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ABSTRACT. We study intersection theory for differential algebraic varieties. Particularly, we study
families of differential hypersurface sections of arbitrary affine differential algebraic varieties over
a differential field. We prove the differential analogue of Bertini’s theorem, namely that for an
arbitrary geometrically irreducible differential algebraic variety which is not an algebraic curve,
generic hypersurface sections are geometrically irreducible and codimension one. Surprisingly, we
prove a stronger result in the case that the order of the differential hypersurface is at least one;
namely that the generic differential hypersurface sections of an irreducible differential algebraic
variety are irreducible and codimension one. We also calculate the Kolchin polynomials of the in-
tersections and prove several other results regarding intersections of differential algebraic varieties.
MSC2010 classification: 03C60, 03C98, 12H05

1. INTRODUCTION

Consider the following theorem from algebraic geometry:

Theorem. [7] 7.1, page 48] Let Y, Z be irreducible algebraic varieties of dimensions r,s in A™ Then
every irreducible component W of Y N Z has dimension greater than or equal to v+ s — n.

This theorem fails for differential algebraic varieties embedded in affine space, as the following
examples show.

Example 1.1. (Ritt’s example). We work in A3 over an ordinary differential field, k. Let V = V(f)
be the zero set of the single differential polynomial:

fla,y,2) = a® —y° + 2(2dy — yox)?
Though V is the zero set of an absolutely irreducible differential polynomial, it is not irreducible in

the Kolchin topology. V has six components. Let us denote the set of fifth roots of unity. For each
¢ € us, x — Cy cuts out a subvariety of V. Note that

== | JI (@—ny)+=0y0—Cy) —yoa - Cy))?
neps\{¢}
is a preparation eqution for f with respect to x — (y [L1l see chapter 4, section 13]. Further, one
obtains the preparation congruence, f = (x — (y) (H”IGHE)\{C}(x — ny)) modulo [z — (y]?, so by

the Low Power Theorem [18, chapter 7] or [11l chapter 4, section 15], [x — (] is the ideal of a
component of V. The general component is given by the saturation by the separant (with respect

to some ranking) of [f]. For instance, one possible choice of ranking would yield [f] : %Oo =

n
{g] (%) g € [f], for some n € N} as the ideal of the general component. By the component
theorem |11, Theorem 5, page 185], these are the only components. Now we consider the differential
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algebraic variety W, which is the general component of V. Establishing that (0,0,0) € W can be
done by noting that f is differentially homogeneous E| and applying [10, Proposition 2]. In fact, one
can prove that W N H consists of precisely (0,0,0) (see [19] for a nice exposition of the proof).

Example 1.2. Let X be a projective curve of genus at least two over a differentially closed field K
which does not descend to the constants. Buium [I] proves that X may be embedded as a differential
algebraic variety in projective space over K such that X lies outside of some unique hyperplane.
Passing to the affine cone of the projective space again gives an intersection with r +s—n =1, but
the intersection has dimension 0 (consisting of the origin).

The motivating questions of the paper come from the examples of Ritt and Buium:

Question 1.3. In the space of differential hypersurfaces of a particular order and degree, what is the
set of coefficients on which the intersection theorem fails for a given arbitrary differential algebraic
variety?

The main thrust of this paper is to provide an answer to this question by proving the differential
algebraic analogue of Bertini’s theorem. Roughly, we prove that the intersection of an irreducible
differential algebraic variety of dimension d and a generic hyperplane is a irreducible differential
algebraic variety of dimension d — 1.

Specifically, if V' is given by the differential ideal 3 C K{gy} and @ is a suitably long tuple
of independent differential transcendentals over K, then we analyze the properties of the ideal
(3, fal € K(w){y1,...,yn} where f; is the differential polynomial given by ug + >, u;m,(y) where
the m; are all of the differential monomials of order and degree bounded by some pair of natural
numbers. This analysis was already performed in the ordinary case |21]. In particular, we show that
[3, fa] is a prime differential ideal of dimension one less than J.

This result is the differential algebraic analogue of [8, Theorem 2 page 54|, which is an algebraic
precursor to Bertini’s theorem. The main problem with applying this result for making inductive
arguments in differential algebraic geometry is that the primality of the ideal holds only in the
differential polynomial ring over K(u). For various applications, and inductive arguments, one
would wish to take the coefficients @ in some ambient large differentially closed field and establish
the primality of [J, fz] in the polynomial ring over the differentially closed field. This is too much to
ask, because the corresponding theorem is not even true for algebraic varieties unless the dimension
of V is at least 2; the intersection of a degree d curve with a generic hyperplane consists d points.
Surprisingly, we show that algebraic curves are the only obstruction to the theorem. This portion
of the argument uses a differential lying-over theorem [20], a geometric or model theoretic argument
about ranks and the algebraic results established for [J, fz]. In other words, we prove geometric
irreducibility results:

Definition 1.4. An affine differential algebraic variety, V over k, is geometrically irreducible if
I(V) ® k' is a prime differential ideal for any k', a differential field extension of k.

