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Abstract. It is shown that if p 2 S(A) is a complete type of Lascar rank at
least 2, in the theory of di↵erentially closed fields of characteristic zero, then
there exists a pair of realisations a1, a2 such that p has a nonalgebraic forking
extension over Aa1a2. Moreover, if A is contained in the field of constants
then p already has a nonalgebraic forking extension over Aa1. The results are
also formulated in a more general setting.

1. Introduction

In [4], motivated by the search for general techniques that might aid in proving

strong minimality for certain algebraic di↵erential equations, the first and third

authors introduced degree of nonminimality as a measure of how many parameters

are needed to witness that a type is notminimal. Working in a su�ciently saturated

model of a stable theory eliminating imaginaries, here is a precise formulation:

Definition 1.1. Suppose p 2 S(A) is a stationary type with U(p) > 1. The degree
of nonminimality of p, denoted by nmdeg(p), is the least positive integer d such

that there exist realisations a1, . . . , ad of p and a nonalgebraic forking extension

of p over Aa1, . . . , ad. If U(p)  1 then we set nmdeg(p) = 0 by convention.

Using an analysis of the multiple transitivity of binding group actions, it was

shown in [4] that nmdeg(p)  U(p) + 1 in the theory of di↵erentially closed fields

of characteristic zero (DCF0). Bounds on the degree of nonminimality have played

a significant role in recent proofs of strong minimality; of the generic di↵erential

equation in [2] and of the di↵erential equations satisfied by the Schwarz triangle

functions in [1]. Based on a maturing of the techniques used in [4], and informed

by the approach taken in [3] to a related problem, we give in this note a short proof

of a dramatic improvement to that bound:

Theorem. Suppose T = DCF0 and p is a complete stationary type of finite rank.
Then nmdeg(p)  2. Moreover, if p is over constant parameters then nmdeg(p)  1.

The bound is sharp; see [4, Example 4.2] for types of nonminimality degree 2.

The argument we give for the main clause, namely that nmdeg(p)  2, works

equally well in DCF0,m, the theory of di↵erentially closed fields in m commuting

derivations, and in CCM, the theory of compact complex manifolds. All one needs is
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that T be totally transcendental, eliminate imaginaries, eliminate the “there exists

infinitely many” quantifier, and admit a 0-definable pure algebraically closed field

to which every non locally modular minimal type is nonorthogonal. In DCF0,m

that pure algebraically closed field is the field of absolute constants and in CCM it

is the (interpretation in U of the) complex field living on the projective line.

The “moreover” clause of the theorem, however, does make use of the fact that, in

DCF0, the binding group of a type over the constants and internal to the constants

cannot be centerless.

The most general setting for the results is articulated, for the record, in Section 3.

Remark 1.2. A corollary of our theorem is a significant improvement to the main

result of [2], where it was shown that generic algebraic di↵erential equations of

order h � 2 and degree at least 2(h + 2) are strongly minimal. The proof in [2]

used that nmdeg(p)  U(p)+ 1. The same proof, but using the improved bound of

nmdeg(p)  2 obtained here, allows one to replace 2(h+ 2) by 6 in that result.

2. The proof

We work in a fixed su�ciently saturated model U of a complete totally transcenden-

tal theory T eliminating imaginaries and the “there exists infinitely many” quanti-

fier, with C a 0-definable pure algebraically closed field such that every non locally

modular minimal type is nonorthogonal to C.
Maybe the first thing to observe is that the degree of nonminimality is invari-

ant under interalgebraicity. Here we use the following, possibly nonstandard but

unambigious, terminology:

Definition 2.1. Complete types p, q 2 S(A) are said to be interalgebraic if for

each (equivalently some) a |= p there exists b |= q such that acl(Aa) = acl(Ab) .

That nmdeg(p) = nmdeg(q) when p and q are interalgebraic is more or less

immediate from the definitions; see for example [4, Lemma 3.1(c)].

The following consequences of nmdeg > 1 were observed in [4], but we include

some details here for the sake of completeness:

Fact 2.2. Suppose p 2 S(A) is stationary of finite rank with nmdeg(p) > 1. Then
p is interalgebraic with a stationary type q 2 S(A) such that q is C-internal and
q(2) is weakly C-orthogonal.
Proof. Note, first of all, that

(⇤) if a |= p and b 2 acl(Aa) \ acl(A) then a 2 acl(Ab).

