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Abstract Marsh accretion models predict the resiliency of coastal wetlands and their ability to store carbon
in the face of accelerating sea level rise. Most existing marsh accretion models are derived from two parent
models: the Marsh Equilibrium Model, which formalizes the biophysical relationships between sea level rise,
dominant macrophyte growth, and elevation change; and the Cohort Theory Model, which formalizes how
carbon mass pools belowground contribute to soil volume expansion over time. While there are several existing
marsh accretion models, the application of these models by a broader base of researchers and practitioners is
hindered because of (a) limited descriptions of how empirically derived ecological mechanism informed the
development of these models, (b) limitations in the ability to apply models to geographies with variable tidal
regimes, and (c) a lack of open‐source code to apply models. Here, we provide for the first time an explicit
description of a mathematical version of the Cohort Theory Model and a numerical version of a combined
model: the Cohort Marsh Equilibrium Model (CMEM) with an accompanying open‐source R package,
rCMEM. We show that, through this “depth‐aware” model, we can capture how tidal variation impacts broad
patterns of marsh accretion and carbon sequestration across the United States. The application of this model will
likely be imperative in predicting the fate and state of coastal wetlands and the ecosystem services they provide
in an era of rapid environmental change.

Plain Language Summary Predicting the future of coastal ecosystems will require the use of
mathematical models that capture relationships between sea level rise, how flooding impacts plant growth, and
how plant growth impacts marsh resilience and the amount of carbon that can be stored in marsh soils. Here, we
provide a detailed description of the Cohort Marsh Equilibrium Model (CMEM), which combines two
mathematical models that have captured the understanding of marsh ecosystem dynamics across the past few
decades: the Cohort Theory Model and the Marsh Equilibrium Model. We provide detailed descriptions of the
model dynamics and release code that can be used to run the model. We also provide simulations using the
model to exemplify some of its features, namely, the ability to predict ecosystem dynamics across variable tidal
regimes in the contiguous United States. We hope this paper and the accompanying model code will be useful
for researchers and practitioners with interests in forecasting coastal wetland ecosystem properties.

1. Introduction
Coastal marsh ecosystem dynamics are highly dependent on sea level, building elevation relative to the rate of sea
level rise (i.e., accretion) or becoming overwhelmed by the inundation of the sea leading to coastal retreats. The
resiliency of coastal marshes in the face of accelerating sea level rise, driven by anthropogenic greenhouse gas
emissions, is a pressing societal concern (Fagherazzi et al., 2012; Kirwan & Megonigal, 2013; Kirwan
et al., 2016). In an era of rapid environmental change and wetland loss, predicting the state and fate of coastal
marshes using mechanistic models is of great importance.

The mechanism of marsh accretion is composed of two main, entwined factors: surface mineral deposition from
tidal inundation and organic carbon content of the subsurface soil governed by plant inputs and decomposition
(Kirwan & Megonigal, 2013; Figures 1a and 1b, Figure S1 in Supporting Information S1). Sediment suspended in
the coastal ocean is carried over the marsh surface during tidal cycles and, as the water slows due to friction with
the marsh surface and plants, settles onto the surface of the marsh providing fresh mineral deposition (Mudd
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et al., 2010). Flooding of the marsh surface is also a major driver of plant growth in marsh ecosystems, wherein
the plant community is adapted to a window of optimal inundation such that plant productivity falls off if the
marsh is too dry or too wet (Figure 1a). Plant productivity provides inputs to the soil subsurface via root growth
and turnover. Organic matter inputs into the soil are reduced via decomposition by microbial organisms, and the
balance of these inputs and outputs governs the total organic content of the soil (Figure 1b). Organic material is
less dense than the mineral sediment input at the top of the soil (Morris et al., 2016), which changes the volume of
the soil profile and results in a correlated change in the surface elevation of the marsh. Changes in marsh elevation
then feedback to plant growth rates, as surface elevation and sea level rise jointly impact the amount of flooding
plants experience.

Figure 1. Conceptual diagrams of foundational components of the Marsh Equilibrium Model (a) and the Cohort Theory Model (b) and the timeline of model
development and merging (c). (a) Peak aboveground biomass is a function of the depth below mean high tide (i.e., flooding), which is both a function of the elevation of
the marsh surface and tidal dynamics. The solid line represents where the marsh is stable and the dashed lines represent instability (i.e., plants can no longer produce
enough biomass keep pace with sea level rise). (b) Soil cohorts are composed of four mass pools: live belowground biomass, fast decaying organic matter, slow decaying
organic matter, and mineral sediments. Cohorts are tracked by their age (in years). At each annual timestep (t) a new layer of mineral sediment is added to the surface of
the marsh. Then, belowground biomass is turned over within the rooting zone and is portioned into fast and slow organic matter pools, and is decayed. The proportion of
fast organic matter that is decayed is then respired into greenhouse gases. Then, the cohort “ages” and the change in volume of the cohort due to biomass allocation and
decay adjusts the depth of the top and bottom of the cohort in the subsequent timestep t á 1. (c) Timeline of journal articles and other model documentation of the
building and fusion of the Marsh Equilibrium Model and the Cohort Theory Model from Morris et al. leading up to the development of the R package rCMEM,
presented here. Events that were particularly influential in updating the model are shaded in blue. Small diagrams represent major foci of the papers (from left to right):
development of the Cohort Theory Model, relationships between precipitation and macrophyte productivity, development of the Marsh Equilibrium Model, multi‐
species version of the Marsh Equilibrium Model, online interface of the Marsh Equilibrium Model, coupling of aboveground and belowground accretion processes, and
the characterization of mineral and organic matter packing densities.
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There are myriad marsh accretion models that characterize biophysical relationships between flooding, mineral
deposition, soil biogeochemistry, and plant growth (e.g., Fagherazzi et al., 2012; Kirwan et al., 2010; Rietl
et al., 2021; Swanson et al., 2014) and are used to predict marsh elevation gain through time and quantify the
carbon sequestration potential of wetlands (Holmquist et al., 2018; Windham‐Myers et al., 2018). Marsh ac-
cretion models are often composed of plant growth and organic matter components derived from two classic
models: (a) the functional relationship between flooding and plant aboveground biomass (i.e., Marsh Equilibrium
Model, Morris et al., 2002; Figure 1a) and (b) the tracking of belowground carbon pools via annualized “cohorts”
(i.e., Cohort Theory Model, Morris & Bowden, 1986; Figure 1b). For more than three decades, empirical and
modeling work has been built onto the original modeling scaffolds of the Marsh Equilibrium Model and the
Cohort Theory Model, reflecting relevant advances in the fields of wetland biogeochemistry and geomorphology
as new mechanisms emerge over time (Figure 1c; Morris, 2006, 2007, 2010; Morris & Bradley, 1999; Morris &
Bowden, 1986; Morris & Haskin, 1990; Morris et al., 2002, 2012, 2016; Windham‐Myers et al., 2018). Together,
the Marsh Equilibrium Model and the Cohort Theory Model are critical for mapping changes in wetland area
across space and/or time (e.g., Schile et al., 2014), predicting global carbon flux (e.g., Mack et al., 2023), and for
understanding the role of organismal response to global change on emergent ecosystem processes (e.g., Vahsen,
Blum, et al., 2023).