Theorem 1.5. (|A| =m) Let V be a geometrically irreducible affine differential algebraic variety
over a A-field K. Let H be a generic differential hypersurface over K. Assume that the order of
H is greater than zero or that the Kolchin polynomial of V' is greater than (t;m) Then VN H s a
geometrically irreducible differential algebraic variety, which is nonempty just in case dim(V) > 0.
In that case, VN H has Kolchin polynomial:

wy i (t) = <t+m—h).

m

IThis is an observation of Phyllis Cassidy.
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Our analysis draws inspiration from [21], but we also use arguments of a more geometric and
model theoretic nature. In particular, we employ the theory of prolongation spaces, in the sense of
Moosa and Scanlon [15] and arguments which use several properties of Lascar rank.

Following the proof of our main theorem, we give a result regarding intersections of differential
algebraic varieties with generic differential hypersurfaces passing through a given point. Specifically,
we prove that if V' is a d dimensional differential algebraic variety and Hy, Hs, ... Hgq1 are generic
differential hypersurfaces which contain @ and V' N ﬂ?;l H; #0,thenacV.

The special case in which the H; are hyperplanes in the case of one derivation was proved in [21];
our proof of the generalization is much shorter, owing to using stability theoretic tools (e.g. Lascar’s
symmetry lemma). This also generalizes [17, Theorem 1.7].

One expects the main theorem of paper to be useful for proofs by induction on the differential
transcendence degree of a differential algebraic variety. For instance, in [2], the theorem is used
to study completeness in the Kolchin topology and [5] uses the results of this paper to construct
differential Chow varieties.

Acknowledgements. I would like to gratefully acknowledge the patient and thorough explanations
of Ritt’s example by William Sit and Phyllis Cassidy. This example, in part, triggered my interest in
the problems considered here. Thanks to Phyllis Cassidy for alerting me to the work of Xiao-Shan
Gao, Wei Li, and Chun-Ming Yuan. Their techniques obviously had a major influence.

This work constitutes a portion of my thesis, supervised by David Marker. Thanks to David for
many useful conversations on the topic. Thanks also to Rahim Moosa for several useful conversations
on the problems considered in this paper, several of which took place during a visit to Waterloo
sponsored by an American Mathematical Society Mathematics Research Community Grant.

2. SETTING AND DEFINITIONS

We will very briefly review some of the developments from model theory and differential algebra
necessary for our results; more complete expositions can be found in various sources, which we cite
below. We use standard model-theoretic notation, following [12] and differential algebraic notation,
following [11]. In this paper, we will take k to be a differential field of characteristic zero in m
commuting derivations, A = {01, ...,0,,}. In this setting, we have a model companion, the theory of
A-closed fields, denoted DC'Fy ,,,. One may work entirely within a saturated model U = DCE ,, for
this paper, taking all differential field extensions therein. However, the results of this paper require
care with respect to the field we work over. We do not consider abstract differential algebraic varieties
or differential schemes; we only consider affine differential algebraic varieties over a differential field.
One can easily extend many of the results of this paper to the projective case, but we do not address
this directly.

The type (in the sense of model theory) of a finite tuple of U over k is the collection of all first order
formulae with parameters from k which hold of the tuple; for a given tuple a, we write tp(a/k). A
realization of a type p over k (we write p € S(k)) is a tuple from a field extension satisfying all of the
first order formulae in the type. As DCF} ,, has quantifier elimination, we have a correspondence
between types and prime differential ideals and differential algebraic varieties. Given a type p € S(k),
we have the corresponding (prime) differential ideal via

p— I, ={f € k{y} | f(y) =0 € p}.

The corresponding variety is the zero set of I, = {f € k{y}|f(y) =0 € p} in U™ where n is the
length of the tuple g.

For the reader not acquainted with the language of model theory, the type of a tuple b over k cor-
responds to the isomorphism type of the differential field extension k(b)/k with specified generators.
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Let © be the free commutative monoid generated by A. For § € O, if § = 67" ...0%", then

ord(@) =aj + ...+ ...+ ap. The order gives a grading on the monoid ©. We let
O(s) ={0 €O : ord(9) < s}.

When R is a A-ring and S C R, by [S] we mean the A-ideal generated by S in R. When f
is an element in a differential polynomial ring, by V(f), we mean the zero set of the differential
polynomial. Let f be a differential polynomial of order h in K{x1,...,2z,}. Then f is a polynomial
in the ring K[fz; : i = 1,...,n, 0 € O(h)]. When we think of f as a polynomial in K[0z; : i =
1,...,n, 6 € ©(h)], we will write Z(f) for the corresponding Zariski closed subset of A ().

Analagous notation applies to ideals or sets of elements in (differential) rings.

Theorem 2.1. (Theorem 6, page 115, [11]) Let n = (m1,...,nn) be a finite family of elements in
some extension of k. There is a numerical polynomial wy i, (t) with the following properties.
(1) For sufficiently large t € N, the transcendence degree of k((01;)sceo(t), 1<j<n) over k is equal
to wy /i (t).
(2) deg(wy/k(t)) <m
(3) One can write
W) = > a; (t er Z)
o<i<m
In this case, a,, is the differential transcendence degree of k{(n) over k.