Indeed, if a0 realises the nonforking extension of p to Aab then tp(a0/Aa) is a forking

extension of p. Since nmdeg(p) > 1 we must have that a0 2 acl(Aa), from which it

follows that a0 2 acl(Ab), and hence a 2 acl(Ab).
In the finite rank setting, condition (⇤), which is a weak form of exchange, implies

that either p is interalgebraic with a locally modular minimal type, or p is almost

internal to a non locally modular minimal type – see [6, Proposition 2.3]. The former

is impossible as U(p) > 1, and by assumption on T the latter implies p is almost

C-internal. We thus find a stationary C-internal q 2 S(A) that is interalgebraic

with p. Note that nmdeg(q) > 1 as well.

Suppose that q is not weakly C-orthogonal. Since the induced structure on C,
namely that of a pure algebraically closed field, eliminates imaginaries, this failure
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of weak C-orthogonality will be witnessed by some b |= q and c 2 C such that

c 2 dcl(Ab)\acl(A). By (⇤) applied to q this would force b 2 acl(Ac), contradicting
U(q) > 1. So q is weakly C-orthogonal. In particular, as it is C-internal, q is

isolated. We let ⌦ be the definable set q(U).
Now suppose that q(2) is not weakly C-orthogonal. Then there are independent

b1, b2 realising q and c 2 C such that c 2 dcl(Ab1b2) \ acl(A). Note that b2 /2
acl(Ab1c) as U(b2/Ab1) = U(q) > 1. So there is a partial Ab1-definable function

f : ⌦ ! C with infinite image and infinite generic fibre. It follows, by elimination

of the “there exists infinitely many” quantifier, that all but finitely many of the

fibres are infinite. As C \ acl(A) is infinite (it is an algebraically closed subfield

of C), there exists b 2 ⌦ \ acl(Ab1) such that f(b) 2 acl(A). If b |̂
A
b1 then

tp(b/Ab1) = tp(b2/Ab1) contradicting the fact that f(b2) = c /2 acl(A). So b 6 |̂
A
b1.

That is, tp(b/Ab1) is a nonalgebraic forking extension of q. But this contradicts

nmdeg(q) > 1. Hence q(2) is weakly C-orthogonal. ⇤
The following improvement to Fact 2.2 was not remarked in [4].

Lemma 2.3. Suppose p 2 S(A) is stationary of finite rank with nmdeg(p) > 1.
Then p is interalgebraic with some stationary q 2 S(A) such that

(a) q is C-internal,
(b) q(2) is weakly C-orthogonal, and,
(c) any two distinct realisations of q are independent over A.

Proof. Suppose a, b are realisations of p such that a 6 |̂
A
b. If a /2 acl(Ab) then

tp(a/Ab) is a nonalgebraic forking extension of p, contradicting nmdeg(p) > 1.

Similarly, we must have b 2 acl(Aa). In other words, a 6 |̂
A
b if and only if acl(Aa) =

acl(Ab). In particular, a 6 |̂
A
b is an equivalence relation on p(U), which we now

denote by E.

Applying Fact 2.2, we may assume that p is C-internal and p(2) is weakly C-
orthogonal. In particular, both p and p(2) are isolated, say by the LA-formulae

�(x) and  (x, y), respectively. Note then, that �(x) ^ �(y) ^ ¬ (x, y) defines the

forking relation E. So E is an A-definable equivalence relation.

Each class of E is finite. Indeed, if a |= p has an infinite E-class then there

is b 2 p(U) \ acl(Aa) with aEb. But that means that tp(b/Aa) is a nonalgebraic

forking extension of p, contradicting nmdeg(p) > 1.

Fixing a |= p, let e := a/E and q := tp(e/A). Note that e 2 dcl(Aa), and so we

still have that q is C-internal and q(2) is weakly C-orthogonal. Also, as the E-classes

are finite, p and q are interalgebraic. So it remains to show that any two distinct

realisations of q are independent. Suppose e0 |= q with e0 6= e. Then e0 = a0/E
for some a0 |= p such that ¬(aEa0). That is a |̂

A
a0. As acl(Aa) = acl(Ae) and

acl(Aa0) = acl(Ae0), we have that e |̂
A
e0, as desired. ⇤

We now work toward a proof of the main clause of the Theorem. That is, fixing

a finite rank stationary type p 2 S(A), we wish to show that nmdeg(p)  2. Let p
denote the unique extension of p to acl(A). It is immediate from the definition that

nmdeg(p) = nmdeg(p). We may therefore assume that A = acl(A). Let k := A\C,
it is an algebraically closed subfield of C.

In order to prove that nmdeg(p)  2 we may of course assume that nmdeg(p) > 1.