Despite considerable advances in marsh accretion models as detailed below, there are several aspects of the
development of these models that limit their utility to a wider audience. First, to date, there has not been a full
description of the mathematical dynamics of the combined Marsh Equilibrium Model and Cohort Theory Model
despite its application in several research endeavors. Second, the application of the model across different ge-
ographies has not been particularly intuitive given the impact of locally driven tidal dynamics and their pro-
jections into the future given climate change. Finally, a focus on numerical simulations of the model for prediction
and projection has limited mathematical advances to the model that would allow for the approximation of pa-
rameters that are difficult to estimate empirically.

Here, we detail the development of the Cohort Marsh Equilibrium Model (CMEM), a fusion of the Marsh
Equilibrium Model and Cohort Theory Model, including both a mathematical formulation and release of the R
package, rCMEM, as an open‐source model (Holmquist et al., 2022). This effort represents the first articulation
of the Cohort Marsh Equilibrium Model which has been previously used in a variety of studies to predict marsh
accretion and carbon accumulation in several geographies across the United States (e.g., Schile et al., 2014;
Vahsen, Blum, et al., 2023). We introduce the historical development of CMEM to provide context to its structure
and mechanisms by tracing its origin from the original Marsh Equilibrium Model and Cohort Theory Model,
identifying advances in the biogeosciences literature that align with major updates in the model (Figure 1c). Then,
we present a novel mathematical version of the Cohort Theory Model, followed by a numerical model that in-
forms the R package rCMEM, highlighting pertinent ecological drivers like tidal regime. Our goal is to provide
modular and open‐source tools for hindcasting and forecasting the linked processes of marsh resiliency and
carbon sequestration given projected increases in the rates of sea level rise. Open‐source tools like rCMEM are
imperative in an era of unprecedented environmental change, wherein collaboration from multiple research
groups is needed to improve prediction.

1.1. Background of the Cohort Marsh Equilibrium Model Parent Models: The Cohort Theory Model and
the Marsh Equilibrium Model
The Cohort Marsh Equilibrium Model presented here can be seen as the culmination of research endeavors over
the past several decades (Figure 1c). Morris and Bowden (1986) established the Cohort Theory Model, which
breaks down marsh soils into mass cohorts that are tracked through the soil column by their depth and age. Each
year, a “cohort” of mineral sediment settles on the surface of the soil column at age zero and depth zero to some
depth, defining a single annual cohort. This mineral‐defined cohort then gains organic inputs from the roots and
rhizomes within the rooting zone and loses organic carbon via decomposition (Figure 1b). After the initial
deposition, the cohort is isolated from the surface via new mineral deposition and sees no more mineral inputs.
However, the cohort continues to receive root inputs and decomposition losses if it is within the rooting zone
(Figure 1b). Due to this addition and removal of organic matter, the volume of the cohort expands and shrinks over
time as it “moves” down the soil column (Figure 1b). The key feature of the Cohort Theory Model is that all
matter and bulk density is distributed downcore via individual soil cohorts and thus, the depth of a given soil
cohort is dependent on the dynamics (and resulting bulk density) of younger cohorts deposited above.
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Much of Morris and colleagues' relevant work in the 1990s shifted to understanding what drives variation in
aboveground biomass density, which influences organic matter inputs driving accretion rates (Figure 1c). Long‐
term experiments were critical to parameterizing interannual shifts in Spartina alterniflora primary production
and subsequently concluded that these shifts were primarily linked to inundation rather than to shifts in salinity as
previously proposed (Figure 1a; Morris & Bradley, 1999; Morris & Haskin, 1990; Morris et al., 2002). Morris
et al. (2002) described the relationship between sea level and plant production as a hump‐shaped parabola with an
optimal growth condition (i.e., the peak of the parabola in Figure 1a) bound by a minimum and maximum depth
below high tide within which vegetation can persist (i.e., x‐intercepts of the parabola in Figure 1a), which was
formalized into the first version of the Marsh Equilibrium Model. An important finding of this modeling exercise
was that the flooding depth at which aboveground biomass is maximized is not likely optimal for the long‐term
trajectory of the marsh: the stabilizing feedback between the marsh surface elevation, biomass production, and sea
level can be broken at certain flooding depths (Figure 1a, dashed line; Morris et al., 2002). Within the next few
years, Morris enhanced the Marsh Equilibrium Model by extending the biomass function into a multi‐species
scenario (Morris, 2006, 2007).

While the Cohort Theory Model explicitly modeled belowground biomass as a major contributor to vertical
accretion and carbon accumulation, the Marsh Equilibrium Model recognized how aboveground biomass
mediated accretion through the sediment trapping from tidal flows. Subsequent work by Morris et al. integrated
these two perspectives (Figure 1c). For example, in Morris et al. (2012) the amount of mass that enters into the
marsh soil over time was partitioned into separate aboveground and belowground components. Further, Morris
et al. (2016) developed a novel approach for calculating accretion rates using the separate, bulk self‐packing
densities of organic and inorganic material as well as loss‐on‐ignition (a proxy for organic matter fraction),
which allowed for better predictions across different sea level rise scenarios and across different concentrations of
suspended sediment in the water column.

2. Mathematical Model
2.1. Mathematical Model Formulation
Here we present a novel mathematical model to generalize the dynamics of the mass pools belowground. A key
development of this mathematical model is the introduction of an age for depth substitution where instead of the
depth of a specific cohort, we shift perspective to the age of the mineral component of a cohort. This mirrors the
original Cohort Theory Model implementation and then builds on a discrete formulation by allowing the age of
that cohort to shrink to an arbitrarily small size (i.e., 1 year to <1 day) to create a continuous age axis over which
we can integrate. Given a long enough consistent mineral and root input (i.e., constant marsh elevation relative to
sea level), we can then derive the “steady state” or stable profile of the surface cohorts providing expected
downcore soil organic matter distribution and mineral age. Under these constant conditions we can also calculate
an accretion rate (i.e., change in total soil volume over time) that would imply a constant sea level rise for this
hypothetical marsh.

We derive the mathematical model from the following set of assumptions:

1. All mineral and organic deposits comprising the cohort of age a at time t are located at the same depth x(t, a) in
the soil column. Cohorts of distinct ages do not mix. Each soil cohort in this model is initiated at age a à 0
when the associated mineral mass enters the system as a “fresh” laminae of minerals that are being laid on the
soil surface (Figure 1b). The particular components of each cohort are the rapidly decaying (Cf) and slowly
decaying (Cs) carbon deposits, the mineral deposits (M), and the roots and rhizomes (R).

2. The organic carbon enters the system through the influx of roots and rhizomes at the corresponding depth of
the soil cohort. In this formulation, the “age” of the organic carbon is defined as the age of the mineral deposits
located at the same depth x in the soil column. Thus, the concept of the “cohort age” is closer to the inorganic
isotopic date (e.g., 210Pb or 137Cs) rather than the organic isotopic date (e.g., 14C).

