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1. Introduction

This note is intended to follow up on some previous works [1–4] concerning nonlinear
Schrödinger equations of the form

(i∂t + �)u = α(x)|u|pu, (t, x) ∈ R × R
d (1.1)

in dimensions d ≥ 1. These works considered the problems of (i) scattering for a suitable
class of data and (ii) the determination of the nonlinearity from knowledge of the scattering
map.

In [1], Strauss established a small-data scattering theory for (1.1) in Hs, with p an integer
in the mass-supercritical regime (i.e. p > 4

d ), s sufficiently large, and α ∈ Ws,∞. The need
for high regularity was essentially a consequence of estimating solutions using the L∞-norm,
with the nonlinear term in the Duhamel formula being estimated directly via the dispersive
estimate. After establishing the small-data scattering theory, Strauss further demonstrated
that knowledge of the scattering map suffices to determine integrals of the form∫

R

〈α|eit�ϕ|peit�ϕ, eit�ψ〉 dt
for test functions ϕ and ψ , which may be used to recover the coefficient α pointwise. The
result of [1] was extended in works of Weder [2, 3], who considered equations of the form

(i∂t + �)u = V0(x)u +
∞∑

k=k0

Vk(x)|u|2ku

and used the small-data scatteringmap to determine the functionsVk, including the potential
V0. The constant k0 was chosen so that the lowest power in the nonlinearity exceeded the so-
called Strauss exponent (allowing for some mass-subcritical nonlinearities); scattering was
obtained in Hs for some integer s > d

2 − 1 (s = 1 in d = 1); and the coefficients were
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assumed to satisfy Vk ∈ Ws,∞. Weder also relied primarily on dispersive estimates (of the
type obtained in [5]) to estimate the nonlinear terms.

In [4], Watanabe established a large-data H1 scattering theory for (1.1) in the 3d inter-
critical regime ( 4d < p < 4

d−2 ) for (1.1) with decaying coefficients α satisfying a repul-
sivity condition. He then adapted techniques from [6] to the setting of (1.1), evaluating
the scattering map on data of the form eiρθ ·xϕ with ρ � 1 to determine integrals of
the form

∫
R

〈α(· + 2tθ)|ϕ|pϕ,ψ〉 dt

for test functions ϕ and ψ , which then determine the X-ray transform of α.
Our first contribution is to revisit the approach of [1–3] and to lower the regularity

assumptions by utilizing Strichartz estimates instead of directly using the dispersive estimate.
This is similar to the approach taken in the related work [7], although in this latter work
the authors were primarily concerned with the analyticity of the scattering operator, and
correspondingly the results concerningNLSwere restricted to the case p ∈ 2N andα constant.
We further extend the work of [1, 2, 5] by establishing analogous results in the full mass-
subcritical regime.

Our second contribution is to extend the results of [4] to the mass-critical and mass-
subcritical regime in dimensions d ≥ 3. We follow essentially the same strategy to recover α

from the scatteringmap. In contrast to [4], however, we formulate the original scattering prob-
lem as a small-data problem in a suitable weighted space. This construction directly provides
us with the key estimate needed to control the nonlinear error term in the reconstruction
argument. The formulation as a small-data problem also removes the need for any sign or
repulsivity conditions on the coefficient. After presenting our approach, we will also discuss
some challenges associated to this problem in the mass-supercritical regime.

Our main results appear below as follows:
• Theorem 3.1 – small-data scattering in H1 in the intercritical case;
• Theorem 3.2 – small-data scattering in L2 in the mass-critical and mass-subcritical case;
• Theorem 3.3 – scattering in L2 in the mass-critical and mass-subcritical case with boosted

data;
• Theorem 4.1 and Corollary 4.2 – recovery of the nonlinearity from the scattering map in

the setting of Theorems 3.1 and 3.2;
• Theorem 4.3 and Corollary 4.4 – recovery of the nonlinearity from the scattering map in

the setting of Theorem 3.3.
Our results fit in the broader context of the recovery of the nonlinear terms from scattering

data for nonlinear dispersive equations. For some further results of this type (primarily in the
NLS setting), we refer the reader to [2, 3, 5, 7–16].We alsomention the related works [17, 18],
which considered the recovery of spatially-dependent coefficients in the nonlinearity using
particular solutions rather than the scattering map.

2. Preliminaries

We write A � B to denote the inequality A ≤ CB for some C > 0. We denote dependence on
parameters by subscripts, e.g. A �	 Bmeans A ≤ CB for some C = C(	) > 0. We utilize the
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standard space-time Lebesgue spaces, i.e.
‖u‖Lqt Lrx(I×Rd) = ∥∥‖u(t, ·)‖Lrx(Rd)

∥∥
Lqt (I)

,

where I ⊂ R is some time interval. We useW1,r
x for the Sobolev space with norm

‖u‖W1,r = ‖u‖Lr + ‖∇u‖Lr .
Wewrite q′ for theHölder dual of q. The Fouriermultiplier operator with symbolm is denoted
bym(i∇). Finally, we write 〈x〉 = √

1 + |x|2.
The free Schrödinger group is denoted eit�. We have the following identity for boosted

initial data: for v ∈ R
d,

[eit�eiv·xϕ](x) = e−i|v|2teiv·x[eit�ϕ](x − 2tv). (2.1)
The Schrödinger group also obeys the following dispersive estimates

‖eit�ϕ‖L∞ � |t|− d
2 ‖ϕ‖L1 , ‖eit�ϕ‖L2 = ‖ϕ‖L2 ,

which (by interpolation) yield the following (Lorentz-improved) estimates

‖eit�ϕ‖Lr,2 � |t|−( d2− d
r )‖ϕ‖Lr′ ,2 , 2 ≤ r < ∞. (2.2)

We will also make use of the standard Strichartz estimates for eit�. We call a pair (q, r)
admissible if 2 ≤ q, r ≤ ∞, 2q + d

r = d
2 , and (q, r, d) 
= (2,∞, 2).

