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ABSTRACT

Across domains such as medicine, employment, and criminal jus-
tice, predictive models often target labels that imperfectly reflect
the outcomes of interest to experts and policymakers. For example,
clinical risk assessments deployed to inform physician decision-
making often predict measures of healthcare utilization (e.g., costs,
hospitalization) as a proxy for patient medical need. These proxies
can be subject to outcome measurement error when they systemat-
ically differ from the target outcome they are intended to measure.
However, prior modeling efforts to characterize and mitigate out-
come measurement error overlook the fact that the decision being
informed by a model often serves as a risk-mitigating interven-
tion that impacts the target outcome of interest and its recorded
proxy. Thus, in these settings, addressing measurement error re-
quires counterfactual modeling of treatment effects on outcomes.
In this work, we study intersectional threats to model reliability
introduced by outcome measurement error, treatment effects, and
selection bias from historical decision-making policies. We develop
an unbiased risk minimization method which, given knowledge
of proxy measurement error properties, corrects for the combined
effects of these challenges. We also develop a method for estimating
treatment-dependent measurement error parameters when these
are unknown in advance. We demonstrate the utility of our ap-
proach theoretically and via experiments on real-world data from
randomized controlled trials conducted in healthcare and employ-
ment domains. As importantly, we demonstrate that models correct-
ing for outcome measurement error or treatment effects alone suffer
from considerable reliability limitations. Our work underscores the
importance of considering intersectional threats to model validity
during the design and evaluation of predictive models for decision
support.
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1 INTRODUCTION

Algorithmic risk assessment instruments (RAIs) often target la-
bels that imperfectly reflect the goals of experts and policymakers.
For example, clinical risk assessments used to inform physician
treatment decisions target future utilization of medical resources
(e.g., cost, medical diagnoses) as a proxy for patient medical need
[45, 46, 50]. Predictive models used to inform personalized learn-
ing interventions target student test scores as a proxy for learning
outcomes [29]. Yet, these proxies are subject to outcome measure-
ment error (OME) when they systematically differ from the target
outcome of interest to domain experts. Unaddressed, OME can be
highly consequential: models targeting poor proxies have been
linked to misallocation of medical resources [50], unwarranted
teacher firings [72], and over-policing of minority communities [7].
Given its prevalence and implications, increasing research focus
has shifted to understanding and mitigating sources of statistical
bias impacting proxy outcomes [15, 23, 24, 44, 47, 77].

However, prior work modeling outcome measurement error
makes a critical assumption that the decision informed by the algo-
rithm does not impact downstream outcomes. Yet this assumption
is often unreasonable in decision support applications, where deci-
sions constitute interventions that impact the policy-relevant target
outcome and its recorded proxy [13]. For example, in clinical decision
support, medical treatments act as risk-mitigating interventions
designed to avert adverse health outcomes. However, in the pro-
cess of selecting a treatment option, a physician will also influence
measured proxies (e.g., medical cost, disease diagnoses) [45, 46, 50].
As a result, the measurement error characteristics of proxies can
vary across the treatment options informed by an algorithm.

In this work, we develop a counterfactual prediction method
that corrects for outcome measurement error, treatment effects,
and selection bias in parallel. Our method builds upon unbiased
risk minimization techniques developed in the label noise literature
[11, 47,52, 73]. Given knowledge of measurement error parameters,
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unbiased risk minimization methods recover an estimator for tar-
get outcomes by minimizing a surrogate loss over proxy outcomes.
However, existing methods are not designed for interventional set-
tings whereby decisions impact outcomes — a limitation that we
show severely limits model reliability. Therefore, we develop an un-
biased risk minimization technique designed for learning counter-
factual models from observational data. We compare our approach
against models that correct for OME or treatment effects in isolation
by conducting experiments on semi-synthetic data from healthcare
and employment domains [21, 40, 71]. Results validate the efficacy
of our risk minimization approach and underscore the need to care-
fully vet measurement-related assumptions in consultation with
domain experts. Our empirical results also surface systematic model
failures introduced by correcting for OME or treatment effects in
isolation. To our knowledge, our holistic evaluation is the first to
examine how outcome measurement error, treatment effects, and
selection bias interact to impact model reliability under controlled
conditions.

