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STABILITY ESTIMATES FOR THE RECOVERY OF
THE NONLINEARITY FROM SCATTERING DATA

GONG CHEN AND JASON MURPHY

We prove stability estimates for the problem of recovering the nonlinearity from scattering data. We focus
our attention on nonlinear Schrödinger equations of the form

(i∂t +1)u = a(x)|u|pu

in three space dimensions, with p ∈
[ 4

3 , 4
]

and a ∈ W 1,∞.

1. Introduction

We consider the problem of determining an unknown nonlinearity from the small-data scattering behavior
of solutions in the setting of nonlinear Schrödinger equations of the form

(i∂t +1)u = a(x)|u|pu, (t, x) ∈ R×Rd . (1-1)

We focus on the three-dimensional intercritical setting, i.e., d = 3 and p ∈
[4

3 , 4
]
. In this setting,

equation (1-1) admits a small-data scattering theory in H 1 for any a ∈ W 1,∞ (see Theorem 1.1). In
particular, given sufficiently small u− ∈ H 1, there exists a global-in-time solution u to (1-1) that scatters
backward in time to u− and forward in time to some u+ ∈ H 1, that is,

lim
t→±∞

∥u(t)− ei t1u±∥H1 = 0.

One can therefore define the scattering map Sa : u− 7→ u+ on some ball in H 1.
As it turns out, the scattering map encodes all of the information about the nonlinearity in (1-1), in the

sense that the map a 7→ Sa is injective (see Theorem 1.2). In fact, knowledge of Sa suffices to reconstruct
the inhomogeneity a pointwise.

In this work, we consider the closely related problem of stability. That is, if two scattering maps Sa

and Sb are close in some sense, must the corresponding inhomogeneities a and b necessarily be close?
Our main result (Theorem 1.3) provides an estimate of this type. It is essentially a quantitative version
of Theorem 1.2.

We first state the small data scattering result for (1-1). The proof utilizes Strichartz estimates and a
standard contraction mapping argument. For completeness, we provide the proof in Section 3.
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Theorem 1.1 (small data scattering). Let a ∈ W 1,∞(R3) and p ∈
[4

3 , 4
]
. There exists η > 0 sufficiently

small so that for any u− ∈ H 1 satisfying ∥u−∥H1 < η, there exists a unique global solution u to (1-1)
satisfying

lim
t→±∞

∥u(t)− ei t1u±∥H1 = 0,

where u+ satisfies the formula

u+ = u−− i
∫

R
e−i t1a|u|pu(t) dt. (1-2)

Using Theorem 1.1, we define the scattering map Sa : B → H 1 via Sa(u−)= u+, where B is a ball
in H 1 and u± are as in the statement of the theorem. This map uniquely determines the function a
(see, e.g., [Strauss 1974; Murphy 2023]):

Theorem 1.2. Let p ∈
[ 4

3 , 4
]

and let a, b ∈ W 1,∞(R3). Let Sa, Sb denote the corresponding scattering
maps for (1-1) with nonlinearities a|u|pu and b|u|pu, respectively. If Sa is equal to Sb on their common
domain, then a = b.

Our main result is essentially a quantitative version of Theorem 1.2. To measure the difference between
two scattering maps, we use the Lipschitz constant at 0. In particular, we define

∥Sa − Sb∥ := sup
{
∥Sa(ϕ)− Sb(ϕ)∥H1

∥ϕ∥H1
: ϕ ∈ B\{0}

}
,

where B ⊂ H 1 is the common domain of Sa and Sb.

Theorem 1.3 (stability estimate). Let p∈
[4

3 , 4
]
. Let a, b∈W 1,∞, and let Sa, Sb denote the corresponding

scattering maps for (1-1) with nonlinearities a|u|pu and b|u|pu, respectively. Then

∥a − b∥L∞ ≲ {∥a∥W 1,∞ +∥b∥W 1,∞}
8
9 ∥Sa − Sb∥

1
9 +{∥a∥W 1,∞ +∥b∥W 1,∞}

10
9 ∥Sa − Sb∥

8
9 .

