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We consider a class of one-dimensional nonlinear Schrédinger equations of the form
({0, + Au = [1 + allu*u.

For suitable localized functions a, such equations admit a small-data modified scattering
theory, which incorporates the standard logarithmic phase correction. In this work,
we prove that the small-data modified scattering behavior uniquely determines the

inhomogeneity a.

1 Introduction

We consider one-dimensional nonlinear Schrédinger equations of the form

@id, + AMu = [1 + allul?u, (1.1)

Ul;—o = Uy,

where the inhomogeneity a : R — R is a localized function of x € R. For suitable
functions a, equation (1.1) admits a small-data modified scattering theory for initial
data chosen from a weighted Sobolev space. In this paper, we prove that the modified

scattering map uniquely determines the inhomogeneity a.
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We first describe the class of inhomogeneities considered in this work:

Definition 1.1 (Admissible). We say a : R — R is admissible if a € L' N L*®, xa € L?, and
dya € L.

For admissible inhomogeneities a, one may obtain the following modified scat-
tering result for small initial data in a weighted Sobolev space, which incorporates the
typical logarithmic-type phase correction. Letting F denote the Fourier transform and
itA

eitd — F-le~it&® I the Schrédinger group, the precise result we need may be stated as

follows:

Theorem 1.2 (Modified scattering). Let a : R — R be admissible in the sense of
Definition 1.1.If |lug g is sufficiently small, then there exists a unique forward-global

solution u to (1.1) and w, € Lg" such that

=0. (1.2)

t . .
expii/ |]-'e“SAu(s)|22§j1 ]]-'e"mu(t) —w,
0

lim
t—o00 Lgo

Using Theorem 1.2, we may define the modified scattering map.

Definition 1.3 (Modified scattering map). Let a be admissible in the sense of Definition

1.1. Given ¢ > 0, define
B, ={ug € HY . lugllgia < e}

For ¢ sufficiently small, we may use Theorem 1.2 to define the modified scattering map

S, : B, — L™ by S,(uy) = w_, where w__is as in (1.2).

Our main result shows that the modified scattering map uniquely determines the

inhomogeneity a.

Theorem 1.4 (The modified scattering map determines the nonlinearity). Suppose a and
b admissible in the sense of Definition 1.1. Let S, : B — L* and S}, : B — L denote the
corresponding modified scattering maps, where B, B’ are as in Definition 1.3 for S,, S;,
respectively.

If S, =S, on BNB, then a = b.
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6634 G. Chen and J. Murphy

Theorem 1.4 fits in the context of a wide body of work on the recovery of
nonlinearities (and external potentials) for nonlinear dispersive equations, particularly
the question of recovery from scattering data; we refer the reader to [1-3,7,9, 12, 13, 16,
18, 21-24, 26-33] for a broad selection of works in this direction. These results address
a variety of nonlinear Schrédinger equations with localized power-type nonlinearities,
Hartree-type nonlinearities, and more general classes of power-type nonlinearities and
prove that the standard scattering behavior of solutions suffices to determine the
unknown nonlinearity (cf. the discussion surrounding (1.3) below).

The chief novelty in our work stems from the fact that we consider a class
of equations for which the usual (unmodified) scattering fails. That is, the long-time
behavior of solutions is not simply given by the underlying linear dynamics; instead,
due to insufficient time decay in the nonlinear term, one must incorporate a logarithmic
phase correction in order to describe the long-time asymptotic behavior. Consequently,
the structure of the modified scattering map is more complicated to describe. Nonethe-
less, as we will explain below, this modified map suffices to uniquely determine the
inhomogeneity present in the nonlinearity.

Before discussing the proof of Theorem 1.4, let us briefly describe the proof
of modified scattering for (1.1) (Theorem 1.2). Modified scattering for cubic nonlinear
Schrodinger equations in one dimension is an important topic that has been addressed
in many different settings (see e.g., [4-6, 8, 10, 11, 14, 15, 19, 20], as well as [17] for a
review). These works include the standard 1d NLS, as well as the setting of NLS in the
presence of linear and quadratic perturbations.

