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We consider a class of one-dimensional nonlinear Schrödinger equations of the form

(i∂t + �)u = [1 + a]|u|2u.

For suitable localized functions a, such equations admit a small-datamodified scattering

theory, which incorporates the standard logarithmic phase correction. In this work,

we prove that the small-data modified scattering behavior uniquely determines the

inhomogeneity a.

1 Introduction

We consider one-dimensional nonlinear Schrödinger equations of the form

⎧⎨
⎩

(i∂t + �)u = [1 + a]|u|2u,
u|t=0 = u0,

(1.1)

where the inhomogeneity a : R → R is a localized function of x ∈ R. For suitable

functions a, equation (1.1) admits a small-data modified scattering theory for initial

data chosen from a weighted Sobolev space. In this paper, we prove that the modified

scattering map uniquely determines the inhomogeneity a.
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Recovery of the Nonlinearity 6633

We first describe the class of inhomogeneities considered in this work:

Definition 1.1 (Admissible). We say a : R → R is admissible if a ∈ L1 ∩ L∞, xa ∈ L2, and

∂xa ∈ L1.

For admissible inhomogeneities a, one may obtain the following modified scat-

tering result for small initial data in a weighted Sobolev space, which incorporates the

typical logarithmic-type phase correction. Letting F denote the Fourier transform and

eit� = F−1e−itξ2F the Schrödinger group, the precise result we need may be stated as

follows:

Theorem 1.2 (Modified scattering). Let a : R → R be admissible in the sense of

Definition 1.1. If ‖u0‖H1,1 is sufficiently small, then there exists a unique forward-global

solution u to (1.1) and w+ ∈ L∞
ξ such that

lim
t→∞

∥∥∥∥exp
{
i
∫ t

0
|Fe−is�u(s)|2 ds

2s+1

}
Fe−it�u(t) −w+

∥∥∥∥
L∞

ξ

= 0. (1.2)

Using Theorem 1.2, we may define the modified scattering map.

Definition 1.3 (Modified scattering map). Let a be admissible in the sense of Definition

1.1. Given ε > 0, define

Bε = {u0 ∈ H1,1 : ‖u0‖H1,1 < ε}.

For ε sufficiently small, we may use Theorem 1.2 to define the modified scattering map

Sa : Bε → L∞ by Sa(u0) = w+, where w+ is as in (1.2).

Our main result shows that the modified scattering map uniquely determines the

inhomogeneity a.

Theorem 1.4 (The modified scattering map determines the nonlinearity). Suppose a and

b admissible in the sense of Definition 1.1. Let Sa : B → L∞ and Sb : B′ → L∞ denote the

corresponding modified scattering maps, where B,B′ are as in Definition 1.3 for Sa, Sb,

respectively.

If Sa = Sb on B ∩ B′, then a ≡ b.
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6634 G. Chen and J. Murphy

Theorem 1.4 fits in the context of a wide body of work on the recovery of

nonlinearities (and external potentials) for nonlinear dispersive equations, particularly

the question of recovery from scattering data; we refer the reader to [1–3, 7, 9, 12, 13, 16,

18, 21–24, 26–33] for a broad selection of works in this direction. These results address

a variety of nonlinear Schrödinger equations with localized power-type nonlinearities,

Hartree-type nonlinearities, and more general classes of power-type nonlinearities and

prove that the standard scattering behavior of solutions suffices to determine the

unknown nonlinearity (cf. the discussion surrounding (1.3) below).

The chief novelty in our work stems from the fact that we consider a class

of equations for which the usual (unmodified) scattering fails. That is, the long-time

behavior of solutions is not simply given by the underlying linear dynamics; instead,

due to insufficient time decay in the nonlinear term, one must incorporate a logarithmic

phase correction in order to describe the long-time asymptotic behavior. Consequently,

the structure of the modified scattering map is more complicated to describe. Nonethe-

less, as we will explain below, this modified map suffices to uniquely determine the

inhomogeneity present in the nonlinearity.

Before discussing the proof of Theorem 1.4, let us briefly describe the proof

of modified scattering for (1.1) (Theorem 1.2). Modified scattering for cubic nonlinear

Schrödinger equations in one dimension is an important topic that has been addressed

in many different settings (see e.g., [4–6, 8, 10, 11, 14, 15, 19, 20], as well as [17] for a

review). These works include the standard 1d NLS, as well as the setting of NLS in the

presence of linear and quadratic perturbations.

As observed in [5, Remark 1.3], in the setting of (1.1), the inhomogeneous cubic

term may be viewed as a short-range perturbation to the long-range nonlinearity |u|2u.
Indeed, the inhomogeneity a(x) does not appear in the phase correction itself (cf. (1.2)).

Our proof of modified scattering follows the basic scheme set out in [11] (based on

taking the Fourier transform of the Duhamel formula and using an integrating factor

to remove the non-integrable cubic part), using local smoothing estimates (similar to

those appearing in [5]) to handle the inhomogeneous cubic term. Although Theorem 1.2 is

essentially already known in the literature, we provide a complete proof, as we will need

to utilize specific identities and estimates from the proof when addressing the inverse

problem. For the details, see Section 3.

