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Abstract. We study intersection theory for di↵erential algebraic varieties. Particularly, we study
families of di↵erential hypersurface sections of arbitrary a�ne di↵erential algebraic varieties over
a di↵erential field. We prove the di↵erential analogue of Bertini’s theorem, namely that for an
arbitrary geometrically irreducible di↵erential algebraic variety which is not an algebraic curve,
generic hypersurface sections are geometrically irreducible and codimension one. Surprisingly, we
prove a stronger result in the case that the order of the di↵erential hypersurface is at least one;
namely that the generic di↵erential hypersurface sections of an irreducible di↵erential algebraic
variety are irreducible and codimension one. We also calculate the Kolchin polynomials of the in-
tersections and prove several other results regarding intersections of di↵erential algebraic varieties.
MSC2010 classification: 03C60, 03C98, 12H05

1. Introduction

Consider the following theorem from algebraic geometry:

Theorem. [7, 7.1, page 48] Let Y, Z be irreducible algebraic varieties of dimensions r, s in An
Then

every irreducible component W of Y \ Z has dimension greater than or equal to r + s� n.

This theorem fails for di↵erential algebraic varieties embedded in a�ne space, as the following
examples show.

Example 1.1. (Ritt’s example). We work in A3 over an ordinary di↵erential field, k. Let V = V (f)
be the zero set of the single di↵erential polynomial:

f(x, y, z) = x
5 � y

5 + z(x�y � y�x)2

Though V is the zero set of an absolutely irreducible di↵erential polynomial, it is not irreducible in
the Kolchin topology. V has six components. Let µ5 denote the set of fifth roots of unity. For each
⇣ 2 µ5, x� ⇣y cuts out a subvariety of V. Note that

f = (x� ⇣y)

0

@
Y

⌘2µ5\{⇣}

(x� ⌘y) + z(�y(x� ⇣y)� y�(x� ⇣y))2

1

A

is a preparation eqution for f with respect to x � ⇣y [11, see chapter 4, section 13]. Further, one

obtains the preparation congruence, f = (x � ⇣y)
⇣Q

⌘2µ5\{⇣}(x� ⌘y)
⌘

modulo [x � ⇣y]2, so by

the Low Power Theorem [18, chapter 7] or [11, chapter 4, section 15], [x � ⇣] is the ideal of a
component of V . The general component is given by the saturation by the separant (with respect

to some ranking) of [f ]. For instance, one possible choice of ranking would yield [f ] : @f

@�x

1
=

{g |
⇣

@f

@�x

⌘n

g 2 [f ], for some n 2 N} as the ideal of the general component. By the component

theorem [11, Theorem 5, page 185], these are the only components. Now we consider the di↵erential
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algebraic variety W , which is the general component of V . Establishing that (0, 0, 0) 2 W can be
done by noting that f is di↵erentially homogeneous 1 and applying [10, Proposition 2]. In fact, one
can prove that W \H consists of precisely (0, 0, 0) (see [19] for a nice exposition of the proof).

Example 1.2. Let X be a projective curve of genus at least two over a di↵erentially closed field K

which does not descend to the constants. Buium [1] proves that X may be embedded as a di↵erential
algebraic variety in projective space over K such that X lies outside of some unique hyperplane.
Passing to the a�ne cone of the projective space again gives an intersection with r+ s� n = 1, but
the intersection has dimension 0 (consisting of the origin).

The motivating questions of the paper come from the examples of Ritt and Buium:

Question 1.3. In the space of di↵erential hypersurfaces of a particular order and degree, what is the

set of coe�cients on which the intersection theorem fails for a given arbitrary di↵erential algebraic

variety?

The main thrust of this paper is to provide an answer to this question by proving the di↵erential
algebraic analogue of Bertini’s theorem. Roughly, we prove that the intersection of an irreducible
di↵erential algebraic variety of dimension d and a generic hyperplane is a irreducible di↵erential
algebraic variety of dimension d� 1.

Specifically, if V is given by the di↵erential ideal I ✓ K{ȳ} and ū is a suitably long tuple
of independent di↵erential transcendentals over K, then we analyze the properties of the ideal
[I, fū] ✓ Khūi{y1, . . . , yn} where fū is the di↵erential polynomial given by u0 +

P
i
uimi(ȳ) where

the mi are all of the di↵erential monomials of order and degree bounded by some pair of natural
numbers. This analysis was already performed in the ordinary case [21]. In particular, we show that
[I, fū] is a prime di↵erential ideal of dimension one less than I.

This result is the di↵erential algebraic analogue of [8, Theorem 2 page 54], which is an algebraic
precursor to Bertini’s theorem. The main problem with applying this result for making inductive
arguments in di↵erential algebraic geometry is that the primality of the ideal holds only in the
di↵erential polynomial ring over Khūi. For various applications, and inductive arguments, one
would wish to take the coe�cients ū in some ambient large di↵erentially closed field and establish
the primality of [I, fū] in the polynomial ring over the di↵erentially closed field. This is too much to
ask, because the corresponding theorem is not even true for algebraic varieties unless the dimension
of V is at least 2; the intersection of a degree d curve with a generic hyperplane consists d points.
Surprisingly, we show that algebraic curves are the only obstruction to the theorem. This portion
of the argument uses a di↵erential lying-over theorem [20], a geometric or model theoretic argument
about ranks and the algebraic results established for [I, fū]. In other words, we prove geometric

irreducibility results:

Definition 1.4. An a�ne di↵erential algebraic variety, V over k, is geometrically irreducible if
I(V )⌦k k

0 is a prime di↵erential ideal for any k
0, a di↵erential field extension of k.

Theorem 1.5. (|�| = m) Let V be a geometrically irreducible a�ne di↵erential algebraic variety

over a �-field K. Let H be a generic di↵erential hypersurface over K. Assume that the order of

H is greater than zero or that the Kolchin polynomial of V is greater than
�
t+m

m

�
. Then V \H is a

geometrically irreducible di↵erential algebraic variety, which is nonempty just in case dim(V ) > 0.
In that case, V \H has Kolchin polynomial:

!V/K(t)�
✓
t+m� h

m

◆
.