Definition 2.2. When V is a differential algebraic variety over k and b € V is such that
{fek{z}|f(b) =0} ={f e k{z}|Va eV, f(a) =0},

we call b a generic point on V over k. When V is a differential algebraic variety over k and b € V is

a generic point over k, we define dim(V') to be the A-transcendence degree of k(b) over k.

Definition 2.3. The polynomial from the theorem is called the Kolchin polynomial or the differential
dimension polynomial. Let p € S(k). Then wy(t) := wyx(t) where b is any realization of the type p
over k.

Suppose that p and ¢ are types such that ¢ extends p. This means p € S(k) for some differential
field k and ¢ € S(K) where K is a differential field extension of k; further, as a sets of first order
formulae p C gq.

Definition 2.4. Let ¢ extend p. We say ¢ is a nonforking extension of p if

wp(t) = wy(t)-
Note that the Kolchin polynomial on the left is being calculated over k£ and the Kolchin polynomial
on the right is being calculated over K. When w)(t) # wq(t) (in which case wy(t) > wqy(t)) we say
that ¢ is a forking extension of p.
If v1, vy are tuples in a differential field extension of K and tp(v; /K (v2)) is a nonforking extension
of tp(vy1/K) then we say that vy and vs are independent over K (or simply independent if K is clear
from context).

Note that tp(vy /K (v2)) being a nonforking extension of tp(v; /K) actually implies that tp(ve /K (v1))
is a nonforking extension of ¢tp(vy/K), so this notion is symmetric.

Definition 2.5. Let p be a type. Then,
e RU(p) > 0 just in case p is consistent.

2Tt is well-known that |©(h)| = (m;’;h)-
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e RU(p) > B, where § is a limit just in case RU(p) > « for all a < 3.

e RU(p) > a+ 1 just in case there is a forking extension ¢ of p such that RU(q) > a.
The ordinal RU(p) is called the Lascar rank of p. When a € U™, we will write RU(a/K) for
RU (tp(a/K)).

Remark 2.6. The last three definitions are specific instances of model theoretic notation in the setting
of differential algebra; for the more general definitions, see [16]. Our development of these notions
is rather nonstandard; normally, forking is defined in a much more general manner. That forking
specializes to the above notion in differential algebra requires proof, but is a natural consequence of
the basic model theory of differential fields, see [13], sectiond]. A forking extension of the type of a
over k is given by some differential field extension K D k such that {f € K{z}| f(a) = 0} properly
contains the ideal I(V) ®j K.

Specific instances of calculations of Lascar rank in this setting are often quite involved and can
be found in various sources [4 [3].

Let U be a definable set over k and let U be the closure of V in the Kolchin topology over
k. Suppose that U is irreducible over k. We will set RU(V) to be equal to the supremum of the
collection {RU(p) |p € U}. We will be using Lascar rank at various points, and remind the reader
of the following result, which we use throughout the paper:

Proposition 2.7. [13] 5.2.2] Let b be a tuple in a differential field extension of k. Then
dim(b/k) = n if and only if W™ -n < RU(tp(b/k)) < w™ - (n+1)
We will also require a differential notion of specializations:

Definition 2.8. Let A = {61,...,d,,}. Let A" = {d},...,0,,}. A homomorphism ¢ from A-ring
(R, A) to A'-ring (S, A’) is called a differential homomorphism if for each i, ¢ 0 J; = ;0 ¢p. When R
is an integral domain and S is a field, then such a map is called a A-specialization.

The following proposition is proved in a constructive manner in [2I Theorem 2.16]; and an
analogous proof works in the case of several commuting derivations.

Proposition 2.9. Let 4 = (u1,...,u,) CUWU be a set of A-K independent differential transcendental
elements. Let § = (y1,...,yn) be a set of differential indeterminates. Let P;(u,y) € K{u,y} for
i=1,...,n1. Suppose ¢ : K{gy} — U be a differential specialization into U such that @ is a set of A-
transcendentals over K{(¢(y)). Suppose that P;(u, $(§)) are (as a collection), A-dependent over K ().
Then let v be a differential specialization from K{(u) — K. The collection {P;(y(a), p(y))}i=1,....n1
are A-dependent over K.

3. INTERSECTIONS

In this section we develop an intersection theory for differential algebraic varieties with generic A-
polynomials. The influence of [21] for proving statements about irreducibility over specific differential
fields is obvious; we have adapted their techniques to the setting of several commuting derivations.

Definition 3.1. In A", the differential hypersurfaces are the zeros of a A-polynomial of the form

ao + E a;m;

where m; are differential monomials in F{y1,...,y,}. For convenience, in the following discussion,
we do not consider 1 to be a monomial. A generic A-polynomial of order s and degree r over K is
a A-polynomial

f:a0+zaimi
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where m; ranges over all differential monomials of order less than or equal to s and degree less than
or equal to r (i.e. monomials of ©(s)(y) of degree at most r) and (ag,ay,...,an,) is a tuple of
independent A-transcendentals over K. A generic A-hypersurface of order s and degree r is the zero
set of a generic A-polynomial of order s and degree 7. When f is given as above, we let ay be the
tuple of coefficients of f. Throughout, we adopt the notation a; = as\{ao}-

By a generic differential polynomial (hypersurface), we mean a generic differential polynomial
(hypersurface) of some order s and some r > 1.