As observed in [5, Remark 1.3], in the setting of (1.1), the inhomogeneous cubic
term may be viewed as a short-range perturbation to the long-range nonlinearity |u|u.
Indeed, the inhomogeneity a(x) does not appear in the phase correction itself (cf. (1.2)).
Our proof of modified scattering follows the basic scheme set out in [11] (based on
taking the Fourier transform of the Duhamel formula and using an integrating factor
to remove the non-integrable cubic part), using local smoothing estimates (similar to
those appearing in [5]) to handle the inhomogeneous cubic term. Although Theorem 1.2 is
essentially already known in the literature, we provide a complete proof, as we will need
to utilize specific identities and estimates from the proof when addressing the inverse
problem. For the details, see Section 3.

In Section 4, we prove the main result, Theorem 1.4. Before discussing specific
details of the proof, let us first recall the standard approach to recovering the nonlinear-
ity from the usual scattering map (going back at least as far as [16, 25]). To fix ideas, let us

consider the problem of recovering an unknown, localized coefficient in a 1d nonlinear
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Schrodinger equation of the form
({0, + Au = alul*u, ul,_g = u,. (1.3)

For a € L' N L*, one can prove that the usual (unmodified) scattering behavior holds for

small initial data in L? (see e.g., [18]); that is, there exists a map S, such that
Tim lu(t) — e*2S (ug)llzz =0,

where u is the solution to (1.3). In fact, using the Duhamel formula, one obtains the

following implicit formula for S:
o0 .
S,(ug) =uy —i / e "Aalu(t)Fu()] dt.
0

Specializing to uy = s¢ (with ¢ € S and 0 < ¢ « 1), pairing this identity with ¢, and

approximating u(t) by e u, (the Born approximation), one can show that

(Sa(e9), @) = (@, @) — i€ / / a(x)|e®p(x)* dx dt + O(s%).
0 R

It follows that knowledge of S, suffices to determine the functionals

/ /a(X)|eitA<p(X)|4dth for pe&. (1.4)
0 R

The problem then reduces to showing that knowledge of the functionals (1.4) uniquely
determines the coefficient a.

In the setting of Theorem 1.4, the overall structure of the argument is similar;
however, the analysis becomes more complicated due to the fact that the form of
the modified scattering map is different than that of the standard scattering map. In
particular, the modified scattering map is no longer easily viewed as a perturbation of
the identity. Instead, in Proposition 4.1, we show that for ¢ € S and 0 < ¢ <« 1, we have

the expansion
(Sa(e9), @) = £(9,§) + 2 10g(1 + 2)(IS, (e9)|*S, (29), @) + £° Q. [¢]
OO .
- i83/ / a(x)|e®px)|* dx dt + O(e%),
0 R

where ¢ is the Fourier transform of ¢ and Q, is a multilinear expression in ¢ (which,

importantly, is independent of a). Thus, despite the more complicated structure of S,
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6636 G. Chen and J. Murphy

we find that knowledge of S, still essentially determines the functionals appearing in
(1.4), and the problem once again reduces to showing that the functionals (1.4) determine
the coefficient a.

In earlier works (e.g., [16, 25]), this final step is completed by evaluating the
functional along a sequence of test functions concentrating at a point and utilizing
the dominated convergence theorem in order to determine a pointwise. In the present
setting, the low-power nonlinearity poses an additional challenge; indeed, we cannot
use dominated convergence directly, as we cannot guarantee that e/%¢ L?,X(R x R) even
for ¢ € S. Instead, inspired in part by [12], we proceed by specializing to the case of
Gaussian data, for which the free evolution may be computed explicitly. In this way, we
find that knowledge of (1.4) suffices to determine the convolution a * K for an explicit
kernel K, and the problem reduces to verifying directly that K # 0 almost everywhere.
This final step is completed by evaluating a Gaussian integral.

Theorem 1.4 provides the first result in which modified scattering data is used
to recover an unknown nonlinearity. We have considered here the simplest setting of a
localized perturbation of the standard cubic NLS, although we expect that the techniques
presented here can be extended to more general situations (e.g., in the presence of
suitable linear and quadratic perturbations). We plan to pursue these questions in
future work.