We provide the following contributions: 1) We derive a prob-
lem formulation that models interactions between OME, treatment
effects, and selection bias (§ 3); 2) We develop a novel approach
for learning counterfactual models in the presence of OME (§ 4.1).
We provide a flexible approach for estimating measurement error
rates when these are unknown in advance (§ 4.2); 3) We conduct
synthetic and semi-synthetic experiments to validate our approach
and highlight reliability issues introduced by modeling OME or
treatment effects in isolation (§ 5).

2 BACKGROUND AND RELATED WORK
2.1 Al functionality and validity concerns

Prior work has conducted detailed assessments of specific model-
ing issues [13, 15, 32, 35, 39, 77], which have been synthesized into
broader critiques of Al validity and functionality [14, 55, 76]. Raji
et al. [55] surface Al functionality harms in which models fail to
achieve their purported goal due to systematic design, engineer-
ing, deployment, and communication failures. Coston et al. [14]
highlight challenges related to value alignment, reliability, and va-
lidity that may draw the justifiability of RAIs into question in some
contexts. We build upon this literature by studying intersectional
threats to model reliability arising from outcome measurement error
[30, 77], treatment effects [13, 54], and selection bias [32] in parallel.

2.2 Outcome measurement error

Modeling outcome measurement error is challenging because it
introduces two sources of uncertainty: which error model is rea-
sonable for a given proxy, and which specific error parameters
govern the relationship between target and proxy outcomes un-
der the assumed measurement model [30]. Popular error models
studied in the machine learning literature include uniform [4, 74],
class-conditional [44, 65], and instance-dependent [9, 78] structures
of outcome misclassification. Work in algorithmic fairness has also
studied settings in which measurement error varies across levels of
a protected attribute [77], and proposed sensitivity analysis frame-
works that are model agnostic[23].

Numerous statistical approaches have been developed for mea-
surement error parameter estimation in the quantitative social
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A Motivating Example. We illustrate the importance
of considering interactions between OME and treat-
ment effects by revisiting a widely known audit of an
algorithm used to inform screening decisions for a
high-risk medical care program [50]. This audit surfaced
measurement error in a “cost of medical care” outcome
targeted as a proxy for patient medical need. Critically,
the measurement error analysis performed by Obermeyer
et al. [50] assumes that program enrollment status is
independent of downstream cost and medical outcomes.

Sample FPR FNR
Full population 0.37  0.38
Unenrolled 037 0.39
Enrolled 0.64 0.13

2

Yet our re-analysis shows that the “cost of medical care’
proxy has a substantially higher false positive rate and
lower false negative rate among program enrollees as
compared to the full population (see Appendix A.1). This
error rate discrepancy is consistent with enrollees receiv-
ing closer medical supervision (and as a result, greater
costs), even after accounting for their underlying med-
ical need. In this work, we show that failing to model
the interactions between OME and treatment effects can
introduce substantial model reliability challenges.

sciences literature [6, 58]. Application of these approaches is tightly
coupled with domain knowledge of the phenomena under study,
as in biostatistics [28] or psychometrics [69]. To date, data-driven
techniques for error parameter estimation have primarily been
applied in the machine learning literature, which rely on key as-
sumptions relating the target outcome of interest and its proxy
[41, 44, 49, 64, 65, 79]. In this work, we build upon an existing
“anchor assumptions” framework that estimates error parameters
by linking the proxy and target outcome probabilities at specific
instances [79]. In contrast to prior work, we provide a range of
anchoring assumptions, which can be flexibly combined depending
on which are reasonable in a specific algorithmic decision support
(ADS) domain.