The next lemma is proved in the ordinary case in [21) Lemma 3.5]. The proof in this case works
similarly, assuming that one sets the stage with the proper reduction theory in the case of several
commuting derivations. One might notice that Lemma 3.5 of [21] has a second portion. For now,
we will concentrate only on the irreducibility of the intersection. Necessary and sufficient conditions
for the intersection to be nonempty will be given later.

Lemma 3.2. Let § = (y1,...,Yn) and yo be another indeterminate. Let J be a prime A-ideal in
K{y} and let f = yo + >_, a;m; where the sum ranges over all monomials of ©(h)y of degree d;
and @ s a tuple of independent A-transcendentals over K. Then Jog = [7J, f] is a prime A-ideal of
K{as){y,yo}. Further, 3o N K{as){yo} # 0 if and only if V' has dimension zero.

Proof. Let b= (b, ...,b,) be a generic point of V = V(J) over K such that b is independent from
a over K (see Definition . Consider the tuple (b1, ...,b,,— >, a;m;(b)). We show irreducibility
of the variety V(Jp) in A"*! via showing that it is the Kolchin closure of (b1, ..., by, — >, a;m;(b))
over K, from which the result follows because the ideal of differential polynomials in K{g,yo} which
vanish at a given point is a prime ideal.

Suppose g is a A-polynomial in K (a){¥,yo} which vanishes at (by,...,b,, — >, a;m;(b)). Fix a
ranking so that y is the leader of f. Then the partial remainder of g with respect to f [11] page 77]
gives some go (which is equal to g modulo the differential ideal generated by f). This go must be in
K{as){y1,...,yn}. Since b is generic for J, we must have that go € K{(as) - J. But then g € Jy and
the claim follows.

We have seen that (by,...,bn, — >, a;m;(b)) is generic on V(Jo). If K(by,...,b,) over K has
differential transcendence degree zero, then K(a, — Y, a;m;(b)) over K (a) has differential transcen-
dence degree zero, so Jo N K(a){yo} is not the zero ideal. Conversely, if K(b1,...,b,) over K has
differential transcendence degree greater than zero, then since @ is independent from b over K,
>, aim;(b) is a differential transcendental over K (a), and so Jo N K (af){yo} is the zero ideal. [

Now we turn towards establishing necessary and sufficient conditions for the intersection to be
nonempty when we relax the sorts of intersections under consideration. In the case that the inter-
section is nonempty, we calculate the differential transcendence degree.

This next lemma was originally proved in |17, Theorem 1.7] in the ordinary case, and was reproved
in [21] in the ordinary case. The proof in the case of several commuting derivations can be found in
[3, Proposition 4.1].

Lemma 3.3. Suppose that V is a differential algebraic variety such that RU(V/K) < w™. Then
VNV(f(z)) =0 for any generic differential polynomial f(ZT).

Lemma 3.4. Suppose that V' is a differential algebraic variety embedded in A™ and that V s of
dimensiond > 1. If f(Z) is a generic differential polynomial, then VNV (f) # 0 and dim(VNV (f)) =
d—1.

Proof. Let V = V(3J); we will be following the general notation of with f = yo + >, aimi(y).
Define fy := 3 .a;m;(y) and let a; be the tuple of a; coefficients which appear in f. Define
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Jo = [3,f] € K{(as){¥,y0} as in Here yo appears as an indeterminate in the differential
polynomial ring. Define 7, = [J, f] C K(ays, yo){7}.

Let b be a realization of the generic type of V over K. Reorder the coordinates if necessary so
that by,...,bg are a A-transcendence basis for the A-field extension generated by b over K. Because
V C A" is isomorphic to V(Jg) C A" dim(V (Jo)) = d.

Since J C Ty, each of y; for ¢ > d is A-dependent with y1,...,yq modulo J (and thus J;).
So, Yo,Y1,---,Ya are A-dependent modulo Jy and so y,...,yq are A-dependent modulo J;. Thus
dim(V(31)) <d - 1.

Now supopose that y1, ..., yq—1 are A-dependent modulo J;; then there is some nonzero element
p(Y1,...,Ya—1) € J1. By clearing denominators one, can take p € K{as,v1,...,Yd—1,Y0}. Then
p(C_Lf, bl7 ey bdfl, —fo(b)) =0.

