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1. Introduction

1.1. Prologue: noncommutative spectral theory

This paper is intended as a contribution to noncommutative spectral theory, by which 
we mean the development and study of invariants of associative rings and algebras that 
extend the usual spectrum of a commutative ring or algebra, with the goal of gaining 
insight into the structure of noncommutative rings. Ideally one would wish for a non-
commutative spectrum that can be equipped with enough extra structure to form a 
complete invariant, allowing us to recover the ring up to isomorphism. The basis for this 
hope is the Zariski spectrum of a commutative ring R, which can be equipped with its 
structure sheaf OSpec(R) that allows us to recover R up to isomorphism as the ring of 
global sections of the affine scheme (Spec(R), OSpec(R)). Probably the best-known work 
on noncommutative spectral theory regards the development of structure sheaves on 
noncommutative prime spectra. Considerable efforts have been made in this direction 
over several decades; see [71] for a comprehensive survey and a large bibliography on 
this topic.

When considering extensions of the Zariski spectrum as an assignment from rings to 
topological spaces, we believe that there are two important properties that one should 
ask of such a spectrum:

(1) the assignment returns the usual Zariski spectrum of a commutative ring,
(2) the assignment extends to a functor Ringop → Top.
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Condition (2) would bring us closer to a duality between noncommutative rings and 
appropriate spatial objects. Aside from aesthetic considerations, it is also important be-
cause it guarantees that partial information about the spectrum of a ring can be obtained 
from the spectra of its subrings and quotient rings. It is also crucial if one wishes for 
such a spectrum to take into account algebraic quantum theory [44], where commutative 
subalgebras of a noncommutative algebra are intimately tied to the relationship between 
classical and quantum information [27].

Unfortunately, the results of [56,14] indicate a major obstruction to this hope: any 
functor satisfying the above properties must assign the empty space to any ring with n ×n

matrix structure for n ≥ 3. One might conclude from this obstruction that the problem 
somehow lies in the points themselves, particularly if one is familiar with point-free 
approaches to topology [37] such as locales, toposes, and quantales. However, subsequent 
results [11,57,14] indicate that similar obstructions persist at this level of generality.

In our view, these obstructions indicate that the usual building blocks of topology, 
whether from point sets or open covers without points, are too commutative in nature 
to serve as a deep spectral invariant for noncommutative rings. This highlights a funda-
mental question that has been minimized for too long:

What objects should play the role of noncommutative sets within noncommutative 
geometry?

While many kinds of noncommutative spaces have been studied across the various 
branches of noncommutative geometry, the most basic case of noncommutative discrete
spaces (i.e., sets) has received comparatively little attention. The obstructions discussed 
above suggest that we cannot make serious progress in noncommutative spectral theory 
until this gap in noncommutative mathematics has been filled. Fortunately, recent work 
such as [31,51,40,41,59] has begun to address this issue, although it is limited to the 
setting of noncommutative geometry based on C*-algebras.

In light of the above, we will use the term functorial spectral theory to describe the 
pursuit of a functorial invariant of associative rings (or C*-algebras) that extends the 
Zariski (or Gelfand) spectrum from commutative to noncommutative rings. The major 
problem becomes locating a suitable category S of noncommutative sets, with a full and 
faithful functor Set ↪→ S, such that there is a “quantum spectrum” functor Σ : Ringop →
S making the following diagram commute (up to natural isomorphism):

cRingop Spec
!!

! "

""

Top U !! Set! "

""
Ringop Σ !! S

(1.1)

Ideally, one should be able to equip noncommutative sets with (some noncommutative 
version of) a topology in order to endow each quantum spectrum with a structure sheaf, 
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from which one can recover the original ring up to isomorphism. While this is a daunting 
problem, there have been recent advances [30,31] in functorial spectral theory for C*-
algebras that give us reason to maintain hope in the face of this challenge.

1.2. Quantizing the maximal spectrum

A comprehensive solution to the problems raised above remains out of reach for now. 
In this paper we pursue the more modest goal of extending the maximal spectrum functor 
from the category cAff of commutative affine algebras over a field k to a suitable class of 
algebras that are only “mildly noncommutative.” Our intent is to catch a glimpse of the 
underlying discrete objects of noncommutative spaces, even if we cannot directly access 
the objects themselves.

Our point of departure lies in the algebraic approach to quantum mechanics [44], 
where commutative and noncommutative algebras are respectively embodied as classical 
and quantum observables. We believe that there are deep reasons to attempt to build a 
functorial spectral theory that draws inspiration from quantum physics, in part because 
many of the obstructions mentioned above hinge upon the Kochen-Specker Theorem 
of quantum mechanics [14] and in part due to the important role that commutative 
subalgebras of noncommutative algebras play in each theory [27,56].

Let us imagine a commutative algebra as an algebra of observables in classical me-
chanics, so that its spectrum corresponds to the space of states of a classical system. In 
passing to quantum mechanics, the superposition principle forces physicists to allow for 
linear combinations (more precisely, convex combinations) of quantum states. Thus for 
a commutative k-algebra A we aim to replace the set Max(A) with k-linear combina-
tions of its points. (We may imagine that k is algebraically closed for the moment, to 
minimize technicalities.) It turns out that we may recover any set from its k-linear span 
when endowed with just a bit of structure: a coalgebra. This yields a fully faithful embed-
ding of the category Set into the category Coalg of k-coalgebras (Subsection 2.2). In this 
way we think of coalgebras as “linear spans of quantum states,” with comultiplication 
functioning as a “quantum diagonal” map. We can imagine elements of the coalgebra as 
linear combinations of points, but it is not possible in general to isolate individual points. 
Note that Batchelor similarly viewed coalgebras as generalized sets in noncommutative 
geometry in [8]. At the same time, we describe in Subsection 2.3 how each k-scheme has 
a cocommutative coalgebra of distributions that can be viewed as underlying discrete 
objects. This idea dates back to work of Takeuchi [66,67], and we connect our point of 
view to the definitions used in that work. A similar perspective in differential geometry 
arose in work of Batchelor [7].

The finite dual coalgebra construction of Heyneman and Sweedler [32, 1.3] associates 
to every k-algebra A a coalgebra A◦ (whose definition we recall in Subsection 2.1) in 
such a way that it forms a functor

(−)◦ : Algop → Coalg .
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For commutative affine algebras A, the coalgebra A◦ agrees with the coalgebra of dis-
tributions on the scheme Spec(A), and its simple subcoalgebras are in bijection with 
Max(A). Thus for k-algebras that are endowed with “many” finite-dimensional repre-
sentations, we argue that the finite dual coalgebra serves as a suitable approximation to 
the quantized underlying discrete object of its noncommutative affine scheme. More pre-
cisely, it can be viewed as containing a linearization of the maximal spectrum of an affine 
scheme of finite type over k. We point out that dual coalgebras were similarly viewed 
as distributions on noncommutative spaces in the noncommutative thin schemes [42, 
Section 2] of Kontsevich and Soibelman, and the perspective of dual coalgebras as non-
commutative spectral objects has been explored further by Le Bruyn in [47] and [48, 
Section 3.2].

Embedding the category of sets into the category of coalgebras as described above, 
we obtain a diagram

cAffop Max !!
! "

""

Top U !! Set! "

""
Algop (−)◦

!! Coalg

(1.2)

that is similar to (1.1), but which does not commute up to isomorphism. Thus the dual 
coalgebra only approximates the space of closed points in a noncommutative spectrum. 
This is a necessary evil if we wish to require functoriality and nontrivial behavior for 
matrix algebras, as explained precisely in Theorem 3.6. While we remain cautiously 
optimistic that diagram (1.1) might one day be realized, the situation in (1.2) can serve 
as a model for functorial invariants that do not strictly extend the Zariski spectrum, but 
rather extend some mild enhancement of it.

As alluded to above, it is only reasonable to expect that the dual coalgebra A◦ is a rea-
sonable substitute for a maximal spectrum if A has sufficiently many finite-dimensional 
representations. In Subsection 3.2 we introduce a class of algebras A for which we believe 
that A◦ captures a relatively full picture of the noncommutative geometry of A. These 
are called fully residually finite-dimensional (RFD) algebras, and their defining property 
roughly states that the finite-dimensional representation theory of A is rich enough to 
capture information about all finitely generated modules. Importantly, the fully RFD 
algebras contain a large class of familiar noncommutative algebras: the affine noetherian 
PI algebras.

It is certainly true that the fully RFD property is quite restrictive as a ring-theoretic 
condition. However, a common phenomenon within noncommutative algebraic geome-
try is that many q-deformed families of quantum algebras contain affine algebras that 
are module-finite over their center, typically when the deforming parameters are equal 
to roots of unity [9, Part III]. Such an algebra satisfies a polynomial identity and is 
noetherian (see [50, Corollary 13.1.13, Lemma 13.9.10]). Thus these quantum families of 
algebras have nontrivial intersection with the class of fully RFD algebras, and one can 
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try to obtain a geometric understanding of algebras in this intersection by studying the 
finite dual as a quantized maximal spectrum.

For affine algebras A that are module-finite over their center Z(A), functoriality guar-
antees that the dual coalgebras are related by a morphism A◦ → Z(A)◦. In this case, 
we aim to give a clearer relationship between A◦ and the geometry of SpecZ(A) in 
Section 4. Assuming that A is prime, we describe A◦ in terms of a large part that cor-
responds to the Azumaya locus [10, Section 3] tensored with a matrix coalgebra, with 
a direct sum complement that corresponds to a noncommutative formal neighborhood 
of a closed subscheme of SpecZ(A). We use this to describe the dual coalgebra of the 
quantum plane Oq(k2) where k is algebraically closed and q ∈ k∗ is a root of unity, 
hoping to provide a glimpse of a concrete mathematical object that can be visualized as 
a quantum plane. This example underscores the potential of the perspective described 
above to place geometric and quantum language on equal footing. In the general case, we 
also discuss how knowledge of the local structure of A relative to the maximal spectrum 
of Z(A) can be used to describe A◦. We hope that this will inspire future efforts to 
visualize noncommutative spaces in a similar manner.

1.3. Outline of the paper

Section 2 begins by recalling the construction of the finite dual coalgebra. We then 
describe how coalgebras can be viewed both as quantized sets and as underlying discrete 
objects for (commutative) schemes of finite type over a field.

This motivates the main thesis, described in Section 3, that the finite dual functor 
is a reasonable replacement for the maximal spectrum for algebras that are “not too 
far” from being commutative. Because A◦ is strictly larger than the linearized maximal 
spectrum for commutative affine algebras A, we take time to explain in Theorem 3.6 that 
it is, in a sense, the best choice for a coalgebra-valued spectrum functor whose behavior 
on matrix algebras agrees with quantum intuition. We then introduce fully residually 
finite-dimensional algebras as those algebras whose finite dual offers a useful substitute 
for the maximal spectrum. Proposition 3.12 shows that this class of algebras includes 
all affine noetherian PI algebras, an important class of algebras that has a nontrivial 
intersection with many interesting and important quantized families of noncommutative 
algebras.