3. The organic and mineral components at depth x in the soil column have densities ρc(x) and ρm(x), respectively.
4. The volumetric fraction R à R(x) of roots within the soil column is a function of depth x only. Specifically, the

total volume occupied by the roots VR in a vertical soil column of fixed cross‐sectional area A and depths z ∈ [0,
x] is given by
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VRÖA,xÜ à AZx

0
RÖzÜ dz:

5. The mass‐age density of the mineral deposits of age a at time t is given by M(t, a), so that the total mass of
mineral deposits of all ages up to age a (equivalently, located at depths z ∈ [0, x(t, a)]) is given by Ra

0 MÖt,sÜ ds,
where s is a dummy variable for integration, and this mineral mass occupies the respective volume VM, where

VMÖA, xÜ à Za

0

MÖt, sÜ
ρmÖxÖt, sÜÜ ds:

6. Similarly, the mass‐age density of the organic (carbon) deposits of age a at time t is given by Cf (t, a) á Cs(t, a),
so that the total mass of carbon deposits of all ages up to age a (equivalently, located at depths z ∈ [0, x(t, a)]) is
given by Ra

0 �C f Öt, sÜ á CsÖt, sÜ ds, and this organic mass occupies the respective volume VC, where

VCÖA, xÜ à Za

0

C f Öt, sÜ á CsÖt, sÜ
ρcÖxÖt, sÜÜ ds:

7. The conservation equation represents the volume of a vertical soil column of fixed cross‐sectional area A and
depths z ∈ [0, x(t, a)] as a sum of the volumes occupied by carbon deposits, mineral deposits, and the roots,
respectively:

AxÖt, aÜ à VCÖA, xÜ á VMÖA, xÜ á VRÖA, xÜ: Ö1Ü

In the subsequent analysis, we will scale the model so that A à 1 and neglect the effects of compression so that the
densities of all deposits remain constant throughout the entire soil column. With these simplifications, the
conservation equation can be expressed in the integral form as follows:

ZxÖt,aÜ

0
Ö1 � RÖzÜÜ dz à 1

ρc
Za

0
�C f Öt, sÜ á CsÖt, sÜ� ds á 1

ρm
Za

0
MÖt,sÜ ds: Ö2Ü

8. We further assume that the volumetric fraction of root density decays linearly with depth:

RÖxÜ à rmmax✓1 � x
xmax

,0◆, 0 < rm < 1, Ö3Ü

so that the roots are present in the soil column only up to depth xmax.

For mathematical convenience, we introduce a function

ϕÖxÜ ≔ Zx

0
Ö1 � RÖzÜÜ dz à

8>><>>:
Ö1 � rmÜ x á rm

2xmax
x2, 0 ≤ x < xmax,

x � rm
xmax

2 , x ≥ xmax,

which represents the total volume occupied by carbon and mineral components at depths z ∈ [0, x]. Our
assumption that 0 < rm < 1 implies that ϕ(x) is a monotonic increasing function of x with ϕ(0) à 0 and
umax ≔ ϕÖxmaxÜ à xmax �1 � rm

2 � . Furthermore, the inverse function can be explicitly expressed as

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007823
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x à ϕ�1ÖuÜ à
8><>:�α á

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
α2 á 4βu

p

2β , 0 ≤ u < umax,

u � umax á xmax, u ≥ umax,

where α à 1 � rm and β à rm
2xmax

.

To obtain a differential form of the conservation equation, we first make a substitution u(t, a) à ϕ(x(t, a)), so that

uÖt, aÜ à 1
ρc

Za

0
�C f Öt, sÜ á CsÖt, sÜ� ds á 1

ρm
Za

0
MÖt, sÜ ds,

and then differentiate on both sides to arrive at

∂
∂auÖt, aÜ à 1

ρc
�C f Öt, aÜ á CsÖt, aÜ� á 1

ρm
MÖt, aÜ, uÖt, 0Ü à 0:

The time‐age dynamics of the mineral pool is modeled by the equation

∂
∂tMÖt, aÜ á ∂

∂aMÖt, aÜ à 0, MÖt, 0Ü à ζÖtÜ,

where ζ(t) corresponds to the surface mineral loading rate at time t. This equation can be solved directly to yield
the solution

MÖt, aÜ à ζÖt � aÜ, a ≥ 0:

This formulation assumes that there is no loss of mineral matter (e.g., from wave action) once sediment is
deposited on the marsh surface. The time‐age dynamics of the fast and slow carbon pools is modeled by the
equations

∂
∂tC f Öt, aÜ á ∂

∂aCf Öt, aÜ à f f krRÖxÖt, aÜÜ � kf C f Öt, aÜ, C f Öt, 0Ü à 0,

∂
∂tCsÖt, aÜ á ∂

∂aCsÖt, aÜ à ⇣1 � f f ⌘ krRÖxÖt, aÜÜ, CsÖt, 0Ü à 0,

where, after simplifications, we have

RÖxÖt, aÜÜ à R�ϕ�1ÖuÖt, aÜÜ� à
8<:1 �

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
α2 á 4βuÖt, aÜ

p
, 0 ≤ uÖt, aÜ< umax,

0, uÖt, aÜ≥ umax:

Here, we also assume that the fast carbon component decays at an exponential rate kf, while the decay of the slow
carbon component in the timescale of our model is neglected altogether. We argue that the assumption of
negligible decay from the slow carbon pool is reasonable because the realistic timescale of marsh development/
degradation is on the order of decades to centuries which is much faster than the typical timescale of slow carbon
decay (i.e., millennia; Kirwan & Mudd, 2012).

Combining the above equations, we obtain the differential form of the cohort model:

∂
∂auÖt, aÜ à 1

ρc
�Cf Öt, aÜ á CsÖt,aÜ� á 1

ρm
MÖt, aÜ, uÖt, 0Ü à 0, Ö4Ü

∂
∂tC f Öt, aÜ á ∂

∂aC f Öt, aÜ à f f krR�ϕ�1ÖuÖt, aÜÜ� � kf C f Öt, aÜ, Cf Öt, 0Ü à 0, Ö5Ü
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∂
∂tCsÖt,aÜ á

∂
∂aCsÖt, aÜ à ⇣1 � f f ⌘ krR�ϕ�1ÖuÖt, aÜÜ�, CsÖt, 0Ü à 0, Ö6Ü

∂
∂tMÖt, aÜ á ∂

∂aMÖt, aÜ à 0, MÖt, 0Ü à ζÖtÜ, Ö7Ü

where we can track the depth of the cohort of age a via x(t, a) à ϕ�1(u(t, a)).

We have purposefully neglected addressing units explicitly in the above formulation, consistent with common
mathematical presentations, to allow the reader to focus on the kinetics and formulation of the model. In practice,
the model proceeds on an annual timestep (a and t are measured in years), mass pools are measured in grams, and
depth (and thus area and volume) is measured in centimeters.