In Section 4, we prove the main result, Theorem 1.4. Before discussing specific

details of the proof, let us first recall the standard approach to recovering the nonlinear-

ity from the usual scattering map (going back at least as far as [16, 25]). To fix ideas, let us

consider the problem of recovering an unknown, localized coefficient in a 1d nonlinear
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Recovery of the Nonlinearity 6635

Schrödinger equation of the form

(i∂t + �)u = a|u|2u, u|t=0 = u0. (1.3)

For a ∈ L1 ∩ L∞, one can prove that the usual (unmodified) scattering behavior holds for

small initial data in L2 (see e.g., [18]); that is, there exists a map Sa such that

lim
t→∞ ‖u(t) − eit�Sa(u0)‖L2 = 0,

where u is the solution to (1.3). In fact, using the Duhamel formula, one obtains the

following implicit formula for Sa:

Sa(u0) = u0 − i
∫ ∞

0
e−it�[a|u(t)|2u(t)] dt.

Specializing to u0 = εϕ (with ϕ ∈ S and 0 < ε 
 1), pairing this identity with ϕ, and

approximating u(t) by eit�u0 (the Born approximation), one can show that

〈Sa(εϕ),ϕ〉 = ε〈ϕ,ϕ〉 − iε3
∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt+ O(ε4).

It follows that knowledge of Sa suffices to determine the functionals

∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt for ϕ ∈ S. (1.4)

The problem then reduces to showing that knowledge of the functionals (1.4) uniquely

determines the coefficient a.

In the setting of Theorem 1.4, the overall structure of the argument is similar;

however, the analysis becomes more complicated due to the fact that the form of

the modified scattering map is different than that of the standard scattering map. In

particular, the modified scattering map is no longer easily viewed as a perturbation of

the identity. Instead, in Proposition 4.1, we show that for ϕ ∈ S and 0 < ε 
 1, we have

the expansion

〈Sa(εϕ), ϕ̂〉 = ε〈ϕ̂, ϕ̂〉 + 1
2i log(1 + 1

2ε
)〈|Sa(εϕ)|2Sa(εϕ), ϕ̂〉 + ε3Qε[ϕ]

− iε3
∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt+ O(ε4),

where ϕ̂ is the Fourier transform of ϕ and Qε is a multilinear expression in ϕ (which,

importantly, is independent of a). Thus, despite the more complicated structure of Sa,
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6636 G. Chen and J. Murphy

we find that knowledge of Sa still essentially determines the functionals appearing in

(1.4), and the problem once again reduces to showing that the functionals (1.4) determine

the coefficient a.

In earlier works (e.g., [16, 25]), this final step is completed by evaluating the

functional along a sequence of test functions concentrating at a point and utilizing

the dominated convergence theorem in order to determine a pointwise. In the present

setting, the low-power nonlinearity poses an additional challenge; indeed, we cannot

use dominated convergence directly, as we cannot guarantee that eit�ϕ ∈ L4t,x(R×R) even

for ϕ ∈ S. Instead, inspired in part by [12], we proceed by specializing to the case of

Gaussian data, for which the free evolution may be computed explicitly. In this way, we

find that knowledge of (1.4) suffices to determine the convolution a ∗ K for an explicit

kernel K, and the problem reduces to verifying directly that K̂ 
= 0 almost everywhere.

This final step is completed by evaluating a Gaussian integral.

Theorem 1.4 provides the first result in which modified scattering data is used

to recover an unknown nonlinearity. We have considered here the simplest setting of a

localized perturbation of the standard cubic NLS, althoughwe expect that the techniques

presented here can be extended to more general situations (e.g., in the presence of

suitable linear and quadratic perturbations). We plan to pursue these questions in

future work.

The rest of this paper is organized as follows: in section 2, we set up notation

and collect some preliminary lemmas. In Section 3, we establish modified scattering for

(1.1) (Theorem 1.2). Finally, in Section 4, we prove the main result, Theorem 1.4.

2 Notation and Preliminary Results

We write A � B to denote A ≤ CB for some C > 0.We indicate dependence on parameters

via subscripts, for example, A �a B means A ≤ CB for some C = C(a) > 0.

We write Hk,� to denote the weighted Sobolev space with norm

‖u‖Hk,� = ‖〈∂x〉k〈x〉�u‖L2 ,

where 〈·〉 is the Japanese bracket notation, i.e., 〈x〉 = √
1 + x2. We write S for Schwarz

space.

We denote the Fourier transform of a function f : Rd → C by

Fdf (ξ) = (2π)−
d
2

∫
Rd

e−ix·ξ f (x)dx,
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Recovery of the Nonlinearity 6637

with the inverse Fourier transform given by

F−1
d f (x) = (2π)−

d
2

∫
Rd

eix·ξ f (ξ)dξ .

If d = 1, we will omit the subscript. We also write Ff = f̂ and F−1f = f̌ .

We caution the reader that factors of 2π will be uniformly omitted throughout the

computations below.

The Schrödinger group is given by the Fourier multiplier operator

eit� = F−1e−itξ2F .

This operator admits the factorization identity

eit� = M(t)D(t)FM(t),

where

M(t) = ei
x2
4t and [D(t)f ](x) = (2it)−

1
2 f ( x2t ).

The Galilean operator J(t) is defined via

J(t) = x + 2it∂x = eit�xe−it�. (2.1)

Given a solution u to (1.1),we will performmuch of the analysis on the associated

profile f (t) = e−it�u(t). Suitable bounds on the profile imply estimates for the solution

itself, as is seen in the following lemma.

Lemma 2.1. Let f (t) = e−it�u(t). Then for any 0 < c < 1
4 ,

‖u(t)‖L∞
x
�c |t|− 1

2 {‖f̂ (t)‖L∞ + |t|−c‖f̂ (t)‖H1}.