Theorem 2.1 (Strichartz estimates, [19–21]). For any admissible (q, r) and any ϕ ∈ L2, we
have

‖eit�ϕ‖Lqt Lrx(R×Rd) � ‖ϕ‖L2 .
For any admissible (q, r) and (q̃, r̃) and F ∈ Lq̃

′
t Lr̃

′
x (R × R

d), we have∥∥∥∥
∫ t

−∞
ei(t−s)�F(s) ds

∥∥∥∥
Lqt Lrx(R×Rd)

� ‖F‖
Lq̃

′
t Lr̃

′
x (R×Rd)

.

2.1. Weighted estimate for boosted data

The following estimate concerning boosted solutions to the linear Schrödinger equation will
play a key role in Theorems 3.3 and 4.3. The estimate is modeled closely after estimates
appearing in [4, 6, 22].

Given s ∈ [0, d2 ), we introduce the space Xs(Rd) via the norm
‖ϕ‖Xs = ‖〈x〉sϕ‖L2 + ‖|∇|sϕ‖

L
2d

d+2s
. (2.3)

Proposition 2.2. Let q : Rd → C satisfy |q(x)| � 〈x〉−s for some s ∈ (0, d2 ). Then

‖q eit�eiv·xϕ‖L2 � 〈tv〉−s‖ϕ‖Xs uniformly in t ∈ R.

We begin with a mismatch-type estimate (also found in [6, 22]).

Lemma 2.3. Let g ∈ C∞
c (Rd) satisfy supp g ⊂ {|ξ | ≤ N} for some N ≥ 1. Let t ∈ R and

suppose S, S′ ⊂ R
d are measurable sets satisfying

dist(S, S′) = R ≥ 4N|t|. (2.4)
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Then for any 	 ≥ 0,

‖χS′eit�g(i∇)χS‖L2→L2 �	,g (1 + R)−	.

The estimate is uniform in t ∈ R.

Proof We begin by observing that for a bounded continuous functionm, we have

‖χS′m(i∇)χS‖L2→L2 � min{‖m‖L∞ , ‖m̌‖L1(|x|>R)}.
The L∞ bound follows from the Plancherel identity. For the remaining estimate, one may
proceed by expanding the definition of

‖χS′m(i∇)χSf ‖2L2 , f ∈ L2,

and using Young’s inequality

|f (y)| |f (z)| ≤ 1
2 [|f (y)|2 + |f (z)|2].

The presence of the cutoffs and the assumption (2.4) allow for the restriction to |x| > R in
the L1-norm of m̌. We refer the reader to [22, Lemma 2.1] for further details.

In the present setting, we takem(ξ) = e−it|ξ |2g(ξ) and seek to estimate

m̌(x) =
∫

eixξ−it|ξ |2g(ξ) dξ , |x| > R.

According to our assumptions, the phase has no stationary points, and hence repeated
integration by parts leads to bounds of the form C	|x − 2tξ |−	 for arbitrary 	. In the present
setting, we have

|x − 2tξ | ≥ |x| − 2t|ξ | ≥ 1
2 |x| ≥ 1

2R,

and hence we obtain

‖m̌‖L1(|x|>R) �	 R−	

for any 	 ≥ 0.

Proof of Proposition 2.2 We let v ∈ R
d\{0} and s ∈ (0, d2 ). By (2.1), it is enough to show that

‖q(· + 2tv)eit�ϕ‖L2 �s 〈tv〉−s‖ϕ‖Xs . (2.5)

We use the standard Littlewood–Paley projections to split ϕ into low and high frequencies.
In particular, we write

ϕ = P≤Nϕ + P>Nϕ, N := 1
4 |v|.

We first estimate the low frequencies. We set

S = {|x| ≤ 1
10 |tv|}

and use the triangle inequality to obtain

‖q(· + 2tv)eit�P≤Nϕ‖L2 ≤ ‖q(· + 2tv)eit�P≤N[1 − χS]ϕ‖L2 (2.6)
+ ‖[1 − χS(· + 2tv)]q(· + 2tv)eit�P≤NχSϕ‖L2 (2.7)
+ ‖χS(· + 2tv)q(· + 2tv)eit�P≤NχSϕ‖L2 . (2.8)
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For (2.6), we estimate

‖q(· + 2tv)eit�P≤N[1 − χS]ϕ‖L2 � ‖q‖L∞‖ϕ‖L2(|x|> 1
10 |tv|)

� 〈tv〉−s‖〈x〉sϕ‖L2 ,
which is acceptable.

For (2.7), we use the decay assumption on q to obtain

‖[1 − χS(· + 2tv)]q(· + 2tv)eit�P≤NχSϕ‖L2 � 〈tv〉−s‖ϕ‖L2 ,
which is acceptable.