Finally, in Section 4 we restrict to the case of affine algebras over an algebraically 
closed field that are module-finite over their center. For such algebras that are prime, we 
provide a direct sum decomposition of the dual coalgebra in which one of the summands 
corresponds to the Azumaya locus. This is applied to describe the dual coalgebra of the 
quantum plane Oq(k2) for k an algebraically closed field and q ∈ k a root of unity. The 
paper concludes with a discussion of how similar analyses can be carried out for orders 
over affine k-varieties.
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2. Coalgebras as noncommutative discrete spaces

In this section we will describe how coalgebras can be viewed as discrete geometric 
objects. This begins with a brief recollection of dual coalgebras in Subsection 2.1. We 
discuss coalgebras as quantized sets in Subsection 2.2, where we attempt to provide 
some more intuition behind this viewpoint. Then in Subsection 2.3 we explain how 
cocommutative coalgebras arise in algebraic geometry as collections of distributions on 
k-schemes. Taken together, these suggest how coalgebras serve as discrete objects in 
noncommutative geometry.

Let k be a field, which is completely arbitrary except where explicitly stated otherwise. 
Unadorned tensor symbols − ⊗ − denote tensor over k. In this paper, all algebras are 
unital and associative, all coalgebras are counital and coassociative, and morphisms of 
these objects preserve the (co)unit. We let Alg = Algk denote the category of k-algebras 
and Coalg = Coalgk denote the category of k-coalgebras.

2.1. Reminder on dual coalgebras

Let A be a finite-dimensional k-algebra. The natural map

A∗ ⊗A∗ → (A⊗A)∗,

defined by allowing pure tensors φ ⊗ψ ∈ A∗ ⊗A∗ to act as functionals on a ⊗ b ∈ A ⊗A

via (φ ⊗ ψ)(a ⊗ b) = φ(a)ψ(b), is an isomorphism because A is finite-dimensional. Thus 
the multiplication m : A ⊗ A → A and unit η : k → A maps respectively dualize to a 
comultiplication and counit

∆ = m∗ : A∗ → (A⊗A)∗ ∼= A∗ ⊗A∗,

ϵ = η∗ : A∗ → k∗ = k.

These satisfy coassociativity and counitality as duals of associativity and unitality, so 
that (A∗, ∆, ϵ) is a coalgebra.

For an infinite-dimensional algebra A, the natural embedding A∗ ⊗ A∗ → (A ⊗ A)∗
is not an isomorphism, so the full linear dual A∗ does not naturally inherit a coalgebra 
structure. Nevertheless, there is a subspace A◦ ⊆ A∗ that does naturally form a coalgebra, 
called the finite dual (occasionally called the Sweedler dual). For details regarding the 
following discussion, see [65, Chapter VI] or [23, Section 1.5].

Letting m : A ⊗ A → A denote the multiplication of A, the subspace A◦ ⊆ A∗ is 
defined to be the set of those φ ∈ A∗ that satisfy the following equivalent conditions:

(SD1) m∗(φ) ∈ (A ⊗A)∗ lies in the subspace A∗ ⊗A∗ ⊆ (A ⊗A)∗;
(SD2) the kernel of φ contains an ideal I ! A of finite codimension in A.
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It turns out that the restriction of m∗ to A◦ has image in A◦ ⊗ A◦ ⊆ A∗ ⊗ A∗. In this 
way, ∆ = m∗ restricts to a comultiplication

∆ : A◦ → A◦ ⊗A◦

making the finite dual a coalgebra, whose counit is the dual of the unit of A.
The coalgebra structure on A◦ can be alternately described in terms of condition (SD2) 

above. Within the lattice of ideals of A, the family

F(A) = {I ! A | dimk(A/I) < ∞} (2.1)

of ideals having finite codimension forms a filter: it is upward-closed and closed under 
pairwise intersections. Thus the diagram of finite-dimensional algebras of the form A/I

for I ∈ F(A) forms an inversely directed system. As each φ ∈ A◦ is induced by some 
φ ∈ (A/I)∗ via the canonical homomorphism A → A/I for some I ∈ F(A), we have an 
isomorphism of vector spaces

A◦ ∼= lim−−→
I∈F(A)

(A/I)∗. (2.2)

Since the algebras A/I above are finite-dimensional, the above is a directed limit of 
finite-dimensional coalgebras, and the isomorphism (2.2) is in fact an isomorphism of 
coalgebras.

Let Alg denote the category of k-algebras and their homomorphisms. One can check 
using either condition (SD1) or (SD2) that any algebra homomorphism φ : A → B

dualizes to a morphism of coalgebras B◦ → A◦, so that the finite dual forms a functor

(−)◦ : Algop → Coalg . (2.3)

In fact, it enjoys the following adjoint relationship with the dual algebra functor 
(−)∗ : Coalgop → Alg: for any algebra A and coalgebra C, one has natural isomorphisms

Alg(A,C∗) ∼= Coalg(C,A◦). (2.4)

2.2. Coalgebras as generalized sets

As stated in the introduction, we will view coalgebras as the underlying discrete 
objects of noncommutative spaces. To motivate this perspective, we will explain in detail 
how sets can be “linearized” in order to provide a full and faithful embedding into the 
category of k-coalgebras.

For a set X, we let kX denote the k-vector space with basis X, which we call the 
linearization of X. This forms a k-coalgebra (kX, ∆, ϵ) if we endow it with the comulti-
plication and counit
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∆ : kX → kX ⊗ kX,

ϵ : kX → k,

that are defined on each basis element x ∈ X by ∆(x) = x ⊗ x and ϵ(x) = 1. (This 
construction is well known, as in [23, Example 1.1.4] and [39, III.1, Example 3].) It is 
evident that linearization forms a functor

k− : Set → Coalg

that is (unsurprisingly) defined on morphisms by linear extension.
This linearization functor has a right adjoint, constructed as follows. For a k-coalgebra 

(Q, ∆, ϵ), we say that a nonzero element x ∈ Q is pointlike1 (or is a k-point) if ∆(x) =
x ⊗ x; the counit axiom yields x = ϵ(x)x, so that x ̸= 0 ensures ϵ(x) = 1. We let pts(Q)
denote the set of k-points of any coalgebra Q. As any coalgebra morphism preserves 
pointlike elements, the assignment of k-point-sets forms a functor pts : Coalg → Set, 
which is easily seen to be naturally isomorphic to the functor Coalg(k, −). Now for a set 
X and a coalgebra Q, a routine verification yields the following adjoint isomorphism:

Coalg(kX,Q) ∼= Set(X, pts(Q)).

As the terminology suggests, a coalgebra kX defined from a set X satisfies pts(kX) = X. 
Then for sets X and Y , the adjunction above restricts to

Coalg(kX, kY ) ∼= Set(X, pts(kY )) = Set(X,Y ),

showing that linearization is fully faithful.
In this way we can view sets as a full subcategory of Coalg after linearization, allowing 

us to treat coalgebras as generalizations of (linearized) sets. As mentioned in Section 1, 
we in fact see coalgebras as a quantization of sets, where k-linear combinations of points 
are imagined as a superposition (over k) of states. The preceding discussion illustrates 
that the added structure of a coalgebra allows us to recover the individual points of X
from kX.

Example 2.5. We briefly recall a few examples of well-known coalgebras, to which we will 
refer later.

(1) The comatrix coalgebra Md = Md(k) has basis {Eij | 1 ≤ i, j ≤ d} with

∆(Eij) =
∑

r
Eir ⊗ Erj and ϵ(Eij) = δij .

1 In the literature, such an element is typically called grouplike. We use this alternate terminology in order 
to emphasize a geometric perspective on coalgebras, especially ones that do not arise from any connection 
to a Hopf algebra or bialgebra. Fortunately, this slightly modified term fits well with the established notion 
of pointed coalgebras as well as points of an object in a category as global elements.
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Identifying the Eij with the dual basis of the matrix units Eij ∈ Md(k), we have 
Md ∼= (Md(k))∗. By this duality, we view Md as a d-level (or d-state) quantum 
system, otherwise known as a that a qu-dit (or qudit) [52, 2.2.1], with Md(k) as its 
algebra of observables.

(2) Given a quiver Γ, its path coalgebra kΓ is spanned by the paths in Γ, with comulti-
plication and counit defined on a path p in Γ of length |p| by

∆(p) =
∑

p=p1p2

p1 ⊗ p2 and ϵ(p) = δ0,|p|.

If Γ is a finite and acyclic, so that its path algebra k[Γ] is finite-dimensional, then 
k[Γ]∗ ∼= kΓ. If Γ has no arrows, the path coalgebra kΓ coincides with the linearization 
of Γ considered as a set.

(3) Let Tn =
⊕

i≤j kEij ⊆ Mn(k) denote the algebra of upper-triangular n ×n matrices, 
and denote its dual coalgebra as Tn =

⊕
i≤j E

ij , so that we have a surjective 
coalgebra morphism Mn ! Tn. If we let Γ be a quiver of type An with linear 
orientation:

1• ←− 2• ←− · · · ←− n•

then Tn is isomorphic to the path algebra on Γ, so that its dual is isomorphic to the 
path coalgebra Tn ∼= kΓ.

The interpretation of coalgebras as quantized sets can also be seen at the level of dual 
algebras. The dual algebra of any coalgebra can be topologized by taking a neighborhood 
basis of zero as the vanishing ideals of any finite-dimensional subcoalgebra, resulting in 
a pseudocompact algebra [62, Section 3]. If X is a set, one can easily verify that the 
pseudocompact algebra dual to kX is isomorphic to the product algebra

(kX)∗ ∼= kX (2.6)

(recalling that k is discrete). We may equivalently view kX as the algebra of k-valued 
functions on X, in which case the topology on kX can be interpreted as the topology of 
pointwise convergence of functions. Thus if we view a general coalgebra Q as a noncom-
mutative set, we can interpret Q∗ as the algebra of “k-valued functions” on Q, with its 
pseudocompact topology as a topology of “quantum pointwise convergence.”

Viewing Q∗ as an algebra of functions on a quantum set Q also suggests that there 
should be a correspondence between quantum discrete spaces (= quantum sets) and 
their function algebras, which is seen as follows. For “classical” sets, it is shown in [33, 
Theorem 4.7] that the functor X -→ kX yields a duality between Set and a certain 
full subcategory C of the category PCAlgk of pseudocompact topological algebras. As 
described in [62, Theorem 3.6], the dual algebra construction yields a dual equivalence
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(−)∗ : Coalgop
k → PCAlgk

whose quasi-inverse is the continuous k-dual (−)◦. In physical terms, we view this as a 
duality between state spaces and observables. The classical and quantum dualities thus 
fit into a diagram that commutes up to isomorphism

Set

∼
""

# ! !! Coalgk

∼

""
Cop # ! !! PCAlgop

k

where the horizontal arrows are fully faithful embeddings.
Recall [54, Section 3.4] that the coradical coradQ of a coalgebra Q is defined to 

be the (direct) sum of all simple subcoalgebras, so that it is the largest cosemisimple 
subcoalgebra of Q. The span of the k-points of Q forms a subcoalgebra of the coradical, 
so that we have coalgebra embeddings

k pts(Q) ↪→ coradQ ⊆ Q.