Proof. We write

u(t) = M(t)D(t)FM(t)f (t)

= M(t)D(t)f̂ (t) +M(t)D(t)F [M(t) − 1]f (t).

We now observe that

‖M(t)D(t)f̂ (t)‖L∞ � |t|− 1
2 ‖f̂ (t)‖L∞ ,
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6638 G. Chen and J. Murphy

which is acceptable. For the remaining term, we use Hausdorff–Young, the pointwise

estimate

|M(t) − 1| � |x|2c|t|−c,

and Cauchy–Schwarz to obtain

‖M(t)D(t)F [M(t) − 1]f (t)‖L∞ � |t|− 1
2−c‖|x|2cf ‖L1

� |t|− 1
2−c‖〈x〉f ‖L2 ,

which is acceptable. �

Next we introduce a smoothing estimate, which is the dual of the classical Kato

smoothing estimate.This estimatewill be used to analyze the inhomogeneous cubic term.

Such estimates appear in more general settings in [5].

Lemma 2.2. Let φ : R �→ C satisfy

|φ(k)| � |k| 12 . (2.2)

Then for all t ≥ 0, we have∥∥∥∥
∫ t

0
e−iξ2sφ(ξ)F̂(s, ξ)ds

∥∥∥∥ L2ξ
� ‖F‖ L1xL

2
s (R×[0,t]). (2.3)

Proof. We argue by duality. We will first prove that

∥∥∥∥
∫
R

eixξ φ̄(ξ)eiξ
2sh(ξ)dξ

∥∥∥∥ L∞
x L2s (R×[0,t]) � ‖h‖ L2 (2.4)

for any h ∈ L2. Without loss of generality, we restrict the integral to ξ > 0. Changing

variables via ξ2 = λ and using Plancherel (in time) and (2.2), we obtain

∥∥∥∥
∫ ∞

0
eixξ φ̄(ξ)eiξ

2sh(x)dξ

∥∥∥∥
2

L2s ([0,t])

�
∥∥∥∥
∫ ∞

0
eix

√
λφ̄(

√
λ)eisλh(

√
λ) 1√

λ
dλ

∥∥∥∥
2

L2s (R)

�
∫ ∞

0

∣∣∣∣ φ̄(
√

λ)√
λ
h(

√
λ)

∣∣∣∣
2

dλ � ‖h‖2L2 ,

uniformly in x, which yields (2.4).
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Now, given h ∈ L2 and F ∈ L1xL
2
s , we use (2.4) and Hölder to estimate

∣∣∣∣
∫ ∫ t

0
h(ξ)eiξ

2sφ̄(ξ)
¯̂F(s, ξ)dsdξ

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫
R

( ∫
R

eixξeiξ
2sφ̄(ξ)h(ξ)dξ

)
F̄(s,x)dx ds

∣∣∣∣
�

∥∥∥∥
∫
R

eixξ φ̄(ξ)eiξ
2sh(ξ)dξ

∥∥∥∥ L∞
x L2s (R×[0,t])

∥∥F∥∥
L1xL

2
s (R×[0,t])

� ‖h‖ L2
∥∥F∥∥

L1xL
2
s (R×[0,t]),

which implies the desired estimate. �

3 The Direct Problem

In this section,we prove Theorem 1.2. The proof follows largely along standard lines (see

e.g., [11]), with some modifications to handle the inhomogeneous cubic term.

We let u0 ∈ H1,1 with ‖u0‖H1,1 = ε > 0, and let u : [0,∞) × R → C be the

corresponding solution to (1.1). We define the profile f (t) = e−it�u(t). By standard well-

posedness arguments and Sobolev embedding, one can derive that that

sup
t∈[0,1]

[‖u(t)‖H1 + ‖J(t)u(t)‖L2
]
� ε. (3.1)

Using (1.1), we have that

i∂tf̂ (t, ξ) = Fe−it�(|u|2u)(ξ) + Fe−it�(a|u|2u)(ξ).

In particular, we have the following straightforward estimates, which will be useful for

t ∈ [0, 1]: by Hausdorff–Young and Plancherel,

‖∂tf̂ ‖L∞
ξ
� ‖[1 + a]|u|2u‖L1x � ‖u‖3

L3x
� ‖u‖3

H1
x
� ε3

and

‖∂ξ f̂ ‖L2ξ � ‖J(t)([1 + a]|u|2u)‖L2

� ‖u‖2L∞‖Ju‖L2 + ‖u‖3L∞‖t∇a‖L2 � ε3.
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6640 G. Chen and J. Murphy

Next, we isolate the component of i∂tf̂ that fails to be integrable as t → ∞.

Evaluating the Fourier transform and changing variables via ξ − σ �→ σ , we obtain

Fe−it�(|u|2u)
(ξ)

=
�

eit[ξ
2−(ξ−η)2+(η−σ)2−σ2)]f̂ (t, ξ − η)

ˆ̄f (t, η − σ)f̂ (t, σ)dσ dη

=
�

e2itησGξ [f (t), f (t), f (t)](η, σ)dσ dη,

where

Gξ [f , g,h](η, σ) := f̂ (ξ − η) ˆ̄g(η − ξ + σ)ĥ(ξ − σ). (3.2)

We continue from above, using Plancherel and the identity

F2[e
2itησ ] = 1

2t e
−i ησ

2t

to obtain

Fe−it�(|u|2u)
(ξ) = 1

2t

�
e−i ησ

2s F−1
2

{
Gξ [f (t), f (t), f (t)]

}
(η, σ)dσ dη.