For (2.8) we introduce

S′ = {|x + 2tv| ≤ 1
10 |tv|}

and observe that

dist(S, S′) ≥ |v|t = 4N|t|.
Thus, Lemma 2.3 implies that

‖χS(· + 2tv)q(· + 2tv)eit�P≤NχSϕ‖L2 � ‖q‖L∞‖χS′eit�P≤NχSϕ‖L2
� 〈tv〉−s‖ϕ‖L2 ,

which is acceptable.
It remains to estimate the high frequencies. As it is straightforward to obtain the bound

‖q(· + 2tv)eit�P>Nϕ‖L2 � ‖q‖L∞‖ϕ‖L2 � ‖ϕ‖L2 ,
it suffices to obtain the |tv|−s bound. To this end, we use Hölder’s inequality (in Lorentz
spaces), the dispersive estimate (2.2), the embedding Lr ↪→ Lr,2 for r ≤ 2, and Bernstein’s
inequality (recalling |v| = 4N) to obtain

‖q(· + 2tv)eit�P>Nϕ‖L2 � ‖〈x〉−s‖
L
d
s ,∞‖eit�P>Nϕ‖

L
2d

d−2s ,2

� |t|−s‖P>Nϕ‖
L

2d
d+2s ,2

� |tv|−s‖|∇|sϕ‖
L

2d
d+2s

,

which is acceptable.

3. The direct problem

In this section we prove several scattering results for (1.1). We first establish scattering for
small data in Sobolev spaces. We utilize standard contraction mapping arguments based on
Strichartz estimates (see e.g. [23]). In the intercritical regime ( 4d ≤ p ≤ 4

d−2 ), the coefficient
α and its gradient are estimated in L∞. In the mass-subcritical regime (p < 4

d ) we impose a
decay assumption on α.

Throughout the rest of the paper, we will regularly make use of the admissible pair

(q, r) = (p + 2, 2d(p+2)
d(p+2)−4 ) (3.1)

(note that we will restrict to p ≥ 2 in dimension d = 1).
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Theorem 3.1. Let d ≥ 1 and suppose p satisfies{
4
d ≤ p ≤ 4

d−2 d ≥ 3,
4
d ≤ p < ∞ d ∈ {1, 2}.

Let α be a continuous function with α,∇α ∈ L∞. There exists η = η(p, ‖α‖W1,∞) > 0
sufficiently small that for any u− ∈ H1 with ‖u−‖H1 < η, there exists a unique global solution
u to (1.1) and final state u+ ∈ H1 satisfying

‖u‖Lqt W1,r
x (R×Rd) � ‖u−‖H1 and lim

t→±∞ ‖u(t) − eit�u±‖H1 = 0, (3.2)

where (q, r) is as in (3.1).

Proof Let u− ∈ H1. We will prove that if ‖u−‖H1 is sufficiently small, the map

u �→ �(u) = eit�u− − i
∫ t

−∞
ei(t−s)�α|u(s)|pu(s) ds (3.3)

is a contraction on a suitable metric space. To this end, we define

X = {u : R × R
d → C | ‖u‖Lqt W1,r

x (R×Rd) ≤ 2C‖u−‖H1},
which we equip with the metric

d(u, v) = ‖u − v‖Lqt Lrx(R×Rd).

The constantC encodes implicit constants appearing in estimates such as Strichartz estimates
and Sobolev embedding. Throughout the proof, all space-time norms will be taken overR×
R
d unless indicated otherwise.
We define rc = dp(p+2)

4 and observe that by Sobolev embedding

‖u‖Lrcx � ‖|∇|scu‖Lrx � ‖u‖W1,r
x
, where sc = d

2 − 2
p ∈ [0, 1].

Now let u ∈ X. By Strichartz estimates, Hölder’s inequality, the chain and product rules,
we have

‖�(u)‖Lqt W1,r
x

� ‖u−‖H1 + ‖[α|u|pu]‖
Lq

′
t W

1,r′
x

� ‖u−‖H1 + (‖α‖L∞ + ‖∇α‖L∞)‖u‖p
Lqt L

rc
x
‖u‖Lqt W1,r

x

� ‖u−‖H1 + ‖u‖p+1
Lqt W

1,r
x

� ‖u−‖H1 + ‖u−‖p+1
H1 .

It follows that for ‖u−‖H1 sufficiently small, � : X → X.
Given u, v ∈ X, we similarly estimate

‖u − v‖Lqt Lrx � ‖α[|u|pu − |v|pv]‖
Lq

′
t Lr

′
x

� ‖α‖L∞{‖u‖p
Lqt L

rc
x

+ ‖v‖p
Lqt L

rc
x
}‖u − v‖Lqt Lrx

� ‖u−‖pH1‖u − v‖Lqt Lrx ,
which shows that � is a contraction provided ‖u−‖H1 is sufficiently small.

We conclude that � has a unique fixed point u ∈ X, yielding the desired solution to
(1.1). The convergence e−it�u(t) → u− in H1 as t → −∞ follows by construction and
the estimates above. To prove the existence of a scattering state as t → ∞, we estimate as
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above to obtain

‖e−it�u(t) − e−is�u(s)‖H1 � (‖α‖L∞ + ‖∇α‖L∞)‖u‖p+1
Lqt W

1,r
x ((s,t)×Rd)

→ 0 as s, t → ∞.

Thus {e−it�u(t)} is Cauchy and so converges to a unique u+ ∈ H1 as t → ∞.

We next consider the mass-subcritical regime. Assuming that α belongs to a suitable
Lebesgue space, we can first establish scattering for small L2 data. In fact, this result (as well
as Theorem 3.3) allows for p to go below the usual long-range exponent p = 2

d .