2.1.1. Stationary Age Distribution With Temporally Constant Mineral and Root Inputs
It is clear that the system (Equations 4–7) does not allow a true equilibrium solution because the mineral content in
the soil column is being top‐loaded at a time‐dependent rate and as a consequence, the total mineral content is
steadily increasing. In addition, the “slow” carbon component is being constantly supplied by the root structure
within the soil column and its decay rate is simply neglected in our model. As a consequence, the total “slow”
carbon content is also steadily increasing, so “slow” carbon in our model is rather a permanent carbon content.
Nonetheless, if we assume that the loading rate is constant M(t, 0) à ζ > 0 (a situation which we refer to as “the
steady‐state conditions”), then we can find the corresponding solution to Equations 4–7 where the age‐
distribution (and thus also depth‐distribution) of the cohorts is time‐invariant (i.e., stationary).

Assuming such steady‐state conditions allows to us uncouple the age‐dynamics of the organic components and
the roots from the mineral dynamics and reduces Equations 4–7 to a system of ordinary differential equations:

u0ÖaÜ à 1
ρc

�C f ÖaÜ á CsÖaÜ� á ζ
ρm

, uÖt,0Ü à 0, Ö8Ü

C0f ÖaÜ à f f krR�ϕ�1ÖuÖaÜÜ� � kf C f ÖaÜ, C f Ö0Ü à 0, Ö9Ü

C0sÖaÜ à ⇣1 � f f ⌘ krR�ϕ�1ÖuÖaÜÜ�, CsÖ0Ü à 0, Ö10Ü

Due to the nonlinear nature of the system (Equations 8–10), we cannot obtain closed‐form expressions for the
components of the time‐invariant age distribution. However, in the next section we discuss some relevant
properties of such distribution for data estimation.

2.2. Parameter Estimation Informed by the Mathematical Model
In this section, we show how Equations 8–10 from the mathematical model can be used to infer some of the
parameters from the data without solving these nonlinear equations explicitly. For instance, it follows directly
from Equations 8–10 that all three functions u(a), Cf(a) and Cs(a) are increasing initially when a > 0 is small, and
thus all three functions are positive on the interval (0, á∞). Furthermore, since u0ÖaÜ≥ ζ

ρm
> 0 for all a ≥ 0, it

follows that uÖaÜ≥ ζa
ρm

, that is, u(a) is increasing at least as fast as a linear function, and there exists a unique critical
value amax such that u(amax) à umax and u(a) > umax for all a > amax. This, in turn, implies that no roots are present
in cohorts older than amax, that is, R(a) à 0 for a > amax, where we use R(a) in place of R�ϕ�1ÖaÜ�� for notational
brevity. Consequently, for all ages a > amax, Cf(a) decays exponentially to zero while Cs(a) remains constant:

C f ÖaÜ à C f ÖamaxÜ e�k f Öa�amaxÜ, CsÖaÜ à Cs ÖamaxÜ, a > amax: Ö11Ü

We let C(a) à Cf(a) á Cs(a) be the cumulative content of carbon matter in age cohort a. We also let ax be the age at
which the organic matter is maximized, that is,
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0 à d
daCÖaxÜ à krRÖaxÜ � kf C f ÖaxÜ:

The critical value amax naturally corresponds the maximal age of the root biomass, thus

0 < ax < amax:

Due to Equation 11 we have Cf(∞) à 0 and Cs(∞) à Cs(amax), and

CÖamaxÜ � CÖ∞Ü à Z∞

amax

kf C f ÖaÜ da:

Hence, we have that C(∞) à Cs(∞), which allows us to express

Cf ÖamaxÜ à CÖamaxÜ � Cs ÖamaxÜ à CÖamaxÜ � CÖ∞Ü:

Now we can estimate the rate of organic decay kf by evaluating

d
daCÖamaxÜ à �kf C f ÖamaxÜ à �kf ÖCÖamaxÜ � CÖ∞Ü,

or equivalently,

kf à �
d

daCÖamaxÜ
CÖamaxÜ � CÖ∞Ü : Ö12Ü

To evaluate the fast carbon root allocation fraction ff, we integrate Equation 10 from 0 to ∞ to find that

CsÖ∞Ü à Z∞

0
⇣1 � f f ⌘ krRÖsÜ ds à ⇣1 � f f ⌘ krZamax

0
RÖsÜ ds:

Substituting Cs(∞) à C(∞), we obtain the estimate

f f à 1 � CÖ∞Ü
kr∫ amax

0 RÖsÜ ds
: Ö13Ü

Finally, we integrate Equation 10 from 0 to ax, and then use Equation 13 to express

Cs ÖaxÜ à ⇣1 � f f ⌘ krZax

0
RÖsÜ ds à

CÖ∞Ü∫ ax
0 RÖsÜ ds

∫ amax
0 RÖsÜ ds

,

and then use the equation

krRÖaxÜ à kf C f ÖaxÜ à kf ÖCÖaxÜ � Cs ÖaxÜÜ à kf ✓CÖaxÜ �
CÖ∞Ü∫ ax

0 RÖsÜ ds
∫ amax

0 RÖsÜ ds
◆,

to estimate the rate of root turnover as

kr à kf
CÖaxÜ∫ amax

0 RÖsÜ ds � CÖ∞Ü∫ ax
0 RÖsÜ ds

RÖaxÜ∫ amax
0 RÖsÜ ds

: Ö14Ü

Equations 11–14 demonstrate that the downcore patterns of soil organic carbon density and mineral age can be
used to determine key parameters in the Cohort Marsh Equilibrium Model, with the critical assumption that the
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marsh has kept up with sea level rise consistently over the last several decades (or as long as it takes for the
mineral cohort to travel past the rooting zone and lose the associated fast carbon). In practice, this key assumption
may not hold for a location of interest and classic parameterizations via incubation studies may be more
appropriate.

3. Numerical Model
3.1. Forcings and Feedbacks
A key component of Cohort Marsh Equilibrium Model is a feedback between the sea level and marsh platform
elevation via changes in biomass and mineral inputs, which is derived from the Marsh Equilibrium Model. We
note that this feedback is not explicitly represented in the mathematical formulation presented above (although the
authors hope to see this extended in future works). Thus, the purpose of the mathematical model described above
is to better characterize mass pools, while the purpose of the numerical model in this section is to make predictions
of changes in mass pools over time, and in turn, changes in marsh surface elevation and carbon accumulation,
while accounting for biophysical feedbacks between plant production, sea level rise, and marsh surface elevation.
The numerical model also represents what is featured in the R package rCMEM, wherein there are two main
dynamic modules of the model—the sediment and biomass modules—both of which are forced by sea level rise.
We include a supplemental vignette in Supporting Information S2 that walks through a full workflow of using
CMEM to aid users of the R package for the current version. In this manuscript, we do not include the function
names and calls specific to the rCMEM package as this is a living codebase that may be edited and versioned in
the future. Instead, we walk through the mathematical formulation of the sediment and biomass input modules as a
function of tidal inundation. We note that the units for mass (grams) and length (centimeters) are kept consistent
throughout the inputs, internal processing, and outputs of CMEM and rCMEM.