Remark 1.4. If we assume a priori bounds of the form

∥a∥W 1,∞, ∥b∥W 1,∞ ≲ M and ∥Sa − Sb∥≪ 1,

then the estimate in Theorem 1.3 reduces to the following Hölder estimate:

∥a − b∥L∞ ≲M ∥Sa − Sb∥
1
9 . (1-3)

The precise powers appearing in these estimates do not have any special meaning. Indeed, they arise from
some ad hoc choices made in the argument in order to treat the range p ∈

[4
3 , 4

]
uniformly. By refining

the arguments, one could improve the estimate (1-3) to

∥a − b∥L∞ ≲M,ε ∥Sa − Sb∥
3p−2
9p−2−ε,

but even in this case there seems to be no special meaning to this exponent.

The problem of recovering an unknown nonlinearity from scattering data (or other data) is a well-
studied problem. For results of this type in the setting of nonlinear dispersive equations (particularly
nonlinear Schrödinger equations), we refer the reader to [Sá Barreto et al. 2022; Sá Barreto and Stefanov
2022; Carles and Gallagher 2009; Chen and Murphy 2023; Enss and Weder 1995; Hogan et al. 2023;
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Killip et al. 2023; Lee and Yu 2023; Morawetz and Strauss 1973; Murphy 2023; Pausader and Strauss
2009; Sasaki 2007; 2008; Sasaki and Watanabe 2005; Watanabe 2001; 2018; Weder 1997; 2000; 2001a;
2001b; 2002]. To the best of our knowledge, the problem of stability has not yet been investigated in this
particular setting; however, we refer the reader to [Lassas et al. 2022] to some stability estimates related
to recovering an unknown coefficient in a semilinear wave equation from the Dirichlet-to-Neumann map.

Our main result, Theorem 1.3, provides a stability estimate in the intercritical setting for nonlinearities
of the form a(x)|u|pu in three space dimensions. Killip et al. [2023] proved an analogue of Theorem 1.2
for a more general class of nonlinearities in two dimensions; however, the results presented here do not
suffice to establish a stability estimate in this more general setting. In the case that modified scattering
holds, we [Chen and Murphy 2023] also showed that the small-data modified scattering behavior also
suffices to determine the inhomogeneity present in the nonlinearity. A stability estimate in this setting
would also require some new ideas compared to what is presented here.

The strategy of the proof of Theorem 1.3 builds on the one used to prove Theorem 1.2 (see, e.g.,
[Strauss 1974; Murphy 2023]). The starting point is the implicit formula for the scattering map appearing
in (1-2), which implies that

⟨Sa(u−)− u−, u−⟩ = −i
∫

R×R3
a(x)|u(t, x)|pu(t, x) ei t1u−(x) dx dt,

where u is the solution to (1-1) that scatters backward in time to u−. We then approximate the full
solution u(t) by ei t1u− (the Born approximation), using the Duhamel formula for (1-1) to express the
difference (see (3-2)). The difference contains the nonlinearity and hence is smaller than the main term,
which is given by ∫

R×R3
a(x)|ei t1u−(x)|p+2 dx dt. (1-4)

The next step is to specialize to Gaussian data of the form

u−(x)= exp
{
−
|x−x0|

2

4σ 2

}
,

which is small in H 1 for 0 < σ ≪ 1. We then rely on the fact that the free evolution of a Gaussian
may be computed explicitly (and is still Gaussian), a fact that has already been exploited in the related
works [Killip et al. 2023; Chen and Murphy 2023; Murphy 2023]. Using the scaling symmetry for
the linear Schrödinger equation, we can therefore express the main term (1-4) in the form Fσ ∗ a(x0),
where c−1σ−5 Fσ forms a family of approximate identities as σ → 0 for suitable c> 0. Using the explicit
form of Fσ , we can estimate the difference

|c−1σ−5 Fσ ∗ a(x0)− a(x0)|

quantitatively in terms of σ (see Proposition 2.2). Carrying out the same estimates with Sb ultimately
leads to a bound of the form

∥a − b∥L∞ ≲ σ−2
∥Sa − Sb∥+O{σ

1
4 + σ 2

},

where σ
1
4 arises from the approximate identity estimate and σ 2 arises from the Born approximation.