Theorem 3.2. Let d ≥ 1 and suppose p satisfies{
0 < p ≤ 4

d d ≥ 2,
2 ≤ p ≤ 4 d = 1.

Let α be a continuous function with α ∈ L∞ ∩L
2d

4−dp . Then there exists η = η(p, ‖α‖
L

2d
4−dp

) > 0

sufficiently small that for any u− ∈ L2 with ‖u−‖L2 < η, there exists a unique global solution u
to (1.1) and final state u+ ∈ L2 satisfying

‖u‖Lqt Lrx(R×Rd) � ‖u−‖L2 and lim
t→±∞ ‖u(t) − eit�u±‖L2 = 0, (3.4)

where (q, r) is as in (3.1).

Proof We show that � defined in (3.3) is a contraction on the complete metric space

X = {u : R × R
d → C | ‖u‖Lqt Lrx(R×Rd) ≤ 2C‖u−‖L2},

with metric given by

d(u, v) = ‖u − v‖Lqt Lrx(R×Rd).

Once again C encodes implicit constants appearing in the estimates below.
The essential step is the following nonlinear estimate: by Strichartz estimates and Hölder’s

inequality, we have∥∥∥∥
∫ t

−∞
ei(t−s)�α(x)|u(s)|pu(s) ds

∥∥∥∥
Lqt Lrx

� ‖α|u|pu‖
Lq

′
t Lr

′
x

� ‖α‖
L

2d
4−dp

‖u‖p+1
Lqt Lrx

.

With this estimate in hand, the proof exactly parallels that of Theorem 3.1. The constraint
p ≥ 2 in in d = 1 is necessary to use the space Lqt Lrx for u (see (3.1)) as well as the space L

2d
4−dp

for α

We next establish a mass-critical and mass-subcritical scattering theory for a class of data
adapted to the setting of [4], namely, data of the form u− = eiv·xϕ with |v| � 1. By working
with a suitably weighted space (and imposing further decay assumptions on α), we can recast
the scattering problem for such data as a small-data problem.
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Given a ≥ 0 and s ∈ [0, d2 ) we introduce the space Xa,s via the norm

‖ϕ‖Xa,s = ‖|∇|aϕ‖L2 + ‖ϕ‖Xs , (3.5)

where Xs is as in (2.3). To simplify the formulas below, we also introduce the parameter

c = c(p, d) = 4−p(d−2)
2(p+2) . (3.6)

Theorem 3.3. Let d ≥ 3 and 0 < p ≤ 4
d . Let σ satisfy

max{ 2
4−p(d−2) ,

4−dp
4−p(d−2) } < σ < d

2 (3.7)

and suppose that α is a continuous function satisfying

〈x〉(p+1)cσ α ∈ L
2d(p+2)
4−dp . (3.8)

Let ϕ ∈ X1,σ . For |v| sufficiently large, there exists a unique global solution to (1.1) and final
state u+ ∈ L2 satisfying

‖〈x〉−cσu‖Lp+2
t,x (R×Rd)

� |v|− 1
p+2 ‖ϕ‖X1,σ (3.9)

and

lim
t→±∞ ‖u(t) − eit�u±‖L2 = 0, where u− = eiv·xϕ.

Proof We wish to close a contraction mapping argument for the map � in (3.3) in the space

Y = {u : R × R
d → C | ‖〈x〉−cσu‖Lp+2

t,x
≤ 2C|v|− 1

p+2 ‖ϕ‖X1,σ }
with metric

d(u, v) = ‖〈x〉−cσ [u − v]‖Lp+2
t,x

.

The constant C encodes implicit constants appearing in several inequalities, including the
Strichartz estimates and the inequality in Proposition 2.2.

We begin with the linear term in the definition of � (see (3.3)). By Hölder’s inequality, we
have

‖〈x〉−cσ eit�eiv·xϕ‖Lp+2
x

� ‖〈x〉−σ eit�eiv·xϕ‖cL2x‖e
it�eiv·xϕ‖1−c

L
2d
d−2
x

.

Using (2.1) and Sobolev embedding, we obtain

‖eit�eiv·xϕ‖
L

2d
d−2

� ‖eit�ϕ‖
L

2d
d−2

� ‖ϕ‖Ḣ1 ,

while Proposition 2.2 implies

‖〈x〉−σ eit�eiv·xϕ‖L2 � 〈vt〉−σ‖ϕ‖Xσ .

Thus, by (3.7) and a change of variables, we obtain

‖〈x〉−cσ eit�eiv·xϕ‖Lp+2
t,x

� ‖〈vt〉−cσ‖Lp+2
t

‖ϕ‖X1,σ � |v|− 1
p+2 ‖ϕ‖X1,σ .
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We turn to the nonlinear estimate. We will use the same Strichartz pair (q, r) as in the
proofs of Theorems 3.1 and 3.2; see (3.1). We also observe that (3.7) guarantees

〈x〉−cσ ∈ L
2d(p+2)
4−dp .