1This is an observation of Phyllis Cassidy.
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Our analysis draws inspiration from [21], but we also use arguments of a more geometric and
model theoretic nature. In particular, we employ the theory of prolongation spaces, in the sense of
Moosa and Scanlon [15] and arguments which use several properties of Lascar rank.

Following the proof of our main theorem, we give a result regarding intersections of di↵erential
algebraic varieties with generic di↵erential hypersurfaces passing through a given point. Specifically,
we prove that if V is a d dimensional di↵erential algebraic variety and H1, H2, . . . Hd+1 are generic
di↵erential hypersurfaces which contain ā and V \

T
d+1
i=1 Hi 6= ;, then ā 2 V .

The special case in which the Hi are hyperplanes in the case of one derivation was proved in [21];
our proof of the generalization is much shorter, owing to using stability theoretic tools (e.g. Lascar’s
symmetry lemma). This also generalizes [17, Theorem 1.7].

One expects the main theorem of paper to be useful for proofs by induction on the di↵erential
transcendence degree of a di↵erential algebraic variety. For instance, in [2], the theorem is used
to study completeness in the Kolchin topology and [5] uses the results of this paper to construct
di↵erential Chow varieties.

Acknowledgements. I would like to gratefully acknowledge the patient and thorough explanations
of Ritt’s example by William Sit and Phyllis Cassidy. This example, in part, triggered my interest in
the problems considered here. Thanks to Phyllis Cassidy for alerting me to the work of Xiao-Shan
Gao, Wei Li, and Chun-Ming Yuan. Their techniques obviously had a major influence.

This work constitutes a portion of my thesis, supervised by David Marker. Thanks to David for
many useful conversations on the topic. Thanks also to Rahim Moosa for several useful conversations
on the problems considered in this paper, several of which took place during a visit to Waterloo
sponsored by an American Mathematical Society Mathematics Research Community Grant.

2. Setting and definitions

We will very briefly review some of the developments from model theory and di↵erential algebra
necessary for our results; more complete expositions can be found in various sources, which we cite
below. We use standard model-theoretic notation, following [12] and di↵erential algebraic notation,
following [11]. In this paper, we will take k to be a di↵erential field of characteristic zero in m

commuting derivations, � = {�1, . . . , �m}. In this setting, we have a model companion, the theory of
�-closed fields, denoted DCF0,m. One may work entirely within a saturated model U |= DCF0,m for
this paper, taking all di↵erential field extensions therein. However, the results of this paper require
care with respect to the field we work over. We do not consider abstract di↵erential algebraic varieties
or di↵erential schemes; we only consider a�ne di↵erential algebraic varieties over a di↵erential field.
One can easily extend many of the results of this paper to the projective case, but we do not address
this directly.

The type (in the sense of model theory) of a finite tuple of U over k is the collection of all first order
formulae with parameters from k which hold of the tuple; for a given tuple ā, we write tp(ā/k). A
realization of a type p over k (we write p 2 S(k)) is a tuple from a field extension satisfying all of the
first order formulae in the type. As DCF0,m has quantifier elimination, we have a correspondence
between types and prime di↵erential ideals and di↵erential algebraic varieties. Given a type p 2 S(k),
we have the corresponding (prime) di↵erential ideal via

p 7! Ip = {f 2 k{y} | f(y) = 0 2 p}.

The corresponding variety is the zero set of Ip = {f 2 k{y} | f(y) = 0 2 p} in Un where n is the
length of the tuple ȳ.

For the reader not acquainted with the language of model theory, the type of a tuple b over k cor-
responds to the isomorphism type of the di↵erential field extension khbi/k with specified generators.
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Let ⇥ be the free commutative monoid generated by �. For ✓ 2 ⇥, if ✓ = �
↵1
1 . . . �

↵m

m
, then

ord(✓) = ↵1 + . . .+ . . .+ ↵m. The order gives a grading on the monoid ⇥. We let

⇥(s) = {✓ 2 ⇥ : ord(✓)  s}.
When R is a �-ring and S ✓ R, by [S] we mean the �-ideal generated by S in R. When f

is an element in a di↵erential polynomial ring, by V (f), we mean the zero set of the di↵erential
polynomial. Let f be a di↵erential polynomial of order h in K{x1, . . . , xn}. Then f is a polynomial
in the ring K[✓xi : i = 1, . . . , n, ✓ 2 ⇥(h)]. When we think of f as a polynomial in K[✓xi : i =

1, . . . , n, ✓ 2 ⇥(h)], we will write Z(f) for the corresponding Zariski closed subset of An·(m+h

h ). 2

Analagous notation applies to ideals or sets of elements in (di↵erential) rings.

Theorem 2.1. (Theorem 6, page 115, [11]) Let ⌘ = (⌘1, . . . , ⌘n) be a finite family of elements in

some extension of k. There is a numerical polynomial !⌘/k(t) with the following properties.

(1) For su�ciently large t 2 N, the transcendence degree of k((✓⌘j)✓2⇥(t), 1jn) over k is equal

to !⌘/k(t).
(2) deg(!⌘/k(t))  m

(3) One can write

!⌘/k(t) =
X

oim

ai

✓
t+ i

i

◆

In this case, am is the di↵erential transcendence degree of kh⌘i over k.

Definition 2.2. When V is a di↵erential algebraic variety over k and b̄ 2 V is such that
�
f 2 k{x̄} | f(b̄) = 0

 
= {f 2 k{x̄} | 8ā 2 V, f(ā) = 0} ,

we call b̄ a generic point on V over k. When V is a di↵erential algebraic variety over k and b̄ 2 V is
a generic point over k, we define dim(V ) to be the �-transcendence degree of khb̄i over k.