Natarajan et al. [47] propose a widely-adopted unbiased risk min-
imization approach for learning under noisy labels given knowledge
of measurement error parameters [11, 52, 73]. This method con-
structs a surrogate loss ¢ such that the ¢-risk over proxy outcomes
is equivalent to the ¢-risk over target outcomes in expectation. Ad-
ditionally, Natarajan et al. [47] show that the minimizer of ¢-risk
over proxy outcomes is optimal with respect to target outcomes
if £ is symmetric (e.g., Huber, logistic, and squared losses). In this
work, we develop a novel variant of this unbiased risk minimization
approach designed for settings with treatment-conditional OME.

2.3 Counterfactual prediction

Recent work has shown that counterfactual modeling is necessary
when the decision informed by a predictive model serves as a risk-
mitigating intervention [13]. Building off of this result, we argue
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Figure 1: An illustration of treatment-conditional OME in heart attack prediction. Under the factual decision to screen-out
from a high-risk care management program (T = 0), heart attack occurred (Y; = 1) but went undiagnosed (Y, = 0). Under the
counterfactual decision to screen in (T = 1), heart attack would have been averted (Y] = 0) but would have been incorrectly
diagnosed (Y; = 1). The observed outcome in medical records reflects the proxy value under factual decision to screen-out

(Y = 0).

that it is necessary to account for treatment effects on target out-
comes of interest and their observed proxy while modeling OME. Our
methods build upon conditional average treatment effect (CATE) es-
timation techniques from the causal inference literature [1, 31, 66].
Subject to identification conditions [53, 62], these approaches pre-
dict the difference between the expected outcome under treatment
(e.g., high-risk program enrollment) versus control (e.g., no pro-
gram enrollment) conditional on covariates. One family of outcome
regression estimators predicts the CATE by directly estimating the
expected outcome under treatment or control conditional on covari-
ates [10, 27, 38]. However, these methods suffer from statistical bias
when prior decisions were non-randomized (i.e., due to distribution
shift induced by selection bias) [4, 68]. Therefore, we leverage a
re-weighting strategy proposed by [31] to correct for this selection
bias during risk minimization. Our re-weighting method performs
a similar bias correction as inverse probability weighting (IPW)
methods [60, 68].

Outcome measurement error has also been studied in causal
inference literature. Finkelstein et al. [22] bound the average treat-
ment effect (ATE) under multiple plausible OME models. Shu and
Yi [70] propose a doubly robust method which accounts for mea-
surement error during ATE estimation, while Diaz and van der
Laan [18] provide a sensitivity analysis framework for examining
robustness of ATE estimates to OME. This work is primarily con-
cerned with estimating population statistics rather than predicting
outcomes conditional on measured covariates (i.e., the CATE).

3 PRELIMINARIES

Let p*(X, T, Yy, Y], Yo, Y1) be a fixed joint distribution over covari-
ates X € X C RY past decisions' T € {0,1}, target potential
outcomes {Yj, Y’} € Y C {0,1}, and proxy potential outcomes
{Yo, 1} € Y C {0, 1}. Under the potential outcomes framework
[62], {Y], Yo} and {Y], Y1} are the target and proxy outcomes that
would occur under T = 0 and T = 1, respectively (Figure 1). Building

'We also use the word treatments to refer to binary decisions. This draws upon historical
applications of causal inference to medical settings.
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upon the class-conditional model studied in observational settings
[44, 47], we propose a treatment-conditional outcome measurement
error model, whereby the class probability of the proxy potential
outcome is given by

ne(x) = (1= Po) - nj(x) +ar - (1= (x)), ¥xeX (1)
where oy = p(Y; = 1| Y =0), =p(Y; =0 | Y] =1)are
the proxy false positive and false negative rates under treatment

t € {0, 1} such that a; + f; < 1. This model imposes the following
assumption on the structure of measurement error.

Assumption 1 (Measurement error). Measurement error rates are
fixed across covariates: Y 1L X | Y*, T.

While we make this assumption to foreground study of treat-
ment effects, our methods are also compatible with approaches
designed for error rates that vary across covariates [77] (see §
6.1 for discussion). Given the joint p*, we would like to estimate
n; (x) := p(Y; = 1| X = x), for any target covariates x € X, which
is the probability of the target potential outcome under intervention
t € {0, 1}. However, rather than observing Yt* directly, we sample
from an observational distribution p(X, T,Y), where Y € Y C {0,1}
is an observed proxy outcome. By consistency, the unobserved tar-
get potential outcome and observed proxy potential outcome is
determined by the treatment assignment.