Thus, given u ∈ Y , we use Hölder’s inequality, Strichartz estimates, and (3.8) to obtain∥∥∥∥〈x〉−cσ
∫ t

−∞
ei(t−s)�α|u|pu(s) ds

∥∥∥∥
Lp+2
t,x

� ‖〈x〉−cσ‖
L
2d(p+2)
4−dp

∥∥∥∥
∫ t

−∞
ei(t−s)�α(x)|u|pu(s) ds

∥∥∥∥
Lqt Lrx

� ‖α|u|pu‖
Lq

′
t Lr

′
x

� ‖〈x〉(p+1)cσ α‖
L
2d(p+2)
4−dp

‖〈x〉−cσu‖p+1
Lp+2
t,x

� |v|−
p+1
p+2 ‖ϕ‖p+1

X1,σ .

Choosing |v| sufficiently large we obtain � : Y → Y .
Using similar estimates, we find that for u, v ∈ Y ,

‖〈x〉−cσ [�(u) − �(v)]‖Lp+2
t,x

� ‖〈x〉(p+1)cσ α‖
L
2d(p+2)
4−dp

{‖〈x〉−cσu‖p
Lp+2
t,x

+ ‖〈x〉−cσ v‖p
Lp+2
t,x

}
× ‖〈x〉−cσ [u − v]‖Lp+2

t,x

� |v|−
p

p+1 ‖〈x〉−cσ [u − v]‖Lp+2
t,x

,

so that � is a contraction provided |v| is sufficiently large. We therefore obtain the global
solution u to (1.1) satisfying (3.9).

The L2 convergence e−it�u(t) → u− as t → −∞ follows from the estimates above. It
remains to prove the existence of the L2 scattering state u+. In fact, by the estimates above,
we have

‖e−it�u(t) − e−is�u(s)‖L2 � ‖α|u|pu‖
Lq

′
t Lr

′
x ((s,t)×Rd)

� ‖〈x〉−cσu‖p+1
Lp+2
t,x ((s,t)×Rd)

→ 0

as s, t → ∞, which yields the result.

4. The inverse problem

Theorems 3.1, 3.2, and 3.3 show that under suitable assumptions on (p,α)we can define final
states u+ corresponding to data u− via the solution to (1.1). We denote the scattering map
sending u− to u+ by

S = Sp,α : A →
{
H1 in Theorem 3.1,
L2 in Theorems 3.2 and 3.3.

The proof of Theorem 3.1 shows that we may take

A = {ϕ ∈ H1 : ‖ϕ‖H1 < η} in Theorem 3.1,
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with η = η(p,α) sufficiently small. Similarly, we may take

A = {ϕ ∈ L2 : ‖ϕ‖L2 < η} in Theorem 3.2,

with η = η(p,α) sufficiently small. Finally, choosing σ > 0 satisfying (3.7), the proof of
Theorem 3.3 shows that we may take

A =
⋃
M>0

{eiv·xϕ : ‖ϕ‖X1,σ ≤ M, |v| > CMp+2} in Theorem 3.3,

where C = C(p,α) is sufficiently large.
In all cases, we have the following implicit formula for S:

Su− = u− − i
∫
R

e−it�α|u|pu(t) dt,

where u is the solution to (1.1) that scatters backward in time to u−. We wish to show that
knowledge of S on A is sufficient to determine the nonlinearity in (1.1).

We first consider the case of Theorems 3.1 and 3.2 and prove a result similar to the one
appearing in [1]. Essentially, we will show that the scattering map admits an expansion at
zero and identify the leading term.

Theorem 4.1. Let (d, p,α) satisfy the assumptions of Theorems 3.1 or 3.2 Let S denote the
corresponding scattering map. Let

ϕ ∈
{
H1 in the case of Theorem 3.1,
L2 in the case of Theorem 3.2,

and let ψ ∈ L2. Then

lim
ε→0

iε−(p+1)〈(S − I)(εϕ),ψ〉 =
∫
R

〈α|eit�ϕ|peit�ϕ, eit�ψ〉 dt.

Proof Given ε > 0 sufficiently small, we set u− = εϕ ∈ A and let u be the corresponding
solution to (1.1) constructed in Theorems 3.1 or 3.2. We write

i〈(S − I)(εϕ),ψ〉 =
∫
R

〈α|u|pu, eit�ψ〉 dt

= εp+1
∫
R

〈α|eit�ϕ|peit�ϕ, eit�ψ〉 dt

+
∫

〈α[|u|pu − |eit�εϕ|peit�εϕ], eit�ψ〉 dt. (4.1)

To complete the proof, we will show that the final term satisfies |(4.1)| = o(εp+1).
We begin by using the Duhamel formula (cf. (3.3)) to obtain the estimate

|(4.1)| � ‖αeit�ψ
[|u|p + |eit�εϕ|p] [

u − eit�εϕ
]‖L1t,x

�
∥∥∥∥αeit�εψ

[|u|p + |eit�εϕ|p][∫ t

−∞
ei(t−s)�α|u|pu(s) ds

]∥∥∥∥
L1t,x



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 11

We first consider the setting of Theorem 3.1. Using the estimates appearing in the proof of
that theorem, we apply Hölder’s inequality, Strichartz estimates, and (3.2) to obtain

|(4.1)| � ‖α‖L∞‖eit�ψ[|u|p + |eit�εϕ|p]‖
Lq

′
t Lr

′
x

∥∥∥∥
∫ t

0
ei(t−s)�α|u|pu(s) ds

∥∥∥∥
Lqt Lrx

� ‖eit�ψ‖Lqt Lrx
[‖u‖p

Lqt L
rc
x

+ ‖eit�εϕ‖p
Lqt L

rc
x

]‖α|u|pu‖
Lq

′
t Lr

′
x

� ‖ψ‖L2‖εϕ‖2p+1
H1 � ε2p+1,

which is acceptable.
We next consider the setting of Theorem 3.2. Applying the estimates used to prove that

theorem and (3.4), we obtain

|(4.1)| � ‖αeit�ψ[|u|p + |eit�εϕ|p]‖
Lq

′
t Lr

′
x

∥∥∥∥
∫ t

0
ei(t−s)�α|u|pu(s) ds

∥∥∥∥
Lqt Lrx

� ‖α‖
L

2d
4−dp

‖eit�ψ‖Lqt Lrx
[‖u‖p

Lqt Lrx
+ ‖eit�ϕ‖p

Lqt Lrx

]‖α|u|pu‖
Lq

′
t Lr

′
x

� ‖ψ‖L2‖εϕ‖2p+1
L2 � ε2p+1,

which is acceptable.