Definition 2.3. The polynomial from the theorem is called theKolchin polynomial or the di↵erential
dimension polynomial. Let p 2 S(k). Then !p(t) := !b/k(t) where b is any realization of the type p

over k.

Suppose that p and q are types such that q extends p. This means p 2 S(k) for some di↵erential
field k and q 2 S(K) where K is a di↵erential field extension of k; further, as a sets of first order
formulae p ⇢ q.

Definition 2.4. Let q extend p. We say q is a nonforking extension of p if

!p(t) = !q(t).

Note that the Kolchin polynomial on the left is being calculated over k and the Kolchin polynomial
on the right is being calculated over K. When wp(t) 6= !q(t) (in which case wp(t) > !q(t)) we say
that q is a forking extension of p.

If v1, v2 are tuples in a di↵erential field extension of K and tp(v1/Khv2i) is a nonforking extension
of tp(v1/K) then we say that v1 and v2 are independent over K (or simply independent if K is clear
from context).

Note that tp(v1/Khv2i) being a nonforking extension of tp(v1/K) actually implies that tp(v2/Khv1i)
is a nonforking extension of tp(v2/K), so this notion is symmetric.

Definition 2.5. Let p be a type. Then,

• RU(p) � 0 just in case p is consistent.

2It is well-known that |⇥(h)| =
�m+h

h

�
.
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• RU(p) � �, where � is a limit just in case RU(p) � ↵ for all ↵ < �.

• RU(p) � ↵+ 1 just in case there is a forking extension q of p such that RU(q) � ↵.

The ordinal RU(p) is called the Lascar rank of p. When ā 2 Un, we will write RU(ā/K) for
RU(tp(ā/K)).

Remark 2.6. The last three definitions are specific instances of model theoretic notation in the setting
of di↵erential algebra; for the more general definitions, see [16]. Our development of these notions
is rather nonstandard; normally, forking is defined in a much more general manner. That forking
specializes to the above notion in di↵erential algebra requires proof, but is a natural consequence of
the basic model theory of di↵erential fields, see [13, section4]. A forking extension of the type of ā
over k is given by some di↵erential field extension K � k such that {f 2 K{x̄} | f(a) = 0} properly
contains the ideal I(V )⌦k K.

Specific instances of calculations of Lascar rank in this setting are often quite involved and can
be found in various sources [4, 3].

Let U be a definable set over k and let Ū be the closure of V in the Kolchin topology over
k. Suppose that Ū is irreducible over k. We will set RU(V ) to be equal to the supremum of the
collection {RU(p) | p 2 U}. We will be using Lascar rank at various points, and remind the reader
of the following result, which we use throughout the paper:

Proposition 2.7. [13, 5.2.2] Let b be a tuple in a di↵erential field extension of k. Then

dim(b/k) = n if and only if !
m · n  RU(tp(b/k)) < !

m · (n+ 1)

We will also require a di↵erential notion of specializations:

Definition 2.8. Let � = {�1, . . . , �m}. Let �0 = {�01, . . . , �0m}. A homomorphism � from �-ring
(R,�) to �0-ring (S,�0) is called a di↵erential homomorphism if for each i, � � �i = �

0
i
� �. When R

is an integral domain and S is a field, then such a map is called a �-specialization.

The following proposition is proved in a constructive manner in [21, Theorem 2.16]; and an
analogous proof works in the case of several commuting derivations.

Proposition 2.9. Let ū = (u1, . . . , ur) ⇢ U be a set of �-K independent di↵erential transcendental

elements. Let ȳ = (y1, . . . , yn) be a set of di↵erential indeterminates. Let Pi(ū, ȳ) 2 K{ū, ȳ} for

i = 1, . . . , n1. Suppose � : K{ȳ} ! U be a di↵erential specialization into U such that ū is a set of �-

transcendentals over Kh�(ȳ)i. Suppose that Pi(ū,�(ȳ)) are (as a collection), �-dependent over Khūi.
Then let  be a di↵erential specialization from Khūi ! K. The collection {Pi( (ū),�(ȳ))}i=1,...,n1

are �-dependent over K.

3. Intersections

In this section we develop an intersection theory for di↵erential algebraic varieties with generic �-
polynomials. The influence of [21] for proving statements about irreducibility over specific di↵erential
fields is obvious; we have adapted their techniques to the setting of several commuting derivations.

Definition 3.1. In An
, the di↵erential hypersurfaces are the zeros of a �-polynomial of the form

a0 +
X

aimi

where mi are di↵erential monomials in F{y1, . . . , yn}. For convenience, in the following discussion,
we do not consider 1 to be a monomial. A generic �-polynomial of order s and degree r over K is
a �-polynomial

f = a0 +
X

aimi
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where mi ranges over all di↵erential monomials of order less than or equal to s and degree less than
or equal to r (i.e. monomials of ⇥(s)(ȳ) of degree at most r) and (a0, a1, . . . , an1) is a tuple of
independent �-transcendentals over K. A generic �-hypersurface of order s and degree r is the zero
set of a generic �-polynomial of order s and degree r. When f is given as above, we let af be the
tuple of coe�cients of f. Throughout, we adopt the notation āf = af\{a0}.

By a generic di↵erential polynomial (hypersurface), we mean a generic di↵erential polynomial
(hypersurface) of some order s and some r � 1.

The next lemma is proved in the ordinary case in [21, Lemma 3.5]. The proof in this case works
similarly, assuming that one sets the stage with the proper reduction theory in the case of several
commuting derivations. One might notice that Lemma 3.5 of [21] has a second portion. For now,
we will concentrate only on the irreducibility of the intersection. Necessary and su�cient conditions
for the intersection to be nonempty will be given later.