Assumption 2 (Consistency). Y* =T Y+ (1-T)-Y); Y =
T-Y1+(1-=T)-Y.

This assumption holds that the target and proxy potential out-
comes Y/, Y; are observed among instances assigned to treatment ¢
[53, 61, 62]. To identify observational proxy outcomes Y, we also
require the following additional causal assumptions.

Assumption 3 (Ignorability). {Yy, Y], Yo, Y1} AL T | X. This holds
that target and proxy potential outcomes are unconfounded given
measured covariates X.

Ignorability can be violated in decision support applications
when unobservables impact both the treatment and outcome [15,
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Figure 2: A causal diagram of treatment-conditional outcome
measurement error.

35, 39]. Understanding and addressing limitations introduced by
ignorability is a major ongoing research focus [13, 18, 56]. We
provide follow-up discussion of this assumption in § 6.2.

Assumption 4 (Positivity). Vx € X, 0 > p(T = 1|X = x) > 1.
This holds that each instance x € X has some chance of receiving
each decision t € {0,1}.

Positivity is often reasonable in decision support applications be-
cause instances x € X that require support from predictive models
are subject to discretionary judgement due to uncertainty. Instances
that are certain to receive a given treatment (i.e., p(T = 1|X = x) =
0 or p(T = 1|X = x) = 1) would normally be routed via a dif-
ferent administrative procedure. Figure 2 shows a causal diagram
representing the data generating process we study in this work.

4 METHODOLOGY

We begin by developing an unbiased risk minimization approach
which recovers an estimator for n; given knowledge of error pa-
rameters (§ 4.1). We then provide a method for estimating a; and
P+ when error parameters are unknown in advance (§ 4.2).

4.1 Unbiased risk minimization

In this section, we develop an approach for estimating r; given
observational data drawn from p(X, T, Y) and measurement error
parameters a;, f;. Let f; € H for H C {f; : X — [0,1]} be a
probabilistic decision function targeting Y;" and let £ : ¥ x [0, 1] —
R4 be a loss function. If we observed target potential outcomes
Y ~ p*, we could directly apply supervised learning techniques to
minimize the expected ¢-risk of f; over target potential outcomes
Ry (fy) = Ep- [£(f:(X), Y[)] @
and learn an estimator for 7y via standard empirical risk minimiza-
tion approaches. Given a strongly proper composite loss such that
argming, R7(f) is a monotone transform i of n; (e.g., the logistic
and exponential loss), this would enable recovering class proba-
bilities from the optimal prediction via the link function ¢ [2, 44].
However, directly minimizing (2) is not possible in our setting be-
cause we sample observational proxies instead of target potential
outcomes. We address this challenge by constructing a re-weighted
surrogate risk R W~ such that evaluating this risk over observed proxy

outcomes is equlvalent to R* in expectation.

In particular, let w : X — R+ be a weighting function satisfying
Ex[w(X)|T =t] = 1andlet ¢ : Y x [0,1] — Ry be a surrogate
loss function. We construct a re-weighted surrogate risk

R (f) =By [wOLS(X).Y) | T = 1] )

such that R;(f;) = R,
that we can recover a surrogate risk satisfying this property by

7(ft) in expectation. Theorem 4.1 shows
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constructing w(x) as in (4) and £ as in (5). Note that this surrogate
risk requires knowledge of a;, f;.

Theorem 4.1. Assume treatment-conditional error (1), consistency
(2), ignorability (3) and positivity (4). Then under target intervention
te{0,1}L, Ry (ft) = R;W{;(ft) for the weighting functionw : X — Ry

given by

— p(T=t)
w(x) = e @
and surrogate loss £ : Y x [0,1] — Ry given by
(i (x),1) = (1-a) 'f(ftl(f):ﬁj)_—a,ft - £(f(x),0)
®)
immm:“—mfﬁwf—wﬂmmn
— B —a

where in (4), 7(x) = p(T = 1|X = x) is the propensity score function.

