = P Cla, pog) + O,
with analogous formulas holding for S. Thus if S = S, we can send & — 0 to obtain
Cla.p.9) = C@p.¢) and 2°C(a,p,¢) = 2PC(@,p, ). (4.2)

We will prove below that since o s 0, there exists ¢ € S such that C(, p,¢) # 0. Fixing
such ¢ € S, it follows from (4.2) that p = p. )
Having established that p = p, we now observe that S = S implies

/fa(x)|eitA¢|P+2 dxdt = //&(x)leitA<p|P+2 dxdt forall ¢ € S. (4.3)
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It therefore suffices to prove that if

// a(x)|ePo@) P2 dxdt =0 forall ¢ €S, (4.4)

then o = 0. To prove this, we utilize an argument appearing in [9] (see also [15]).
First, given ¢ € S, we define

K,(x) = / 168 o () [P+ d
R

and claim that K, € L?(R?). To prove this, we use Minkowski’s integral inequality, Sobolev
embedding, and the dispersive estimate to obtain the following:

itA itA Pt
I e ol S el

|
p+2 L2 5 2(p+2) Lp+2

itA P+
S el p+2 20+

f[ﬂ’f—] +2
Se 12T <01
t
provided p > max{% —1,0}.
We now specialize to the case

2 . d 2
px) = exp{—%}, sothat €™ g(x) = (1 +it)" 2 exp{—4(|1x_Ll.t)}

(see [24]). In particular, we have

(p+2) 2
Ky(x) = / (14275 expl— 2L,

and so by translation invariance for the linear Schrédinger equation, (4.4) implies
/a(x)Kw(x —x9)dx =0 forall xge€ R4

To see that this implies o = 0, it therefore suffices to verify that IA@, # 0 almost everywhere.
In fact, for any £ # 0, we can compute k¢ (&) as a Gaussian integral:

R d _d(p+2) .
Ry (&) = @m) 2/R<1+t2> T Adexp{—zx-s—«?—ﬁa“'z}dxdf
dp 2y1£12
— e / (14 )% exp(— UL 4.
R
As IA<¢(.§ ) is the integral of a positive function, we conclude that IA<¢($) > Oforallé #0. [

We next consider the case of Theorem 3.3 and prove a result similar to the one appearing
in [4]. We extract the leading order term in the scattering map in the regime of highly boosted
data. We recall the spaces X** defined in (3.5), (2.3).

Theorem 4.3. Let d > 3. Suppose (p, ) satisfy the assumptions of Theorem 3.3 and choose o
satisfying (3.7). Assume additionally that

le(x)| < (x)™°  forsome s € (1,%). (4.5)

Let S : A — L? denote the corresponding scattering map, and let , ¥ € X5+,
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For any 6 € S%1,

plim ip((S — D) (@), P! *y) =/<a(-+2t9)lwlp<p,w>dt-
—00 R

Proof We fix 0 € S9-1 Jet 0 > l,and setv = pO. Letu_ = eiv'x<p € A, and let u be the
corresponding solution to (1.1) constructed in Theorem 3.3. We begin by writing

i((S—D (" p), " )
=/(o¢|u|pu,eimei"'xw)dt
R

_ / (@] "B eV Ep|P gitB o7 Xy GitA VX iy (4.6)
R
+ / (a[|u|pu _ |eitAeiV<x§0 |peitAeiV-x(p]) eitAeiV-xW) dt. (47)
R

We will extract the main term from (4.6) and estimate (4.7) as an error term.
Using (2.1) and a change of variables, we first obtain

(4.6) = / (@() €2 p(- — 2p01) [P (- — 2001), "2y (- — 2p01)) dt
R

=4 [ taC 20016545, 5 g
R
We now define
hp(®) = (@ + 2007 P74y,
£(t) = (a(- + 2009 Pe, ¥).
We will prove that for all t € R, we have

pan;o hy(t) = £(t), and (4.8)
lhp(B)] S (1) € L. (4.9)
To this end, first observe that
Iho(5) — £B)] < ((- +200)]e7 2 g P70 — |plPp, e 72 y)] (4.10)
+ (o (- +208)glPg, 7 2y — Y. (4.11)

To estimate these terms, we use the pointwise bound
e 1) < o2 8,
d
In particular, using H2 % < L2+
(4.11) < ()3 Py 0
A1) < (7) ||05||L°°||<P||Lz(p+1) IVl — as o — 00.

Similarly, using Sobolev embedding to control the free evolution in L*,

(4.10) < flrllz={lle? 2ol + l@lfle’? 20 — @l 2l vl 2

1
S Ezllalis el , IVellpllvlz =0 as p— oo,
H?2

This proves (4.8).
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Next, we use (2.1), Holder’s inequality, Sobolev embedding, and Proposition 2.2 (in the
form (2.5)), to obtain

EA EA
|hp(t)| = |<o{ |elpAeze~x¢|pelpAe10 x(p 6 p 619 wa
i iLA jg.
N ”ep ‘P”Lz(pﬂ)”aeﬂ e Y| 2
S ol o +25 el 52yl S (07

which proves (4.9).
By the dominated convergence theorem, we therefore obtain

lim p - (4.6) =/(ot(~+29t)|<p|p(p,1//)dt
R

p—>00

which yields the main term.
To complete the proof, it remains to prove that

(47 =0(p™") as p— o0.
We begin with the estimate

47 S lele®@e™ illul? + e e™ o lP] [u — 2" o]l

t
a[eltAelv-xw][lmp + |eltAew-x¢|p] [/

—00

I |ulPuls) dsi|

1
L t,x

We utilize Strichartz estimates and the estimates appearing in the proof of Theorem 3.3 to
obtain