If k is algebraically closed, then the only cosemisimple coalgebras over k are the comatrix 
coalgebras; in this case we have that coradQ consists of all qudits in Q while k pts(Q)
is the span of all classical points. Thus if we wish to study coalgebras over more general 
fields, we can view the coradical as the collection of all “generalized qudits” inside of a 
quantum set. We will return to this interpretation in Subsection 3.1 when discussing the 
coradical of a finite dual coalgebra.

2.3. Coalgebras of distributions on commutative schemes

To close this section, we explain how a certain coalgebra can be viewed as an “under-
lying discrete object” of a scheme that is locally of finite type over k. This idea dates 
back to work of Takeuchi [66,67], where the underlying coalgebra of a k-scheme is de-
scribed in terms of representable functors. By contrast, we construct these coalgebras in 
a more concrete manner via the language of distributions, and we explicitly connect our 
presentation with that of Takeuchi in Proposition 2.17. Note that a similar perspective 
in differential geometry is given by Batchelor in [7].

We motivate our approach with the following observation about underlying sets of 
topological spaces.

Remark 2.7. Let X be a topological space satisfying the T1 separation axiom, such as a 
Hausdorff space. Since points are closed in X, every finite subset S ⊆ X is closed, and 
the subspace topology on S is discrete. The family F(X) of finite subsets of X is directed 
by inclusion. Taking the directed limit of this family in the category of topological spaces 
yields a discrete space, which is the underlying set of X:
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lim−−→
S∈F(X)

S = |X|.

We will similarly consider “underlying discrete objects” of certain k-schemes X by 
first associating a suitable object to every closed subscheme of X that is finite over k, 
and then taking the direct limit of these objects. By contrast with the remark above, 
these “discrete objects” will be coalgebras that both “linearize” the set of closed points 
and include extra information about the formal neighborhood of every closed point.

Let Schk denote the category of schemes over k, and let fSchk denote the full subcat-
egory of schemes that are finite over Spec(k), which we abbreviate in the typical way 
to finite over k. Let cAlg denote the category of commutative k-algebras, and let fdcAlg
denote the full subcategory of finite-dimensional commutative algebras. Similarly, let 
fdAlg, fdCoalg, and fdcCoalg respectively denote the categories of algebras, coalgebras, 
or cocommutative coalgebras that are finite-dimensional.

Let S be a scheme finite over k, so that S ∼= Spec(A) is affine, where A is a finite-
dimensional commutative k-algebra. We define the coalgebra of distributions on S to be 
the dual coalgebra

Dist(S) = Γ(S,OS)∗.

As this is the composite of the global sections functor fSchop
k → fdAlg with the con-

travariant dual functor fdAlgop → fdCoalg, this assignment yields a (covariant) functor

Dist : fSchk → fdCoalg . (2.8)

In fact (2.8) is an equivalence of categories as it is the composition of the contravariant 
equivalences from fSch to finite-dimensional commutative algebras and from the latter 
to fdCoalg (see also [67, Theorem 1.1]). In this sense, we imagine that finite-dimensional 
cocommutative coalgebras are “the same as” schemes finite over k. The covariance of the 
functor Dist suggests that we may view these coalgebras as the “underlying (discrete) 
object” of such k-schemes.

We provide a basic example to which we will refer later. Consider the algebra A = k[ε]
with εn = 0 and basis 1, ε, . . . , εn−1. Then Dist(Spec(A)) ∼= A∗ is the coalgebra on the 
dual basis εr = ε̂r having comultiplication and counit

∆ (εr) =
∑

i+j=r

εi ⊗ εj and ϵ (εr) = δr0. (2.9)

By the discussion above, we view this coalgebra as the “underlying discrete object” for 
the closed subscheme Spec(k[ε]) ⊆ A1

k.

Remark 2.10. Let g : S → Y be a morphism in Schk, and let Z denote the scheme-
theoretic image of g in Y . If S is finite over k, then the closed subscheme Z of Y is also 
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finite over k. We omit the elementary proof of this fact, but make repeated use of it 
below.

Now let X denote an arbitrary k-scheme, and let F(X) denote the diagram of closed 
subschemes of X that are finite over k with the naturally induced closed immersions 
between them. We remark that F(X) is directed. Indeed, given S ∼= Spec(B1) and 
T ∼= Spec(B2) in F(X), one has the union of closed subschemes S∪T ↪→ X given by the 
ideal sheaf IS∪T = IS ∩ IT . The immersions of S, T , and S ∪ T into X factor through 
the coproduct S

∐
T as

S
##❚❚❚

❚❚❚

S
∐

T !! !! S ∪ T !! !! X

T

$$❥❥❥❥❥❥

where S∪T is the scheme-theoretic image of the coproduct. Because S
∐

T ∼= Spec(B1⊕
B2) is finite over k, it follows from Remark 2.10 that S ∪ T is also finite over k.

Applying the global sections functor to the diagram F(X) yields an inversely directed 
system of commutative algebras ΓS(S, OS) in fdAlg, whose duals in turn form a directed 
system of cocommutative coalgebras in fdCoalg. Motivated by Remark 2.7, we arrive at 
the following definition of distributions for a general scheme.

Definition 2.11. For a k-scheme X, the coalgebra of distributions (of finite support) on 
X is the directed limit of dual coalgebras

Dist(X) = lim−−→
S∈F(X)

Dist(S) = lim−−→
S∈F(X)

Γ(S,OS)∗.

The assignment X -→ Dist(X) can be extended to a functor as follows. Let f : X → Y

be a morphism of k-schemes. Given S ∈ F(X), we obtain a composite morphism of 
k-schemes

S ↪→ X
f→ Y.

By Remark 2.10, the scheme-theoretic image S′ of S in Y is finite over k. Thus (co)restric-
tion of f induces a morphism of k-schemes S → S′, which induces a morphism of coalge-
bras Dist(S) → Dist(S′) as in (2.8). As Dist(X) is the colimit of the finite-dimensional 
subcoalgebras of the form Dist(S), and Dist(S′) ↪→ Dist(Y ) is a subcoalgebra, we may 
define

Dist(f) : Dist(X) → Dist(Y )

to be the directed limit of the morphisms induced from each S ∈ F(X). In this way, 
distributions of finite support form a functor
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Dist : Schk → Coalg . (2.12)

In the case of an affine scheme over k, this functor amounts to the finite dual of the 
coordinate ring.

Proposition 2.13. The restriction of the functor Dist : Schk → Coalg to the full subcate-
gory of affine k-schemes is naturally isomorphic to the functor X -→ Γ(X, OX)◦.

Proof. Writing X ∼= Spec(A), it is clear that each S ∈ F(X) is of the form S ∼=
Spec(A/I) for some ideal I ∈ F(A) of finite codimension in A. Then

Dist(X) = lim−−→
S∈F(X)

Dist(S) ∼= lim−−→
I∈F(A)

(A/I)∗ = A◦ ∼= Γ(X,OX)◦.

Naturality in X is easily verified. "

A coalgebra of distributions supported at a point can also be defined in the following 
way. For a k-scheme X and a point x of X, the coalgebra of distributions supported at x
is the finite dual of the stalk at x of the structure sheaf:

Dist(X,x) = (OX,x)◦. (2.14)

Note that if x is not a closed point, then OX,x has no ideals of finite codimension and 
Dist(X, x) = 0; for this reason, distributions are typically only examined at closed points.

Let X0 denote the set of closed points of X. For x ∈ X0, Takeuchi [66, 2.1] called (2.14)
the tangent coalgebra to X at x and referred to the direct sum 

⊕
x∈X0

Dist(X, x) as the 
underlying coalgebra of X. (See also [35, Chapter 7] and [22, II, §4, no. 5–6] for details 
on coalgebras of distributions at a point.) Our next goal is to show that this underlying 
coalgebra is in fact isomorphic to the coalgebra Dist(X) defined above.

Example 2.15. We compute the coalgebra of distributions supported at the origin on the 
affine line over k. We have Dist(A1

k, 0) = lim−−→(k[t]/(tn))∗, so that

Dist(A1, 0) =
∞⊕

i=0
kεi

with the same comultiplication and counit formulas from (2.9); this is known as the 
divided power coalgebra. (Note that this is isomorphic to the coalgebra associated to the 
monoid N; see [54, p. 26].) Its dual algebra of “functions” is isomorphic to the formal 
power series ring k[[t]] ∼= lim←−− k[t]/(tn) with the t-adic topology.

Let x be a closed point of a k-scheme X. The canonical map Spec(OX,x) → X induces 
a map on distributions
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Dist(X,x) = (OX,x)◦ ∼= Dist(SpecOX,x) ↪→ Dist(X),

and the assignment (X, x) -→ Dist(X, x) is evidently functorial (see also [66, Introduc-
tion]). In this way we obtain a naturally induced injection

⊕

x∈X0

Dist(X,x) ↪→ Dist(X). (2.16)

Note that the only nonzero summands above are from those points in the set

fin(X) = {x ∈ X | [κ(x) : k] < ∞} ⊆ X0.

If X is locally of finite type over k, then we have fin(X) = X0 by the general Nullstel-
lensatz.

We now verify our claim that the coalgebra of distributions on a k-scheme coincides 
with Takeuchi’s underlying coalgebra.

Proposition 2.17. For a k-scheme X, the map (2.16) induces a natural isomorphism of 
coalgebras

Dist(X) ∼=
⊕

x∈fin(X)
Dist(X,x) =

⊕

x∈fin(X)
(OX,x)◦.

Proof. Let S be a closed subscheme of X that is finite over k. Let {x1, . . . , xn} denote 
the underlying set of S. Consider each singleton {xi} as both a closed and an open 
subscheme of S (since S carries the discrete topology). This subscheme is isomorphic 
to Spec(Bi) for the finite-dimensional local algebra Bi = OS({xi}) = OS,xi . Passing to 
an open affine neighborhood of xi, we see that Bi

∼= OX,xi/Ji for an ideal Ji of finite 
codimension in the local ring OX,xi . Notice that there exists a proper ideal of finite 
codimension in OX,xi if and only if xi ∈ fin(X).

Setting B = B1 × · · ·×Bn, we have the following commutative diagram

∐
{xi}

∼ !!

∼
""

S

∼
""∐

Spec(Bi)
∼ !! Spec(B)

of isomorphisms. On the level of distributions, we find that

Dist(S) ∼=
n⊕

i=1
(Bi)∗ ∼=

⊕
(OX,xi/Ji)∗.

If we now pass to the directed limit of all closed subschemes S of X that are finite 
over k, it is straightforward to see that
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Dist(X) = lim−−→
S∈F(X)

Dist(S) ∼=
⊕

x∈fin(X)
(OX,x)◦

as desired. "

The closed points of a k-scheme are embodied in the structure of the coradical of 
Dist(X) in the following way.

Corollary 2.18. Let X be a k-scheme.

(1) corad(Dist(X)) =
⊕

x∈X0
κ(x)◦, where κ(x) denotes the residue field at x.

(2) [66, 2.1.8] There is a bijection pts(Dist(X)) ∼= X(k) between the k-points of the 
distributions on X and the k-rational points of X.

(3) If k is algebraically closed and X is locally of finite type over k, then corad(Dist(X)) ∼=
kX0 (the coradical of Dist(X) is the linearization of the closed points of X).