We prove Theorem 4.1 in Appendix A.2. Intuitively, RW (f2)

applies a joint bias correction for OME and distribution shlft 1ntro—
duced by historical decision-making policies (i.e., selection bias).
The unbiased risk minimization framework dating back to Natara-
jan et al. [47] corrects for OME by minimizing a surrogate loss
¢ on proxies Y observed over the full population unconditional on
treatment. Yet this approach is untenable when decisions impact out-
comes (T 4L {Y*,Y}) and error rates differ across treatments. One
possible extension of unbiased risk minimizers to the treatment-
conditional setting involves minimizing ¢ over the treatment popu-
lation p(X|T =t)

R i (fr) =Ep [((fi(X),Y) | T=t]. (6)

However, R, ; # R} in observational settings because the treat-
ment populatlon p(X |T =t) can differ from the marginal popula-
tion p(X) under historical selection policies when X J T. There-
fore, our re-weighting procedure applies a second bias correction
that adjusts p(X|T = t) to resemble p(X).

Learning algorithm As a result of Theorem 4.1, we can learn
a predictor 7y by minimizing the re-weighted surrogate risk over
observed samples (X1, T1, Y1), <o, (X, Ty, Yn) ~ p. First, we estimate
the weighting function w(x) through a finite sample, which boils
down to learning propensity scores 7(x) (as shown in (4)). Esti-
mating the propensity scores can be done by applying supervised
learning algorithms to learn a predictor from X to T. Then for any
treatment ¢, weighting function w, and predictor f;, we can approx-
imate R;Wi (f?) by taking the sample average over the treatment

population
" 1 . -
RY(fi) = — Y wX)E(fi(X0), Yi) ()
; ¢
i:T;=t
forn; = I, 1[T; = t]. Therefore, given W we can learn a predictor

from observational data by minimizing the empirical risk
fi e argminRP(f3). ®)
fieH ?

We refer to solving (8) as re-weighted risk minimization with a
surrogate loss (Algorithm 1).
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Algorithm 1: Re-weighted risk minimization with surro-
gate loss (RW-SL)

Input: Data W = {(X;, T;, Vi) }1oy ~ p

Output: Learned estimator 7j; (x)

Partition ‘W into ‘Wp, Wh, W3

On ‘W, estimate parameters &y, ﬁ, «— CCPE(‘W)

On ‘W, learn 7(x) by regressing T ~ X

On Wi, use 7(x), &;, ﬁt to solve

ii; (x) < arg ming g R;“’E(ft)

Algorithm 2: Conditional class probability estimation
(CCPE)

Input: Data“V ~ p

Output: Parameter estimates d;, [gz

Partition YV into Vy, Vs

On V1, learn f;(x) by regressing Y ~X | T =t

On V%, estimate error parameters:

@ = min{A,(x)}, fr =1-max{n (x)}
xeX xeX

4.2 Error parameter identification and
estimation

Because our risk minimization approach requires knowledge of
OME parameters, we develop a method for estimating a;, ; from
observational data. Error parameter estimation is challenging in
decision support applications because target outcomes often result
from nuanced social and organizational processes. Understanding
the measurement error properties of proxies targeted in criminal
justice, medicine, and hiring domains remains an ongoing focus of
domain-specific research [3, 8, 24, 46, 50, 80]. Therefore, we develop
an approach compatible with multiple sources of domain knowledge
about proxies, which can be flexibly combined depending on which
assumptions are deemed reasonable in a specific context.

Error parameters are identifiable if they can be uniquely com-
puted from observational data. Because our error model (e.q. 1)
expresses the proxy class probability as a linear equation with
two unknowns, a;, f; are identifiable if the target class probability
¢;; = n; (xi) and proxy class probability c; = n¢(x;) are known
at two distinct points (c;"i, ct,i) and (c:f’j, ct,j) such that c;‘]i * c;‘!j.
Following prior literature [26], we refer to knowledge of (cj ;, cz,i)
as an anchor assumption because it requires knowledge of the unob-
served quantity n;. We now introduce several anchor assumptions
that are practical in ADS, before showing that these can be flexibly
combined to identify a;, f; in Theorem 4.2.