Lemma 3.2. Let ȳ = (y1, . . . , yn) and y0 be another indeterminate. Let I be a prime �-ideal in

K{ȳ} and let f = y0 +
P

i
aimi where the sum ranges over all monomials of ⇥(h)ȳ of degree d1

and ā is a tuple of independent �-transcendentals over K. Then I0 = [I, f ] is a prime �-ideal of

Khāf i{ȳ, y0}. Further, I0 \Khāf i{y0} 6= 0 if and only if V has dimension zero.

Proof. Let b̄ = (b1, . . . , bn) be a generic point of V = V (I) over K such that b̄ is independent from
ā over K (see Definition 2.4). Consider the tuple (b1, . . . , bn,�

P
i
aimi(b̄)). We show irreducibility

of the variety V (I0) in An+1 via showing that it is the Kolchin closure of (b1, . . . , bn,�
P

i
aimi(b̄))

over K, from which the result follows because the ideal of di↵erential polynomials in K{ȳ, y0} which
vanish at a given point is a prime ideal.

Suppose g is a �-polynomial in Khāf i{ȳ, y0} which vanishes at (b1, . . . , bn,�
P

i
aimi(b̄)). Fix a

ranking so that y0 is the leader of f. Then the partial remainder of g with respect to f [11, page 77]
gives some g0 (which is equal to g modulo the di↵erential ideal generated by f). This g0 must be in
Khāf i{y1, . . . , yn}. Since b̄ is generic for I, we must have that g0 2 Khāf i · I. But then g 2 I0 and
the claim follows.

We have seen that (b1, . . . , bn,�
P

i
aimi(b̄)) is generic on V (I0). If Khb1, . . . , bni over K has

di↵erential transcendence degree zero, then Khā,�
P

i
aimi(b̄)i over Khāi has di↵erential transcen-

dence degree zero, so I0 \Khāi{y0} is not the zero ideal. Conversely, if Khb1, . . . , bni over K has
di↵erential transcendence degree greater than zero, then since ā is independent from b̄ over K,P

i
aimi(b̄) is a di↵erential transcendental over Khāi, and so I0 \Khāf i{y0} is the zero ideal. ⇤

Now we turn towards establishing necessary and su�cient conditions for the intersection to be
nonempty when we relax the sorts of intersections under consideration. In the case that the inter-
section is nonempty, we calculate the di↵erential transcendence degree.

This next lemma was originally proved in [17, Theorem 1.7] in the ordinary case, and was reproved
in [21] in the ordinary case. The proof in the case of several commuting derivations can be found in
[3, Proposition 4.1].

Lemma 3.3. Suppose that V is a di↵erential algebraic variety such that RU(V/K) < !
m
. Then

V \ V (f(x̄)) = ; for any generic di↵erential polynomial f(x̄).

Lemma 3.4. Suppose that V is a di↵erential algebraic variety embedded in An
and that V is of

dimension d � 1. If f(x̄) is a generic di↵erential polynomial, then V \V (f) 6= ; and dim(V \V (f)) =
d� 1.

Proof. Let V = V (I); we will be following the general notation of 3.2, with f = y0 +
P

i
aimi(ȳ).

Define f0 :=
P

i
aimi(ȳ) and let āf be the tuple of ai coe�cients which appear in f . Define
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I0 = [I, f ] ✓ Khāf i{ȳ, y0} as in 3.2. Here y0 appears as an indeterminate in the di↵erential
polynomial ring. Define I1 = [I, f ] ✓ Khāf , y0i{ȳ}.

Let b̄ be a realization of the generic type of V over K. Reorder the coordinates if necessary so
that b1, . . . , bd are a �-transcendence basis for the �-field extension generated by b̄ over K. Because
V ⇢ An is isomorphic to V (I0) ⇢ An+1, dim(V (I0)) = d.

Since I ⇢ I1, each of yi for i > d is �-dependent with y1, . . . , yd modulo I (and thus I1).
So, y0, y1, . . . , yd are �-dependent modulo I0 and so y1, . . . , yd are �-dependent modulo I1. Thus
dim(V (I1))  d� 1.

Now supopose that y1, . . . , yd�1 are �-dependent modulo I1; then there is some nonzero element
p(y1, . . . , yd�1) 2 I1. By clearing denominators one, can take p 2 K{āf , y1, . . . , yd�1, y0}. Then
p(āf , b1, . . . , bd�1,�f0(b̄)) = 0.

Now specialize ad, the coe�cient of yd in the generic di↵erential hypersurface to �1 and specialize
all other ai 2 āf to 0. But then b1, . . . , bd are dependent over K by 2.9, a contradiction to the
assumption that V has dimension d.

⇤

Lemma 3.5. Let I be a prime �-ideal in K{y1, . . . , yn}. Let f = y0 +
P

i
aimi(ȳ) be a generic

di↵erential polynomial. Then I1 = [I, f ] is a prime �-ideal in Khy0, af i{y1, . . . , yn}.

Proof. First, suppose that the dimension of V is at least one. Then by Lemma 3.4, V (I)\V (f) 6= ;.
Recall the notation of I0 from Lemma 3.2. We will show that I1 \ Khaf i{y1, . . . , yn, y0} = I0.
Suppose that we have g, h 2 Khaf , y0i{y1, . . . , yn} such that g · h 2 I1. Since we are taking a field
extension over K, the coe�cients of the di↵erential polynomials might involve di↵erential rational
functions in af , y0 overK. Clearing denominators, by multiplying by suitable di↵erential polynomials
in y0, af over K, we obtain g, h 2 K{af , y0, y1, . . . , yn} such that g · h 2 I0. But, I0 is prime by
Lemma 3.2. So, we have a contradiction and I1 is prime. Further, we can see (again, simply by
clearing denominators) that I1 lies over I0, when we regard I0 as an ideal of R{y1, . . . , yn} where
R = Khaf i{y0}.