3.1.1. Dynamic Feedbacks: Sediment Module
The sediment module calculates the amount of inorganic sediment (i.e., minerals) captured on the marsh surface
due to tidal flows. The amount of water above the marsh surface for a set area controls the amount of sediment
delivered and is governed by variability across daily and monthly tidal cycles (Figures 2a and 2b), and trends
across decadal and centennial timescales influence annual tidal predictions (Figures 2c and 2d). Below, we walk
through classical formulations for tidal inundations at sub‐annual, annual, and multi‐year scales. Then we discuss
the sediment input at the marsh surface as a function of inundation time, water column depth, and capture rate.

3.1.1.1. Sub‐Annual Tidal Inundation

A single tidal flood time for a marsh at elevation Z(t) is broken down into three cases,

ωÖt, ZhÖtÜ,ZlÖtÜÜ à

8>>>><>>>>:
0 ZhÖtÜ < ZÖtÜ,
ZhÖtÜ � ZÖtÜ
ZhÖtÜ � ZlÖtÜ

ZlÖtÜ ≤ ZÖtÜ ≤ ZhÖtÜ,

1 ZÖtÜ < ZlÖtÜ,

Ö15Ü

where ω is the fraction per tide that the marsh spends below the water at year t given mean high Zh(t) and low Zl(t)
water. Alternatively, a trigonometric function can be used to characterize fractional flooding time (sensu Hick-
ey, 2019), which is a new functionality within rCMEM.

In the trigonometric case, flooding time is calculated as a function of the absolute value of the rising time ωr minus
ϕ, which is the time of one half of a tidal cycle, and the falling time ωl for tidal cycle class (sensu Hickey, 2019),

ωÖt, ZhÖtÜ, ZlÖtÜÜ à f ÖZÜ à jωrÖtÜ � ϕj á ωlÖtÜ Ö16Ü

ωrÖtÜ à sin✓ϕH1
π � � 1◆ Ö17Ü

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007823
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H1,t à 2π � arccos✓2 ZÖtÜ � ZlÖtÜ
ZhÖtÜ � ZlÖtÜ

� � 1◆ Ö18Ü

ωlÖtÜ à sin✓ϕH2
π � � 1◆ Ö19Ü

Figure 2. Drivers of variation in water level across four temporal scales using tidal gauge data from NOAA Station 8665530 in Charleston, South Carolina. (a) Water
level (m) derived from a data logger across a lunar day (24.83 hr). (b) Water level (m) derived from a data logger across a year. Horizontal lines represent different tidal
data: mean sea level (MSL), mean high water (MHW), mean higher high water (MHHW), and spring mean higher high water (MHHWS). (c) Tidal amplitude (m) across
an 18.6 years lunar cycle. (d) Predicted change in mean sea level within a century. The black bolded line represents mean predictions and the shaded band represents a
95% confidence interval. Fluctuations in the bands represent the 18.6 years lunar cycle as highlighted in (c).
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H2,t à 2π � arccos✓2ZÖtÜ � ZhÖtÜ
ZlÖtÜ � ZhÖtÜ

� � 1◆ Ö20Ü

where H1 and H2 are intermediate functions used to translate Z, Zh, and Zl data to rising and falling times (ωr and
ωl, respectively). When ϕ is set to 0.5 (i.e., half of a tidal cycle), the value of ω(t) is equal to the fractional flooding
time.

This trigonometric option allows sedimentation processes to be more sensitive in high marshes by smoothing
transitions at the outer boundaries of the flooding extent, but does not drastically influence calculated fractional
flooding times. Fractional flooding time is capped at 1 if elevation is lower than lowest flood elevation (100%
flooded), and 0 (0% flooded) if the elevation is greater than the highest water level.

3.1.1.2. Annual Number of Tidal Cycles

The number of tides per year nt also regulates the amount of flooding on the marsh surface. Estimating nt is
specific to geography. Semi‐diurnal and mixed semi‐diurnal tidal regimes are the dominant tidal type in the U.S.
Southeast—wherein the Marsh Equilibrium Model was first calibrated (Morris et al., 2002)—and have two floods
per lunar day. In contrast, diurnal tides, which are dominant along much of the U.S. Gulf Coast, have only one
flood per lunar day. Estimating the flooding time for these regions would thus be inaccurate using the same
number of tidal floods as for semi‐ or mixed semi‐diurnal tides.

This version of CMEM and rCMEM allows for nt to be specified to better align with observed tidal scenarios
across geographic locations by introducing three alternative tidal cycle scenarios governing annual tidal inun-
dation patterns: mean high tides (352.657 per year), mean higher high tides (327.937 per year), and mean higher
high spring tides (24.720 per year) (Figure 2b). The fractional flooding time ω is then calculated and summed
across scenarios resulting in a total fractional flooding time. This new adaptation within rCMEM especially
improves the realism of the model when the starting elevation of the marsh surface is above the high water line
(i.e., a supratidal marsh) because it allows for the marsh surface to flood periodically, allowing some mineral
sedimentation and adjusting the functional response of vegetation to that flooding.

3.1.1.3. Multi‐Year Tidal Amplitude Change

High tide flood dynamics can also vary on an 18.61‐year cycle known as the lunar nodal cycle (Figure 2c)
following

ZhÖtÜ à Ωμ á λ✓sinâ2πÖt � θÜä
18:61 ◆ á ZμÖtÜ, Ö21Ü

where Zh(t) is the high tide level, Ωμ is the mean tidal amplitude, λ is the amplitude of the 18.61 years cycle, θ is
the phase of the 18.61 years cycle, and Zμ(t) is mean sea level, all at time t.

3.1.1.4. Mineral Inputs

The amount of available mineral sediment inputs ma at an elevation in a given year to be delivered to the marsh
surface is calculated as

maÖtÜ à (ωÖt,ZhÖtÜ,ZlÖtÜÜmτ ωÖtÜ < 1=τ,
m otherwise,

Ö22Ü

where the available suspended sediment input is the fractional flooding time ω multiplied by the suspended
sediment concentration m and the capture rate of the marsh τ, if the fractional flood time ω (see Equation 15) is
smaller then the inverse of the number of times the sediment settles out of the water column for each tidal cycle
(i.e., capture rate, τ). Alternatively, if the inverse of capture rate τ is less than the fractional flooding time, then the
full available sediment is deposited on the surface. In practice, capture rate (τ) serves as a tuning parameter and
while it has a basis in physical processes, it will only be meaningful if constrained empirically.
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The sediment that is delivered to the surface of the marsh for any given year is then

MÖtÜ à
8<:maÖtÜnt

ÖZhÖtÜ � ZÖtÜÜ
2 ZÖtÜ ≤ ZhÖtÜ

0 otherwise
Ö23Ü

where M is the mineral input, ma is the available suspended sediment input (see Equation 22), nt is the number of
tides per year, and the height of the average water column over the marsh is the elevation of high tide Zh(t) minus
the elevation of the marsh Z(t) divided by 2 to account for cyclic oscillations.