Noting that ˆ̄f (−ξ) = ¯̂f (ξ), so that

Gξ [f (t), f (t), f (t)](0, 0) = |f̂ (t, ξ)|2f̂ (t, ξ),

we therefore find that

Fe−it�(|u|2u)
(ξ) = 1

2t |f̂ (t, ξ)|2f̂ (t, ξ)

+ 1
2t

� [
e−i ησ

2t − 1
]
F−1
2 {Gξ [f (t), f (t), f (t)]}(η, σ)dσ dη.

Combining the computations above, we derive that

i∂tf (t, ξ) = 1
2t |f̂ (t, ξ)|2f̂ (t, ξ)

+ Fe−it�(
a|u|2u)

(ξ)

+ 1
2t

� [
e−i ησ

2t − 1
]
F−1
2 {Gξ [f (t), f (t), f (t)]}(η, σ)dσ dη.

(3.3)

We now define

w(t) = eiB(t)f̂ (t), where B(t) := exp
{
i
∫ t

0
|f̂ (s)|2 ds

2s+1

}
. (3.4)
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Recovery of the Nonlinearity 6641

It follows that

i∂tw(t, ξ) = eiB(t,ξ)
{
i∂tf (t, ξ) − 1

2t+1 |f̂ (t, ξ)|2f̂ (t, ξ)
}

(3.5)

= eiB(t,ξ)

[
1

2t(2t+1)
|f̂ (t, ξ)|2f̂ (t, ξ) (3.6)

+ Fe−it�(a|u|2u)(ξ) (3.7)

+ 1
2t

� [
e−i ησ

2t − 1]F−1
2 {Gξ [f (t), f (t), f (t)]}(η, σ)dσ dη

]
. (3.8)

Using (3.5) and (3.1), we find that

‖∂tw‖H1 � ε3 uniformly for t ∈ [0, 1]. (3.9)

We obtain estimates for t ∈ [1,∞) using a bootstrap argument. In particular,

assuming that the solution satisfies estimates of the form

‖f̂ (t)‖L∞
ξ

≤ 2Cε and ‖f̂ (t)‖H1 ≤ 2C〈t〉δε (3.10)

uniformly in t ≥ 1, the estimates obtained below will demonstrate that the solution

satisfies the improved bounds

‖f̂ (t)‖L∞
ξ

≤ Cε and ‖f̂ (t)‖H1 ≤ C〈t〉δε.

Here δ = O(ε2) is a small parameter. Observe that by Lemma 2.1, the assumptions (3.10)

also guarantee that

‖u(t)‖L∞ � 〈t〉− 1
2 ε.

Noting that ‖f̂ (t)‖L∞
ξ

≡ ‖w(t)‖L∞
ξ
, we begin by using the expansion (3.6)–(3.8) to

estimate ∂tw in in L∞
ξ . In particular, we will prove that if (3.10) holds, then

‖∂tw‖L∞
ξ
� 〈t〉−1− 1

10 ε3 uniformly for t ≥ 1. (3.11)

First, by (3.10), we immediately see that

1
2t(2t+1)

‖|f̂ |2f̂ ‖L∞
ξ
� 〈t〉−2ε3,

which is acceptable.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/8/6632/7330780 by guest on 22 April 2024



6642 G. Chen and J. Murphy

Next, using (3.10), Hausdorff–Young, and Lemma 2.1, we estimate

‖Fe−it�(a|u|2u)‖L∞
ξ
� ‖a|u|2u‖L1 � ‖a‖L1‖u‖3L∞ �a 〈t〉− 3

2 ε3,

which is acceptable.

Finally, we turn to (3.8). We begin by using the pointwise estimate

|eix − 1| ≤ |x| 15

to obtain

‖(3.8)‖L∞
ξ
� |t|−1− 1

5

∥∥∥∥
�

|η| 15 |σ | 15 |F−1
2 {Gξ [f , f , f ]}(η, σ)|dσ dη

∥∥∥∥
L∞

ξ

. (3.12)

To estimate the right-hand side of (3.12), we rely on the following general trilinear

estimate. We state the result in more generality than is needed here, as this formulation

will be useful in the next section.

Lemma 3.1 (Trilinear estimate). Define Gξ (·, ·, ·) as in (3.2). Then

�
|η| 15 |σ | 15 |F−1

2 {Gξ [f , g,h]}(η, σ)|dσ dη � ‖f ‖H0,1‖g‖H0,1‖h‖H0,1

uniformly in ξ .

Proof. Recall that

Gξ [f , g,h](x, y) = f̂ (ξ − x) ˆ̄g(x − ξ + y)ĥ(ξ − y).