Min anchor. A min anchor assumption holds if there is an in-
stance at no risk of the target potential outcome under intervention
t: c;i = infy, e x {n; (xi)} = 0. Because 7 is a strictly monotone
increasing transform of 1}, the corresponding value of 7; can be
recovered via ¢;; = infy,ex{n:(x;)} [44]. Min anchors are rea-
sonable when there are cases that are confirmed to be at no risk
based on domain knowledge of the data generating process. For
example, a min anchor may be reasonable in diagnostic testing if a
patient is confirmed to be negative for a medical condition based
on a high-precision gold standard medical test [19].
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Know a; Min Baserate Max Know f;

Know «a; X X v v v
Min X X v v v
Base rate v Vv X v v
Max v v v X X
Know f; N v v X X

Table 1: Multiple combinations of min, max, and base rate
anchor assumptions (shown via ) enable identification of
at, Pr-

Max anchor. A max anchor assumption holds if there is an
instance at certain risk of the target outcome under intervention
t:c;; = supy, e x{n;(xi)} = 1. The corresponding value of n; can
be recovered via ¢;; = supxiex{m(xi)} because 7; is a strictly
monotone increasing transform of #;. Max anchors are reasonable
when there are confirmed instances of a positive target potential
outcome based on domain knowledge of the data generating process.
For example, a max anchor may be justified in a medical setting
if a subset of patients have confirmed disease diagnoses based on
biopsy results [5], or if a disease prognosis (and resulting health
outcomes) are known from pathology.

Base rate anchor. A base rate anchor assumption holds if the
expected value of 7} is known under intervention ¢: C?,i =E[n;(X)].
The corresponding value of 1; can be recovered by taking the expec-
tation over the proxy class probability ¢;; = E[n;(X)]. Base rate
anchors are practical because the prevalence of unobservable tar-
get outcomes (e.g., medical conditions [75], crime [37, 42], student
performance [17, 63]) is routinely estimated via domain-specific
analyses of measurement error. For instance, studies have been
conducted to estimate the base rate of undiagnosed heart attacks
(i.e., accounting for measurement error in diagnosis proxy out-
comes) [51]. Additionally, the conditional average treatment effect
E[#7(X)] = E[n5(X)] is commonly estimated in randomized con-
trolled trials (RCTs) while assessing treatment effect heterogeneity
[27]. While the conditional average treatment effect is normally
estimated via proxies Yy and Y7, measurement error analysis is a
routine component of RCT design and evaluation [25].

Anchor assumptions can be flexibly combined to identify error
parameters based on which set of assumptions are reasonable in a
given ADS domain. In particular, Theorem 4.2 shows that combi-
nations of anchor assumptions listed in Table 1 are sufficient for
identifying error parameters under our causal assumptions.

Theorem 4.2. Assume treatment-conditional error (1), consistency
(2), ignorability (3) and positivity (4). Then a;, f; are identifiable from
observational data p(X,T,Y) given any identifying pair of anchor
assumptions provided in Table 1.

We prove Theorem 4.2 in Appendix A.2. In practice, we esti-
mate the error rates on finite samples (X;, T;, Y;) ~ p, which gives
an approximation 7j;. Therefore, we propose a conditional class
probability estimation (CCPE) method for parameter estimation
which estimates ¢;, [3; by fitting 7; on observational data then ap-
plying the relevant pair of anchor assumptions to estimate error
rates. Algorithm 2 provides pseudocode for this approach with min
and max anchors, which can easily be extended to other pairs of
identifying assumptions shown in Table 1. The combination of min



FAccT 23, June 12-15, 2023, Chicago, IL, USA

and max anchors is known as weak separability [44] or mutual
irreducibility [64, 65] in the observational label noise literature.
Prior results in the observational setting show that unconditional
class probability estimation (i.e., fitting f(x) = p(Y = 1|X = x))
yields a consistent estimator for observational error rates under
weak seperability [57, 65]. Statistical consistency results extend
to the treatment-conditional setting under positivity (4) because
p(T =1tX =x) >0, Vt € {0,1}, x € X. However, asymptotic
convergence rates may be slower under strong selection bias if
p(T =t|X = x) is near 0.