3.1.2. Dynamic Feedbacks: Biomass Module
Biomass production is a function of flooding and is optimized at an intermediate level of flooding—higher in the
tidal frame plant growth is stunted and lower in the tidal frame productivity is reduced and mortality increases
(Figure 1a). Because the elevation of the surface, the elevation of sea level, and the tidal range vary from year to
year and across geographies, we calculate the elevation of the biomass parabola as dimensionless (Z*), relative to
the tidal range. Relative tidal elevation is calculated as

Z∗ÖtÜ à
ZÖtÜ � ZμÖtÜ
ZhÖtÜ � ZμÖtÜ

, Ö24Ü

where Z* is relative tidal elevation, Z is the surface elevation, Zμ is mean sea level, and Zh is the mean high water
level. Z* values are convenient for comparisons across geographies: Z* values between 0 and 1 are between mean
sea level and the elevation at which the surface receives twice daily tidal floods. Z* > 1 indicates elevations above
the mean high water line, and Z* < �1 denotes elevations that are approximately below low tide.

In the original Marsh Equilibrium Model, the parabolic relationship between Z* and aboveground biomass
depended on the elevation limits of vegetation Zmin and Zmax and the maximum amount of biomass that can be
produced across elevations Bmax (Figure 3, black curve). Under a scenario of increased sea level rise (as is
generally predicted), Zmin will characterize the survival potential of the marsh because marshes that do not
produce vegetative biomass will transition into a mudflat. In this version of the Cohort Marsh Equilibrium Model,
we introduce an additional fourth parameter Zpeak, or the elevation at which biomass production is optimal (i.e.,
where B à Bmax) to allow for an asymmetric “parabola shape” (Figure 3, gray curves). We define Zrange, Zsum, and
Zprod to simplify the calculation of aboveground biomass via a piecewise function.

Figure 3. Predicted aboveground biomass � g
cm2� as a function of relative tidal elevation (Z*) for three hypothetical biomass‐

elevation functions. The classic Marsh Equilibrium Model parabolic relationship where Z∗
peak à Z∗

maxáZ∗
min

2 is shown in black,
where the dashed black line represents Z∗

peak. The gray lines show predicted biomass curves where Z∗
peak ≠ Z∗

maxáZ∗
min

2 .
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Zrange à (Zpeak � Zmin for Z∗ < Zpeak

Zmax � Zpeak otherwise
Ö25Ü

Zprod à (Zmin ÖZpeak á ÖZpeak � ZminÜÜ for Z∗ < Zpeak

Zmax ÖZpeak � ÖZmax � ZpeakÜÜ otherwise
Ö26Ü

Zsum à (Zmin á ÖZpeak á ÖZpeak � ZminÜÜ for Z∗ < Zpeak

ÖZpeak � ÖZmax � ZpeakÜÜ á Zmax otherwise
Ö27Ü

Aboveground biomass is then converted to belowground biomass via a root‐to‐shoot ratio (φ; technically a ratio
of root and rhizome biomass to aboveground biomass), such that

rtot ÖZ∗Ü à φ Bmax
Z2

range
��Z∗2 á ZsumZ∗ � Zprod�: Ö28Ü

Total root and rhizome biomass (rtot) is the integrated sum of the root density described in Equation 3, implying
that rm à 2 rtot ÖZ∗Ü

Axmax
. An alternative implementation of an exponential decay for this root distribution is included in

the R package, rCMEM.

To account for species composition in overall ecosystem biomass production we consider species specific pa-
rameters: Zmax, Zmin, Zpeak, Bmax, φ, and xmax (Equations 25–28). We then constructed a “competition” function,
where the total aboveground biomass is equal to the predicted aboveground biomass of the most dominant species
at the current level of flooding allowing for multiple species to dominate within their niche flooding level
(Figure 4; sensu Morris, 2006).

3.2. Boundary Conditions and Numerical Discretization
In prior sections we dealt primarily with range change for the various pools in the models and how they interrelate.
We now consider three key boundary conditions for the Cohort Marsh Equilibrium Model—initial soil organic
matter and mineral pools downcore, sea level rise, and the fixed bottom assumption.

To generate the initial distribution of soil organic matter and mineral pools downcore, we first assume that the
surface elevation of the marsh is below the high tide and then run the simulation forward under a prescribed sea
level rise scenario. During year one, we assume there is a single mineral cohort based on annual mineral inputs
calculated from the initial elevation. Cohorts are then added to the profile until three conditions are met: (a) the

Figure 4. Predicted aboveground biomass � g
cm2� as a function of elevation (cm NAVD88) for two species (left; green lines)

and the total aboveground biomass used to parameterize the model given the “competition function” (right; black line) as
specified in the Cohort Marsh Equilibrium Model.
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profile meets a minimum age of 50 years, (b) the profile is deep enough to accommodate the maximum rooting
depth, and (c) the fast and slow organic matter pools at the bottom of the profile have stabilized. The initial
elevation can also be outside the range of the biomass parabola (Figure 3), however only a mineral sediment
lamina will be added to the column until the relative tidal elevation crosses back into the range of the biomass
parabola. An alternative initialization could leverage the ‘stable’ formulations given in Equations 8–10, however
the above scenario allows for historical sea level patterns to be directly incorporated.

Sea level rise is then projected as a quadratic increase over time (Sweet et al., 2017). Mean sea level at time Zμ(t) is
calculated as

ZμÖtÜ à ZμÖ0Ü á αt á βt2 Ö29Ü

α à r0 � β Ö30Ü

β à
R
T � r0
T � 1 Ö31Ü

where Zμ(0) is initial mean sea level, r0 is the initial rate of sea level rise, R is the total amount of sea level rise, and
T is the total number of years in the scenario. Finally, to calculate the change in marsh elevation we assume that
the bottom cohort is stationary and that any change in the total core volume results in a change in the surface of the
marsh.

3.3. Example Scenario Simulation: Geographic Specific Parameterization
To examine the impact of realistic differences in sea level rise on marsh accretion and soil carbon storage, we
simulated the numerical version of the Cohort Marsh Equilibrium model across coastal cities in the United States
informed by site‐specific tidal histories, while keeping other model parameters constant. Specifically, we
extracted verified tidal data from 1983 to 2020 to inform the tidal parameters of seven locations from the
contiguous United States which represented a variety of coastal geographies: Seattle, Washington; San Francisco,
California; Port Isabel, Texas; Pensacola, Florida; Charleston, South Carolina; Annapolis, Maryland; and Port-
land, Maine (Figure 5a, Table 1; Stephenson, 2016).

We fit harmonic constituents to verified tidal data from 1983 to 2020 using the R package TideHarmonics
(Stephenson, 2016) and used a moving window analysis to identify tidal data for each site: average mean tidal
level (which we treated as equivalent to mean sea level), mean high water, mean higher high water, and mean
higher high water spring tide. For the two gauges with diurnal tidal regimes (Port Isabel, TX and Pensacola, FL),
we only reported mean sea level and mean high water data (Table 1). Across sites, we used mean tidal level at
2000 as the initial mean sea level. We estimated initial sea level rise for each gauge as the slope of a fitted linear
relationship between median decimal year and mean tidal level from 1983 to 2000 and we calculated the annual
mean tidal amplitude as the difference between annual mean tidal level and the mean high water data.