Now specialize a4, the coefficient of y4 in the generic differential hypersurface to —1 and specialize
all other a; € ay to 0. But then by,...,bq are dependent over K by a contradiction to the
assumption that V' has dimension d.

|

Lemma 3.5. Let J be a prime A-ideal in K{y1,...,yn}. Let f = yo + >, a;m;(y) be a generic
differential polynomial. Then 3, = [J, f] is a prime A-ideal in K(yo,ar){y1,...,Yn}-

Proof. First, suppose that the dimension of V' is at least one. Then by Lemmal[3.4] V(I)NV(f) # 0.
Recall the notation of Jy from Lemma We will show that 3y N K{af){y1,-..,Yn, ¥} = Jo.
Suppose that we have g,h € K(af,yo){y1,...,yn} such that g-h € J;. Since we are taking a field
extension over K, the coefficients of the differential polynomials might involve differential rational
functions in a s, yo over K. Clearing denominators, by multiplying by suitable differential polynomials
in yo,ay over K, we obtain g,h € K{ays,yo,¥1,-..,Yn} such that g - h € Jp. But, Jp is prime by
Lemma So, we have a contradiction and J; is prime. Further, we can see (again, simply by
clearing denominators) that J; lies over Jy, when we regard Jg as an ideal of R{y1,...,y,} where
R =K(as){yo}-

In the case that dim(V) = 0, 3o N K{as){yo} # 0 by Lemma and so J; must be the unit
ideal. ]

Lemma 3.6. LetJ be a prime differential ideal of K{y1,...,yn} andletV =V (3J) be the correspond-
ing irreducible differential variety. Suppose that the dimension d of V is greater than zero. Let f =
ao+ >, a;m;(y) be generic of order h > 0 and degree di > 0. Let 31 = [T, f] € K{af){y1,.--Yn}-
Then,

t+m—nh
WV (31)/K (ag,ar,....an) (t) = Wy () /K (t) — ( ; >

Proof. In this proof, we associate a differential algebraic variety V naturally with its prolongation
sequence (for complete details, see [14]). Briefly, recall, the data of a prolongation sequence is the
sequence of algebraic varieties:
I4+m
Vi = {(07) |z € X(U), 0 € ©(1)}< € A" (),
where (—)¢ denotes Zariski closure and the coordinates are ordered by the canonical orderly ranking
induced by taking §; < §; when i < j. It is a fact that the sequence V; determines V'; by Noetherianity
of the Kolchin topology, a finite subsequence determines V. Given a sequence of algebraic varieties

m

(M)ien with V; C A™ T ), we call the sequence a prolongation sequence if for all [ € N, the
projection map V; — V; (to the first n - (ltnm) corrdinates) is dominant and the variety V;,; satisfies
the differential relations forced by V;. In the notation of [14, page 7, preceeding Proposition 2.5]
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this second condition is formally expressed by saying that after embedding 7,(A™) in 7¢(A™) and
Tor1(A™) in 7¢F1(A™), we have that Vi is a closed subvariety of T(Vl)ﬁ

There is a bijective correspondence between differential algebraic varieties and prolongation se-
quences. V is irreducible over K if and only if the all of the varieties in the corresponding prolonga-
tion sequence are irreducible over K. The ideal corresponding to V; given by the ideal of differential
polynomials in K{yi,...,y,} of order at most £ which vanish on V.

For large enough values of [, the dimension of V; is given by the value of the Kolchin polynomial
of V. We will show that

vin () (z0)
0€O(l—h)

is a prolongation sequence. Once this fact is established, it is clear that it must be the prolongation
sequence corresponding to VNV (f) (since each the given algebraic relations clearly hold on VNV (f)).
Consider the differential algebraic variety W C A"*! given by Jy as in Lemma Iﬂ[ above. As
differential algebraic varieties, W and V are isomorphic, by the obvious maps. The prolongation
sequence associated with W is given by W; 2 V; x Al when [ < h and

Wiz (VixADN () VO(fy)),
0€O(l—h)

when [ > h, where f,, is the differential polynomial f with yo in place of ag. To verify that this is a
prolongation sequence, we need only determine that the maps W;;1 — W; are dominant (since the
second condition is obvious from the definition of the sequence). Then since the relation f,, = 0 holds
on W, by the bijective correspondence between prolongation sequences and differential algebraic
varieties, the sequence must be the prolongation sequence associated with W. When [ 4+ 1 < h, this
follows simply from the fact that V; forms a prolongation sequence, noting that W, = V; x A}.

In what follows, we reorder the coordinates of each W; so that W; C V} x All for each [ € N. When
[ > h, W, is a subvariety of V; x A] determined by the zero set of 6(f,,) = 0 for each § € (I — h).
So, W, is a subvariety of

Vix Al 2V x AT 5 A =(70)

where the the copy of ACTS™) in the above equation corresponds to the coordinates 6(yg) with 6 €
O(l—h) and the copy of AT =70 corresponds to the coordinates 6(y) with 8 € ©(1)\O(I—h).
Since the order of 6(f,,) is the order of # plus h, one can see that W, is given

I—h+m I+m l—h+m

Wi = (Vi< Al awy) < a5,

where

Wl/ c Vl X All—h
is given the vanishing of 6(f,,) = 0 for each § € ©(l — h). Since 6(f,,) is linear in §(yo), W/ is the

graph of a function V; — AT

By our assumption dim (V) > 1, for some j, {6 o 6"y, |0 of order I — h} are independent tran-
scendentals over K (as)({ny:|n € O(1), i # j} U{ny; |n < 8:7"6" 1) where we note that

{myi |n < 017"} = {ny; [n € O} \ {00 67,y; 10 of order | —h}.
But, on W1, for 0 of order [+ 1 — h, fyq is linearly dependent with 66", (y;) over K {(as)({ny:|n €
o), i # 3} U {ny; [n < 87"5%}).