Proof. Claim (1) follows directly from the structure given in Proposition 2.17, and (2) 
follows from (1) because a closed point x is k-rational iff κ(x) = k. Now (3) follows 
from (2) since every closed point is k-rational under the hypothesis. "

Assume that the scheme X is locally of finite type over k, so that fin(X) = X0. From 
Proposition 2.17 and the corresponding isomorphism of pseudocompact algebras

Dist(X)∗ ∼=
∏

x∈X0

ÔX,x, (2.19)

we see that Dist(X) contains information about the closed points of X along with their 
formal neighborhoods. While the coradical corad(Dist(X)) is a good choice of coalgebra 
corresponding to the closed points of X (by Corollary 2.18) and has good functorial 
properties for schemes, we will see in Theorem 3.6 that it is necessary to retain the 
additional data of these formal neighborhoods in order for functoriality to persist in 
noncommutative geometry.

We conclude this section by describing the distributions on the affine line over an 
algebraically closed field. This coalgebra will appear again when examining the quantum 
plane in Subsection 4.2.

Example 2.20. Suppose k is algebraically closed, so that the closed points of A1
k =

Spec k[t] are in bijection with k and are all k-rational. From Proposition 2.17 we obtain

Dist(A1
k) ∼=

⊕

λ∈k

Dist(A1
k,λ). (2.21)

By translation invariance we have each Dist(A1
k, λ) ∼= Dist(A1, 0), which was already 

described in Example 2.15. However, it will be important later for us to describe this 
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coalgebra with a more careful consideration of the pointwise structure. At each point 
λ ∈ k, we have

Dist(A1
k,λ) = lim−−→

n
(k[t]/(t− λ)n)∗ =

∞⊕

i=0
kε(i)

λ , (2.22)

and its coalgebra structure is given by

∆(ε(r)
λ ) =

r∑

i=0
ε(i)
λ ⊗ ε(r−i)

λ ,

ϵ(ε(r)
λ ) = δr0.

Viewing these ε(i)
λ as distributions using (2.21) and Proposition 2.13, one can check that 

ε(i)
λ ∈ k[t]◦ is described on the basis {(t − λ)j}∞j=0 by ε(i)

λ ((t − λ)j) = δij . In order to 
find a describe Dist(A1

k) in terms of distributions that are independent of a choice of 
basis of k[t], it is instructive to rewrite this structure in terms of Dirac distributions [26, 
Example 2.1.2] in the characteristic zero case. The Dirac distribution δλ ∈ Dist(A1

k)
supported at λ ∈ k is the functional that evaluates at t = λ:

δλ(f(t)) = f(λ).

In particular, δλ = ε(0)
λ . The distributional derivatives [26, Definition 3.1.1] of the Dirac 

distributions δ = δλ are defined by

δ′(f) = −δ(f ′), and more generally

δ(i)(f) = (−1)iδ(f (i)).

This means that if k has characteristic 0,

ε(i)
λ = (−1)i

i! δ(i)
λ .

So the comultiplication ∆(ε(r)
λ ) =

∑
ϵ(i)λ ⊗ ϵ(r−i)

λ translates to

∆(δ(r)
λ ) = r!

(−1)r
r∑

i=0

(−1)i
i! δ(i)

λ ⊗ (−1)r−i

(r − i)! δ
(j)
λ

=
r∑

i=0

(
r

i

)
δ(i)
λ ⊗ δ(r−i)

λ .
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3. The finite dual as a quantized maximal spectrum

Let A be a k-algebra. If A happens to be a commutative affine k-algebra, then the 
corresponding scheme X = SpecA is of finite type over k, and Propositions 2.13 and 2.17
combine to give the following isomorphisms that are natural in A:

Dist(Spec(A)) ∼= A◦ ∼=
⊕

m∈Max(A)
(Am)◦. (3.1)

(The pseudocompact dual of this isomorphism was noted in [42, Example 2.9] for alge-
braically closed fields, and more generally in [47, Section 2].) This isomorphism leads 
directly to the main tenet of this paper:

For affine k-algebras that are not necessarily commutative but have enough finite-
dimensional k-representations, the finite dual coalgebra functor (−)◦ is a meaningful 
substitute for the maximal spectrum functor.

Another way to motivate this is by viewing measuring coalgebras P (A, B) as a quanti-
zation [8] of the set of maps between two k-algebras A and B. This provides an enrichment 
of the category Alg of k-algebras over the category Coalg; see [69,29]. If k is algebraically 
closed and A is a commutative affine algebra, then the Nullstellensatz yields a bijection

Alg(A, k) ∼= Max(A).

If we upgrade the above Hom-set using this enriched Hom structure, it is known [69, 
Remark 3.1] that

P (A, k) ∼= A◦.

This provides a second perspective on the finite dual as a quantized maximal spectrum. 
Note that the adjoint relationship (2.4) allows us to recover the former Hom-set from 
the enriched one using k-points, as

pts(A◦) = Coalg(k,A◦) ∼= Alg(A, k).

The dual algebra of “functions” on a dual coalgebra can be described as follows. Since 
A◦ = lim−−→I∈F(A)(A/I)∗ with notation as in subsection 2.1, we have

(A◦)∗ ∼= lim←−−
I∈F(A)

A/I =: Â.

In the case where A is commutative and affine, then as in (2.19) we have Â ∼=∏
m∈Max(A) Âm. This underscores the fact that A◦ contains information not only about 
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closed points, but also about their infinitesimal neighborhoods. We will see in Theo-
rem 3.6 that this infinitesimal information is unavoidable if we desire a useful noncom-
mutative spectrum functor.

The remainder of this section is divided as follows. First we will discuss the failure of 
functoriality of the coradical of A◦ to clarify our insistence on retaining the full finite 
dual when quantizing the maximal spectrum functor; we also examine a few cases where 
the coradical happens to be functorial. We then discuss those noncommutative algebras 
A for which we believe A◦ is an appropriate quantization of the maximal spectrum, 
the fully residually finite-dimensional algebras. We end by examining the relationship 
between Morita equivalence of algebras and Takeuchi equivalence of their dual coalgebras, 
treating it as an object lesson on the role of Morita equivalence in functorial spectral 
theory.

3.1. Functoriality and the coradical

In light of Corollary 2.18, it seems natural to infer from the isomorphism (3.1) that 
the coradical of A◦ is a more appropriate quantization of the maximal spectrum of a 
commutative affine algebra. It is well known (see also Corollary 3.8(1) below) that the 
coradical of the finite dual forms a functor on commutative k-algebras:

cAlgop → Coalg (3.2)

A -→ coradA◦.

Indeed, we agree that for suitable algebras A (as discussed in Subsection 3.2 below) the 
coradical of A◦ is an appropriate substitute for the set of points of the noncommutative 
affine variety associated to A. What we illustrate in this subsection is rather that, in 
order to preserve functoriality of the maximal spectrum in these cases, one is forced 
to include the full finite dual. So while points of affine varieties may behave well in 
commutative algebraic geometry, we are forced to include infinitesimal neighborhoods in 
order to retain functoriality in noncommutative geometry.

First let us describe the structure of coradA◦. It is clear from the isomorphism (2.2)
that the simple subcoalgebras of A◦ correspond to the quotient algebras A/I that are 
simple and finite-dimensional. Let

{mα} = Max(A) ∩ F(A)

be an indexing of the set of maximal ideals of finite codimension in A, and let Sα = A/mα

denote the simple quotient algebras. Then we have

coradA◦ =
⊕

α

S∗
α. (3.3)
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Fig. 1. Illustration of the maps between quantum sets in (3.5).

If Sα
∼= Md(k), then as discussed in Subsection 2.2 we may view S∗

α
∼= Md as a qudit 

over k. So S∗
α might generally be imagined as representing a “generalized qudit” over k

(although this is probably most appropriate in the case where Sα is central simple over 
k).

Thus in light of (3.3), we may interpret coradA◦ as a “disjoint union of generalized 
qudits” in the noncommutative spectrum of A. (Note that if k is algebraically closed, 
then all Sα are isomorphic to matrix algebras, so that the coradical truly does represent 
a disjoint union of qudits over k.) Furthermore, there is a bijection between the mα and 
the finite-dimensional simple left A-modules AVα, where mα is the annihilator of Vα. So 
coradA◦ essentially encodes the irreducible finite-dimensional representations of A.

We now turn to the issue of non-functoriality of the coradical. To begin, very simple 
examples can be constructed to show that the coradical does not form a subfunctor of the 
finite dual, even when restricting to the full subcategory of affine noetherian PI algebras 
that are module-finite over their centers. We find the following particularly helpful as an 
instance that can be visualized.

Example 3.4. Consider the algebra homomorphism φ : k[t] → M2(k) given by φ(t) =
E12. Its image is isomorphic to the ring of dual numbers k[ε] (with ε2 = 0), so that φ
factors as k[t] ! k[ε] ↪→ M2(k). This dualizes to a factorization of coalgebra morphisms 
M2 = M2(k)∗ ! k[ε]∗ ↪→ k[t]◦. In particular, we see that the image of corad(M2) = M2

under φ◦ is not cosemisimple and thus does not lie in corad k[t]◦.
To paint a more suggestive picture, let us first note that the image of φ in lies in the 

subalgebra T2(k) ⊆ M2(k) of upper-triangular matrices, so that φ factors as

k[t] ! k[ε] ↪→ T2(k) ↪→ M2(k).

The finite duals of the algebras were described in Examples 2.5 and 2.20. So the above 
factorization of φ dualizes to a factorization of coalgebra morphisms

M2 ! T 2 ! k[ε]◦ ↪→ Dist(A1
k). (3.5)

Recall from Example 2.5 that if we let Γ be a quiver of type A2, then we may view 
T 2 = kΓ as a path coalgebra. Fig. 1 is a visualization the sequence of morphisms above. 
We use the traditional Bloch sphere depiction [52, p. 15] of the qubit to represent M2, 
the quiver Γ to depict T 2 = kΓ, and an infinitesimal neighborhood of the origin to 
represent k[ε]∗. In total, we have a map from the qubit to the affine line (both defined 
over k) whose image is a non-reduced subscheme of A1

k.
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In the spirit of functorial noncommutative spectral theory as described in Subsec-
tion 1.1, we prefer stronger evidence than a single example in order to conclude that the 
full finite dual functor should not be replaced by a functor

F : Algop → Coalg

that is a better approximation to the coradical. Theorem 3.6 below gives a more precise 
restriction.

To motivate the statement, we first note that there exist functors F as above whose 
restriction to cAlgop is the functor (3.2). Given a k-algebra A, let F (A) ⊆ coradA◦

be the sum of all simple subcoalgebras dual to a finite-dimensional division algebra, 
which is the largest basic [18, p. 43] subcoalgebra. The argument given in the proof of 
Corollary 3.8(1) below shows that this choice of F is a subfunctor of the finite dual, and 
it is routine to check that F (A) = coradA◦ for commutative algebras A. However, this 
functor is easily seen to satisfy F (Md(k)) = 0 for d ≥ 2, so that matrix algebras yield 
familiar obstructions as in [56,11,57,14].

So from the point of view of Subsection 1.1, we wish to impose a nondegeneracy 
condition which guarantees that, at the very least, matrix algebras are assigned nontrivial 
coalgebras. If we resolve to view matrix algebras as observables on qudits as discussed 
in Subsection 2.2, then it is more natural to seek a subfunctor F of (−)◦ that satisfies 
F (Md(k)) = Md(k)∗ = Md for all matrix algebras. This leads us uniquely to the functor 
F = (−)◦ in the following way.