The rest of this paper is organized as follows: in section 2, we set up notation
and collect some preliminary lemmas. In Section 3, we establish modified scattering for

(1.1) (Theorem 1.2). Finally, in Section 4, we prove the main result, Theorem 1.4.

2 Notation and Preliminary Results

We write A < B to denote A < CB for some C > 0. We indicate dependence on parameters
via subscripts, for example, A <, B means A < CB for some C = C(a) > 0.

We write H*! to denote the weighted Sobolev space with norm
el e = 11(0)% (x) ull g2,
where (-) is the Japanese bracket notation, i.e., (x) = +/1 + x2. We write S for Schwarz

space.

We denote the Fourier transform of a function f : R — C by

Fuf ) = @)t /R e dx,
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with the inverse Fourier transform given by

F{fe) = @m) ¢ /]R AGL

If d = 1, we will omit the subscript. We also write Ff = f" and F1f = f.
We caution the reader that factors of 27 will be uniformly omitted throughout the
computations below.

The Schrédinger group is given by the Fourier multiplier operator
Qitd — F-1g-its®
This operator admits the factorization identity
et = M(t)D(t) FM(2),
where

M(t) =€ and [D@fI(x) = (2it) 2f ().

The Galilean operator J(t) is defined via

J(t) = x + 2itd, = etixe A, (2.1)

Given a solution u to (1.1), we will perform much of the analysis on the associated
profile f(t) = e ®*Awu(t). Suitable bounds on the profile imply estimates for the solution

itself, as is seen in the following lemma.

Lemma 2.1. Let f(t) = e “2u(t). Then for any 0 < ¢ < i,

Iu® e Se 11 2UF@ e + 161 IF @l ).

Proof. We write
u(t) = M@)D()FM@)f (t)
= M(t)D@t)f (t) + M(t)D(t) FIM(t) — 11f (t).
We now observe that

IM@EDOF Bl S E21F @) g0c,
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6638 G. Chen and J. Murphy

which is acceptable. For the remaining term, we use Hausdorff-Young, the pointwise

estimate
M) - 1] < Ix1%°087°,
and Cauchy-Schwarz to obtain
IM@D@®FIM®E) — LUf Ol S |t|_%_CIIIX|20f||L1
S 172 0f g2,

which is acceptable. |

Next we introduce a smoothing estimate, which is the dual of the classical Kato
smoothing estimate. This estimate will be used to analyze the inhomogeneous cubic term.

Such estimates appear in more general settings in [5].

Lemma 2.2. Let ¢ : R — C satisfy
¢ )| < IKIZ. 2.2)

Then for all ¢t > 0, we have

t
H /0 e &5 (£)F(s, &) ds

L2 SN Lir2 @ xio,0)- (2.3)

Proof. We argue by duality. We will first prove that

H/ReiXé&(E)eiszsh(E)dE ez @xio. S Il g2 2.4)

for any h e L?. Without loss of generality, we restrict the integral to & > 0. Changing

variables via £2 = A and using Plancherel (in time) and (2.2), we obtain

OO . . 2 2
H / e p(E)e” Sh(x) d&
0 12([0,1)
0o ) 2
< ’ / eVip(V/ie h(v/i) &= di
0 ool

~

“lew/n 2
2
</0 \wa)\ dr < [1hlZ,

uniformly in x, which yields (2.4).
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Now, given h € L? and F € LLL?, we use (2.4) and Hoélder to estimate
¢ =
‘ / /0 h(E)e ™S §(E)F(s,€) ds ds‘

t
| [ ([ e sieme de) s, x ax s
0 JR R

< H / e b (£)els Sh() dg
R

LPLZ(Rx[0,t]) ”F”L}(LE(RX[OJ])

S Al 2 ”FHL}(Lg(Rx[O,tl)'

which implies the desired estimate. |

3 The Direct Problem

In this section, we prove Theorem 1.2. The proof follows largely along standard lines (see
e.g., [11]), with some modifications to handle the inhomogeneous cubic term.