Hence, by Lemma 2.3, we can further reduce to the case that p is C-internal, p(2) is
weakly C-orthogonal, and any two distinct realisations of p are independent over A.
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Let ⌦ := p(U) and let G := Aut(p/C) be the binding group of p relative to C.
So (G,⌦) is an A-definable faithful group action. The action is transitive because

p is weakly C-orthogonal. Weak C-orthogonality of p also implies, along with A =

acl(A), that G is connected. The fact that p(2) is weakly C-orthogonal implies that

G acts transitively on p(2)(U). But p(2)(U) = ⌦
2 \ � where � is the diagonal,

because any two distinct realisations of p are independent over A. So (G,⌦) is a

2-transitive connected A-definable homogeneous space.

Now, the binding group action of any C-internal type is isomorphic to the C-
points of an algebraic group action, though possibly over additional parameters.

More precisely, let M � U be a prime model over A. Note that M \ C = k. There
exists an algebraic homogeneous space (G,⌦) defined over k, and an M -definable

isomorphism ↵ : (G,⌦) ! (G(C),⌦(C)).
In particular, (G,⌦) is a 2-transitive connected algebraic homogeneous space.

This is a very restrictive condition; a theorem of Knop [5] tells us that (G,⌦) is

either isomorphic to the action of PGLn+1 on Pn
, or is isomorphic to the action of

an algebraic subgroup of the group of a�ne transformations on An
, for some n > 1.

In either case we have a notion of collinearity which is preserved by the group

action. That is, given distinct u, v 2 ⌦(C) we can talk about the line `u,v ✓ ⌦(C)
connecting u and v, and for all g 2 G(C) we have that g`u,v = `gu,gv.

Fix distinct a, b 2 ⌦, and consider the set X := ↵�1
(`↵(a),↵(b)). Then X is a

rank 1 Mab-definable subset of ⌦.

Claim 2.4. There is a finite tuple c from C such that X is Aabc-definable.

Proof. It su�ces to show that if � 2 AutAab(U/C), that is, if � is an automorphism

of U that fixes A [ {a, b} [ C point-wise, then �(X) = X. Now, the restriction of

� to ⌦ is an element of the binding group, say g� 2 G, which fixes a and b. Hence

↵(g�) 2 G(C) fixes ↵(a) and ↵(b), and hence preserves the line `↵(a),↵(b). It follows
that

↵(�(X)) = ↵
�
g�(↵

�1
(`↵(a),↵(b)))

�

= ↵(g�)(`↵(a),↵(b))

= `↵(a),↵(b).

Applying ↵�1
to both sides we obtain that �(X) = X, as desired. ⇤

Let ✓(x, y) be an LAab-formula such that X = ✓(U , c). If, in addition, we chose

a, b 2 ⌦(M), then X and ✓(x, y) are over M , and it follows that there is c0 2 M \C
such that X = ✓(U , c0). But M \ C = k ✓ A, so that this witnesses the definability

of X over Aab.
We have thus found a, b 2 ⌦ and an Aab-definable subset X ✓ ⌦ of rank 1. Since

U(p) > 1, the generic type of X over Aab is a nonalgebraic forking extension of p.
Since a and b realise p, this witnesses that nmdeg(p) = 2.

This completes the proof of the main clause of the Theorem.

For the “moreover” clause, we return to the particular setting of T = DCF0

and C the field of constants. We make the additional assumption that A ✓ C and

show that nmdeg(p) > 1 leads to a contradiction. Indeed, that (G,⌦) is 2-transitive
forces G to be centerless; see for example the elementary argument at the beginning

of the proof of Satz 2 in [5]. But, in DCF0, the binding group of a type that is

C-internal and over constant parameters cannot be centerless; see for example the

proof of Theorem 3.9 in [3]. This contradiction proves that nmdeg(p)  1. ⇤
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3. Some remarks on the assumptions

We carried out the above proof under assumptions on T that were suitable for

generalisation to both DCF0,m and CCM. But it may be worth recording the

minimal hypotheses on T required for the proofs to go through. We leave it to

the reader to inspect those proofs and verify that what is actually proved are the

following two statements:

Theorem 3.1. Suppose T is a complete totally transcendental theory eliminating
imaginaries and the “there exists infinitely many” quantifier. Let U |= T be a
su�ciently saturated model and A ✓ U a parameter set.

(a) Suppose each non locally modular minimal type in T is nonorthogonal to
some A-definable pure algebraically closed field. Then nmdeg(p)  2 for all
stationary p 2 S(A) of finite rank.

(b) Suppose there exists a collection {Ci : i 2 I} of A-definable non locally
modular strongly minimal sets such that each non locally modular minimal
type in T is nonorthogonal to Ci for some i 2 I, and such that for all i 2 I,
(i) Ci \ acl(A) is infinite, and,
(ii) for all weakly Ci-orthogonal Ci-internal q 2 S(acl(A)), the binding

group Aut(q/Ci) has a nontrivial center.
Then nmdeg(p)  1 for all stationary p 2 S(A) of finite rank.
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