Thus, writing
∫
eiab db = δa=0, we have

F−1
2 {Gξ [f , g,h]}(η, σ)

=
∫

· · ·
∫
ei[xη+yσ−v(ξ−x)−z(x−ξ+y)−r(ξ−y)]f (v)ḡ(z)h(r)dx dy dr dv dz

=
�

ḡ(z)eizξ f (v)e−ivξei[x(v+η−z)]
[∫

h(r)e−irξ
∫
ei[y(r+σ−z)] dy dr

]
dx dv dz

=
∫
ḡ(z)h(z− σ)eiξσ

[∫
f (v)e−ivξ

∫
ei[x(v+η−z)] dx dv

]
dz

=
∫
f (z− η)ḡ(z)h(z− σ)eiξ [η+σ−z] dz. (3.13)
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Recovery of the Nonlinearity 6643

It follows that

|F−1
2 {Gξ [f , g,h]}(η, σ)| ≤

∫
|f (z− η)h(z− σ)g(z)|dz

uniformly in ξ , and hence

�
|η| 15 |σ | 15 |F−1

2 Gξ [f , g,h]}(η, σ)|dσ dη

�
�

|η| 15 |σ | 15 |f (z− η)h(z− σ)g(z)|dzdσ dη

�
�

[|z− η| 15 + |z| 15 ][|z− σ | 15 + |z| 15 ]|f (z− η)h(z− σ)g(z)|dzdσ dη

uniformly in ξ . The result now follows from the fact that for any 0 < c < 1
2 ,

‖|x|cf ‖L1 � ‖〈x〉f ‖L2 ,

which is a consequence of Cauchy–Schwarz. �

Continuing from (3.12) and applying Lemma 3.1 and (3.10), we obtain

‖(3.8)‖L∞
ξ
� |t|−1− 1

5 ‖f (t)‖3H0,1 � |t|−1− 1
5+3δε3,

which is acceptable (provided δ is sufficiently small). This completes the proof of (3.11),

which suffices to close the bootstrap estimate for f̂ in L∞.

To complete the proof of (3.10), it suffices to close the bootstrap estimate for H1-

norm of f̂ . Without loss of generality, we estimate the Ḣ1-norm only.

Using the Duhamel formula, we first write

∂ξ f̂ (t, ξ) = ∂ξ û0(ξ) (3.14)

− i
∫ t

0
∂ξ

[
Fe−is�(|u|2u)

(ξ)
]
ds (3.15)

− i
∫ t

0
∂ξ

[
Fe−is�(

a|u|2u)
(ξ)

]
ds. (3.16)

The term in (3.14) is O(ε) in L2ξ , which is acceptable.
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6644 G. Chen and J. Murphy

Using the same computations as above, we may write

(3.15) = −i
∫ t

0

�
e2isησ ∂ξGξ [f (s), f (s), f (s)](η, σ)dσ dη ds. (3.17)

Recalling the definition of Gξ (see (3.2)), it follows from the product rule that ∂ξGξ [f , f , f ]

is a linear combination of terms of the form Gξ [xf , f , f ]. After distributing the derivative,

we can use the identity

xf (s) = xe−is�u(s) = e−is�J(s)u(s)

(cf. (2.1)) and undo the computations that led to (3.17) to see that (3.15) may be written as

a sum of terms of the form

∫ t

0
F [e−is�O(u2)Ju](ξ)ds.

In particular, by (3.1) and (3.10), we may estimate

‖(3.15)‖L2ξ �
∫ t

0
‖u(s)‖2L∞

ξ
‖J(s)u(s)‖L2 ds �

∫ t

0
〈s〉−1+δε3 ds � 〈t〉δε3,

which is acceptable.

It remains to estimate (3.16). We begin by writing

∂ξ

∫ t

0
Fe−is�(

a|u|2u)
(ξ)ds = ∂ξ

∫ t

0
eisξ

2F
(
a|u|2u)

(ξ)ds

=
∫ t

0
eisξ

2
∂ξF

(
a|u|2u)

(ξ)ds (3.18)

+ 2i
∫ t

0
ξseisξ

2F
(
a|u|2u)

(ξ)ds. (3.19)

Using (3.1) and (3.10), we first estimate

‖(3.18)‖L2ξ �
∫ t

0
‖x a|u|2u‖L2x ds �

∫ t

0
‖xa‖L2‖u‖3L∞ ds �

∫ t

0
ε3〈s〉− 3

2 ds � ε3,

which is acceptable.
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Next, we let ϕ be a smooth cutoff to |ξ | ≤ 1 and decompose

(3.19) = 2i
∫ t

0
ξϕ(ξ)seisξ

2F
(
a|u|2u)

(ξ)ds (3.20)

+ 2i
∫ t

0
[1 − ϕ(ξ)]seisξ

2
ξF

(
a|u|2u)

(ξ)ds. (3.21)

Applying Lemma 2.2 (with φ(ξ) = ξϕ(ξ) and F̂(s, ξ) = sF(a|u|2u)), (3.1), (3.10), and

Minkowski’s integral inequality, we deduce that

‖(3.20)‖L2ξ �
∥∥sa|u|2u∥∥

L1xL
2
s (R×[0,t])

� ‖a‖L1‖s|u|2u‖L∞
x L2s (R×[0,t])

� ‖s|u|2u‖L2s L∞
x ([0,t]×R)

� ε3‖s〈s〉− 3
2 ‖L2s ([0,t]) � ε3〈log〈t〉〉,

which is acceptable.

Similarly, applying Lemma 2.2 (with φ(ξ) = 1 − ϕ(ξ) and F̂(s, ξ) = sξF(a|u|2u)),

we find that

‖(3.21)‖L2ξ �
∥∥s|u|2u ∂xa

∥∥
L1xL

2
s (R×[0,t]) + ∥∥sa|u|2∂xu

∥∥
L1xL

2
s (R×[0,t]). (3.22)

For the first term, we proceed as we did for (3.20). This yields

‖s|u|2u∂xa‖L1xL2s (R×[0,t]) � ε3‖∂xa‖L1〈log〈t〉〉,

which is acceptable.

For the second term, we write

s∂xu = 1
2i [J(s)u(s) − xu(s)].