3This is condition b in [14] in the paragraphs before Proposition 2.5.
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Thus on Wit1, {0(yo) |0 of order I + 1 — h} are transcendental over
Kap)({nyilne ©U+1),i# 51U ({ny;[neOU+1)}\{006d,y;]0 of order [ +1 — h})).

Thus, onto the coordinates indexed by yq for 6 of order [+ 1 — h, the image of W41 in W} is dense.
Thus the map W11 — W; must be dominant.
The sequence of varieties
S=vin (] (60
0€0(I—h)

is the fiber of the family W; when yy = ag. In order to verify the dominance of the projection maps
in the sequence, it suffices to consider only bounded subsequences. Verifying the dominance of the
projection maps in a sequence (S;); for I bounded by some s is a constructible condition on the
coeflicients given by ag and its derivatives of order at most s — h.

That is, the condition that these finitely many maps be dominant is constructible in {6(ao) |6 €
©(s —h)} over K(ays) and since that dominance holds for (W);, it must hold for some Zariski-open
subset. By the genericity of ag over K(ay), our finitely many maps must be dominant and so (S;);
is a prolongation sequence.

For the calculation of the Kolchin polynomial, note that both Vi N'(Nycqq_p) Z(0(f)) and W
are sequences of irreducible varieties and the surjective map Wi — ViN(Nyeq_p) Z(0(f)) has fiber

dimension (lfnm) .

The dimension of W; is given by dim(V;) + (lfnm) — (Z+Tn_h) because above the coordinate g,
(l':nm) is the number of coordinates ©(1)(yo), and (l+Tn_h ) is the number of equations which give the

graph of the function in the above definition of W}.
O

Putting together the previous results of the section, and restating the theorem in the form we
will apply it later, we have:

Theorem 3.7. Let V' be a Kolchin-closed (over K) subset of A™ with differential transcendence
degree d. Let H be a generic (with respect to K ) differential hypersurface of some degree and order h
with coefficients given by a. Then VN H is irreducible over K(a). In the case that d =0, VN H = .
If d > 0, then the Kolchin polynomial of V N H is given by

t+m— h)

WYAH/K (ag) (1) = Wy (t) — < m

One key point to notice is that
t+m—h\ [(t+m hz_:l t+m—1—1
m N m = m—1
as long as h > 0 and ¢ is sufficiently large, and that under these circumstances,
hz‘:l t+m—1—i
< m—1
=0
is a positive integer. In the special case that m = 1, this integer is h; meaning the previous theorem

is a generalization of the following theorem, proved in [21, Theorem 3.13] when K is an ordinary
differential field:

Theorem 3.8. Let J be a prime §-ideal in K{y} with Kolchin polynomial (t + 1)d + c. Let f be a
generic §-polynomial of order h and degree d. Then 31 = [J, f] is a prime d-ideal in K{az){y} with
Kolchin polynomial (t+1)(d—1)+c+h
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Remark 3.9. Note that in the results of this section, we are considering the Kolchin topology over
a specific field (in many of the above statements, the field was K(ay) or K{as,yo)). For various
applications, it is useful to take the elements ay and yo as above from some particular differential
field K; extending K (for instance, K; might be a differentially closed field). For this, we would
need to establish the irreducibility of various above intersections over Ky, which extends K{a, yo)-

We have not proved any statements about irreducibility over field extensions of K{ay,yo), nor do
the authors of [21] in the ordinary setting. In fact, at least one additional hypothesis is necessary
for results of this nature: if the hypothesis were purely in terms of dimension, d,, we would have to
restrict to the situation d > 2. For instance, take any degree d; > 1 plane curve. This curve meets
the generic hypersurface of degree ds in precisely d; - d2 points, so the intersection is not irreducible
over any algebraically closed field (so in particular K (ay,yo)9).

4. GEOMETRIC IRREDUCIBILITY

Before discussing geometric irreducibility, we will require some results about the Kolchin polyno-
mials of prime differential ideals lying over a fixed prime differential ideal in extensions. The next
result follows from [11l page 131, Proposition 3, part b], which is more general, allowing for positive
characteristic.

Proposition 4.1. Let p be a prime differential ideal in K{yi,...,yn}t and let & be a differential
field extension of K. Then &p has finitely many prime components in &{yy1,...,yn}. If q is any one
of the components, then q NV K{y1,...,yn} and we have equality of the Kolchin polynomials:

Wy = Wp.

Remark 4.2. In model theoretic terms, the generic types of the components V(p1),...,V(p,) of
V(p) are each nonforking extensions of the generic type of V(p). Assuming that the base field K is
algebraically closed would ensure that the generic type of V(p) is stationary; consequently &p is a
prime differential ideal for any field extension & of K.

Recall the following definition given in the introduction:

Definition 4.3. An affine differential algebraic variety, V over K, is geometrically irreducible if
I(V/K') =1(V) @ K’ is a prime differential ideal for any K’, a differential field extension of K.

Remark 4.4. Remark shows that for differential varieties over a field K, enough to consider
irreducibility over K9, the algebraic closure of K.