Theorem 3.6. Let F : Algop → Coalg be a subfunctor of the finite dual (2.3). If 
F (Md(k)) = Md(k)∗ for all integers n ≥ 0, then F is equal to the finite dual.

Proof. First let A be a finite-dimensional k-algebra, and set d = dimk(A). Consider the 
embedding of A into its k-endomorphisms:

i : A ↪→ Endk(A) =: S.

Because S ∼= Md(k), our hypothesis yields F (S) = S∗. As F is a subfunctor of (−)◦, we 
obtain a commuting diagram

F (S)
F (i)

!! F (A)
! "

α

""
S∗ i∗ !! !! A∗

The morphism α is an inclusion of a subcoalgebra by the subfunctor condition. Now a 
simple diagram chase incorporating surjectivity of i∗ shows that α is also surjective, and 
therefore F (A) = A∗ (and α is the identity).
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Since F is a subfunctor of the finite dual, we now deduce that F = (−)∗ on the 
full subcategory of finite-dimensional k-algebras. It is then straightforward to apply the 
directed colimit characterization (2.2) of the finite dual to deduce that in fact F = (−)◦
on the category Alg of all k-algebras. "

This is one way in which we might think of the finite dual as a “minimal” functorial 
extension of the coradical from commutative to noncommutative algebras. Let us return 
to the description (3.3) of the coradical of A◦ once more. As discussed above, the coradical 
contains information about all finite-dimensional irreducible representations of A. While 
coradA◦ fails to behave functorially in general, the theorem above suggests that we can 
view the finite dual as a minimal functorial substitute for the irreps of A. Or stated 
otherwise, A◦ provides us with a “functorial snapshot” of the representation theory of 
A.

Despite the general failure of functoriality for the coradical, there are conditions on 
an algebra homomorphism under which this coradical does behave functorially. These 
can be characterized in the following way.

Proposition 3.7. For an algebra homomorphism f : A → B, the following are equivalent:

(a) f◦(coradB◦) ⊆ coradA◦ (i.e., f◦ preserves the coradical);
(b) For every finite-dimensional semisimple left (resp., right) B-module M , the restric-

tion of scalars AM (via f) is a semisimple A-module;
(c) For every maximal ideal m of finite codimension in B, the ideal f−1(m) ⊆ A is 

semiprime.

Proof. The simple subcoalgebras of B◦ are precisely those of the form (B/m)∗ for a 
maximal ideal m of finite codimension in B. The restriction of f◦ to one of these simple 
subcoalgebras coincides with the surjective map

Homk(B/m, k) → Homk(A/f−1(m), k)

arising from the algebra homomorphism A/f−1(m) → B/m induced by f . Thus the 
image of this simple subcoalgebra of B◦ lies in the coradical of A◦ if and only if the 
finite-dimensional algebra A/f−1(m) is semisimple, which occurs if and only if f−1(m)
is semiprime. This establishes (a) ⇐⇒ (c).

To see that (b) =⇒ (c), let m be a maximal ideal of finite codimension in B. Then 
B/m is a semisimple left B-module, and under hypothesis (b) it is also a semisimple left 
A-module. But the natural ring embedding A/f−1(m) ↪→ B/m is also an embedding of 
left A-modules. So A/f−1(m) is semisimple and consequently f−1(m) is semiprime.

Finally, assume (c). For (c) =⇒ (b), it suffices to consider the case where BM is 
simple and prove that AM is semisimple. Setting m = annB(M), it follows that B/m is 
a finite-dimensional simple algebra. Because annA(M) = f−1(m), the action of A on M
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factors through A/f−1(m). This finite-dimensional algebra is semiprime by hypothesis, 
so it must be semisimple. Thus M is semisimple as a left A-module. "

We remark that if f : A → B satisfies the equivalent conditions above, then it follows 
from [54, Corollary 4.2.2] that if f◦ preserves the whole coradical filtration. Below are 
two situations in which the algebra B is “tame enough” for this to automatically hold.

Corollary 3.8. An algebra homomorphism f : A → B satisfies f◦(coradB◦) ⊆ coradA◦

in each of the following cases:

(1) Every finite-dimensional simple quotient algebra of B is a division algebra. (This 
holds, for instance, if B is commutative.)

(2) B is a finite normalizing extension [50, 10.1.3] of the image f(A).

Proof. (1) This case is a very slight generalization of [54, Exercise 4.1.2]. If m is a maximal 
ideal of finite codimension B, then the image of f(A) in B/m is a finite-dimensional 
domain and therefore is a division algebra. So f−1(m) is maximal in A, and the result 
follows from Proposition 3.7(c).

(2) This case also follows from Proposition 3.7(c), this time with the help of the 
“Cutting Down” theorem [50, Theorem 10.2.4]. "

Note that condition (1) is satisfied when B is commutative, or more generally, when 
B/J(B) is commutative where J(B) is the Jacobson radical. Condition (2) is satisfied 
in case B is module-finite over a central subalgebra A and f is the inclusion of A into 
B. An important case of the latter occurs when B is a Cayley-Hamilton algebra and A
is the image of its trace; see [21, Theorem 4.5].

3.2. Fully RFD algebras

We now discuss the question of which algebras have “enough” finite-dimensional rep-
resentations that A◦ can be considered as a reasonable substitute for a noncommutative 
maximal spectrum. If the algebra structure of A is to be faithfully represented by A◦, 
we should at least ask that the naturally induced algebra homomorphism A → A◦∗ is 
injective. Injectivity of this map is equivalent [65, Lemma 6.1.0] to the property that 
the algebra is a subdirect product of finite-dimensional algebras. A k-algebra satisfying 
these conditions is said to be residually finite-dimensional (RFD). It is straightforward 
to verify that the RFD property is further equivalent to the requirement that intersection 
of all ideals in F(A) is zero, or that every nonzero element of A acts nontrivially on a 
finite-dimensional left (equivalently, right) module.

However, it seems prudent to ask for more than the property above. For instance, 
if I is an ideal of A and if we view A/I as the coordinate ring of a closed subscheme 
of the spectrum of A, then we should reasonably expect A◦ to carry sufficient informa-
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tion about A/I as well. This will not always be the case, as RFD algebras can have 
homomorphic images that are not RFD. For instance, the algebra A =

∏∞
n=1 Mn(k) is 

RFD by construction, but for the ideal T =
⊕∞

n=1 Mn(k) of A, the same argument as 
in the proof of [38, Lemma 7.5] shows that A/T has no finite-dimensional homomorphic 
image. Similarly, the free algebra k⟨x, y⟩ is known to be RFD (as the ideals In generated 
by words in {x, y} of length n have finite codimension and satisfy 

⋂
In = 0), but its 

homomorphic image k⟨x, y⟩/(xy − 1) is not Dedekind-finite and therefore cannot be a 
subdirect product of finite-dimensional algebras.

Definition 3.9. (Following [19] in the case of C*-algebras.) An algebra A is strongly resid-
ually finite-dimensional (strongly RFD) if A/I is residually finite-dimensional for every 
ideal I of A.

Every affine noetherian PI k-algebra A is strongly RFD. Indeed, a result of Anan’in [2]
shows that every affine right noetherian PI algebra is RFD. Because the property of being 
an affine noetherian PI algebra passes to homomorphic images, it follows that A/I is 
RFD for all ideals I of A.

From the discussion above, we see that A is strongly RFD if and only if every ideal 
I of A is equal to the intersection of all ideals of finite codimension containing I, if and 
only if every homomorphic image of A embeds in the algebra of observables on its finite 
dual. Thus the algebras for which A◦ can be considered a reasonable quantization of the 
maximal spectrum should form a subclass of the strongly RFD algebras. However, one 
could reasonably ask for a slightly stronger condition. Because A◦ contains information 
about finite-dimensional representations of A as in (3.3), we can ask that every finitely 
generated A-module be determined by all of its finite-dimensional homomorphic images. 
This reasoning leads to the following condition.

Definition 3.10. A k-algebra A is left fully residually finite-dimensional (RFD) if ev-
ery finitely generated left A-module is a subdirect product of finite-dimensional left 
A-modules. Right fully residually finite-dimensional algebras are defined similarly, and 
we say that A is fully residually finite-dimensional if it is both left and right fully RFD.

In general, we have the following relationship between these properties of k-algebras:

left fully RFD =⇒ strongly RFD =⇒ RFD.

We have seen that the second implication is strict. We presume that the first implication 
is also strict in general, but we do not have a counterexample. Proposition 3.12 below will 
illustrate that any such counterexample cannot be a fully bounded noetherian algebra.

Below are some equivalent characterizations of the left fully RFD property. Con-
dition (c), in particular, highlights the role of the finite dual for such algebras. A left 
A-module is locally finite if each of its finitely generated submodules is finite-dimensional. 
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We let A -Modlf denote the full subcategory of A -Mod whose objects are the locally finite 
modules.

Theorem 3.11. For an algebra A, the following are equivalent:

(a) A is left fully RFD;
(b) the injective hull of every simple left A-module is locally finite-dimensional;
(c) A◦ is a cogenerator in A -Mod.

If A is left noetherian, then these properties are further equivalent to:

(d) every simple left A-module is finite-dimensional, and the subcategory A -Modlf is 
closed under injective hulls in A -Mod;

(e) A◦ is an injective cogenerator in A -Mod;

Proof. Let {Vi} be a complete set of simple left A-modules up to isomorphism. Be-
cause every left A-module is a subdirect product of the injective hulls of the simple 
left A-modules ([43, Theorem 19.8]), every finitely generated left A-module is a sub-
direct product of finitely generated submodules of the E(Vi). Furthermore, each E(Vi)
and its submodules are subdirectly irreducible (since they contain an essential simple 
submodule). The equivalence (a) ⇐⇒ (b) follows.

(b) =⇒ (c): Let V be a simple left A-module, and let m = ann(V ). Because the 
injective hull E(V ) is locally finite-dimensional, V must be finite-dimensional. Thus the 
semisimple algebra EndA(V ) ∼= A/m is also finite-dimensional and consequently is sym-
metric [43, Example 16.59]. It follows that we have an embedding of finite-dimensional 
left A-modules

V ↪→ A/m ∼= (A/m)∗ ↪→ A◦.

As explained in the proof of [28, Theorem 2.1], the left module A◦ is an injective object 
in the category locally finite left A-modules. Since (b) states that E(V ) is locally finite-
dimensional, the embedding above must extend to an injective homomorphism E(V ) ↪→
A◦. It follows [43, Theorem 19.8] that A◦ is a cogenerator in A -Mod.

(c) =⇒ (b): Let V be a simple left A-module. If A◦ is a cogenerator in A -Mod, then 
there is an injective homomorphism E(V ) ↪→ A◦ (see [43, Theorem 19.8]). Because A◦

is locally finite-dimensional, the same must be true for E(V ).
(d) =⇒ (e): As explained in the proof of [28, Theorem 2.1], if A -Modlf is closed under 

injective hulls then A◦ is an injective left A-module (even without the left noetherian 
hypothesis). It is also clear that (d) =⇒ (b), so from (b) =⇒ (c) established above we 
have that A◦ is also a cogenerator.