Then, using (3.10) (noting that ‖Ju‖L2 = ‖f̂ ‖Ḣ1 by (2.1)), we estimate

‖sa|u|2∂xu‖L1xL2s (R×[0,t])

� ‖〈x〉a‖L2‖|u|2〈x〉−1[Ju− xu]‖L2s,x([0,t]×R)

� ‖u‖2
L4s L

∞
x ([0,t]×R)

{‖Ju‖L∞
s L2x([0,t]×R) + ‖ x

〈x〉u‖L∞
s L2x([0,t]×R)

}

� ε3〈t〉δ,

which is acceptable.
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6646 G. Chen and J. Murphy

Combining the estimates above,we can close the bootstrap for theH1-component

of f̂ . Thus, the desired bounds for f̂ hold for all t ≥ 0, and in particular we obtain the

bound (3.11).

With (3.11) in hand, we obtain the establish the existence of w+ in L∞
ξ such that

‖w(t) −w+‖L∞
ξ
� 〈t〉− 1

10 ε3 (3.23)

uniformly for t ≥ 0, which suffices to complete the proof of Theorem 1.2.

4 The Inverse Problem

The goal of this section is to prove Theorem 1.4. Our first step is a careful analysis of the

scattering map u0 �→ Sa(u0) for a fixed admissible inhomogeneity a.

Proposition 4.1 (Structure of Sa). Let a be admissible in the sense of Definition 1.1. Let

ϕ ∈ S(R) and ε > 0 be sufficiently small. Let u : [0,∞) × R → C be the solution to (1.1)

with u|t=0 = εϕ. Then

〈Sa(εϕ), ϕ̂〉 = ε〈ϕ̂, ϕ̂〉 + 1
2i log(1 + 1

2ε
)〈|Sa(εϕ)|2Sa(εϕ), ϕ̂〉 + ε3Qε[ϕ]

− iε3
∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt+ O(ε4),
(4.1)

where

Qε[ϕ] :=
∫ ∞

ε

1
2it

�
[e−i ησ

2t − 1]ϕ(z− η)ϕ(z− σ)ϕ̄(z)ϕ̄(z− η − σ)dzdη dσ dt. (4.2)

Proof. We write u0 = εϕ and let u be the solution to (1.1) with u|t=0 = u0. We define the

profile f (t) = e−it�u(t) and the modified profile w(t) = eiB(t)f̂ (t) as in (3.4). In particular,

there exists w+ ∈ L∞
ξ such that w(t) → w+ = Sa(u0) in L∞

ξ as t → ∞. By construction,

we have

‖w+‖L∞
ξ
� ε.

Recalling (3.3), we begin by using (3.6)–(3.8) from the preceding section to write

iw+(ξ) = iû0(ξ) +
∫ ε

0
i∂tw(t, ξ)dt+

∫ ∞

ε

1
2t(2t+1)

|w(t, ξ)|2w(t, ξ)dt (4.3)

+
∫ ∞

ε

eiB(t,ξ)Gt[f (t), f (t), f (t)](ξ)dt (4.4)

+
∫ ∞

ε

eiB(t,ξ)F [e−it�{a|u(t)|2u(t)}](ξ)dt, (4.5)
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Recovery of the Nonlinearity 6647

where

Gt[f , g,h](ξ) := 1
2t

�
[e−i ησ

2t − 1]F−1
2 {Gξ [f , g,h]}(η, σ)dη dσ , (4.6)

with Gξ (·, ·, ·) as in (3.2).

The term û0(ξ) is O(ε). The analysis now proceeds by separating the remaining

components in (4.3)–(4.4) that are O(ε3) in L∞
ξ from those that are o(ε3) as ε → 0.

We first observe that by (3.9), we have that

∥∥∥∥
∫ ε

0
∂tw dt

∥∥∥∥
L∞

ξ

� ε4.

For the remaining term in (4.3), we claim that

∫ ∞

ε

1
2t(2t+1)

|w(t, ξ)|2w(t, ξ)dt = 1
2 log(1 + 1

2ε
)|w+(ξ)|2w+(ξ) + O(ε4) (4.7)

in L∞
ξ . To see this, we use (3.23) to estimate

‖|w(t)|2w(t) − |w+|2w+‖L∞
ξ
� {‖w(t)‖2L∞

ξ
+ ‖w+‖2L∞

ξ
}‖w(t) −w+‖L∞

ξ

� ε5〈t〉− 1
10 ,

which yields

∥∥∥∥
∫ ∞

ε

1
2t(2t+1)

[|w(t)|2w(t) − |w+|2w+
]
dt

∥∥∥∥
L∞

ξ

� ε5
∫ ∞

ε

1
2t(2t+1)

〈t〉− 1
10 dt � ε5| log ε| = O(ε4).

As
∫ ∞
ε

1
2t(2t+1)

dt = 1
2 log(1 + 1

2ε
), we conclude that (4.7) holds.