In the case that dim(V ) = 0, I0 \ Khaf i{y0} 6= 0 by Lemma 3.2, and so I1 must be the unit
ideal. ⇤

Lemma 3.6. Let I be a prime di↵erential ideal of K{y1, . . . , yn} and let V = V (I) be the correspond-
ing irreducible di↵erential variety. Suppose that the dimension d of V is greater than zero. Let f =
a0 +

P
i
aimi(ȳ) be generic of order h � 0 and degree d1 > 0. Let I1 = [I, f ] ✓ Khaf i{y1, . . . , yn}.

Then,

!V (I1)/Kha0,a1,...,ani(t) = !V (I)/K(t)�
✓
t+m� h

t

◆
.

Proof. In this proof, we associate a di↵erential algebraic variety V naturally with its prolongation

sequence (for complete details, see [14]). Briefly, recall, the data of a prolongation sequence is the
sequence of algebraic varieties:

Vl = {(✓x̄) |x 2 X(U), ✓ 2 ⇥(l)}cl ✓ An·(l+m

m )
,

where (�)cl denotes Zariski closure and the coordinates are ordered by the canonical orderly ranking
induced by taking �i < �j when i < j. It is a fact that the sequence Vl determines V ; by Noetherianity
of the Kolchin topology, a finite subsequence determines V . Given a sequence of algebraic varieties

(Vl)l2N with Vl ✓ An·(l+m

m ), we call the sequence a prolongation sequence if for all l 2 N, the
projection map Vl ! Vl (to the first n ·

�
l+m

m

�
corrdinates) is dominant and the variety Vl+1 satisfies

the di↵erential relations forced by Vl. In the notation of [14, page 7, preceeding Proposition 2.5]
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this second condition is formally expressed by saying that after embedding ⌧`(An) in ⌧
`(An) and

⌧`+1(An) in ⌧ `+1(An), we have that Vl+1 is a closed subvariety of ⌧(Vl).
3

There is a bijective correspondence between di↵erential algebraic varieties and prolongation se-
quences. V is irreducible over K if and only if the all of the varieties in the corresponding prolonga-
tion sequence are irreducible over K. The ideal corresponding to V` given by the ideal of di↵erential
polynomials in K{y1, . . . , yn} of order at most ` which vanish on V .

For large enough values of l, the dimension of Vl is given by the value of the Kolchin polynomial
of V . We will show that

Vl \
\

✓2⇥(l�h)

(Z(✓(f)))

is a prolongation sequence. Once this fact is established, it is clear that it must be the prolongation
sequence corresponding to V \V (f) (since each the given algebraic relations clearly hold on V \V (f)).
Consider the di↵erential algebraic variety W ✓ An+1 given by I0 as in Lemma 3.2 above. As
di↵erential algebraic varieties, W and V are isomorphic, by the obvious maps. The prolongation
sequence associated with W is given by Wl

⇠= Vl ⇥ A1
l
when l < h and

Wl
⇠= (Vl ⇥ A1

l
) \

\

✓2⇥(l�h)

V (✓(fy0)),

when l � h, where fy0 is the di↵erential polynomial f with y0 in place of a0. To verify that this is a
prolongation sequence, we need only determine that the maps Wl+1 ! Wl are dominant (since the
second condition is obvious from the definition of the sequence). Then since the relation fy0 = 0 holds
on W , by the bijective correspondence between prolongation sequences and di↵erential algebraic
varieties, the sequence must be the prolongation sequence associated with W . When l+ 1 < h, this
follows simply from the fact that Vl forms a prolongation sequence, noting that Wl

⇠= Vl ⇥ A1
l
.

In what follows, we reorder the coordinates of each Wl so that Wl ✓ Vl⇥A1
l
for each l 2 N. When

l � h, Wl is a subvariety of Vl ⇥ A1
l
determined by the zero set of ✓(fy0) = 0 for each ✓ 2 ⇥(l � h).

So, Wl is a subvariety of

Vl ⇥ A1
l
⇠= Vl ⇥ A(

l�h+m

m ) ⇥A
(l+m

m )�(l�h+m

m )

where the the copy of A(
l�h+m

m ) in the above equation corresponds to the coordinates ✓(y0) with ✓ 2
⇥(l�h) and the copy of A(l+m

m )�(l�h+m

m ) corresponds to the coordinates ✓(y0) with ✓ 2 ⇥(l)\⇥(l�h).
Since the order of ✓(fy0) is the order of ✓ plus h, one can see that Wl is given

Wl =
⇣⇣

Vl ⇥ A(
l�h+m

m )
⌘
\W

0
l

⌘
⇥A

(l+m

m )�(l�h+m

m )
,

where

W
0
l
✓ Vl ⇥ A1

l�h

is given the vanishing of ✓(fy0) = 0 for each ✓ 2 ⇥(l � h). Since ✓(fy0) is linear in ✓(y0), W
0
l
is the

graph of a function Vl ! A(
l�h+m

m )
.

By our assumption dim(V ) > 1, for some j, {✓ � �h
m
yj | ✓ of order l � h} are independent tran-

scendentals over Khāf i({⌘yi | ⌘ 2 ⇥(l), i 6= j} [ {⌘yj | ⌘ < �
l�h

1 �
h

m
}) where we note that

{⌘yj | ⌘ < �
l�h

1 �
h

m
} = {⌘yj | ⌘ 2 ⇥(l)} \ {✓ � �n

m
yj | ✓ of order l � h}.

But, on Wl+1, for ✓ of order l+1�h, ✓y0 is linearly dependent with ✓�h
m
(yj) over Khāf i({⌘yi | ⌘ 2

⇥(l), i 6= j} [ {⌘yj | ⌘ < �
l�h

1 �
h

m
}).

3This is condition b in [14] in the paragraphs before Proposition 2.5.
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Thus on Wl+1, {✓(y0) | ✓ of order l + 1� h} are transcendental over

Khāf i({⌘yi | ⌘ 2 ⇥(l + 1), i 6= j} [ ({⌘yj | ⌘ 2 ⇥(l + 1)} \ {✓ � �n
m
yj | ✓ of order l + 1� h})).