5 EXPERIMENTS

Experimental evaluation under treatment-conditional OME is chal-
lenging due to compounding sources of uncertainty. We do not
observe counterfactual outcomes in historical data, making it chal-
lenging to estimate the quality of new models via observational data.
Further, because the target outcome is not observed directly, we
rely on measurement assumptions when studying proxy outcomes
in naturalistic data. We address this challenge by conducting a con-
trolled evaluation with synthetic data where ground truth potential
outcomes are fully observed. To better reflect the ecological settings
of real-world deployments, we also conduct a semi-synthetic evalu-
ation with real data collected through randomized controlled trials
(RCTs) in healthcare and employment domains. Our evaluation (1)
validates our proposed risk minimization approach, (2) underscores
the need to carefully consider measurement assumptions during
error rate estimation, and (3) shows that correcting for OME or
treatment effects in isolation is insufficient.?

5.1 Models

We compare several modeling approaches in our evaluation to ex-
amine how existing modeling practices are impacted by treatment-
conditional outcome measurement error:

e Unconditional proxy (UP). Predict the observed outcome
unconditional on treatment: X — Y. This model does not
adjust for OME or treatment effects., and reflects model per-
formance in a scenario in which practitioners overlook all
challenges examined in this work. 3

e Unconditional target (UT). Predict the target outcome
unconditional on treatment: X — Y*. Here, we determine Y*
by applying consistency: Y* = (1-T)-Y;+T-Y;". This method
reflects a setting in which no OME is present but modeling
does not account for treatment effects [44, 47, 50, 77].

e Conditional proxy (CP). Predict the proxy outcome con-
ditional on treatment: X, T — Y. This is a counterfactual
model that estimates a conditional expectation without cor-
recting for OME [13, 38, 66].4

o Re-weighted surrogate loss (RW-SL). Our proposed risk
minimization approach, as defined in equation (8). This method
corrects for both OME and treatment effects in parallel. Ad-
ditionally, this method corrects for distribution shift due

2Code for all experiments can be found at: https://github.com/lguerdan/CP_OME.
3This baseline is also called an observational risk assessment in experiments reported
by Coston et al. [13].

4This model is known by different names in the causal inference literature, including
the backdoor adjustment (G-computation) formula [53, 59], T-learner [38], and plug-in
estimator [34].
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to selection bias in the prior decision-making policy via re-
weighting.

e Target Potential Outcome (TPO). Directly predict the
target potential outcome: X — Y;'. This model is an oracle
that provides an upper-bound on model performance under
no OME or treatment effects.

We also perform an ablation of our proposed RW-SL method by
including a model that applies a surrogate loss correction ¢ over
the treatment population without re-weighting (SL).

5.2 Experiments on synthetic data

We begin by experimentally manipulating treatment effects and
measurement error via a synthetic evaluation. Because this pro-
vides full control over the data generating process, we can evaluate
methods against target potential outcomes. This evaluation would
not possible with real-world data because counterfactual target out-
comes are unobserved. Our experiment design is consistent with
prior synthetic evaluations of counterfactual risk assessments [13]
and causal inference methods [48, 67]. In our evaluation, we sample
outcomes via the following data generating process:

(1) Y} == ~Bern(n; (X)), Vt € {0,1}

if Y; = 1, where e; ~ Bern(f;)
€ if Y = 0, where e ~ Bern(a;)
(3) T := ~ Bern(n(X))
@Y =(1-T)- Y +T-Y5Y:=(1-T) Yo+T-Y;