Collecting the estimates so far, we have found

(4.3) = iû0(ξ) + 1
2 log(1 + 1

2ε
)|w+(ξ)|2w+(ξ) + O(ε4). (4.8)

We turn to the terms in (4.4)–(4.5). We first show that the phase exp{iB(t)} can be

removed up to errors that are higher order in ε (at the price of logarithmic time growth).
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6648 G. Chen and J. Murphy

In particular, we have

‖eiB(t) − 1‖L∞
ξ
� ‖B(t)‖L∞

ξ
�

∫ t

0
‖f̂ (s)‖2L∞

ξ

ds
2s+1 � ε2〈log〈t〉〉. (4.9)

We now use (4.9) to show that

(4.4) + (4.5) =
∫ ∞

ε

Gt[f (t), f (t), f (t)](ξ)dt

+
∫ ∞F

ε

[e−it�{a|u(t)|2u(t)}](ξ)dt+ O(ε4)

(4.10)

uniformly in ξ . To this end, we will verify the following two estimates:

∫ ∞

ε

〈log〈t〉〉‖Gt[f (t), f (t), f (t)]‖L∞
ξ
dt � ε

14
5 , (4.11)

∫ ∞

ε

〈log〈t〉〉‖F [e−it�{a|u(t)|2u(t)}]‖L∞
ξ
dt � ε3. (4.12)

Using Lemma 3.1, we first have

|(4.11)| �
∫ ∞

ε

�
|t|−1− 1

5 〈log〈t〉〉|η| 15 |σ | 15 |F−1
2 {Gξ [f (t), f (t), f (t)]}(η, σ)|dη dσ

�
∫ ∞

ε

|t|−1− 1
5 〈log〈t〉〉‖f (t)‖3H0,1 dt

� ε3
∫ ∞

ε

|t|−1− 1
5 〈t〉3δ〈log〈t〉〉dt � ε

14
5 .

Next, by Hausdorff–Young and Lemma 2.1,

|(4.12)| �
∫ ∞

ε

〈log〈t〉〉‖a|u(t)|2u(t)‖L1 dt

�
∫ ∞

ε

〈log〈t〉〉‖a‖L1‖u(t)‖3L∞ dt � ε3
∫ ∞

ε

〈log〈t〉〉〈t〉− 3
2 dt � ε3.

Combining the preceding estimates with (4.9), we derive (4.10).

We now analyze each term in (4.10) more closely. We show that up to acceptable

errors, we may replace the full solution with its initial data:
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Lemma 4.2. The following approximations hold. First,

∫ ∞

ε

Gt[f (t), f (t), f (t)] dt =
∫ ∞

ε

Gt[u0,u0,u0] dt+ O(ε4) (4.13)

in L∞
ξ . Next, for any test function ψ ,

∫ ∞

ε

〈F [e−it�{a|u|2u}],ψ〉dt =
∫ ∞

ε

〈a|eit�u0|2eit�u0, e
it�ψ̌〉dt+ O(ε4). (4.14)

�

Proof. We begin with (4.13). Writing

f (t) = u0 +
∫ t

0
∂sf (s)ds,

we find that it suffices to prove that

∫ ∞

ε

Gt
[
g,h,

∫ t

0
∂sf (s)ds

]
dt = O(ε4)

in L∞
ξ , where

g,h ∈
{
u0,

∫ t

0
∂sf ds

}
.

For each such term, we use Lemma 3.1 to estimate

∫ ∞

ε

∣∣∣∣Gt
[
g,h,

∫ t

0
∂sf (s)ds

]
(ξ)

∣∣∣∣dt

�
∫ ∞

ε

|t|−1− 1
5 |η| 15 |σ | 15

∣∣∣∣F−1
2

{
Gξ

[
g,h,

∫ t

0
∂sf (s)ds

]}
(η, σ)

∣∣∣∣dη dσ dt

�
∫ ∞

ε

|t|−1− 1
5 ‖g‖H0,1‖h‖H0,1

∥∥∥∥
∫ t

0
∂sf (s)ds

∥∥∥∥
H0,1

dt

uniformly in ξ . Noting that the estimates in the preceding section imply

‖〈x〉
∫ t

0
∂sf (s)ds‖L2 � 〈t〉3δε3,
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6650 G. Chen and J. Murphy

we see that

‖g‖H0,1 + ‖h‖H0,1 � ε + ε3〈t〉3δ.

It follows that

∫ ∞

ε

∥∥∥∥Gt
[
g,h,

∫ t

0
∂sf (s)ds

]∥∥∥∥
L∞

ξ

dt �
∫ ∞

ε

|t|−1− 1
5 {ε5〈t〉3δ + ε9〈t〉9δ}dt � ε

24
5 ,

which is acceptable.

We turn to (4.14). Fixing a test function ψ , we see that it suffices to prove

∫ ∞

ε

〈a[|u|2u− |eit�u0|2eit�u0], e
it�ψ̌〉dt = O(ε4).

To prove this, we first note that by the Duhamel formula for (1.1), we have

u(t) − eit�u0 = N(t) := −i
∫ t

0
ei(t−s)�[(1 + a)|u|2u](s)ds.

Thus, by the dispersive estimate, Sobolev embedding, unitarity of eit�, and Lemma 2.1,

we have

∫ ∞

ε

∣∣〈a[|u(t)|2u(t) − |eit�u0|2eit�u0], e
it�ψ̌〉∣∣dt

�
∫ ∞

0

∥∥a{|u(t)|2 + |eit�u0|2
}|u(t) − eit�u0| · eit�ψ̌

∥∥
L1x

dt

�
∫ ∞

0
‖a‖L2x‖N(t)‖L2x

{‖u(t)‖2L∞
x

+ ‖eit�u0‖2L∞
x

}‖eit�ψ̌‖L∞
x
dt

�a ε2
∫ ∞

0
〈t〉− 3

2 ‖ψ‖H1,1

∫ t

0
‖1 + a‖L∞

x
‖|u(s)|2u(s)‖L2x dsdt

�a,ψ ε2
∫ ∞

0
〈t〉− 3

2

∫ t

0
‖u(s)‖2L∞‖u(s)‖L2 dsdt

�a,ψ ε5
∫ ∞

0
〈t〉− 3

2

∫ t

0
〈s〉−1 dsdt

�a,ψ ε5
∫ ∞

0
〈t〉− 3

2 〈log〈t〉〉dt �a,ϕ ε5,

which is acceptable. �
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We return to the expansion for w+ given in (4.3)–(4.5) and pair the expression

with ϕ̂. We insert (4.8) for (4.3) and combine (4.10) with Lemma 4.2 to replace the terms