Theorem 4.5. Let V be a geometrically irreducible Kolchin-closed over K subset of A™ with Kolchin

polynomial wy (t) > (t'fnm). Let H be a generic hypersurface. Then VN H is geometrically irreducible

and wgnv () = wy/ K (t) — (tl’”)-

Proof. Let d; be the degree of H. Consider the the differential algebraic variety W = {(v1,v2, 8) |v; €
Vv, € Hg} CV xV x A(nzldl)_l where Hp is the hypersurface given by ) f;m; = 1, where the
sum ranges over all monomials in Z of degree bounded by d;. Note tuple S is of length (("gldl) -1,
the number of monomials of degree bounded by d; in n variables, excluding 1.

Consider V N Hg. When 3 is generic over K, we know that V' N Hg is irreducible over K (f), so
by the Proposition all of the components of V' over the algebraic closure of K(/3) have Kolchin
polynomial equal to wynm, k(s (t). If V N Hg has more than one component, then W has more
than one component with Kolchin polynomial at least

s (75 9) (1)
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To see this, again note that the length of the tuple 3 is (("Zldl) — 1), the number of monomials
of degree bounded by d; in n variables, excluding 1. The Kolchin polynomial of a generic 5 over K

is given by ((";‘l'ldl) — 1) . (m;'t). The Kolchin polynomial of two independent (see Definition

generic points (v1,v2) on V N Hg is given by 2 (wv/K (t) — (t;m)) Thus by Sit’s lemma [4, Lemma
2.9], the Kolchin polynomial of the tuple (v1,vq, ) is at least

(599 (1)

Suppose there is more than one component of V' N Hg over K (8)®9. Then there are elements
v1,v2 € VN Hg over K(B)*9 with Kolchin polynomial Wy, /K (B) (1) = wy K (t) — (t‘:”) fori=1,2
and tp(v1/K(B)) # tp(va/K(B)). So there is more than one type of the triples (v1, va, 8) with vy, vg
generic and forking independent on V' N Hg over K(f3), depending on if v; and v, are in the same

component of V N Hg over K(3)*9. Now, we consider components of W with Kolchin polynomial
d t
at least 2 - wy/k (t) + ((”;1 N - 3) (™.
Suppose v; and vy are points on V, and 3 is generic subject to the condition that Hg contains
v1,vg. If v1 # vy, then we claim that

n+d m+t
Woyz,8/K (1) = Woy 0,k () + (< dy 1) _3) . < t )

To see this, simply note that for v; # vy, we get two independent linear conditions on .
The only way that

o () 9) (52 (599 )

is for v1, vy to be independent generic points on V', in which case, equality holds.
By similar analysis, if v1 = va, then wy, o, /K (t) = wy, /x (t) + (("+d1) — 2) . (m+t).

dq t
Since wy (t) > ("I),

m

w0 ((50) =2)- (") <remo ((50) =9)- (")

So there is a unique type on W of rank 2 - wy g (t) + ((";1‘11) — 3) . (m:'t)

By our earlier arguments, there is a unique component of V' N Hg over K(£)%9 with Kolchin
polynomial wy — (t';m). But, by Proposition we know any of component of V' N Hg must have
Kolchin polynomial wy — (t':nm). So, V'N Hg is geometrically irreducible. (Il

In the proof of the previous theorem, we can weaken the assumption that wy(t) > (tfnm) to
wy (t) > (t':nm) in the case that the order of the differential hypersurface we consider is greater than

0. That is, in this case, V' might be an algebraic curve:

Theorem 4.6. Let V' be a geometrically irreducible Kolchin-closed over K subset of A™ with Kolchin
polynomial wy (t) > (tjnm). Let H be a generic differential hypersurface of order h > 0. Then VN H
is geometrically irreducible and

wrnv (t) = wy (t) — (t e h)

m
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Proof. Let dy be the degree of H. We define W = {(v1,v2,8) |v; € V, v; € Hg} CV xV x A™ where
Hyp is the differential hypersurface given by > 8;m; = 1, where the sum ranges over all monomials
in Z of order bounded by h and degree bounded by d;. Note that

. t+m
nl:(n (m )+d1)—1.

dq

Fixing two independent generic points on V' N Hg, v1 and vz, choose coeflicients of the generic
differential hypersurface, relative to the condition that Hg contains v; and ve. That is, v; € Hg for
i = 1,2 imposes a linear condition on the coefficients g of the differential polynomial whose zero set
is Hg; we choose the coefficients, 3, generically in this linear subspace (over K(vy,vs)). This gives
a tuple (v1,va, 8) with Kolchin polynomial

2m4w—zc+fz_h>+n%?;ﬁ).

If there is more than one type on V' N Hg with Kolchin polynomial wy () — (H’;;h), then there is
more than one type on W with Kolchin polynomial 2wy (t) — 2(t+:“n_h) +ny (t';lm).

In general, for any (possibly) non-generic choice of v1,vy € V, if v1 # v, the Kolchin polynomial
of (v1,va, B) is bounded by wy, 4,k (t)+(n1) (tj;m) —2(”27]1). To see this, note that any 3 such that
(v1,v2, 8) has the property that the coordinates 3 satisfy to linearly independent linear equations
in K (v1,v2) which are of order h in v; and v, respectively.