We let uy € H'! with ||ugllzin = ¢ > 0, and let u : [0,00) x R — C be the
corresponding solution to (1.1). We define the profile f(t) = e *2u(t). By standard well-

posedness arguments and Sobolev embedding, one can derive that that

sup [[u@®)llz + 1IT@Ou®)l2] S e. (3.1)
tel0,1]

Using (1.1), we have that
i0,f(t, &) = Fe " (|ul?u)(€) + Fe 4 (alul>u) ().

In particular, we have the following straightforward estimates, which will be useful for
t € [0, 1]: by Hausdorff-Young and Plancherel,

e 2 3 3 3
19 Iz S N0+ aljul?ullyy S lulds < ullfy Se

and

19:F Iz < 17+ allul’w]2

2 3 3
S llullzelJullzz + lulz<litVallz S €.
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6640 G. Chen and J. Murphy

Next, we isolate the component of ia,f that fails to be integrable as t — oo.

Evaluating the Fourier transform and changing variables via § — o — o, we obtain
Fe " (lulPu)©)
_ ﬂ GUE ==+ a=0 PN Bt & _ \E(8 1 — ) (t,0) do dy
= [[ e G, @), @), F B0, 0) do dn,
where

G:lf,g.hl(n,0) = f(& — ng(n — & + O)h(E — o). (3.2)

We continue from above, using Plancherel and the identity
]_-Z[ezitna] _ Ziteii%
to obtain

Fe A (julPu)€) = % [[ e EF G F 0. f©.F N} (r,0) do dn.

Noting that f(—£) = F(£), so that
G [f (1), (), f1IO,0) = |f (£, £)2f (¢, £),
we therefore find that
Fe A (lulu) ) = %If ¢, 6)12f (¢, )
+ 2 [[[e7% = 1]F G F @, f @), F @1, 0) do dn,

Combining the computations above, we derive that

i0,f(t,&) = LIFOPF(E.6)
+ Fe " (alul?u)(©) (3.3)

+ 4 [[le % —1]7, MG @), £ o). F O, 0) do dn.

We now define

. A t A
w(t) = eBDf(t), where B(t):= exp{i / F ()% 555 } (3.4)
0
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It follows that

i, wit, &) = PO ia,f(t,8) — 25 1F (8, )12F (¢, 6)) (3.5)
_ P8) [m P, &)1 t,6) 3.6)

+ Fe " (alul®u)€) (3.7)

+ % [[le® —0F G . @), F O, 0) do dn}. (3.8)

Using (3.5) and (3.1), we find that

0, Wil < ¢ uniformly for te[0,1]. (3.9)

~

We obtain estimates for t € [1,00) using a bootstrap argument. In particular,

assuming that the solution satisfies estimates of the form
||f(t)||Lgo <2Ce and ||f(t)||H1 <2C(t)’e (3.10)

uniformly in ¢ > 1, the estimates obtained below will demonstrate that the solution

satisfies the improved bounds
If e < Ce and [F @)l < C(0)’e.

Here § = O(¢?) is a small parameter. Observe that by Lemma 2.1, the assumptions (3.10)

also guarantee that

lu() e < () 2e.

~

Noting that ||f(t)||L§o = ||W(t)||L§o, we begin by using the expansion (3.6)—(3.8) to

estimate d,w in in Lgo. In particular, we will prove that if (3.10) holds, then

< (t)_l_%zs3 uniformly for ¢ > 1. (3.11)

~

19w e

First, by (3.10), we immediately see that
s I F e < (07%°

which is acceptable.
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6642 G. Chen and J. Murphy

Next, using (3.10), Hausdorff-Young, and Lemma 2.1, we estimate
|Fe ™ @ulfwl e S lalulfulp S lallg ulis Sq @726,
which is acceptable.
Finally, we turn to (3.8). We begin by using the pointwise estimate
e — 1] < |x|5
to obtain
138l S 161775

{[ 1151015175 (G If £ /(o)1 do (3.12)

LOO
§
To estimate the right-hand side of (3.12), we rely on the following general trilinear

estimate. We state the result in more generality than is needed here, as this formulation

will be useful in the next section.
Lemma 3.1 (Trilinear estimate). Define Gg(-, -,-) as in (3.2). Then

{[ 11151015175 (G4 [f 9, Al 01, 0)] dor dn S IF o111 g o Il g0

uniformly in &.