(4.4)–(4.5). Recalling u0 = εϕ, this yields

〈Sa(εϕ), ϕ̂〉 = ε〈ϕ̂, ϕ̂〉 + 1
2i log(1 + 1

2ε
)〈|w+|2w+, ϕ̂〉

− iε3
∫ ∞

ε

〈Gt[ϕ,ϕ,ϕ], ϕ̂〉dt

− iε3
∫ ∞

ε

a(x)|eit�ϕ(x)|4 dx dt+ O(ε4).

Comparing the identity above with (4.1), we see that to complete the proof of Proposition

4.1 it suffices to verify the following:

∫ ε

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt = O(ε), (4.15)

∫ ∞

ε

1
i 〈Gt[ϕ,ϕ,ϕ], ϕ̂〉dt = Qε[ϕ], (4.16)

where Qε is as in (4.2).

The estimate (4.15) follows from the straightforward bound∫ ε

0

∫
a(x)|eit�ϕ(x)|4 dx dt � ε‖a‖L∞‖eit�ϕ‖4

L∞
t L4x

�a ε‖ϕ‖4H1 ,

where we have applied Sobolev embedding and unitary of eit�.

The identity (4.16) follows from a straightforward calculation: recalling the

definition in (4.6) and the identity in (3.13), we have

∫ ∞

ε

1
i 〈Gt[ϕ,ϕ,ϕ], ϕ̂〉dt

=
∫ ∞

ε

1
2it

�
[e−i ησ

2t − 1]F−1
2 {Gξ [ϕ,ϕ,ϕ]}(η, σ) ¯̂ϕ(ξ)dξ dη dσ dt

=
∫ ∞

ε

1
2it

∫∫∫∫
[e−i ησ

2t − 1]ϕ(z− η)ϕ̄(z)ϕ(z− σ) ¯̂ϕ(ξ)eiξ [η+σ−z] dzdξ dη dσ dt

=
∫ ∞

ε

1
2it

∫∫∫∫
[e−i ησ

2t − 1]ϕ(z− η)ϕ̄(z)ϕ(z− σ)ϕ̄(z− η − σ)dzdη dσ dt

= Qε[ϕ],

as desired.
We now turn to the proof of our main result, Theorem 1.4.
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Proof of Theorem 1.4. We let a and b be admissible in the sense of Definition 1.1 and

suppose that the modified scattering maps Sa and Sb agree on their common domain.We

now fix ϕ ∈ S and sufficiently small ε > 0 and apply the main identity (4.1) in Proposition

4.1 to both Sa(εϕ) and Sb(εϕ). As Sa(εϕ) = Sb(εϕ), this implies

∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt =
∫ ∞

0

∫
R

b(x)|eit�ϕ(x)|4 dx dt+ O(ε)

for any ε > 0. It follows that

∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt =
∫ ∞

0

∫
R

b(x)|eit�ϕ(x)|4 dx dt for all ϕ ∈ S.

Thus, the proof of Theorem 1.4 reduces to showing that if a is admissible in the sense of

Definition 1.1 and

∫ ∞

0

∫
R

a(x)|eit�ϕ(x)|4 dx dt = 0 for all ϕ ∈ S, (4.17)

then a ≡ 0.

Given ϕ ∈ S, we define the function

Kϕ(x) =
∫ ∞

0
|eit�ϕ(x)|4 dt

and first prove that Kϕ ∈ L2. To see this, we use Minkowski’s integral inequality followed

by the dispersive estimate and Sobolev embedding to estimate

∥∥ ‖eit�ϕ‖4
L4t

∥∥
L2x

� ‖eit�ϕ‖4
L8xL

4
t

� ‖eit�ϕ‖4
L4t L

8
x
� ‖〈t〉− 3

8 ‖4
L4t

‖ϕ‖4H1,1 �ϕ 1.

Now we specialize to the choice

ϕ(x) = exp{−x2
4 }, in which case eit�ϕ(x) = [ 1

1+it
] 1
2 exp{− x2

4(1+it) }

(see [34]). In particular,

Kϕ(x) =
∫ ∞

0

1
1+t2 exp

{− x2

1+t2
}
dt.
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Now suppose that (4.17) holds. Then, by translation invariance for the linear

Schrödinger equation, we have that∫
R

a(x)Kϕ(x − x0)dx = 0 for all x0 ∈ R.

Thus, to deduce that a ≡ 0, it suffices to verify that K̂ϕ 
= 0 almost everywhere. In fact,

for ξ 
= 0, we can compute K̂ϕ(ξ) explicitly as a Gaussian integral:

K̂ϕ(ξ) =
∫ ∞

0
(1 + t2)−1

∫
R

exp
{−ixξ − x2

1+t2
}
dx dt

= √
π

∫ ∞

0
(1 + t2)−

1
2 exp

{− ξ2(1+t2)
4

}
dt.

As K̂ϕ(ξ) is the integral of a positive function, the result follows. �
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