Optimizing with respect to σ leads to the estimate appearing in Theorem 1.3.
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Theorem 1.3 concerns the comparison of nonlinearities of the form a|u|pu and b|u|pu; in particular,
the power of each nonlinearity is a priori assumed to be equal. In fact, the result Theorem 1.2 (the
determination of the nonlinearity from the scattering map) can be extended to allow nonlinearities of the
form a|u|pu without assuming that p is already known. In particular, one can show that if nonlinearities
a(x)|u|pu and b(x)|u|ℓu have the same scattering map, then p = ℓ and a ≡ b (see, e.g., [Murphy 2023;
Watanabe 2018]). Thus it is also natural to ask whether one can bound |p − ℓ| in terms of the difference
between the scattering maps.

In this paper we also take the preliminary step of estimating |p − ℓ| in terms of the difference between
the scattering maps corresponding to the pure power-type nonlinearities |u|pu and |u|ℓu.

Theorem 1.5. Suppose p, ℓ ∈
[ 4

3 , 4
]
. Let Sp and Sℓ denote the scattering maps for (1-1) corresponding

to nonlinearities |u|pu and |u|ℓu. Then

|p − ℓ|≲ ∥Sp − Sℓ∥
1
9 .

The proof of Theorem 1.5 begins along similar lines to the proof of Theorem 1.3. In the present
setting, one needs to analyze the normalizing constant λ(p) arising in the approximate identity argument
mentioned above (see Proposition 2.2). In particular, we derive an upper bound on |λ(p)−λ(ℓ)| in terms
of ∥Sp − Sℓ∥, and then establish a lower bound of the form

|λ(p)− λ(ℓ)|≳ |p − ℓ|.

Combining the arguments used to prove Theorems 1.3 and 1.5, one can also obtain an estimate of
the form

∥λ(p)a − λ(ℓ)b∥L∞ ≲ ∥S1 − S2∥
1
9 ,

where S1, S2 are the scattering maps corresponding to (1-1) with nonlinearities a|u|pu and b|u|ℓu,
respectively. While this estimate is harder to interpret directly, it can still be used to prove that if S1 = S2

then p = ℓ and a ≡ b (recovering results of [Watanabe 2018; Murphy 2023]).
The rest of this paper is organized as follows: In Section 2, we collect some preliminary results. We also

prove the approximate identity result Proposition 2.2. In Section 3, we prove the small-data scattering result
for (1-1). In Section 4, we prove the main result, Theorem 1.3. Finally, in Section 5 we prove Theorem 1.5.

2. Preliminaries

We write A ≲ B to denote A ≤ C B for some C > 0, with dependence on parameters indicated by
subscripts. We write W 1,∞ for the Sobolev space with norm

∥a∥W 1,∞ = ∥a∥L∞ +∥∇a∥L∞ .

For 1< r <∞ we write H s,r for the Sobolev space with norm

∥u∥H s,r = ∥⟨∇⟩
su∥Lr ,

where ⟨∇⟩ =
√

1−1. We write q ′ for the Hölder dual of an exponent q , i.e., the solution to 1
q +

1
q ′ = 1.

We write ei t1 for the Schrödinger group ei t1
= F−1e−i t |ξ |2F , where F denotes the Fourier transform.

We utilize the following Strichartz estimates in three space dimensions.
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Proposition 2.1 [Ginibre and Velo 1992; Keel and Tao 1998; Strichartz 1977]. For any 2≤ q, q̃, r, r̃ ≤∞

satisfying
2
q
+

3
r
=

2
q̃
+

3
r̃
=

3
2
,

we have

∥ei t1ϕ∥Lq
t Lr

x (R×R3) ≲ ∥ϕ∥L2,∥∥∥∫ t

−∞

ei(t−s)1F(s) ds
∥∥∥

Lq
t Lr

x (R×R3)
≲ ∥F∥

L q̃′
t L r̃ ′

x (R×R3)
.