A A
(@D S Nl e Y lllul? + "™ o1y el ull

1 2 — itA iv-
S PICa| 50 [10x) " B Y | pra
L 4dp tx
- P N - p+1
< (1) ull’ s + {x) =7 e ]| p+2]||<x> Cullf s
th L Lt,x

Z‘Iil 1
Sp P2 =o0(p") as p—> 00,

as was needed to show. O

We can now show that in the setting of Theorem 3.3, if the scattering maps S : A — L?
and §: A — L2 corresponding to nonlinearities o|u[Pu and &|ulPu agree on their common
domain, then p = p and @ = @. Here A, A are as described at the beginning of this section.
We observe once again that AN A # ¢J. For example, given any ¢ € S, we have e”*p € ANA
provided |v| is sufficiently large. In the following result, we will make use of the injectivity of
the X-ray transform; correspondingly, we impose that a,& € L' (which is not immediately
guaranteed by the assumptions of Theorems 3.3 or 4.3).

Corollary 4.4. Let d > 3 and suppose (p, ), (p, @) satisfy the assumptions of Theorems 3.3
and 4.3. Suppose further that a, & belong to L' and are not identically zero. Let S : A — L* and
S: A — L? denote the corresponding scattering maps.

IfS(f) = S(f) forallf € AN A, thenp = panda = a.
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Proof Fix ¢ € Sand 6 € S~!. Arguing as we did in Corollary 4.2, we can first obtain that if
S =S, thenp = p.
Applying Theorem 4.3 once again, we further obtain

// a(x+29t)|<p(x)|1’+2dxdt:// @ (x + 201 |(x) |PT2 dx dt (4.12)
R JRR4 R JRR4

foralld € S land ¢ € X5Ho.
We now fix § € S~ and y € R?. We then choose a nonnegative, compactly supported

¢ € L' with f(p = 1 and set ¢, (x) = ndgo(nx). By (4.12), we have

//a(x—l— 200)@u(x — y) dx dt = // a(x+20t)p,(x — y)dxdt forall n. (4.13)

Now consider the functions
() = /d a(x + 20t) @, (x — y) dx.
R
By approximate identity arguments, we have that

gn(t) > a(y+20t) as n—oo forall teR.
Furthermore, recalling (4.5) and noting that |x — y| < 1 on the support of ¢, (x — y), we have

FAGIBS /(x +20t) " pu(x — y) dx S /h(t)cpn(x —y) dx S h(t),

where i € L} is defined by

AP I
H= 1t >yl

Thus, by the dominated convergence theorem, we have

// a(x+20t)(pn(x—y)dxdt—>/oc(y—l—ZHt)dt as n — oo.
R JR4 R

Arguing similarly for & and recalling (4.13), we deduce

/oz(y+9t)dt=/&(y+9t)dt.
R R

As6 € S% ! and y € R were arbitrary, the fact that « = & now follows from the injectivity
of the X-ray transform (see e.g. [25, Chapter I] or [26]). ]

4.1. Challenges in the mass-supercritical regime

The approach taken in Theorems 3.3 and 4.3 is to formulate the scattering problem as
a small-data problem, capitalizing on the fact that highly boosted data become small in
weighted spaces (a consequence of Proposition 2.2). This construction guarantees that the
corresponding nonlinear solutions inherit the weighted estimates enjoyed by the boosted
linear solutions. Such estimates then play an essential role in the proof of Theorem 4.3,
particularly in the estimation of the error term (4.7).

Extending this approach to the mass-supercritical regime seems to lead to some significant
difficulties. Indeed, in this setting the small-data contraction mapping argument to construct
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the scattering solutions requires some estimates on the derivatives of solutions; however, the
derivatives of highly boosted data will become very large. Thus, while it seems possible to
extend Theorems 3.3 and 4.3 into the slightly mass-supercritical regime, the full intercritical
and energy-critical regime appear to be out of reach for now.

In [4], Watanabe proceeded by imposing a positivity and repulsivity condition on the
coefficient «, which allowed for the use of Morawetz estimates to establish an intercritical
scattering theory for (1.1) for arbitrarily large H! data (including boosted data). As in the
proof of Theorem 4.3, the recovery problem subsequently required the estimation of an
error term like (4.7). The approach of [4] was based on the intertwining property and an
implicit formula for the wave operator €2_; however, it appears that the formula for Q_
in [4, Lemma 3.2] is missing a factor of €2_ in the nonlinear term. In the absence of this
factor, one is ultimately faced with estimating only a linear term, for which an estimate such
as Proposition 2.2 is sufficient. Restoring the missing factor of €2_, one is instead led to a
term involving the full (nonlinear) solution. It then seems necessary to prove that even in
this setting, the scattering solutions inherit the weighted estimates satisfied by the boosted
linear solutions. At present, the author is not aware of a method to obtain such estimates in
the intercritical setting. On the other hand, Theorems 3.3 and 4.3 demonstrate that in the
mass-critical and mass-subcritical regime, the scattering problem does admit a formulation
as a small-data problem that is well-adapted to the approach found in [4].
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