Thus, the only way for

t+m t+m—h t+m—h t+m
R G SIS e

is to choose v1, v5 independent generics on V.
If v; = vy then noting that since h > 0 implies wy (¢) —
(v1,v2, B) is bounded by

t t —h t —h t
wvl/K(t)+n1( ;m) —( i ><2wv(t)—2< I )+n1< ;m)

Thus W has a unique type of maximal Kolchin polynomial. If V' N Hg has more than one
component over K(f), then there are two distinct types on V' N H with Kolchin polynomial wy (t) —
(t‘HT':L_h) and thus at least two types on W with Kolchin polynomial 2wy (t) — Q(H'fl_h) +ny (tj;”),
a contradiction. (]

(t+r;:;h) > 0, the Kolchin polynomial of

Combining Theorems [4.5] and we obtain our main Theorem [T.5] which we restate here:

Theorem. Let V' be a geometrically irreducible affine differential algebraic variety over a A-field
K. Let H be a generic differential hypersurface over K. Assume that the order of H is greater
than zero or that the Kolchin polynomial of V is greater than (tjnm) Then VN H s a geometrically
irreducible differential algebraic variety, which is nonempty just in case dim(V) > 0. In that case,
V' N H has Kolchin polynomial:

t+m— h)

m

wy/K (t) = (

Remark 4.7. There are several notions of smoothness in the context of differential algebraic geometry,
coming from the differential arc spaces considered in [14} [15] and from Kolchin’s differential tangent
spaces [11]. One can prove that generic intersections preserve any of these notions of smoothness
(for more details, see [6]). For other notions of smoothness, see [9] and [20].
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5. GENERIC DIFFERENTIAL HYPERSURFACES THROUGH A GIVEN POINT

In this section we prove a generalization of [2I, Theorem 4.42]. The proof of the special case
in [2I] uses differential specializations. Our approach here is rather different, though a proof by
suitably generalized methods of [21] is possible. Such an approach would avoid any machinery of
stability theory (e.g. Lascar rank), but the use of this machinery allows for a quick proof.

Theorem 5.1. Let V' be a differential algebraic variety of dimension d. If the set of d4+1 independent
generic differential hypersurfaces of order h and degree dy through @ intersects V', then a € V.

Proof. We note that the fact that V' is of dimension d implies that w™-d < RU(V/K) < w™-(d+1)
(see Proposition . We will prove the result by induction on d.

Let a ¢ V. First, we will argue the result in the case that @ = (0, ...,0). Any hypersurface through
the origin is of the the form 3 ¢;m;(7) = 0, where the sum ranges over all monomials of order less
than or equal to A and degree less than or equal to d;. We assume that the ¢; are independent
differential transcendentals over K. We denote this differential hypersurface by Hz. Suppose that
V N H; # () and b is a generic point on one of the irreducible components of V N H; over K (¢). We
may suppose that b # (0, ...,0), since the Theorem holds in this case.

Now since b € HzNV, we know that Y ¢;m;(b) = 0. Note that this is a nontrivial linear relation for

¢ over K (b). Since over K, ¢ is a tuple of independent differential transcendentals, using Proposition
2.7}
RU(¢/K (b)) +w™ < RU(¢/K).
But, then by Lascar’s symmetry lemma [16, chapter 19]
(A) RU(b/K (&) +w™ < RU(b/K).

Thus, by Proposition the differential transcendence degree of b/ K (¢) is at least one less than
that of b/ K. In the case that RU(V/K) < w™, the above argument using Lascar’s symmetry lemma
shows that VN H; = (). Note that by Proposition ifd =0, then RU(b/K) < w™, and so equation
@ can not hold; thus our assumption that V' N Hz # ) must have been incorrect, establishing the
case d = 0.

By Theorem and Proposition

W™ (d—1) < RU(V N Hy/K(©)) <w™ - d.

Now the result follows (again in the case a is the origin) by the induction hypothesis since V N Hz
has dimension d — 1.

Now, suppose that a@ is some point besides (0, ...,0). If so, adjoin a to the field K and consider
the V over K(a). It is possible that V is not irreducible over K (a); suppose that V' has components
Vi,..., Vi over K(a). By Propositioneach of the components has the same Kolchin polynomial as
V. Fix some component V; for i = 1,..., k. By the translation ¢z : A" — A", defined by z — Z —a,
we replace V; with ¢5(V;) and a with (0,...,0). Because the map ¢z sends generic differential
hypersurfaces over K (a) to generic differential hypersurfaces over K(a), in order to establish the
result for the point @ and variety V;, it suffices to prove the result for the point (0,...,0) and the
variety ¢5(V;). Our above argument applies to establish the result for the point (0,...,0) and the
variety ¢5(V;). The component V; was chosen arbitrarily, so we have established the result for the
entire variety V. ]

Notice that this result, in the case that d = 0, generalizes Lemma [3.3] which is itself a generaliza-
tion of [17, Theorem 1.7]. We also note that the previous result and various results of this paper can
also be seen to hold under the weaker hypothesis of quasi-genericity [21] page 4592 for the definition]
of the differential hypersurfaces.
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