Obviously (e) =⇒ (c). Now assume A is left noetherian; we will verify (b) =⇒ (d). Sup-
pose M is a locally finite left A-module. Let {Mi} denote the set of all finite-dimensional 
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submodules of M . Then M = lim−−→Mi is the directed union of the Mi. Because A is left 
noetherian, injective left A-modules are closed under direct limits [43, Theorem 3.46] so 
that

E(M) = lim−−→E(Mi).

Since each Mi has essential socle, its injective hull E(Mi) is a finite direct sum of in-
jective hulls of simple modules, which are locally finite-dimensional. Thus E(M) is a 
directed union of locally finite-dimensional modules and must itself be locally finite-
dimensional. "

This raises the obvious question of how to locate examples of fully RFD algebras. 
Fortunately, it turns out that there is a rich supply of these, in the sense that every 
affine noetherian PI algebra is fully RFD. This is deduced in the next result, which also 
shows that for fully bounded noetherian (FBN) rings [25, Chapter 9], the left and right 
fully RFD properties are equivalent to one another.

Proposition 3.12. Let A be a fully bounded noetherian k-algebra. The following are equiv-
alent:

(a) A is fully RFD;
(b) A is strongly RFD;
(c) every simple left (equivalently, right) A-module is finite-dimensional;
(d) every maximal ideal of A has finite codimension.

In particular, every affine noetherian PI algebra is fully RFD.

Proof. The implications (a) =⇒ (b) =⇒ (c) hold for any algebra A. We use the following 
results on FBN rings:

(i) The annihilator of every simple left or right module is maximal [25, Corollary 9.5].
(ii) The injective hull of a simple left or right module is locally of finite length [36, 

Theorem 3.5, Corollary 3.6].

The equivalence (c) ⇐⇒ (d) follows directly from (i). Thanks to (ii) and Theorem 3.11(c), 
A is left fully RFD if and only if every simple left A-module has finite dimension. Since 
the left and right module versions of (c) are equivalent, it follows that (a) ⇐⇒ (c).

The final statement is a consequence of the following two facts: every PI algebra is fully 
bounded [50, Corollary 13.6.6], and condition (c) holds over any affine PI algebra [50, 
Theorem 13.10.3]. "

Remark 3.13. By a result of Amitsur and Small [6], every affine FBN algebra over an 
uncountable algebraically closed field k is PI, from which it follows that such a k-algebra 
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is fully RFD. It seems natural to then ask if every affine FBN algebra over an arbitrary 
field k is fully RFD over k. However, because division algebras are FBN, this question 
is in fact a generalization of a well-known open problem [64, Question 5] which asks if 
every affine division algebra is finite-dimensional. Indeed, if A is an affine FBN algebra 
with maximal ideal M , then A/M ∼= Mn(D) for a division algebra D that must be affine 
by the Artin-Tate Lemma. Assuming this problem has a positive solution, D is finite-
dimensional so that M has finite codimension and A is fully RFD by Proposition 3.12.

There are many more interesting questions that one can ask about the fully residually 
finite-dimensional property. Are the left and right fully RFD properties independent of 
one another? If A◦ is an injective cogenerator in A -Mod, must A be left noetherian? Are 
there any examples of affine but non-noetherian fully RFD algebras? How similar is the 
structure theory of fully RFD algebras to that of FBN rings? For now, we must content 
ourselves with the information learned above and turn to other matters regarding the 
finite dual.

3.3. Morita equivalence and the quantized spectrum

A common philosophy within noncommutative geometry is that Morita equivalent 
rings should represent the same noncommutative space. The claim is natural and under-
standable when one works in a framework where a (commutative or noncommutative) 
space is represented solely by its category of sheaves of modules. However, this is prob-
lematic from the perspective laid out in Section 1. For instance, if we wish to view 
a noncommutative algebra as consisting of observables of a quantum system, then its 
commutative subalgebras are physically important as they are closely related to the in-
formation that can be accessed through all possible measurements [27, 1.3]. In particular, 
the algebra Mn(C) of observables on an n-level system has many commutative subal-
gebras isomorphic to Cn, representing different measurements with n possible outcomes 
that can be made on the system. However, all of these matrix algebras Mn(C) are Morita 
equivalent to one another and, in particular, to C. Thus Morita equivalence is blind to 
this important aspect of algebraic quantum mechanics, while functorial spectral theory 
as in Subsection 1.1 aims to preserve exactly this kind of information.

This is not to say that Morita equivalence should be ignored in functorial spectral 
theory. Rather, from this perspective we expect that Morita equivalent algebras will 
have Morita equivalent noncommutative spaces, but Morita equivalent noncommutative 
spaces need not be isomorphic. This subsection illustrates this principle in action for dual 
coalgebras. Two coalgebras are said to be Takeuchi equivalent [68] if their categories of left 
comodules are k-linearly equivalent. We will show below that if A and B are algebras 
that are Morita equivalent (in an appropriately modified sense), then A◦ and B◦ are 
Takeuchi equivalent. So this quantized maximal spectrum reflects Morita equivalence, in 
accordance with the guideline above.
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We will say that two k-algebras A and B are k-linearly Morita equivalent if there is 
a k-linear equivalence between the categories A -Mod and B-Mod. A number of standard 
facts [43, Section 18] about Morita equivalence of rings are readily verified to carry over 
to k-linear Morita equivalence as long as suitable care is given to compatibility with the 
k-vector space structure. In particular, one can verify that within the class of k-algebras, 
the RFD, strongly RFD, and (left) fully RFD properties are each preserved by k-linear 
Morita equivalence.

Proposition 3.14. Let A and B be k-algebras, and consider the following statements:

(a) A and B are k-linearly Morita equivalent algebras;
(b) A◦ and B◦ are Takeuchi equivalent k-coalgebras;
(c) There is a k-linear equivalence between the categories of pseudocompact left modules 

over Â = (A◦)∗ and B̂ = (B◦)∗.

Then (a) =⇒ (b) ⇐⇒ (c).

Proof. The equivalence (b) ⇐⇒ (c) is a direct consequence of the k-linear duality [62, 
Theorem 4.3] between the categories of left A◦-comodules and pseudocompact left mod-
ules over (A◦)∗ ∼= Â. Thus it suffices to show that (a) =⇒ (c).

Recall [43, Proposition 18.33] that two rings R and S are Morita equivalent if and only 
if S ∼= eMn(R)e for some integer n ≥ 1 and a full idempotent e ∈ Mn(R). Assuming (a) 
holds, we may thus write

B ∼= eMn(A)e (3.15)

for n ≥ 1 and a full idempotent e ∈ Mn(A), where the above is a k-algebra isomorphism 
by k-linearity of the Morita equivalence. For each open ideal I ∈ F(B) in the cofinite 
topology on B, there is a corresponding J ∈ F(A) such that, under (3.15), both I ∼=
eMn(J)e and B/I ∼= eMn(A/J)e (where we view Mn(A/J) as a bimodule over Mn(A)
via its natural surjection onto Mn(A)/Mn(J) ∼= Mn(A/J)). Thus if we pass to the 
completion, we obtain an isomorphism of topological algebras

B̂ = lim←−−I∈F(B) B/I

∼= lim←−−J∈F(A) eMn(A/J)e

∼= eMn(Â)e,

where we now view Mn(Â) as a bimodule over Mn(A) via the algebra homomorphism 
given by completion Mn(A) → M̂n(A) ∼= Mn(Â). Letting eij ∈ Mn(Â) denote the 
matrix units, we define pseudocompact bimodules
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ÂUB̂ = e11Mn(Â)e,

B̂VÂ = eMn(Â)e11.

It is then straightforward to verify using the completed tensor product of pseudocompact 
bimodules (see [12, Section 2] or [70, Section 4]) we have U⊗̂B̂V

∼= Â and V ⊗̂ÂU
∼= B̂, 

so that the k-linear functors

U ⊗B̂ − : B̂-PC → Â-PC,
V ⊗Â − : Â-PC → B̂-PC

yield a k-linear equivalence of categories. Thus (c) holds as desired. "

4. Affine algebras finite over their center

In this final section, we specialize to the case of affine algebras R that are module-
finite over their center Z(R), with the goal of illustrating how the spectrum of Z(R) is 
reflected in the structure of R◦. First we show that a large part of R◦ is controlled by an 
open subscheme of SpecZ(R) defined in terms of its Azumaya locus. We then apply this 
method explicitly to the case of the quantum plane [49, 1.2] at a root of unity. Finally, 
we discuss how a similar analysis can be applied to other algebras if one has a sufficiently 
good understanding of the local structure of R relative to MaxZ(R).

In order to clarify the geometric picture, we will assume k is algebraically closed
throughout this section. Suppose that R is an affine k-algebra that is module-finite 
over its center Z(R). It follows (by the Artin-Tate Lemma) that Z(R) is affine and 
consequently noetherian. So R is an affine noetherian PI algebra and therefore is fully 
RFD by Proposition 3.12.

4.1. The Azumaya locus in the dual coalgebra

To provide a clearer picture of the finite dual, we wish to incorporate information 
about the representation theory of an algebra. We will do so for an algebra R under the 
following hypothesis:

(H) R is a prime affine k-algebra that is module-finite over its center Z(R).

If R satisfies (H), it is known [50, 10.2] that the prime spectrum of R is closely related 
to SpecZ(R). Our goal here is to similarly relate the quantized spectrum R◦ to the 
maximal spectrum of its center. Specifically, we will describe how the Azumaya locus in 
MaxZ(R) appears within R◦.

We recall some of the theory of the Azumaya locus from [10, Section 3] and [9, Sec-
tion III.1]. Suppose that R satisfies hypothesis (H). Let d denote the PI degree [50, 13.6]
of R. Then d is equal to the maximal k-dimension of all simple R-modules. The Azumaya 
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locus is the subset of the maximal spectrum Max(Z(R)) that can be characterized in the 
following equivalent ways:

A(R) = {m ∈ Max(Z(R)) | Rm is an Azumaya algebra over Z(R)m}

= {m ∈ Max(Z(R)) | m = Z(R) ∩ ann(V ) for a simple RV, dimk(V ) = d}

= {m ∈ Max(Z(R)) | Rm is a maximal ideal of R}

= {m ∈ Max(Z(R)) | R/Rm ∼= Md(k)}.

This is a nonempty open (and therefore dense) subset of MaxZ(R). Under an additional 
mild hypothesis (which holds automatically in the case Z(R) is normal), it is shown in [13]
that A(R) is the complement in MaxZ(R) of a discriminant ideal Dn2(R/Z(R), tr) ⊆
Z(R).

A prime ideal P of R is regular if the PI degree of R/P is also equal to d. Then a 
maximal ideal M of R is regular if and only if M = Rm for some m ∈ A(R). Lemma 4.2
below will provide a link between R◦ and the points in the Azumaya locus of R.

Lemma 4.1. Let (C, m) be a commutative complete local ring whose residue field is al-
gebraically closed. Then every Azumaya algebra over C is isomorphic to a matrix ring 
over C.