Thus, onto the coordinates indexed by ✓y0 for ✓ of order l+1�h, the image of Wl+1 in Wl is dense.
Thus the map Wl+1 ! Wl must be dominant.

The sequence of varieties

Sl := Vl \
\

✓2⇥(l�h)

(Z(✓(f)))

is the fiber of the family Wl when y0 = a0. In order to verify the dominance of the projection maps
in the sequence, it su�ces to consider only bounded subsequences. Verifying the dominance of the
projection maps in a sequence (Sl)l for l bounded by some s is a constructible condition on the
coe�cients given by a0 and its derivatives of order at most s� h.

That is, the condition that these finitely many maps be dominant is constructible in {✓(a0) | ✓ 2
⇥(s� h)} over Khāf i and since that dominance holds for (W )l, it must hold for some Zariski-open
subset. By the genericity of a0 over Khāf i, our finitely many maps must be dominant and so (Sl)l
is a prolongation sequence.

For the calculation of the Kolchin polynomial, note that both Vl \
T

✓2⇥(l�h) Z(✓(f)) and Wl

are sequences of irreducible varieties and the surjective map Wl ! Vl \
T

✓2⇥(l�h) Z(✓(f)) has fiber

dimension
�
l+m

m

�
.

The dimension of Wl is given by dim(Vl) +
�
l+m

m

�
�
�
l+m�h

m

�
because above the coordinate y0,�

l+m

m

�
is the number of coordinates ⇥(l)(y0), and

�
l+m�h

m

�
is the number of equations which give the

graph of the function in the above definition of W 0
l
.

⇤
Putting together the previous results of the section, and restating the theorem in the form we

will apply it later, we have:

Theorem 3.7. Let V be a Kolchin-closed (over K) subset of An
with di↵erential transcendence

degree d. Let H be a generic (with respect to K) di↵erential hypersurface of some degree and order h

with coe�cients given by ā. Then V \H is irreducible over Khāi. In the case that d = 0, V \H = ;.
If d > 0, then the Kolchin polynomial of V \H is given by

!V \H/KhaHi(t) = !V/K(t)�
✓
t+m� h

m

◆
.

One key point to notice is that
✓
t+m� h

m

◆
=

✓
t+m

m

◆
�

h�1X

i=0

✓
t+m� 1� i

m� 1

◆

as long as h > 0 and t is su�ciently large, and that under these circumstances,
h�1X

i=0

✓
t+m� 1� i

m� 1

◆

is a positive integer. In the special case that m = 1, this integer is h; meaning the previous theorem
is a generalization of the following theorem, proved in [21, Theorem 3.13] when K is an ordinary
di↵erential field:

Theorem 3.8. Let I be a prime �-ideal in K{ȳ} with Kolchin polynomial (t+ 1)d+ c. Let f be a

generic �-polynomial of order h and degree d. Then I1 = [I, f ] is a prime �-ideal in Khaf i{ȳ} with

Kolchin polynomial (t+ 1)(d� 1) + c+ h
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Remark 3.9. Note that in the results of this section, we are considering the Kolchin topology over
a specific field (in many of the above statements, the field was Khaf i or Khaf , y0i). For various
applications, it is useful to take the elements af and y0 as above from some particular di↵erential
field K1 extending K (for instance, K1 might be a di↵erentially closed field). For this, we would
need to establish the irreducibility of various above intersections over K1, which extends Khaf , y0i.

We have not proved any statements about irreducibility over field extensions of Khaf , y0i, nor do
the authors of [21] in the ordinary setting. In fact, at least one additional hypothesis is necessary
for results of this nature: if the hypothesis were purely in terms of dimension, d,, we would have to
restrict to the situation d � 2. For instance, take any degree d1 > 1 plane curve. This curve meets
the generic hypersurface of degree d2 in precisely d1 · d2 points, so the intersection is not irreducible
over any algebraically closed field (so in particular Khaf , y0ialg).

4. Geometric irreducibility

Before discussing geometric irreducibility, we will require some results about the Kolchin polyno-
mials of prime di↵erential ideals lying over a fixed prime di↵erential ideal in extensions. The next
result follows from [11, page 131, Proposition 3, part b], which is more general, allowing for positive
characteristic.

Proposition 4.1. Let p be a prime di↵erential ideal in K{y1, . . . , yn} and let G be a di↵erential

field extension of K. Then Gp has finitely many prime components in G{y1, . . . , yn}. If q is any one

of the components, then q \K{y1, . . . , yn} and we have equality of the Kolchin polynomials:

!q = !p.

Remark 4.2. In model theoretic terms, the generic types of the components V (p1), . . . , V (pn) of
V (p) are each nonforking extensions of the generic type of V (p). Assuming that the base field K is
algebraically closed would ensure that the generic type of V (p) is stationary; consequently Gp is a
prime di↵erential ideal for any field extension G of K.

Recall the following definition given in the introduction:

Definition 4.3. An a�ne di↵erential algebraic variety, V over K, is geometrically irreducible if
I(V/K 0) = I(V )⌦K K

0 is a prime di↵erential ideal for any K
0, a di↵erential field extension of K.

Remark 4.4. Remark 4.2 shows that for di↵erential varieties over a field K, enough to consider
irreducibility over Kalg, the algebraic closure of K.

Theorem 4.5. Let V be a geometrically irreducible Kolchin-closed over K subset of An
with Kolchin

polynomial !V (t) >
�
t+m

m

�
. Let H be a generic hypersurface. Then V \H is geometrically irreducible

and !H\V (t) = !V/K(t)�
�
t+m

m

�
.