The following approximate identity estimate plays a key role in both Theorems 1.3 and 1.5. It is based
on the explicit computation of the solution to the linear Schrödinger equation with Gaussian data. We
present the result in the setting of general dimensions and short-range powers.

Proposition 2.2 (approximate identity estimate). Let d ≥ 1 and p > 2
d . Given x0 ∈ Rd and σ > 0, define

ϕσ,x0(x)= exp
{
−
|x−x0|

2

4σ 2

}
and

λ(d, p) := π
d
2 +1

[
4

p+2

] d
2 0

( dp
4 −

1
2

)
0
( dp

4

) . (2-1)

Given a ∈ W 1,∞(Rd), we have∣∣∣∫∫
R×Rd

|ei t1ϕσ,x0(x)|
p+2a(x) dx dt − σ d+2λ(d, p)a(x0)

∣∣∣≤ csσ
d+2+s

∥a∥W 1,∞

for any 0< s < 1− 2
dp , where cs →∞ as s → 1− 2

dp .

Proof. We have

ei t1ϕσ,x0(x)=
[

σ 2

σ 2+i t

] d
2 exp

{
−

|x−x0|
2

4(σ 2+i t)

}
(see [Vis,an 2014]), so that

|ei t1ϕσ,x0(x)|
p+2

=

[
σ 4

σ 4+t2

] d(p+2)
4 exp

{
−
σ 2

|x−x0|
2(p+2)

4(σ 4+t2)

}
= K

(
t
σ 2
,

x−x0

σ

)
,

where

K (t, x) :=
[

1
1+t2

] d(p+2)
4 exp

{
−
|x |2(p+2)
4(1+t2)

}
.

We now show that
∫

K (t, x) dx dt = λ(d, p). To this end, we first recall the Gaussian integral

∫
R

exp{−cy2
} dy =

(
π

c

) 1
2
.
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We next use the change of variables u = (1+ t2)−1 to obtain∫
R
(1+ t2)−c dt = 2

∫ ∞

0
(1+ t2)−c dt

=

∫ 1

0
uc− 3

2 (1− u)−
1
2 du

= B
( 1

2 , c− 1
2

)
=
0
( 1

2

)
0
(
c− 1

2

)
0(c)

= π
1
2
0
(
c− 1

2

)
0(c)

for c > 1
2 , where B is the Euler beta function. Thus

∫
R×Rd

K (t, x) dx dt =
[

4π
p+2

] d
2
∫

R
(1+ t2)−

dp
4 dt

= π
d
2 +1

[
4

p+2

] d
2 0

( dp
4 −

1
2

)
0
( dp

4

) = λ(d, p),

where we have used the fact that p > 2
d .

We also observe that for any R > 0 and any 0< s < dp
2 − 1, we may estimate∫

R

∫
|x |>R

K (t, x) dx dt ≲ R−s
∫∫

|x |s K (t, x) dx dt

≲ R−s
∫
(1+ t2)−

dp
4 +

s
2 dt ≲s R−s .

(2-2)

By a change of variables, we have∫∫
R×Rd

K
(

t
σ 2
,

x
σ

)
dx dt = σ d+2λ(d, p). (2-3)

Thus we can write ∣∣∣∫∫
R×Rd

|ei t1ϕσ,x0(x)|
p+2a(x) dx dt − σ d+2λ(d, p)a(x0)

∣∣∣
=

∣∣∣∫∫
R×Rd

K
(

t
σ 2
,

x
σ

)
[a(x0 − x)− a(x0)] dx dt

∣∣∣
≤

∫
R

∫
|x |≤δ

K
(

t
σ 2
,

x
σ

)
|a(x0 − x)− a(x0)| dx dt (2-4)

+

∫
R

∫
|x |>δ

K
(

t
σ 2
,

x
σ

)
|a(x0 − x)− a(x0)| dx dt, (2-5)

where δ > 0 will be determined below.
By the fundamental theorem of calculus and (2-3), we first estimate

(2-4) ≲ δσ d+2
∥∇a∥L∞ .