Proof. Recall that
G.If. g, hl(x,y) = f€ —03(x — & + Yh(E —y).
Thus, writing [ €@? db = §,_,, we have

fgl{Gg[f:gr h]}(ﬂza)

— / . ./ei[xﬂ+yo—v(§—x)—z(x—é+y)—r(é—y)]f(v)g(z)h(r) dx dy drdvdz
= [[[ a@e=fwyeiveelwin-a [ / h(rye / ey ro-21 gy dr} dx dv dz
= / G(@h(z — 0)el [ / Feive / el v1-2) gy dv] dz

= /f(Z — NGz — o)A 4z, (3.13)
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It follows that

7 G0, o) = [ 1z = mhiz - g dz

uniformly in &, and hence

[[1miE101517 1 G lf, g, Bl (n, ) do
< [[[ misie151fz = nh(z - )g(@) dzdo di

< [[[ 1z =015 + 121511z = 015 + 121511 2 — Mh(z — 0)g(2)| dz do dn

uniformly in &. The result now follows from the fact that for any 0 < ¢ < %

Hx1Fllige S 1EF NIz,
which is a consequence of Cauchy-Schwarz. ]

Continuing from (3.12) and applying Lemma 3.1 and (3.10), we obtain
1 1.1
1B.8)llze S 1T S IF B)llg00 < 18171757362,

which is acceptable (provided § is sufficiently small). This completes the proof of (3.11),
which suffices to close the bootstrap estimate forf in L.

To complete the proof of (3.10), it suffices to close the bootstrap estimate for H!-
norm of f" . Without loss of generality, we estimate the H'-norm only.

Using the Duhamel formula, we first write

3:f (£, £) = 0, T19(€) (3.14)
t .
—i/ Bg[fe_‘m(mlzu)(&)] ds (3.15)
0
t
—i/ 3. [Fe 2 (alul*u)#)] ds. (3.16)
0

The term in (3.14) is O(¢) in L, which is acceptable.
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Using the same computations as above, we may write

t .
(3.15) = —i / ﬂ ¥ 3, G, (), £(5), f(9)I(n,0) do dn ds. (3.17)
0

Recalling the definition of G; (see (3.2)), it follows from the product rule that 9; G¢[f, f, f1
is a linear combination of terms of the form G [xf, f, f1. After distributing the derivative,

we can use the identity
xf(s) = xe 52 u(s) = e SAI(s)u(s)

(cf. (2.1)) and undo the computations that led to (3.17) to see that (3.15) may be written as

a sum of terms of the form
t .
/ Fle B2 0w?)Jul€) ds.
0
In particular, by (3.1) and (3.10), we may estimate
t t
13-15)l;z < / 1) Iz IT()u(s) 2 ds < / (s)"1*0e% ds < (1),
0 0

which is acceptable.

It remains to estimate (3.16). We begin by writing

t . t
5 /0 Fe 52 (alul?u) (&) ds = o, /0 &% F(alul?u) (@) ds

t
:/0 eisézaé}-(a|u|2u)(§) ds (3.18)

t
+2i/ gseisgz]—'(a|u|2u)($)ds. (3.19)
0

Using (3.1) and (3.10), we first estimate

¢ t t
2 3 3/ —3 3
II(3-18)|IL§ S/O Ixalul“ull 2 d8§/0 Ixallpz lullze dSS/O e”(s)"2ds S e,

which is acceptable.
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Next, we let ¢ be a smooth cutoff to || < 1 and decompose

t .
(3.19) = 2i/ g<p(s)se‘552f(a|u|2u)(€) ds (3.20)
0
t oy
+2i/ [1 - p&)]se™ & F(alul*u) ) ds. (3.21)
0
Applying Lemma 2.2 (with ¢(§) = £¢(§) and ﬁ'(s,.f;) = sF(alul?w)), (3.1), (3.10), and
Minkowski’'s integral inequality, we deduce that
2

1320012 5 [salul*u 12 o)

S lallp IslulPull ez g o,

< lIslulull 2z go,0xm)
_3

S %ls(s) 2l 20,y S €% (loglt)),

which is acceptable.
Similarly, applying Lemma 2.2 (with ¢(§) = 1 — ¢(¢) and ﬁ'(s,é) = st F(alul?uw)),
we find that

||(3.21)||L§ < |slul?u aXaHL}(Lg (3.22)

®x[0,e) T ”Sa|u|28Xu||L}(L§(Rx[0,t])'

For the first term, we proceed as we did for (3.20). This yields

IslulPudeallpizz o, < € l19xallp (logit)),

which is acceptable.