Proof. By completeness of C, the morphism of Brauer groups Br(C) → Br(C/m) in-
duced by the surjection C ! C/m is injective [1, Corollary 6.2]. The Brauer group of 
the algebraically closed field C/m is trivial, so Br(C) is also trivial. It follows [1, Propo-
sition 5.3] that every Azumaya algebra over C is the endomorphism ring of a finitely 
generated projective module PC ̸= 0. Because C is local, P is in fact free, so that the 
conclusion follows. "

Lemma 4.2. Let R be an algebra over an algebraically closed field k satisfying (H), and let 
d be the PI degree of R. Let M be a regular maximal ideal of R and set m = M ∩Z(R) ∈
A(R). Then we have

lim−−→ (R/M i)∗ ∼= Md ⊗ Dist(SpecZ(R),m).

Proof. Denote C = Z(R). The algebra R/M i ∼= (R/M i)m
∼= Rm/(Mm)i is a homo-

morphic image of Rm, which is Azumaya over Cm. Note that the completion of Rm

in the cofinite topology coincides with its completion in the m-adic topology (since its 
unique maximal ideal is Mm = Rmm). Because Cm is noetherian, this completion [24, 
Theorem 7.2] is given by

R̂m
∼= Ĉm ⊗Cm Rm.

Because the Azumaya property is stable under extension of scalars [1, Corollary 1.6], it 
follows that R̂m is Azumaya over the complete local ring Ĉm, whose residue field k is 
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algebraically closed. Thus Lemma 4.1 implies that R̂m is a matrix algebra over Ĉm. Since 
R̂m/R̂mm ∼= R/Rm ∼= Md(k), we must in fact have

R̂m
∼= Md(Ĉm).

Thus the inversely directed system of algebras

R/M i ∼= Rm/M i
m
∼= R̂m/(R̂mm)i

is isomorphic to the system of algebras

Md(Ĉm/Ĉmmi) ∼= Md(Cm/m
i
m) ∼= Md(k) ⊗ (Cm/m

i
m).

The claim now follows because Dist(C, m) ∼= C◦
m
∼= lim−−→(Cm/mi

m)∗. "

We are now prepared to prove the key result describing the relationship between the 
Azumaya locus and R◦. To facilitate its statement, we will define an open subscheme 
of SpecZ(R) whose closed points are exactly A(R). Denote the intersection of all non-
regular maximal ideals of R by

N =
⋂

{M ∈ Max(R) | M is not regular}.

Then [9, Lemma III.1.2] a prime ideal of R is non-regular if and only if it contains N . 
Combining this observation with the characterizations of the Azumaya locus as well as 
the fact [9, Lemma III.1.5] that the contraction map from the prime spectrum of R to 
Z(R) is closed, it follows that a maximal ideal m of Z(R) lies outside of the Azumaya 
locus if and only if it contains the ideal

IR = N ∩ Z(R).

Let UR = D(IR) be the open subscheme of SpecZ(R) that is the non-vanishing locus of 
IR. We will call this the Azumaya subscheme of SpecZ(R). By the discussion above, its 
set of closed points is exactly equal to A(R).

Theorem 4.3. Let R be an algebra over an algebraically closed field k satisfying (H). Let 
d denote the PI degree of R, let N!R denote the intersection of all non-regular maximal 
ideals in R, and let UR be the Azumaya subscheme of SpecZ(R) described above. Then 
there is an isomorphism of coalgebras

R◦ ∼= lim−−→
i≥1

(R/N i)◦ ⊕ (Md ⊗ Dist(UR)).

Proof. Denote C = Z(R), a commutative affine algebra over which R is a finitely 
generated module. Let I ∈ F(R). The image of the composite C → R → R/I is a 
finite-dimensional commutative algebra and thus has the form
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CI := C/(C ∩ I) ∼=
s∏

i=1
C/mei

i

for distinct maximal ideals mi of C. Up to reordering, suppose that m1, . . . , mr /∈ A(R)
and mr+1, . . . , ms ∈ A(R). Then we may fix idempotents eI ∈ CI and fI = 1 − eI ∈ CI

so that via the isomorphism above we have

eICI
∼=

r∏

i=1
C/mei

i and fICI
∼=

s∏

i=r+1
C/mei

i . (4.4)

Since eI and fI are central in R := R/I, we have R = eI(R/I) ⊕ fI(R/I).
By construction, the maximal ideals of fIR correspond to regular maximal ideals of R, 

while those of eIR correspond to non-regular maximal ideals of R. Furthermore, if I ⊆ I ′

are ideals of finite codimension in R, then the image of eI ∈ R/I under R/I ! R/I ′ is 
eI′ , and similarly fI maps to fI′ . Thus the decomposition (R/I)∗ ∼= (eIR/I)∗⊕(fIR/I)∗
is compatible with the directed limit taken over the I ∈ F(R), from which it follows that

R◦ ∼= lim−−→
I∈F(R)

(eIR/I)∗ ⊕ lim−−→
I∈F(R)

(fIR/I)∗.

Let Fn ⊆ F(R) denote those ideals of finite codimension that are contained only in 
non-regular maximal ideals of R, and let Fr ⊆ F(R) be those ideals that are contained 
only in regular maximal ideals. Then the decomposition above amounts to

R◦ ∼= lim−−→
I∈Fn

(R/I)∗ ⊕ lim−−→
I∈Fr

(R/I)∗. (4.5)

First we will prove that lim−−→I∈Fn
(R/I)∗ ∼= lim−−→i(R/N i)◦. To do so, it is enough to prove 

that

Fn = {I ∈ F(R) | N i ⊆ I for some i ≥ 1}.

First suppose that I ∈ Fn, and let M1, . . . , Mn ⊆ R be the maximal ideals above I, so 
that N ⊆ M1 ∩ · · · ∩Mn. Then (M1 ∩ · · ·Mn)/I is the Jacobson radical of R/I which 
is nilpotent, say of order i. This means that N i ⊆ (M1 ∩ · · · ∩ Mn)i ⊆ I. Conversely, 
suppose that I ∈ F(R) with some N i ⊆ I. Then every maximal ideal containing I also 
contains N and therefore is not regular. So I ∈ Fn, establishing the desired equality.

Now we describe lim−−→I∈Fr
(R/I)∗. By nilpotence of the Jacobson radical of each R/I, 

this is the same as computing the direct limit of the (R/I)∗ where I is a product of regular 
maximal ideals M = Rm for some m ∈ A(R). Given such maximal ideals Mi = Rmi, 
note that their products commute in the monoid of ideals of R (as mi ⊆ C are central). 
Then if I is a product of powers of distinct such Mi, we have

R/I = R/(Me1
1 · · ·Mer

r ) ∼=
⊕

R/Mei
i ,
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so that

(R/I)∗ ∼=
⊕

(R/Mei
i )∗.

Taking the direct limit over all I is the same as taking the limit over all possible products 
of maximal ideals, which combines with Lemma 4.2 to result in

lim−−→
I∈Fr

(R/I)∗ ∼=
⊕

m∈A(R)
lim−−→
i

(R/Rmi)∗

∼=
⊕

m∈A(R)
Md ⊗ Dist(SpecC,m)

∼= Md ⊗
⊕

m∈A(R)
Dist(SpecC,m).

Finally, taking into account that A(R) consists precisely of the closed points of the 
open subscheme U = UR of SpecC and that the distributions based at the point m are 
independent of the open subscheme in which we compute them, we have

⊕

m∈A(R)
Dist(SpecC,m) =

⊕

m∈U0

Dist(U,m) ∼= Dist(U)

thanks to Proposition 2.17. So lim−−→I∈Fr
(R/I)∗ ∼= Md⊗Dist(UR), and the conclusion now 

follows from (4.5). "

How should we interpret the isomorphism of Theorem 4.3? The canonical surjection 
R ! R/N yields an embedding (R/N)◦ ↪→ R◦, which we can view as the inclusion 
of a closed subspace [63, Section 4]. The direct limit lim−−→(R/N i)◦ thus represents the 
underlying discrete part of a formal neighborhood of this closed subspace within R◦. 
The complementary summand is the underlying discrete part of a complementary open 
subspace. Thus it can be imagined as a “direct product” [49, 1.1] of a qudit (where 
d is determined by the representation theory of R) with the Azumaya locus (an open 
subspace of the maximal spectrum of the center). In light of the decomposition of coradR

from (3.3), this summand contains the qudits within the spectrum of R, while (R/N)◦
contains the qu-nits for all values n < d.

This specializes nicely to the case of an Azumaya algebra. By the Artin-Procesi The-
orem [9, III.1.4], this is the case where R/N = 0, so that summand corresponding to the 
formal neighborhood of that closed subspace is trivial. In this case the Azumaya locus 
is the entire maximal spectrum A(R) = MaxZ(R), so that the Azumaya subscheme is 
UR = SpecZ(R). So for Azumaya algebras the center governs the entire structure of the 
dual coalgebra in the following way. This recovers a version of [48, Example 2].

Corollary 4.6. Suppose that R is an algebra over an algebraically closed field k satisfy-
ing (H), and let d be its PI degree. If R is Azumaya over its center Z(R), then
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R◦ ∼= Md ⊗ Dist(SpecZ(R)).

4.2. Picturing the quantum plane

In this subsection we will analyze the dual coalgebra of the quantum plane at a root 
of unity, using the Azumaya locus technique above. From the perspective set out in 
Sections 2 and 3 above, this will give us a glimpse of the quantized set of closed points 
in the quantum plane.

We continue to assume that our field k is algebraically closed. In the discussion below, 
we will alternatively view the affine plane over k as the classical algebraic variety k2

and as the scheme A2
k = Spec k[x, y], depending on the best context for a particular 

observation. We trust that this fluctuating perspective can be reasonably navigated by 
the careful reader.

Let q ∈ k∗. Recall that the (algebra of functions on the) quantum plane is the affine 
domain

Oq(k2) = kq[x, y] = k⟨x, y | yx = qxy⟩.

Suppose that q is a primitive nth root of unity, so that if k has characteristic p > 0 then 
n is relatively prime to p. A number of facts stated without justification below can be 
found in [21, Section 7] and [9, Examples III.1.2(3), III.1.4]. The center of the quantum 
plane is given by

Z(Oq(k2)) = k[xn, yn].

The algebra Oq(k2) is module-finite over its center and satisfies (H). Furthermore, the 
PI degree of Oq(k2) is equal to n.

While the center Z(Oq(k2)) = k[xn, yn] is abstractly isomorphic to the coordinate 
ring of the affine plane A2

k, we will not view it in this way because we wish to identify 
the subalgebras k[x] and k[y] of Oq(k2) with the coordinate rings of the axes within the 
ordinary affine plane. Instead, we will view the center as the coordinate ring of a quotient 
of the affine plane by a group action.

Let Gq = ⟨q⟩2 ⊆ (k∗)2 denote the subgroup of the 2-torus whose coordinates are 
powers of q. This is a finite group with Gq

∼= (Z/nZ)2. The usual action of the 2-torus 
on k2 by coordinate scaling restricts to an action of Gq on the plane:

(qi, qj) · (α,β) = (qiα, qjβ). (4.7)

This corresponds to an action of Gq on the coordinate ring k[x, y] = O(k2) given by 
(qi, qj) · f(x, y) = f(qix, qjy), which has fixed subalgebra

k[x, y]Gq = k[xn, yn] ∼= Z(Oq(k2)).
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For this reason we view the center as the coordinate ring of the quotient scheme

Spec k[xn, yn] = A2
k/Gq.