Next, we use (2-2) to obtain

(2-5) ≲ σ d+2
∥a∥L∞

∫
R

∫
|y|> δ

σ

K (t, y) dy dt ≲s

[
σ

δ

]s
σ d+2

∥a∥L∞
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for 0< s < dp
2 − 1. Choosing δ = σ

s
1+s leads to∣∣∣∫∫

R×Rd
|ei t1ϕσ,x0(x)|

p+2a(x) dx dt − σ d+2λ(d, p)a(x0)

∣∣∣≲s σ
s

1+s σ d+2
∥a∥W 1,∞

for any 0< s < dp
2 − 1, which yields the result. □

3. Small-data scattering

In this section we prove the following small-data scattering result.

Theorem 3.1. Let a ∈ W 1,∞(R3) and p ∈
[ 4

3 , 4
]
. Define

(q, r)=
(

p + 2, 6(p+2)
3(p+2)−4

)
and sc =

3
2
−

2
p
. (3-1)

There exists η > 0 sufficiently small so that for any u− ∈ H 1 satisfying ∥u−∥H1 < η, there exists a unique
global solution u to (1-1) and u+ ∈ H 1 satisfying the following:

∥u∥Lq
t Lr

x (R×R3) ≲ ∥u−∥L2,

∥∇u∥Lq
t Lr

x (R×R3) ≲ ∥u−∥H1,

∥|∇|
sc u∥Lq

t Lr
x (R×R3) ≲ ∥u−∥Ḣ sc ,

and
lim

t→±∞
∥u(t)− ei t1u±∥H1 = 0.

Proof. We construct u to satisfy the Duhamel formula

u(t)=8u(t) := ei t1u−− i
∫ t

−∞

ei(t−s)1a(x)|u|pu(s) ds, (3-2)

where ∥u−∥H1 ≤ η≪ 1. It suffices to prove that 8 is a contraction on a suitable complete metric space.
To this end, we fix u− ∈ H 1 and define X to be the set of functions u : R×Rd

→ C satisfying the bounds

∥u∥Lq
t Lr

x
≤ 4C∥u−∥L2, ∥∇u∥Lq

t Lr
x
≤ 4C∥u−∥H1, ∥|∇|

sc u∥Lq
t Lr

x
≤ 4C∥u−∥Ḣ sc ,

where q, r are defined in (3-1), all space-time norms are over R×R3, and C encodes implicit constants
in inequalities such as Strichartz and Sobolev embedding. We equip X with the metric

d(u, v)= ∥u − v∥Lq
t Lr

x

and we define
rc =

3p(p+2)
4

, so that Ḣ sc,r ↪→ Lrc . (3-3)

For u ∈ X , we use Strichartz and Hölder, to estimate

∥8u∥Lq
t Lr

x
≲ ∥u−∥L2 +∥a|u|pu∥

Lq′
t Lr ′

x

≲ ∥u−∥L2 +∥a∥L∞∥u∥p
Lq

t Lrc
x
∥u∥Lq

t Lr
x

≲ ∥u−∥L2 + ηp
∥a∥L∞∥u−∥L2
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Similarly, using the product rule and Sobolev embedding as well,

∥∇8u∥Lq
t Lr

x
≲ ∥u−∥Ḣ1 +∥a∥L∞∥u∥p

Lq
t Lrc

x
∥∇u∥Lq

t Lr
x
+∥∇a∥L∞∥u∥p−1

Lq
t Lrc

x
∥u∥Lq

t Lr
x
∥u∥Lq

t Lrc
x

≲ ∥u−∥Ḣ1 + η
p
∥a∥L∞∥u−∥Ḣ1 + η

p
∥∇a∥L∞∥|∇|

sc u∥Lq
t Lr

x

≲ ∥u−∥Ḣ1 + η
p
∥a∥W 1,∞∥u−∥H1 .