For the second term, we write
sd,u = zii[J(s)u(s) — xu(s).
Then, using (3.10) (noting that ||Jul|;2 = IIfllgl by (2.1)), we estimate
2
Isalul 3xu||L§L§(Rx[0,t])
S l@allpe lllul?x) 1w — xulllzz g0, axw)
< ul? {Il7ul| e 2 + 1 &l ep2 }
~ LALX (10,8 xR) Lg°Lg (0, tIxR) (x) “ILPLL([0,t]1xR)
<)’

which is acceptable.
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6646 G. Chen and J. Murphy

Combining the estimates above, we can close the bootstrap for the H!-component
of f Thus, the desired bounds forf hold for all ¢ > 0, and in particular we obtain the
bound (3.11).

With (3.11) in hand, we obtain the establish the existence of w, in Lgo such that

Iw®) —wll S (1) T0e® (3.23)

uniformly for ¢ > 0, which suffices to complete the proof of Theorem 1.2.

4 The Inverse Problem

The goal of this section is to prove Theorem 1.4. Our first step is a careful analysis of the

scattering map uy — S, (uy) for a fixed admissible inhomogeneity a.

Proposition 4.1 (Structure of S;). Let a be admissible in the sense of Definition 1.1. Let
¢ € S(R) and ¢ > 0 be sufficiently small. Let u : [0,00) x R — C be the solution to (1.1)

with u|,_y = e¢. Then

(Sa(e9), @) = &(9,§) + % 10g(1 + 2)(IS4(e0)|2S,(e9), §) + £2 Q]

00 (4.1)

—ies/ /a(X)|eitAg0(X)|4dth+0(84),
0 R

where

Q,lp] == / _e ﬂ le™'% — 1lp(z — Ne(z — 0)§(2)3(z — n — o) dzdy do dt. (4.2)

Proof. We write uy = s¢ and let u be the solution to (1.1) with uf;_q = uy. We define the
profile f(¢) = e~"Au(t) and the modified profile w(t) = eB®f(t) as in (3.4). In particular,
there exists w, € Lg" such that w(t) - w, = S, (ug) in Lgo as t — oo. By construction,

we have

||W+||L§o S e

Recalling (3.3), we begin by using (3.6)-(3.8) from the preceding section to write
iw, (§) = illy(§) +/0 i9,w(t, &) dt + / s W O Pw(t, §) dt (4.3)
+ / ePEIGIF @), F (@), fDIE) dt (4.4)

+ / B Fleit (alu(e) Pun)e) dt, (.5)
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where

G.lf 9. 11®) = 3 [[le™% — 11F; 1 (G,If, g, W} (1, 0) dn do, (4.6)

with G (") as in (3.2).

The term ©y(§) is O(e). The analysis now proceeds by separating the remaining
components in (4.3)—(4.4) that are O(¢®) in Ly from those that are o(s3) as e — 0.

We first observe that by (3.9), we have that

&
/ o, wdt
0

For the remaining term in (4.3), we claim that

4
Set
o0
Lg

/ ZioED | W EPw(t,§) dt = 31og(1 + ) w, (©)Pw, (€) + O™ (4.7)

in Lé . To see this, we use (3.23) to estimate

lw®Pw®) — 1w, w e S WO e + 1w, Iz HwE) — w,

<%,
which yields
00 ) )
H/ M[IW(DI w(t) — [w [“w, | dt
& Lo
&
> 4
585/8 m(lf)*ﬁ dt < e°|loge| = O(e%).
As fg 2t(2t+1) dt =3 7 log(1 + ), we conclude that (4.7) holds.