In the next result, we consider (1.1) with nonlinearities α|u|pu and α̃|u|p̃u. We define the
corresponding scattering maps S : A → L2 and S̃ : Ã → L2, with A, Ã defined as in the
beginning of this section. We note that A ∩ Ã 
= ∅ (for example, this intersection contains a
small ball centered at 0 inH1). We prove that if S and S̃ agree on their common domain, then
p = p̃ and α = α̃.

Corollary 4.2. Let d ≥ 1 and suppose (p,α) and (p̃, α̃) satisfy the assumptions of Theorems 3.1
or 3.2. Suppose further that α, α̃ are not identically zero. Let S : A → L2 and S̃ : Ã → L2 denote
the corresponding scattering maps.

If S(f ) = S̃(f ) for all f ∈ A ∩ Ã, then p = p̃ and α = α̃.

Proof Given ϕ ∈ S\{0}, we define
C(α, p,ϕ) :=

∫∫
α(x)|eit�ϕ|p+2 dx dt.

The proof of Theorem 4.1 implies that

〈(S − I)(2εϕ),ϕ〉 = 2p+1εp+1C(α, p,ϕ) + O(ε2p+1),
〈(S − I)(εϕ),ϕ〉 = εp+1C(α, p,ϕ) + O(ε2p+1),

with analogous formulas holding for S̃. Thus if S ≡ S̃, we can send ε → 0 to obtain

C(α, p,ϕ) = C(α̃, p̃,ϕ) and 2pC(α, p,ϕ) = 2p̃C(α̃, p̃,ϕ). (4.2)

We will prove below that since α 
≡ 0, there exists ϕ ∈ S such that C(α, p,ϕ) 
= 0. Fixing
such ϕ ∈ S , it follows from (4.2) that p = p̃.

Having established that p = p̃, we now observe that S ≡ S̃ implies∫∫
α(x)|eit�ϕ|p+2 dx dt =

∫∫
α̃(x)|eit�ϕ|p+2 dx dt for all ϕ ∈ S . (4.3)
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It therefore suffices to prove that if∫∫
α(x)|eit�ϕ(x)|p+2 dx dt = 0 for all ϕ ∈ S , (4.4)

then α ≡ 0. To prove this, we utilize an argument appearing in [9] (see also [15]).
First, given ϕ ∈ S , we define

Kϕ(x) =
∫
R

|eit�ϕ(x)|p+2 dt

and claim that Kϕ ∈ L2(Rd). To prove this, we use Minkowski’s integral inequality, Sobolev
embedding, and the dispersive estimate to obtain the following:

‖ ‖eit�ϕ‖p+2
Lp+2
t

‖L2x � ‖eit�ϕ‖p+2
L2(p+2)
x Lp+2

t

� ‖eit�ϕ‖p+2
Lp+2
t L2(p+2)

x

�ϕ ‖〈t〉−[ d2− d
2(p+2) ]‖p+2

Lp+2
t

�ϕ 1

provided p > max{ 2d − 1, 0}.
We now specialize to the case

ϕ(x) = exp{−|x|2
4 }, so that eit�ϕ(x) = (

1 + it)−
d
2 exp{− |x|2

4(1+it) }
(see [24]). In particular, we have

Kϕ(x) =
∫
R

(1 + t2)−
d(p+2)

4 exp{− (p+2)|x|2
4(1+t2) } dt,

and so by translation invariance for the linear Schrödinger equation, (4.4) implies∫
α(x)Kϕ(x − x0) dx = 0 for all x0 ∈ R

d.

To see that this implies α ≡ 0, it therefore suffices to verify that K̂ϕ 
= 0 almost everywhere.
In fact, for any ξ 
= 0, we can compute K̂ϕ(ξ) as a Gaussian integral:

K̂ϕ(ξ) = (2π)−
d
2

∫
R

(1 + t2)−
d(p+2)

4

∫
Rd

exp{−ix · ξ − p+2
4(1+t2) |x|2} dx dt

= cd,p
∫
R

(1 + t2)−
dp
4 exp{− (1+t2)|ξ |2

p+2 } dt.

As K̂ϕ(ξ) is the integral of a positive function, we conclude that K̂ϕ(ξ) > 0 for all ξ 
= 0.

We next consider the case of Theorem 3.3 and prove a result similar to the one appearing
in [4].We extract the leading order term in the scatteringmap in the regime of highly boosted
data. We recall the spaces Xa,s defined in (3.5), (2.3).