We applied a 100‐year sea level rise scenario with the localized scenario at each location, using median prob-
ability realized concentration pathway (RCP) 4.5 (Kopp et al., 2014). To test whether the lunar nodal cycle was an
important driver by location—and thus determine if it should be parameterized for the model simulations—we fit
a sinusoidal function to the relationship between mean tidal amplitude and year using the non‐linear solver nls
function in R (version 4.3.2; R Core Team, 2023). If lunar nodal phase and amplitude terms were significantly
different than zero (p < 0.05) then we used the estimated coefficient values as inputs, otherwise we set lunar nodal
amplitude as zero (Table 1).

We derived the relationship between relative tidal elevation (Z*) and aboveground biomass for the simulations
from a Spartina alterniflora mesocosm experiment at the North Inlet (Morris et al., 2013). We fit an asymmetric
parabolic relationship (Equations 25–27) with a Bayesian hierarchical model to the biomass‐elevation data from
the mesocosm experiment via rjags (Plummer, 2021) to inform parameter estimates of Bmax, Z∗

max, Z∗
min, and Z∗

peak

following methods from LeBauer et al. (2013) (see Supporting Information S1: Text S1 and Table S1). We used
mean high water at 2020 and Z* of 0.83 (the median peak elevation from the biomass analysis Z∗

peak; Table 2) to
calculate a unique starting elevation for each site. While we use data from the Morris et al. (2013) Spartina
alterniflora mesocosm experiment to inform the parameter values of the biomass‐elevation relationship, we note
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that previous applications of the model have used data from other mesocosm experiments with different species
(Vahsen, Blum, et al., 2023) or from observational data that characterize a parabolic relationship with tidal
elevation and aboveground biomass (Schile et al., 2014). All other parameters and inputs were kept constant for
the simulations across different geographic locations (Table 2).

Finally, to visualize the underlying model dynamics that inform the emergent accretion and soil carbon storage
rates, we visualized the four mass pools tracked by the Cohort Marsh Equilibrium Model—belowground biomass,

Figure 5. Resulting trajectories of Cohort Marsh Equilibrium Model simulations from 2000 to 2100 given the same initial elevation normalized to tidal amplitude
(Relative Tidal Elevation [Z*] à 0.83) and locally specific tidal amplitudes, sea level rise scenarios, and lunar nodal cycle parameters (Tables 1 and 2). (a) Map of
locations for which the model was simulated given geographically specified tidal parameters. (b) Resulting relative tidal elevation (dimensionless) for each location
(calculated following Equation 24) across the simulation period. (c) Carbon flux (g m�2 yr�1; i.e., the change in the amount of carbon in the system across an annual
timestep) for each location across the simulation period.
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fast organic, slow organic, and mineral—for each cohort by depth for Annapolis, MD and Seattle, WA: two sites
with different resilience to sea level rise based on the localized sea level rise scenarios applied here.

4. Results
4.1. Numerical Model Simulations
The model simulations using data from seven NOAA tide gauges show that the variability in future marsh
resiliency is strongly influenced by geographically explicit inundation drivers (Figure 5). Qualitatively, the
simulated marshes in Annapolis, MD, Port Isabel, TX, and Pensacola, FL showed an eventual submergence of the
marsh surface (Figure 5b; Relative Tidal Elevation <0) and loss of carbon sequestration capacity, as depicted by
negative carbon flux peaks in Figure 5c, wherein plant biomass is fully depleted. The Charleston, SC and San
Francisco, CA simulated marshes became more flooded over the course of the simulation and contributed pro-
gressively less carbon each year due to reductions in biomass production under increased flooding, however,
these marshes did not become submerged within the 100‐year simulation. The Seattle, WA and Portland, ME
simulated marshes were the most resilient to projected localized sea level rise, maintaining their surface elevation
nearly constant relative to sea level and maintaining carbon sequestration capacity. Finally, the importance of
significant lunar nodal cycle oscillations on relative tidal elevation and carbon flux can be seen in Figures 5b and
5c for all locations except Annapolis, MD and San Francisco, CA, wherein lunar nodal phase and amplitude were
not found to be significantly different than zero.

Table 1
Tidal Driver Parameters and Inputs for Geographic Simulation of the Cohort Marsh Equilibrium Model

Site Station ID r0 R Z0 Zμ Zμ,datum Zh,datum Zhh,datum Zhhs,datum λ θ nt τ

Portland, ME 8418150 0.087 62 93.2 �11.2 �10.6 115.1 139.9 171.4 4.27 1.04 705.98 2.8
Annapolis, MD 8575512 0.230 77 �0.4 �6.6 �2.0 5.5 19.8 26.3 0.00 1.88 705.98 2.8
Charleston, SC 8665530 0.330 71 50.2 �6.9 �10.3 58.4 79.0 99.2 2.24 1.46 705.98 2.8
Pensacola, FL 8729840 0.140 61 24.0 8.9 9.5 27.7 – – �1.79 1.49 352.99 5.6
Port Isabel, TX 8779770 0.638 80 14.9 0.4 �3.4 14.1 – – �2.39 1.37 352.99 5.6
San Francisco, CA 9414290 �0.113 58 132.2 95.8 99.0 142.8 178.5 199.1 0.00 �0.34 705.98 2.8
Seattle, WA 9447130 0.040 55 203.7 128.7 131.8 222.1 274.0 287.1 1.99 1.29 705.98 2.8
Note. r0 à initial rate of sea level rise (cm yr�1), R à total amount of sea level rise (cm), Z0 à initial elevation (cm), Zμ à initial mean sea level, Zμ,datum à mean sea level
over the last recorded tidal datum period, Zh,datum à mean high water over the last recorded tidal datum period, Zhh,datum à mean higher high water over the last recorded
tidal datum period, Zhhs,datum à mean higher high spring tide over the last recorded tidal datum period, λ à lunar nodal amplitude, θ à lunar nodal phase, nt à number of
tides per year, τ à capture rate. All marsh surface and tidal elevation values are relative to the NAVD88 datum. Pensacola, FL and Port Isabel, TX do not have values for
Zhh,datum and Zhhs,datum because they have diurnal tidal regimes.