Finally, we have

∥|∇|
1
28u∥Lq

t Lr
x
≲ ∥u−∥Ḣ sc +∥a|u|pu∥

Lq′
t H1,r ′

x

≲ ∥u−∥Ḣ sc +∥a∥W 1,∞∥u∥p−1
Lq

t Lrc
x
∥u∥Lq

t H1,r
x
∥u∥Lq

t Lrc
x

≲ ∥u−∥Ḣ sc +∥a∥W 1,∞∥u∥p−1
Lq

t Lrc
x
∥u∥Lq

t H1,r
x
∥|∇|

sc u∥Lq
t Lr

x

≲ ∥u−∥Ḣ sc + η
p
∥a∥W 1,∞∥u−∥Ḣ sc .

It follows that for η sufficiently small, 8 : X → X .
To see that 8 is a contraction, we use Strichartz and Hölder to estimate as follows: for u, v ∈ X ,

∥8u −8v∥Lq
t Lr

x
≲ ∥a[u − v]∥

Lq′
t Lr ′

x

≲ ∥a∥L∞[∥u∥p
Lq

t Lrc
x
+∥v∥

p
Lq

t Lrc
x
]∥u − v∥Lq

t Lr
x

≲ ηp
∥a∥L∞∥u − v∥Lq

t Lr
x
,

which shows that 8 is a contraction for η sufficiently small.
It follows that 8 has a unique fixed point u ∈ X , which is our desired solution.
It is not difficult to show that u scatters backward in time to u−, and hence it remains to show that

e−i t1u(t) has a limit in H 1 as t →∞. To this end, we fix t > s > 0 and use the estimates above to obtain

∥e−i t1u(t)− e−is1u(s)∥H1 ≲ ∥a|u|pu∥
Lq′

t Lr ′
x ((s,t)×R3)

≲ ∥a∥W 1,∞∥u∥2
Lq

t Lrc
x ((s,t)×R3)

∥u∥Lq
t H1,r

x ((s,t)×R3)

→ 0 as s, t →∞.

Thus {e−i t1u(t)} is Cauchy in H 1 as →∞ and hence has some limit u+ ∈ H 1 as t →∞. In fact, from
the Duhamel formula (3-2) we can obtain the implicit formula

u+ = lim
t→∞

e−i t1u(t)= u−− i
∫

R
e−is1a|u|pu(s) ds. (3-4)

for the final state u+. □

Remark 3.2. By introducing some additional space-time norms into the argument, one can upgrade the
estimate

∥∇u∥Lq
t Lr

x
≲ ∥u−∥H1 to ∥∇u∥Lq

t Lr
x
≲ ∥u−∥Ḣ1 .

However, this refinement is not needed in what follows, so we have opted to keep the argument as simple
as possible above.
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4. Proof of Theorem 1.3

Proof of Theorem 1.3. We let p ∈
[ 4

3 , 4
]

and a, b ∈ W 1,∞. Let Sa, Sb denote the scattering maps for (1-1)
with nonlinearities a(x)|u|pu and b(x)|u|pu, respectively. Given σ > 0 and x0 ∈ R3, we define

ϕσ,x0(x)= exp
{
−
|x−x0|

2

4σ 2

}
. (4-1)

As
∥ϕσ,x0∥Ḣ s(R3) ≲ σ

3
2−s for s ∈ R, (4-2)

we have that ϕσ,x0 belongs to the common domain of Sa and Sb for all σ sufficiently small. Using (3-4),
we write

Sa(ϕσ,x0)= ϕσ,x0 − i
∫∫

R
e−i t1{a |ei t1ϕσ,x0 |

pei t1ϕσ,x0

}
dt

− i
∫

R
e−i t1{a

[
|u|pu − |ei t1ϕσ,x0 |

pei t1ϕσ,x0

]}
dt,

where u is the solution to (1-1) that scatters to ϕσ,x0 as t →−∞ (cf. Theorem 1.1). Similarly,