Theorem 4.3. Let d ≥ 3. Suppose (p,α) satisfy the assumptions of Theorem 3.3 and choose σ

satisfying (3.7). Assume additionally that

|α(x)| � 〈x〉−s for some s ∈ (1, d2 ). (4.5)

Let S : A → L2 denote the corresponding scattering map, and let ϕ,ψ ∈ X
d
2+,σ .
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For any θ ∈ S
d−1,

lim
ρ→∞ iρ〈(S − I)(eiρθ ·xϕ), eiρθ ·xψ〉 =

∫
R

〈α(· + 2tθ)|ϕ|pϕ,ψ〉 dt.

Proof We fix θ ∈ S
d−1, let ρ � 1, and set v = ρθ . Let u− = eiv·xϕ ∈ A, and let u be the

corresponding solution to (1.1) constructed in Theorem 3.3. We begin by writing

i〈(S−I)(eiv·xϕ), eiv·xψ〉
=

∫
R

〈α|u|pu, eit�eiv·xψ〉 dt

=
∫
R

〈α|eit�eiv·xϕ|peit�eiv·xϕ, eit�eiv·xψ〉 dt (4.6)

+
∫
R

〈α[|u|pu − |eit�eiv·xϕ|peit�eiv·xϕ], eit�eiv·xψ〉 dt. (4.7)

We will extract the main term from (4.6) and estimate (4.7) as an error term.
Using (2.1) and a change of variables, we first obtain

(4.6) =
∫
R

〈α(·) |eit�ϕ(· − 2ρθ t)|peit�ϕ(· − 2ρθ t), eit�ψ(· − 2ρθ t)〉 dt

= 1
ρ

∫
R

〈α(· + 2θ t)|ei tρ �
ϕ|pei tρ �

ϕ, ei
t
ρ
�
ψ〉 dt.

We now define

hρ(t) = 〈α(· + 2θ t)|ei tρ �
ϕ|pei tρ �

ϕ, ei
t
ρ
�
ψ〉,

	(t) = 〈α(· + 2θ t)|ϕ|pϕ,ψ〉.
We will prove that for all t ∈ R, we have

lim
ρ→∞ hρ(t) = 	(t), and (4.8)

|hρ(t)| � 〈t〉−s ∈ L1t . (4.9)

To this end, first observe that

|hρ(t) − 	(t)| ≤ |〈α(· + 2θ t)|ei tρ �
ϕ|pei tρ �

ϕ − |ϕ|pϕ, ei tρ �
ψ〉| (4.10)

+ |〈α(· + 2θ t)|ϕ|pϕ, ei tρ �
ψ − ψ〉|. (4.11)

To estimate these terms, we use the pointwise bound

|e−iτ |ξ |2 − 1| ≤ |τ | 12 |ξ |.
In particular, using H

d
2+ ↪→ L2(p+1),

(4.11) ≤ (
|t|
ρ

)
1
2 ‖α‖L∞‖ϕ‖p+1

L2(p+1)‖∇ψ‖L2 → 0 as ρ → ∞.

Similarly, using Sobolev embedding to control the free evolution in L∞,

(4.10) ≤ ‖α‖L∞{‖ei tρ �
ϕ‖pL∞ + ‖ϕ‖pL∞}‖ei tρ �

ϕ − ϕ‖L2‖ei
t
ρ
�
ψ‖L2

� (
|t|
ρ

)
1
2 ‖α‖L∞‖ϕ‖p

H
d
2 +‖∇ϕ‖L2‖ψ‖L2 → 0 as ρ → ∞.

This proves (4.8).
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Next, we use (2.1), Hölder’s inequality, Sobolev embedding, and Proposition 2.2 (in the
form (2.5)), to obtain

|hρ(t)| = |〈α |ei tρ �eiθ ·xϕ|pei tρ �eiθ ·xϕ, ei
t
ρ
�eiθ ·xψ〉|

� ‖ei tρ �
ϕ‖p+1

L2(p+1)‖αei
t
ρ
�eiθ ·xψ‖L2

� ‖ϕ‖p+1

H
d
2 +‖α(· + 2 t

ρ
v)ei

t
ρ
�
ψ‖L2 � 〈t〉−s,

which proves (4.9).
By the dominated convergence theorem, we therefore obtain

lim
ρ→∞ ρ · (4.6) =

∫
R

〈α(· + 2θ t)|ϕ|pϕ,ψ〉 dt,

which yields the main term.
To complete the proof, it remains to prove that

|(4.7)| = o(ρ−1) as ρ → ∞.

We begin with the estimate

|(4.7)| � ‖α[eit�eiv·xψ][|u|p + |eit�eiv·xϕ|p] [u − eit�eiv·xϕ]‖L1t,x
�

∥∥∥∥α[eit�eiv·xψ][|u|p + |eit�eiv·xϕ|p]
[∫ t

−∞
ei(t−s)�α|u|pu(s) ds

]∥∥∥∥
L1t,x

.

We utilize Strichartz estimates and the estimates appearing in the proof of Theorem 3.3 to
obtain

|(4.7)| � ‖α[eit�eiv·xψ][|u|p + |eit�eiv·xϕ|p]‖
Lq

′
t Lr

′
x
‖α|u|pu‖

Lq
′
t Lr

′
x

� ‖〈x〉(p+1)cσ α‖2
L
2d(p+2)
4−dp

‖〈x〉−cσ eit�eiv·xψ‖Lp+2
t,x

× [‖〈x〉−cσu‖p
Lp+2
t,x

+ ‖〈x〉−cσ eit�eiv·xϕ‖p
Lp+2
t,x

]‖〈x〉−cσu‖p+1
Lp+2
t,x

� ρ
−2 p+1

p+2 = o(ρ−1) as ρ → ∞,

as was needed to show.