Collecting the estimates so far, we have found

(4.3) = iUy(§) + $log(1 + )W, (&) Pw, (§) + O(e*). (4.8)

We turn to the terms in (4.4)—(4.5). We first show that the phase exp{iB(t)} can be

removed up to errors that are higher order in ¢ (at the price of logarithmic time growth).
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In particular, we have

. t 7
1650 ~ Ly S 1Bl S [ 1P 5y < e oo
0

We now use (4.9) to show that
(4.4) + (4.5) =/ Glf @), f@®), fOIE) dt
oo F .
+ / [e” " alu®)*u®}E) dt + O

uniformly in &. To this end, we will verify the following two estimates:
| togenlgif . £ folle de < o,
&

/ (log(t)) | Fle™**alu@®)*u®)l . dt < &°.

Using Lemma 3.1, we first have

. 11)|</ [ 107175 Qogieninislo 15173 MG F 0, £ ©,f O n, 0)] dn do
< / 117175 (log(e) IF (1)1 30, dt

o0 1 14
583/ 1t~ 75 ()3 (log(t)) dt S e5.

Next, by Hausdorff-Young and Lemma 2.1,

1(4.12)] 5/ (log(t)) llalu(®)|*u®)|, dt

< / w<log<t>>||a||L1 lu(@®) |3 dt < &3 / °°<10g<t>><t>—%dt583.

Combining the preceding estimates with (4.9), we derive (4.10).

We now analyze each term in (4.10) more closely. We show that up to acceptable

errors, we may replace the full solution with its initial data:

(4.9)

(4.10)

(4.11)

(4.12)
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Lemma 4.2. The following approximations hold. First,

/ gt[f(t)rf(t)rf(t)] dt = / gt[uO' U, uo] dt + 0(84)

in Lg". Next, for any test function v,

/(F[e’im{a|u|2u}],1p)dt:/ (ale’®Puy|?e®uy, e ) dt + O(s%).

&

Proof. We begin with (4.13). Writing

t
£t = ug+ / 0 (5) ds,
0

we find that it suffices to prove that

00 t
/ gt[g,h, / 3.f(s) ds} dt = O(e*)
£ 0

in Lgo, where

t
g.he [uo,/ 8sfds].
0

For each such term, we use Lemma 3.1 to estimate

r

t
G, [g, h, / asf (s) dS] (s)‘ dt
0
s/wnr“%mﬁwﬁ

o0 1 1
< / 117" "5 lIgllgoa I 2ll groa
&

dndo dt

t
]-'z_l[Gg[g,h,/O BJ(s)dS]](n,a)

dt
HO,l

t
/ d.f(s)ds
0

uniformly in &. Noting that the estimates in the preceding section imply

t
Il (x) / 3. (s)dsl2 S (%63,
0

(4.13)

(4.14)
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we see that
35

Igllgon + IRllgor S & +&%(2)

It follows that

00 t
/ ‘ G, [g, h,/ af(s) ds}
& 0 L

which is acceptable.

1L, 5,38 9,,,98 24
dt 5 [t]7 75 {e> (1) + &7 (1)} dt Se5,
go &

We turn to (4.14). Fixing a test function i, we see that it suffices to prove
oo . . . v
/ (allul?u — | uy|?e uyl, €2 y) dt = O(eh).
&
To prove this, we first note that by the Duhamel formula for (1.1), we have

. t .
u(t) — e®ug = N(t) := —i / e I(1 + a)|ul*ul(s) ds.
0

Thus, by the dispersive estimate, Sobolev embedding, unitarity of e

we have
00 . .
/ [allu@®?u(t) — [ ug 2™ ugl, e )| dt
&
o0 X . . v
5/ la{lu®® + [ ug*Hu(®) — e uy| - €49, de
0 'X
o0 . . v
S /0 lall 2 IN@ g2 {llu@) 7 + 1€ uglI7 I 4l o0 dt
2 [ 3 ¢ 2
Sa € / (t>_7||1/fI|H1.1/ 1T+ allge lllu(s)“uls) 2 ds de
0
_3
Say & / 2 / lu(s) [ lu(s) 2 ds dt

Saw € / / ldsdt

Suu 85/0 ()% log(t)) dt <., 5,

N\w

which is acceptable.