Table 2
Non‐Tidal Parameters for Geography Simulation

Description Parameter Value Units Source
Suspended sediment concentration m 3e�5 g cm�3 expert elicitation
Peak aboveground biomass Bmax 0.0866 g cm�2 Bayesian analysis
Minimum growing elevation Z∗

min �0.470 – Bayesian analysis
Maximum growing elevation Z∗

max 2.08 – Bayesian analysis
Peak growing elevation Z∗

peak 0.831 – Bayesian analysis
Root‐to‐shoot ratio φ 2 g

g expert elicitation
Root turnover ψ 0.5 yr�1 expert elicitation
Maximum (95%) rooting depth xmax 30 cm expert elicitation
Decay rate of fast organic matter κf 0.5 yr�1 expert elicitation
Recalcitrant fraction fs 0.2 – expert elicitation
Note. These parameters were held constant across the different geographies.
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Differences in relative tidal elevation and carbon flux coincided with differences in mass pools belowground,
elucidating the cohort mechanism within the Cohort Marsh Equilibrium Model. In Figure 6, we compared the
composition of cohorts downcore at the end of the simulation for Annapolis, MD and Seattle, WA—two marshes
with different accretion and carbon storage trajectories as shown in Figure 5. At the end of the simulation, the
simulated marsh in Annapolis submerged and thus was no longer producing any belowground biomass
(Figure 6a) and all fast organic matter was decomposed (Figure 6b). Alternatively, the simulated marsh in Seattle
maintained belowground biomass and fast organic matter pools that generally declined in mass moving downcore
until the end of the rooting zone at 30 cm below the marsh surface.

Once the Annapolis marsh submerged and no longer supported vegetative production, new cohorts were only
composed of mineral matter, which increased with increasing sea level rise as the marsh surface continued to
decline in relative tidal elevation (Figure 6d). The lack of biomass production also meant that new cohorts in the
Annapolis marsh following submergence were not contributing to slow organic matter pools, but due to its
recalcitrant nature, slow organic matter was conserved within cohorts deeper in the marsh soil (Figure 6c).
Alternatively, maintained vegetation in the Seattle marsh led to sustained contributions to the slow organic matter
pool (Figure 6c) and relatively less mineral mass in the top cohorts due to being higher in relative tidal elevation
(Figure 6d).

5. Discussion and Conclusion
The Cohort Marsh Equilibrium Model described here is the first open‐source fusion of the Marsh Equilibrium
Model (Morris et al., 2002) and Cohort Theory Model (Morris & Bowden, 1986) which revolutionized our
understanding of the link between soil biogeochemistry and surface elevation in tidal ecosystems. These foun-
dational models are merged through the development of a “depth‐for‐time” substitution, linking key feedbacks
between soil cohort biogeochemistry, root inputs, and relative sea level. While versions of this joint model have
been used to predict marsh resilience in the face of sea level rise (e.g., Schile et al., 2014), we hope that providing
an open‐source codebase accompanied with a more detailed discussion of the mechanisms and equations moti-
vating the model dynamics will improve the usability of the model across the research community.

By introducing a novel mathematical version of the cohort theory model, we provide unique opportunities for data
integration to estimate parameters in the Cohort Marsh Equilibrium Model that are usually difficult to estimate.
Particularly, the decay rate of the fast pool κf, turnover time of the root mass ψ, and allocation of the dead roots to
the fast pool ff could be informed by the organic carbon by age slope across different sections of the soil core.
Characterizing κf, ψ, and ff is important because these parameters are typically informed by single studies or expert
judgment, yet are integral in accurately estimating carbon stocks. For example, Rietl et al. (2021) showed through
model simulations that characterizing species‐specific decomposition rates was critical in capturing carbon
storage dynamics in a coastal marsh in the Chesapeake Bay. Although more work is needed in developing the

Figure 6. Predicted mass for each of the four mass pools: (a) belowground biomass, (b) fast organic, (c) slow organic, and (d) mineral, across cohorts in 2100 for
Annapolis, MD and Seattle, WA. Points represent individual cohorts and are arranged on the y‐axis by the depth at the top of each cohort. In 2100, the Annapolis
simulated marsh became submerged and lost all vegetation, and the Seattle simulated marsh was still keeping pace with sea level rise and retained vegetation. Note that
the scales of the x‐axes vary across panels (a–d).
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methodologies for estimating parameters from core data, we feel this is a promising line of research that could
provide hyper‐local parameters for soil kinetics.

We recognize that there are several fundamental assumptions that are made in this mathematical formulation that
could be revisited in future work including the assumption of a negligible decay rate of the slow organic matter
pool, a constant organic and mineral packing density downcore (i.e., ignoring the effects of compaction), and
constant downcore decay rates (i.e., ignoring the effects of changing redox dynamics). Additionally, the math-
ematical formulation in its current state does not account for biophysical feedbacks between plant production, sea
level rise, and marsh surface elevation, although this is a near‐term goal for our research team. Despite these
limitations, this Cohort Marsh Equilibrium Model formalizes past patterns in the parent models and allows us to
integrate insights from both the Cohort Theory Model and Marsh Equilibrium Model under a single framework.

Our geographic simulations informing the Cohort Marsh Equilibrium Model with localized inundation patterns
confirm previous findings that wetland resilience is particularly sensitive to localized sea level rise scenarios
(Figure 5; Holmquist et al., 2021). Kirwan et al. (2016) similarly suggested that parameterizing dynamical
models, like the Cohort Marsh Equilibrium Model, with localized sea level rise and tidal ranges is needed to
correctly assess marsh resilience. Together, these findings call for site‐specific management plans and tailored
models to inform them.

We note that there are indeed still limitations to our numerical modeling framework in characterizing the local
dynamics needed to accurately predict regional marsh resilience. First, this model is aspatial, that is, the Cohort
Marsh Equilibrium Model does not account for horizontal transgression, which has been shown to be a critical
mechanisms for predicting how marshes will expand or contract in area in response to sea level rise ( Holmquist
et al., 2021; Miller et al., 2021). Second, the Cohort Marsh Equilibrium Model lacks some nuance in vegetation
parameters. It does not explicitly account for sediment trapping by vegetation aboveground, a feature that is
represented in similarly minded models (Mudd et al., 2010). Thus, this version of the Cohort Marsh Equilibrium
Model could be underestimating the capacity for marshes to accrete via mineral sedimentation on the marsh
surface. Additionally, the root‐to‐shoot ratio in the model is currently set to be static across inundation regimes,
however there is evidence from mesocosm experiments that root‐to‐shoot ratios for some marsh species decline
with increasing inundation (Vahsen, Kleiner, et al., 2023) and that variation in root‐to‐shoot ratios can lead to
uncertainty in model predictions (Vahsen, Blum, et al., 2023). We hope that future work assessing the importance
of and accommodating these mechanisms will be made easier via an open‐source code base.

Overall, open‐source code bases such as rCMEM allow users to modify existing model parameters and un-
derlying code to suit local conditions, creating opportunities for relevant simulations on a more regional level.
Open‐source projects can support vibrant developer communities that intersect policy and academic research
spheres. Finally, we see future improvements of model forecasts by adopting a full data‐model integration
approach (e.g., ecological forecasting; sensu Dietze, 2017), which would account for sensitivies and uncertainties
of parameters and is made more feasible with an open‐source version of Cohort Marsh Equlibrium Model. We are
excited by this new potential for open science.

Data Availability Statement
All code for the version of the rCMEM package described in this manuscript is available via https://doi.org/10.
5281/zenodo.6629447 (Holmquist et al., 2022). The data and code used to run simulations and create figures in
the text is available via https://doi.org/10.5281/zenodo.10844745 (Holmquist & Vahsen, 2024).
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