We can now show that in the setting of Theorem 3.3, if the scattering maps S : A → L2
and S̃ : Ã → L2 corresponding to nonlinearities α|u|pu and α̃|u|p̃u agree on their common
domain, then p = p̃ and α ≡ α̃. Here A, Ã are as described at the beginning of this section.
We observe once again thatA∩ Ã 
= ∅. For example, given any ϕ ∈ S , we have eiv·xϕ ∈ A∩ Ã
provided |v| is sufficiently large. In the following result, we will make use of the injectivity of
the X-ray transform; correspondingly, we impose that α, α̃ ∈ L1 (which is not immediately
guaranteed by the assumptions of Theorems 3.3 or 4.3).

Corollary 4.4. Let d ≥ 3 and suppose (p,α), (p̃, α̃) satisfy the assumptions of Theorems 3.3
and 4.3. Suppose further that α, α̃ belong to L1 and are not identically zero. Let S : A → L2 and
S̃ : Ã → L2 denote the corresponding scattering maps.

If S(f ) = S̃(f ) for all f ∈ A ∩ Ã, then p = p̃ and α = α̃.
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Proof Fix ϕ ∈ S and θ ∈ S
d−1. Arguing as we did in Corollary 4.2, we can first obtain that if

S = S̃, then p = p̃.
Applying Theorem 4.3 once again, we further obtain∫

R

∫
Rd

α(x + 2θ t)|ϕ(x)|p+2 dx dt =
∫
R

∫
Rd

α̃(x + 2θ t)|ϕ(x)|p+2 dx dt (4.12)

for all θ ∈ S
d−1 and ϕ ∈ X

d
2+,σ .

We now fix θ ∈ S
d−1 and y ∈ R

d. We then choose a nonnegative, compactly supported
ϕ ∈ L1 with

∫
ϕ = 1 and set ϕn(x) = ndϕ(nx). By (4.12), we have∫∫

α(x + 2θ t)ϕn(x − y) dx dt =
∫∫

α̃(x + 2θ t)ϕn(x − y) dx dt for all n. (4.13)

Now consider the functions

gn(t) =
∫
Rd

α(x + 2θ t)ϕn(x − y) dx.

By approximate identity arguments, we have that

gn(t) → α(y + 2θ t) as n → ∞ for all t ∈ R.

Furthermore, recalling (4.5) and noting that |x− y| � 1 on the support of ϕn(x− y), we have

|gn(t)| �
∫

〈x + 2θ t〉−sϕn(x − y) dx �
∫

h(t)ϕn(x − y) dx � h(t),

where h ∈ L1t is defined by

h(t) :=
{
1 |t| � |y|
〈t〉−s |t| � |y|.

Thus, by the dominated convergence theorem, we have∫
R

∫
Rd

α(x + 2θ t)ϕn(x − y) dx dt →
∫
R

α(y + 2θ t) dt as n → ∞.

Arguing similarly for α̃ and recalling (4.13), we deduce∫
R

α(y + θ t) dt =
∫
R

α̃(y + θ t) dt.

As θ ∈ S
d−1 and y ∈ R

d were arbitrary, the fact that α = α̃ now follows from the injectivity
of the X-ray transform (see e.g. [25, Chapter I] or [26]).

4.1. Challenges in themass-supercritical regime

The approach taken in Theorems 3.3 and 4.3 is to formulate the scattering problem as
a small-data problem, capitalizing on the fact that highly boosted data become small in
weighted spaces (a consequence of Proposition 2.2). This construction guarantees that the
corresponding nonlinear solutions inherit the weighted estimates enjoyed by the boosted
linear solutions. Such estimates then play an essential role in the proof of Theorem 4.3,
particularly in the estimation of the error term (4.7).

Extending this approach to themass-supercritical regime seems to lead to some significant
difficulties. Indeed, in this setting the small-data contraction mapping argument to construct
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the scattering solutions requires some estimates on the derivatives of solutions; however, the
derivatives of highly boosted data will become very large. Thus, while it seems possible to
extend Theorems 3.3 and 4.3 into the slightly mass-supercritical regime, the full intercritical
and energy-critical regime appear to be out of reach for now.

In [4], Watanabe proceeded by imposing a positivity and repulsivity condition on the
coefficient α, which allowed for the use of Morawetz estimates to establish an intercritical
scattering theory for (1.1) for arbitrarily large H1 data (including boosted data). As in the
proof of Theorem 4.3, the recovery problem subsequently required the estimation of an
error term like (4.7). The approach of [4] was based on the intertwining property and an
implicit formula for the wave operator �−; however, it appears that the formula for �−
in [4, Lemma 3.2] is missing a factor of �− in the nonlinear term. In the absence of this
factor, one is ultimately faced with estimating only a linear term, for which an estimate such
as Proposition 2.2 is sufficient. Restoring the missing factor of �−, one is instead led to a
term involving the full (nonlinear) solution. It then seems necessary to prove that even in
this setting, the scattering solutions inherit the weighted estimates satisfied by the boosted
linear solutions. At present, the author is not aware of a method to obtain such estimates in
the intercritical setting. On the other hand, Theorems 3.3 and 4.3 demonstrate that in the
mass-critical and mass-subcritical regime, the scattering problem does admit a formulation
as a small-data problem that is well-adapted to the approach found in [4].
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