Sb(ϕσ,x0)= ϕσ,x0 − i
∫

R
e−i t1{b |ei t1ϕσ,x0 |

pei t1ϕσ,x0

}
dt

− i
∫

R
e−i t1{b

[
|v|pv− |ei t1ϕσ,x0 |

pei t1ϕσ,x0

]}
dt,

where v is the solution to the NLS (with nonlinearity b|v|pv) that scatters to ϕσ,x0 as t →−∞. Thus

⟨Sa(ϕσ,x0)− Sb(ϕσ,x0), ϕσ,x0⟩ (4-3)

=−i
∫∫

R×R3
[a(x)− b(x)]|ei t1ϕσ,x0 |

p+2 dx dt (4-4)

− i
∫∫

R×R3
a(x)[|u|pu − |ei t1ϕσ,x0 |

pei t1ϕσ,x0]ei t1ϕσ,x0 dx dt (4-5)

− i
∫∫

R×R3
b(x)[|v|pv− |ei t1ϕσ,x0 |

pei t1ϕσ,x0]ei t1ϕσ,x0 dx dt. (4-6)

The terms (4-5) and (4-6) are estimated as in the proof of Theorem 3.1 (see (3-1) and (3-3) for the
definitions of q, r, rc). We use Hölder, Strichartz, the Duhamel formula (3-2), Sobolev embedding,
Theorem 3.1, and (4-2) to obtain

∥a[|u|pu − |ei t1ϕσ,x0 |
pei t1ϕσ,x0]e

i t1ϕσ,x0∥L1
t,x

≲ ∥a∥L∞∥ei t1ϕσ,x0∥Lq
t Lr

x
∥|u|p

+ |ei t1ϕσ,x0 |
p
∥

L
q
p

t L
rc
p

x

∥u(t)− ei t1ϕσ,x0∥Lq
t Lr

x

≲ ∥a∥L∞∥ϕσ,x0∥L2{∥u∥p
Lq

t Lrc
x
+∥ei t1ϕσ,x0∥

p
Lq

t Lrc
x
}

∥∥∥∫ t

−∞

ei(t−s)1a(x)|u|pu ds
∥∥∥

Lq
t Lr

x

≲ ∥a∥L∞∥ϕσ,x0∥L2∥ϕσ,x0∥
p
Ḣ sc

∥a|u|pu∥
Lq′

t Lr ′
x

≲ ∥a∥2
L∞∥ϕσ,x0∥L2∥ϕσ,x0∥

p
Ḣ sc

∥u∥p
Lq

t Lrc
x
∥u∥Lq

t Lr
x

≲ ∥a∥2
L∞∥ϕσ,x0∥

2
L2∥ϕσ,x0∥

2p
Ḣ sc

≲ σ 7
∥a∥2

L∞ .



314 GONG CHEN AND JASON MURPHY

Similarly,
∥b[|v|pv− |ei t1ϕσ,x0 |

pei t1ϕσ,x0]∥L1
t,x
≲ σ 7

∥b∥2
L∞ .

For (4-3), we use Cauchy–Schwarz and (4-2) to obtain

|⟨Sa(ϕσ,x0)− Sb(ϕσ,x0), ϕσ,x0⟩| ≤ ∥Sa(ϕ)− Sb(ϕ)∥Ḣ1∥ϕσ,x0∥Ḣ−1

≲ ∥Sa − Sb∥ ∥ϕσ,x0∥H1∥ϕσ,x0∥Ḣ−1

≲ σ 3
∥Sa − Sb∥

For (4-4), we make use of Proposition 2.2 with d = 3 and s =
1
4 . Using the fact that p ≥

4
3 , this

proposition implies that∣∣∣∫∫ [a − b]|ei t1ϕσ,x0 |
p+2 dx dt − cσ 5

[a(x0)− b(x0)]

∣∣∣≲ σ 5+ 1
4 [∥a∥W 1,∞ +∥b∥W 1,∞],

where c = λ(3, p). Combining this with the estimates for (4-5)–(4-6), we deduce

|a(x0)− b(x0)|≲ σ
−2
∥Sa − Sb∥+ σ

1
4 {∥a∥W 1,∞ +∥b∥W 1,∞}+ σ 2

{∥a∥2
L∞ +∥b∥2

L∞}.