To explicitly describe the coradical of Oq(k2)◦ as in (3.3) amounts to enumerating the 
finite-dimensional irreducible representations of the quantum plane. These have been 
parametrized, for instance, in [21, Section 7], but we have been unable to find an explicit 
list of these irreps with the exception of [61, Section 8], which studies the case where 
k = C and q = −1. Thus we pause to record the following.

Lemma 4.8. Let k be an algebraically closed field, and let q ∈ k× be a primitive nth 
root of unity. The irreducible representations V (α, β) of R = Oq(k2) are parametrized 
by (α, β) ∈ k2 and are given by a homomorphism R → Endk(V (α, β)) as follows:

(1) For αβ = 0, we obtain pairwise inequivalent 1-dimensional representations, with 
R → k given by x -→ α and y -→ β.

(2) For αβ ̸= 0, there are irreducible representations of the form V (α, β) = kn with 
x -→ αD and y -→ βP , where

D =

⎛

⎜⎜⎝

1
q

. . .
qn−1

⎞

⎟⎟⎠ and P =

⎛

⎜⎜⎝

0 1 · · · 0
...

... . . . ...
0 0 · · · 1
1 0 · · · 0

⎞

⎟⎟⎠ .

Two of these representations satisfy V (α, β) ∼= V (α′, β′) if and only if (α, β) and 
(α′, β′) lie in the same orbit of the Gq-action (4.7) the plane.

Proof. Let M be a maximal ideal of R, and denote m = M ∩ k[xn, yn]. Then m =
(xn − c, yn − d) for some (c, d) ∈ k2. Because k is algebraically closed, we may fix 
(α, β) ∈ k2 such that (c, d) = (αn, βn), so that

m = (xn − αn, yn − βn).

Let S = R/Rm, which is a finite-dimensional algebra with k-basis {xiyj | 0 ≤ i, j ≤
n − 1}.

(1) Suppose αβ = 0. Without loss of generality, we may assume that β = 0 (the 
case α = 0 being symmetric). Then m = (xn − αn, yn). Note that the image of y
lies in the Jacobson radical of S. Thus S has the same irreducible representations as 
S/(y) ∼= k[x]/(xn − αn), whose irreps are all 1-dimensional and given by evaluating x
at the roots of xn − αn = xn − c, one of which is α. Thus we obtain the representation 
S → k given by x -→ α and y -→ β whenever αβ = 0.

(2) Now suppose that αβ ̸= 0. In this case m = (xn−αn, yn−βn) lies in the Azumaya 
locus A(R), so that it lies below the single maximal ideal M = Rm. One may readily 



322 M.L. Reyes / Journal of Algebra 644 (2024) 287–328

verify that for D and P as in the statement above, the matrices X = αD and Y = βP

satisfy Y X = qXY as well as Xn = αnI and Y n = βnI. Thus for V (α, β) = kn we have 
an algebra homomorphism φ : R → Endk(V (α, β)) given by x -→ X and y -→ Y whose 
kernel equals M . To see that this representation is irreducible, we only need to verify 
that φ is surjective. This follows easily from the fact that the regular maximal ideal M
has codimension n2. (It can also be verified explicitly by noting that φ(α−1x) = D and 
φ(β−1y) = P generate the algebra Endk(V ), an argument that is facilitated by noticing 
that 1

n (I + D + D2 + · · · + Dn−1) = E11 is a standard matrix unit.)
Every algebra automorphism of S = R/M ∼= Endk(kn) is inner and thus is induced 

by an intertwiner. So we have V (α, β) ∼= V (α′, β′) if and only if the kernels of the 
representations are the same regular maximal ideals, if and only if the central maximal 
ideals (xn −αn, yn − βn) = (xn − (α′)n, yn − (β′)n) are equal. This occurs exactly when 
αn = (α′)n and βn = (β′)n, which is equivalent to saying that the points (α, β) and 
(α′, β′) are in the same Gq-orbit. "

Thus we can describe the structure of the coradical quite precisely in the following 
way. Let W = V (xy) ⊆ k2 be the union of the coordinate axes, and let Yq ⊆ k2/Gq

be the open subset of the quotient space that is the image of the Gq-invariant open 
complement k2 \W ⊆ k2. Then Lemma 4.8 yields:

coradOq(k2) ∼=
⊕

W

k ⊕
⊕

Yq

Mn

∼= kW ⊕ (Mn ⊗ kYq).
(4.9)

This hints at a decomposition of the full finite dual, which can be rigorously demon-
strated using the method of Subsection 4.1. Let N be the intersection of the non-regular 
maximal ideals in Oq(k2). From Lemma 4.8(1) we have

N = (x) ∩ (y) = (xy),

whose intersection with the center is (xy) ∩ k[xn, yn] = (xnyn). Let V = V (xy) be the 
closed subscheme of A2

k that is the union of the coordinate axes. If we view SpecZ(R) =
A2

k/Gq as discussed above, then the Azumaya subscheme Uq = D(xy)/Gq is the open 
subscheme that is the image of the Gq-invariant complement of V . Theorem 4.3 now 
gives us

Oq(k2)◦ ∼= lim−−→
i≥1

(Oq(k2)/(xy)i)◦ ⊕ (Mn ⊗ DistUq). (4.10)

Since the varieties W and Yq precisely correspond to the closed points of the schemes V
and Uq, this decomposition restricts to (4.9) when restricting to the coradical.

Note that the algebra Oq(k2)/N ∼= k[x, y]/(xy) is independent of q, commutative, and 
isomorphic to the coordinate ring of V = V (xy). In particular,
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Fig. 2. Depiction of Oq(C2)◦ at q = −1.

(Oq(k2)/N)◦ ∼= DistV.

Thus the first summand in (4.10) is a formal neighborhood of the classical union of the 
coordinate axes. But even though the summand of the coradical (4.9) corresponding to 
the axes is classical (i.e., cocommutative), its formal neighborhood has a truly quantum 
(non-cocommutative) nature. For instance, its first-order neighborhood (Oq(k2)/N2)◦
contains the dual of the 4-dimensional algebra Oq(k2)/(x2, y2) which is not commutative 
if q ̸= 1.

Fig. 2 illustrates the real part of the complex quantum plane Oq(C2)◦ in the case 
where q = −1, so that n = 2. The axes are classical sets of points, but with quantum 
formal neighborhoods. Meanwhile, the points off of the axes have orbits under the action 
of the group G−1 = {±1}2 of order 4. The points in each orbit become identified in the 
quotient by the group action and then “replaced” by the qubit M2.

4.3. Further discussion

In this final section we discuss how a similar analysis can in principle be carried out 
for other affine algebras that are module-finite over their center. Outside of the Azumaya 
locus, the finite dual can be described locally relative to the center with the following 
method. (This generalizes Proposition 2.17.)

Proposition 4.11. Let R be an affine k-algebra that is module-finite over its center Z =
Z(R). Then

R◦ ∼=
⊕

m∈MaxZ

lim−−→ (R/miR)∗ ∼=
⊕

m∈MaxZ

(Rm)◦.
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Proof. This proof is similar in spirit to that of Theorem 4.3. Consider the ideals of R
of the form JR where J ∈ F(Z). These have finite codimension in R since R/JR ∼=
Z/J ⊗Z R is module-finite over Z/J , and they form a cofinal subset in F(R) since each 
I ∈ F(R) has J := Z ∩ I ∈ F(Z) and JR ⊆ I.

As discussed in the proof of Theorem 4.3, each J ∈ F(Z) has the form J =
∏s

j=1 m
ej
j

for some mj ∈ MaxZ and integers ej ≥ 0. Thus our cofinal family of ideals in F(R) have 
the form

JR = (me1
1 · · ·mes

s )R = (me1
1 R) · · · (mes

s R).

From the Chinese Remainder Theorem we obtain an isomorphism of coalgebras

(R/me1
1 · · ·mes

s R)∗ ∼=
s⊕

j=1
(R/m

ej
j R)∗.

Passing to the direct limit over all J ∈ F(Z), which amounts to all possible (finite) 
products of powers of maximal ideals in Z, we obtain one of our desired isomorphisms:

R◦ ∼= lim−−→
J∈F(Z)

(R/JR)∗ ∼=
⊕

m∈MaxZ

lim−−→
i

(R/miR)∗.

The second isomorphism of the statement above follows from (Rm)◦ ∼= lim−−→(R/miR)∗, 
which is readily verified for any m ∈ MaxZ. "

By the duality [62, Theorem 3.6] between coalgebras and pseudocompact algebras, to 
understand (Rm)◦ is equivalent to understanding the m-adic completion R̂m

∼= (Rm)◦∗. 
Thus R◦ can in principle be described as above if one has a good understanding of the 
completed local structure of R relative to the maximal spectrum of its center.

The complete local structure of R is in turn determined by its étale local structure. 
The étale local structure of orders R over schemes has been of interest for many years. An 
important case investigated by Le Bruyn [45] is the local structure of Cayley-Hamilton 
algebras. In the case where R is smooth in the sense of [53, Section 4], he showed that 
R has only finitely many étale-local isomorphism classes. Much more about these orders 
can be found in [46].

Another special case in which the étale local structure has received much attention is 
that of orders over surfaces [3,16,15]. We will close with some remarks on how the known 
structure theory in this case relates to the decomposition of Proposition 4.11.

Let X be a smooth affine surface over k, and let R be a maximal order over Z = k[X]. 
Then R is ramified on the curve D which is the zero locus in X of the reduced discriminant 
I =

√
d(R), where d(R) is the classical discriminant [55, §10]. As described in [34, 

Proposition 1.6], for any closed point x of X, we are in one of the following three cases:

(i) x /∈ D, and R is étale locally isomorphic to a matrix algebra at x;
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(ii) x is a smooth point of D, and R is étale locally isomorphic at x to a hereditary 
order (whose structure is described in [55, (39.14)]);

(iii) x is a singular point of D.

All three of these cases appear in the example of the quantum plane Oq(k2) above. This 
is an order over the surface X = A2

k/Gq, with notation as in the previous subsection. 
Here D is the image in X of the Gq-invariant closed subscheme W = V (xy) of A2

k, which 
contains the image of the Gq-invariant origin. Then case (i) occurs on the complement 
of D (which is the Azumaya locus), case (ii) occurs on D away from the origin, and 
case (iii) occurs at the origin.

For a general smooth surface X with maximal order R over k[X], suppose that a point 
x falls under case (iii). If D is a divisor having only normal crossings, it is shown in [3, 
Theorem 1.2] that there are only finitely many possible isomorphism classes for the étale 
local structure at x. On the other hand, under the additional assumption that R has 
global dimension 2, the possible complete local structures of R have been classified up to 
Morita equivalence by Artin [4,5] and independently by Reiten and Van den Bergh [60]. 
This classification has been treated uniformly in [17] in terms of crossed product orders 
k[[u, v]] ∗η G where G is a finite subgroup of GL2(k) and η ∈ H2(G, k∗). Such crossed 
products are a special case of twisted tensor product algebras [20], whose finite dual 
coalgebras we will describe elsewhere [58].
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