, and Lemma 2.1,
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We return to the expansion for w, given in (4.3)-(4.5) and pair the expression
with ¢. We insert (4.8) for (4.3) and combine (4.10) with Lemma 4.2 to replace the terms
(4.4)-(4.5). Recalling u, = ¢, this yields

(Sa(e9), @) = £(@,§) + % log(1 + L) (lw, |*w, )
o0
g3 / G Lo, 0, 0], §) dt
&

— isS/ ax)|etpx)|* dx dt + O(%).

Comparing the identity above with (4.1), we see that to complete the proof of Proposition

4.1 it suffices to verify the following:

/e/ ax)|e®px)|* dx dt = O(e), (4.15)
0 JR

/ HGlp, 0. 0),¢) dt = Q,lg], (4.16)

where 9, is as in (4.2).

The estimate (4.15) follows from the straightforward bound

& . .
/0 /a(X)|e”A<p(X)|4 dxdt < s||a||Loo||e”A¢II‘L*§,oL§ Sa elolin,

where we have applied Sobolev embedding and unitary of e'*2.

The identity (4.16) follows from a straightforward calculation: recalling the
definition in (4.6) and the identity in (3.13), we have

/ LGy, 0,01, ) dt
_ oo 1 —ilz —1 ~
- / 2 [[[le% — 1171 (Gelp, 0, olin,0)6(6) d& dndo di
=/ z%t/// le % — 1lp(z — NG(2)p(z — 0)¢E)e 72 dz dt dy do dt

=/ ﬁ/// le™% — 1lp(z — M@(2)p(z — 0)j(z —n — o) dzdydo dt
= Q.l¢l,

as desired.
We now turn to the proof of our main result, Theorem 1.4.
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Proof of Theorem 1.4. We let a and b be admissible in the sense of Definition 1.1 and
suppose that the modified scattering maps S, and S; agree on their common domain. We
now fix ¢ € S and sufficiently small ¢ > 0 and apply the main identity (4.1) in Proposition
4.1 to both S, (¢¢) and Sy (ep). As S, (ep) = Sp(ep), this implies

/OO/ a(x)leimgo(x)|4dxdt=/oo/ b(x)|e*2p(x)[* dx dt + O(e)
0 R 0 R

for any ¢ > 0. It follows that

oo , S ,
/ /a(x)|elmgo(x)|4dxdt:/ /b(X)|e”A<p(X)|4dth forall ¢eS.
0 R 0 R

Thus, the proof of Theorem 1.4 reduces to showing that if a is admissible in the sense of
Definition 1.1 and

OO .
/ / a(x)|epx)|*dxdt=0 forall ¢e€S, (4.17)
0 R

then a = 0.

Given ¢ € S, we define the function
A 4
K,(x) = /O et (x)|* dt

and first prove that K, € L?. To see this, we use Minkowski's integral inequality followed

by the dispersive estimate and Sobolev embedding to estimate

| Ne*2 el z < 1€ ellfe,s

< NPt 14 < -3 4 o
S e elizage S IO Flalelpa S 1-

Now we specialize to the choice
2 . . : 1 2
¢(x) = exp{—%}, inwhichcase e"*¢(x)=[q5]’ exp{—z1575)

(see [34]). In particular,

* 1 x?
K(p(X)Z o H_tzexp{_H_tz}dt
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Now suppose that (4.17) holds. Then, by translation invariance for the linear

Schrédinger equation, we have that

/ a(X)K(p(X —Xxp)dx=0 forall x;eR.
R

Thus, to deduce that a = 0, it suffices to verify that IA{(p # 0 almost everywhere. In fact,

for & # 0, we can compute IAf(p(E) explicitly as a Gaussian integral:
& > 2y-1 ; 2
K, (&) =/0 1+t~ /ReXp{—lXE - li—tz} dx dt
o0 1 2 2
=ﬁ/0 A+t?)"2 exp{—L:t)}dt.

As IA<¢ (&) is the integral of a positive function, the result follows. |
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