Proof. Let d1 be the degree ofH. Consider the the di↵erential algebraic varietyW = {(v1, v2,�) | vi 2
V, vi 2 H�} ✓ V ⇥ V ⇥ A(

n+d1
d1

)�1 where H� is the hypersurface given by
P
�imi = 1, where the

sum ranges over all monomials in x̄ of degree bounded by d1. Note tuple � is of length (
�
n+d1

d1

�
� 1),

the number of monomials of degree bounded by d1 in n variables, excluding 1.
Consider V \H� . When � is generic over K, we know that V \H� is irreducible over Kh�i, so

by the Proposition 4.1, all of the components of V over the algebraic closure of Kh�i have Kolchin
polynomial equal to !V \H�/Kh�i(t). If V \ H� has more than one component, then W has more
than one component with Kolchin polynomial at least

2 · !V/K(t) +

✓✓
n+ d1

d1

◆
� 3

◆
·
✓
m+ t

t

◆
.
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To see this, again note that the length of the tuple � is (
�
n+d1

d1

�
� 1), the number of monomials

of degree bounded by d1 in n variables, excluding 1. The Kolchin polynomial of a generic � over K

is given by
⇣�

n+d1

d1

�
� 1

⌘
·
�
m+t

t

�
. The Kolchin polynomial of two independent (see Definition 2.4)

generic points (v1, v2) on V \H� is given by 2
�
!V/K(t)�

�
t+m

m

��
. Thus by Sit’s lemma [4, Lemma

2.9], the Kolchin polynomial of the tuple (v1, v2,�) is at least

2 · !V/K(t) +

✓✓
n+ d1

d1

◆
� 3

◆
·
✓
m+ t

t

◆
.

Suppose there is more than one component of V \ H� over Kh�ialg. Then there are elements
v1, v2 2 V \H� over Kh�ialg with Kolchin polynomial !vi/Kh�i(t) = !V/K(t) �

�
t+m

m

�
for i = 1, 2

and tp(v1/Kh�i) 6= tp(v2/Kh�i). So there is more than one type of the triples (v1, v2,�) with v1, v2

generic and forking independent on V \H� over Kh�i, depending on if v1 and v2 are in the same
component of V \H� over Kh�ialg. Now, we consider components of W with Kolchin polynomial

at least 2 · !V/K(t) +
⇣�

n+d1

d1

�
� 3

⌘
·
�
m+t

t

�
.

Suppose v1 and v2 are points on V, and � is generic subject to the condition that H� contains
v1, v2. If v1 6= v2, then we claim that

!v1,v2,�/K
(t) = !v1,v2/K

(t) +

✓✓
n+ d1

d1

◆
� 3

◆
·
✓
m+ t

t

◆
.

To see this, simply note that for v1 6= v2, we get two independent linear conditions on �.
The only way that

!v1,v2/K
(t) +

✓✓
n+ d1

d1

◆
� 3

◆
·
✓
m+ t

t

◆
� 2 · !V/K(t) +

✓✓
n+ d1

d1

◆
� 3

◆
·
✓
m+ t

t

◆

is for v1, v2 to be independent generic points on V , in which case, equality holds.

By similar analysis, if v1 = v2, then !v1,v2,�/K
(t) = !v1/K

(t) +
⇣�

n+d1

d1

�
� 2

⌘
·
�
m+t

t

�
.

Since !V (t) >
�
t+m

m

�
,

!v1/K
(t) +

✓✓
n+ d1

d1

◆
� 2

◆
·
✓
m+ t

t

◆
< 2 · !V/K(t) +

✓✓
n+ d1

d1

◆
� 3

◆
·
✓
m+ t

t

◆
.

So there is a unique type on W of rank 2 · !V/K(t) +
⇣�

n+d1

d1

�
� 3

⌘
·
�
m+t

t

�
.

By our earlier arguments, there is a unique component of V \ H� over Kh�ialg with Kolchin
polynomial !V �

�
t+m

m

�
. But, by Proposition 4.1, we know any of component of V \H� must have

Kolchin polynomial !V �
�
t+m

m

�
. So, V \H� is geometrically irreducible. ⇤

In the proof of the previous theorem, we can weaken the assumption that !V (t) >
�
t+m

m

�
to

!V (t) �
�
t+m

m

�
in the case that the order of the di↵erential hypersurface we consider is greater than

0. That is, in this case, V might be an algebraic curve:

Theorem 4.6. Let V be a geometrically irreducible Kolchin-closed over K subset of An
with Kolchin

polynomial !V (t) �
�
t+m

m

�
. Let H be a generic di↵erential hypersurface of order h > 0. Then V \H

is geometrically irreducible and

!H\V (t) = !V (t)�
✓
t+m� h

m

◆
.
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Proof. Let d1 be the degree of H. We define W = {(v1, v2,�) | vi 2 V, vi 2 H�} ✓ V ⇥V ⇥An1 where
H� is the di↵erential hypersurface given by

P
�imi = 1, where the sum ranges over all monomials

in x̄ of order bounded by h and degree bounded by d1. Note that

n1 =

✓
n ·

�
t+m

m

�
+ d1

d1

◆
� 1.

Fixing two independent generic points on V \ H� , v1 and v2, choose coe�cients of the generic
di↵erential hypersurface, relative to the condition that H� contains v1 and v2. That is, vi 2 H� for
i = 1, 2 imposes a linear condition on the coe�cients � of the di↵erential polynomial whose zero set
is H� ; we choose the coe�cients, �, generically in this linear subspace (over Khv1, v2i). This gives
a tuple (v1, v2,�) with Kolchin polynomial

2!V (t)� 2

✓
t+m� h

m

◆
+ n1

✓
t+m

m

◆
.

If there is more than one type on V \H� with Kolchin polynomial !V (t) �
�
t+m�h

m

�
, then there is

more than one type on W with Kolchin polynomial 2!V (t)� 2
�
t+m�h

m

�
+ n1

�
t+m

m

�
.

In general, for any (possibly) non-generic choice of v1, v2 2 V , if v1 6= v2, the Kolchin polynomial
of (v1, v2,�) is bounded by !v1,v2/K

(t)+(n1)
�
t+m

m

�
�2

�
t+m�h

m

�
. To see this, note that any � such that

(v1, v2,�) has the property that the coordinates � satisfy to linearly independent linear equations
in Khv1, v2i which are of order h in v1 and v2, respectively.