If we now choose

σ = ε ·

[
∥Sa − Sb∥

∥a∥W 1,∞ +∥b∥W 1,∞

] 4
9

for sufficiently small ε > 0, then we obtain

|a(x0)− b(x0)|≲ {∥a∥W 1,∞ +∥b∥W 1,∞}
8
9 ∥Sa − Sb∥

1
9 +{∥a∥W 1,∞ +∥b∥W 1,∞}

10
9 ∥Sa − Sb∥

8
9 .

Taking the supremum over x0 ∈ R3 now yields the result. □

5. Proof of Theorem 1.5

Proof of Theorem 1.5. The proof begins similarly to the proof of Theorem 1.3.
Let Sp and Sℓ denote the scattering maps corresponding to (1-1) with nonlinearities |u|pu and |u|ℓu,

respectively, and define ϕσ as in (4-1) with x0 = 0. We let u, v denote the solutions to (1-1) with
nonlinearities |u|pu and |v|ℓv that scatter backward in time to ϕσ . Arguing as in the proof of Theorem 1.3,
we can write ∫∫

R×R3

[
|ei t1ϕσ |

p+2
− |ei t1ϕσ |

ℓ+2] dx dt (5-1)

= i⟨Sp(ϕσ )− Sℓ(ϕσ ), ϕσ ⟩ (5-2)

+

∫∫
R×R3

[
|u|pu − |ei t1ϕσ |

pei t1ϕσ
]

ei t1ϕσ dx dt (5-3)

+

∫∫
R×R3

[
|v|ℓv− |ei t1ϕσ |

ℓei t1ϕσ
]

ei t1ϕσ dx dt. (5-4)

The estimates of (4-5)–(4-6) in the proof of Theorem 1.3 apply to (5-3)–(5-4), so that

|(5-3)| + |(5-4)|≲ σ 7.
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Similarly, estimating as we did for (4-4), we have

|(5-2)|≲ σ 2
∥Sp − Sℓ∥

For (5-1), we use Proposition 2.2 with d = 3 and s = 1
4 , which shows that∣∣(5-1)− σ 5

[λ(p)− λ(ℓ)]
∣∣≲ σ 5+ 1

4 ,

where we abbreviate λ(3, p) and λ(3, ℓ) by λ(p) and λ(ℓ), respectively. It follows that

|λ(p)− λ(ℓ)|≲ σ−2
∥Sp − Sℓ∥+ σ

1
4 + σ 2

≲ σ−2
∥Sp − Sℓ∥+ σ

1
4 .

Optimizing in σ implies that

|λ(p)− λ(ℓ)|≲ ∥Sp − Sℓ∥
1
9 ,

and thus the proof reduces to proving that

|λ(p)− λ(ℓ)|≳ |p − ℓ|. (5-5)

In fact, recalling the definition of λ in (2-1), a direct calculation shows that

λ′(p)=−c 1

(p+2)
3
2

0
( 3p

4 −
1
2

)
0
( 3p

4

) {
3

2(p+2)
+

3
4

[
ψ
(

3p
4

)
−ψ

(
3p
4

−
1
2

)]}
,

where ψ is the digamma function, i.e., ψ(z)= 0′(z)
0(z) .

By Gautschi’s inequality (see, e.g., [Rademacher 1973, Theorem A, p. 68]), we have

0
( 3p

4 −
1
2

)
0
( 3p

4

) >
(

3p
4

)− 1
2
.

Using the fact that ψ is increasing on (0,∞), it follows that

|λ′(p)| ≥ 3c
2
(p + 2)−

5
2

(
3p
4

)− 1
2 ≳ 1 uniformly for p ∈

[4
3 , 4

]
.

This implies (5-5) and completes the proof of Theorem 1.5. □
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