Thus, the only way for

!v1,v2/K
(t) + n1

✓
t+m

m

◆
� 2

✓
t+m� h

m

◆
= 2!V (t)� 2

✓
t+m� h

m

◆
+ n1

✓
t+m

m

◆

is to choose v1, v2 independent generics on V .
If v1 = v2 then noting that since h > 0 implies !V (t)�

�
t+m�h

m

�
> 0, the Kolchin polynomial of

(v1, v2,�) is bounded by

!v1/K
(t) + n1

✓
t+m

m

◆
�
✓
t+m� h

m

◆
< 2!V (t)� 2

✓
t+m� h

m

◆
+ n1

✓
t+m

m

◆
.

Thus W has a unique type of maximal Kolchin polynomial. If V \ H� has more than one
component over Kh�i, then there are two distinct types on V \H with Kolchin polynomial !V (t)��
t+m�h

m

�
and thus at least two types on W with Kolchin polynomial 2!V (t)� 2

�
t+m�h

m

�
+ n1

�
t+m

m

�
,

a contradiction. ⇤

Combining Theorems 4.5 and 4.6, we obtain our main Theorem 1.5 which we restate here:

Theorem. Let V be a geometrically irreducible a�ne di↵erential algebraic variety over a �-field

K. Let H be a generic di↵erential hypersurface over K. Assume that the order of H is greater

than zero or that the Kolchin polynomial of V is greater than
�
t+m

m

�
. Then V \H is a geometrically

irreducible di↵erential algebraic variety, which is nonempty just in case dim(V ) > 0. In that case,

V \H has Kolchin polynomial:

!V/K(t)�
✓
t+m� h

m

◆
.

Remark 4.7. There are several notions of smoothness in the context of di↵erential algebraic geometry,
coming from the di↵erential arc spaces considered in [14, 15] and from Kolchin’s di↵erential tangent
spaces [11]. One can prove that generic intersections preserve any of these notions of smoothness
(for more details, see [6]). For other notions of smoothness, see [9] and [20].
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5. Generic differential hypersurfaces through a given point

In this section we prove a generalization of [21, Theorem 4.42]. The proof of the special case
in [21] uses di↵erential specializations. Our approach here is rather di↵erent, though a proof by
suitably generalized methods of [21] is possible. Such an approach would avoid any machinery of
stability theory (e.g. Lascar rank), but the use of this machinery allows for a quick proof.

Theorem 5.1. Let V be a di↵erential algebraic variety of dimension d. If the set of d+1 independent

generic di↵erential hypersurfaces of order h and degree d1 through ā intersects V , then ā 2 V.

Proof. We note that the fact that V is of dimension d implies that !m ·d  RU(V/K) < !
m · (d+1)

(see Proposition 2.7). We will prove the result by induction on d.
Let ā /2 V. First, we will argue the result in the case that ā = (0, . . . , 0). Any hypersurface through

the origin is of the the form
P

cimi(ȳ) = 0, where the sum ranges over all monomials of order less
than or equal to h and degree less than or equal to d1. We assume that the ci are independent
di↵erential transcendentals over K. We denote this di↵erential hypersurface by Hc̄. Suppose that
V \Hc̄ 6= ; and b̄ is a generic point on one of the irreducible components of V \Hc̄ over Khc̄i. We
may suppose that b̄ 6= (0, . . . , 0), since the Theorem holds in this case.

Now since b̄ 2 Hc̄\V, we know that
P

cimi(b̄) = 0. Note that this is a nontrivial linear relation for
c̄ over Khb̄i. Since over K, c̄ is a tuple of independent di↵erential transcendentals, using Proposition
2.7,

RU(c̄/Khb̄i) + !
m  RU(c̄/K).

But, then by Lascar’s symmetry lemma [16, chapter 19]

(A) RU(b̄/Khc̄i) + !
m  RU(b̄/K).

Thus, by Proposition 2.7, the di↵erential transcendence degree of b̄/Khc̄i is at least one less than
that of b̄/K. In the case that RU(V/K) < !

m
, the above argument using Lascar’s symmetry lemma

shows that V \Hc̄ = ;. Note that by Proposition 2.7, if d = 0, then RU(b̄/K) < !
m, and so equation

A can not hold; thus our assumption that V \ Hc̄ 6= ; must have been incorrect, establishing the
case d = 0.

By Theorem 1.5 and Proposition 2.7,

!
m · (d� 1)  RU(V \Hc̄/Khc̄i) < !

m · d.

Now the result follows (again in the case ā is the origin) by the induction hypothesis since V \Hc̄

has dimension d� 1.
Now, suppose that ā is some point besides (0, . . . , 0). If so, adjoin ā to the field K and consider

the V over Khāi. It is possible that V is not irreducible over Khāi; suppose that V has components
V1, . . . , Vk overKhāi. By Proposition 4.1 each of the components has the same Kolchin polynomial as
V . Fix some component Vi for i = 1, . . . , k. By the translation �ā : An ! An, defined by x̄ 7! x̄� ā,
we replace Vi with �ā(Vi) and ā with (0, . . . , 0). Because the map �ā sends generic di↵erential
hypersurfaces over Khāi to generic di↵erential hypersurfaces over Khāi, in order to establish the
result for the point ā and variety Vi, it su�ces to prove the result for the point (0, . . . , 0) and the
variety �ā(Vi). Our above argument applies to establish the result for the point (0, . . . , 0) and the
variety �ā(Vi). The component Vi was chosen arbitrarily, so we have established the result for the
entire variety V . ⇤

Notice that this result, in the case that d = 0, generalizes Lemma 3.3, which is itself a generaliza-
tion of [17, Theorem 1.7]. We also note that the previous result and various results of this paper can
also be seen to hold under the weaker hypothesis of quasi-genericity [21, page 4592 for the definition]
of the di↵erential hypersurfaces.
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