1—¢€4

@) Y, = WVt e {01}

As shown in Figure 3, we draw X ~ U(-1, 1) and sample target
potential outcomes from sinusoidal class probability functions (see
Appendix A.4 for details). Note that our choice of 7 (x), 1y (x)
satisfies min and max anchor assumptions. Because 75 (x) and 17 (x)
differ, models that do not condition on treatment (i.e., UP, UT) will
learn an average of the two class probability functions. Under our
choice of 7(x), fewer samples are drawn from 57 (x) in the region
where 7(x) is small (near x = —1), and fewer samples are drawn
from 5 (x) in the region where 1 — 7(x) is small (near x = 1). This
introduces selection bias when sampling from 7 (x).

5.2.1 Setup details. We train each model in § 5.1 to predict risk
under no intervention (¢t = 0) and vary (ao, o). We keep (a1, f1)
fixed at (0, 0) across settings. When estimating OME parameters,
we run CCPE with sample splitting and cross-fitting (Algorithm
4) with min and max anchor assumptions for identification. These
assumptions hold precisely under this controlled evaluation (Fig-
ure 3). We run all methods with sample splitting and cross-fitting
(Algorithm A.3) and report performance on Yy

5.2.2  Results. Figure 4 shows the performance of each model as a
function of sample size. TPO provides an upper bound on perfor-
mance because it learns directly from target potential outcomes.
RW-SL with oracle parameters («, ) outperforms all other methods
trained on observational data across across the full range of sample
sizes. Thus, while Thm. 4.1 shows that RW-SL recovers an unbiased
risk estimator in expectation, this method also demonstrates fa-
vorable finite-sample performance characteristics in practice. This
finding is inline with prior experimental evaluations of unbiased
risk estimators reported in the standard supervised learning setting
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Figure 4: Accuracy on Y as a function of sample size. RW-SL and SL with oracle parameters

plotted with solid lines. RW-SL and SL with learned parameters plotted with dashed lines.
Results averaged over asymmetric error settings reported in Table 2.

Figure 3: Synthetic setup.

(0, Bo) (0.0, 0.4) (0.1,0.3) (0.2,0.2) (0.3, 0.1) (0.4, 0.0)

UP 54.18 (0.09)  53.00 (0.39) 54.89 (1.09) 55.81 (0.74)  46.76 (0.33)
uT 61.57 (0.63)  60.95(0.50)  60.49 (0.41)  61.00 (0.49)  60.54 (0.70)
CP 5136 (1.83) 6824 (2.61) 75.05(0.92) 67.77 (1.33)  61.88 (0.28)
SL (&, f) 7238 (1.65)  65.45(0.66) 67.43 (1.64) 68.01(0.99) 65.92 (1.34)
RW-SL (&, )  69.08 (1.55) 65.96(1.18)  66.57 (1.32)  68.39 (1.33)  64.56 (0.52)
SL (a, f) 67.09 (1.24)  67.58 (1.19)  67.75(1.08)  69.11 (1.17)  68.59 (1.41)
RW-SL (o, f)  73.68 (1.49) 73.39 (1.60) 72.52 (1.66) 74.34 (1.15) 75.01 (1.24)
TPO 77.08 (0.11) 77.09 (0.20) 76.98 (0.08) 76.84 (0.18) 76.90 (0.16)

Table 2: Model accuracy (s.e.) across error parameter settings (ao, fo) at N = 60k samples over 10 runs. Top-2 performance across

each (ao, fo) setting shown in bold.

[47, 77], and is further supported by reliable performance charac-
teristics we observe in small sample regimes (see Appendix A.4).
In contrast, both models that do not condition on treatment (UP
and UT), and the conditional regression trained on proxy outcomes
(CP), reach a performance plateau by 50k samples and do not benefit
from additional data. This indicates that (1) learning a counterfac-
tual model and (2) correcting for measurement error is necessary
to learn 7; in this evaluation. We likely observe a sharper plateau
in UP and UT above 20k samples because these approaches fit a
weighted average of n; and n] (where 57 differs from 75 consid-
erably). We observe that RW-SL and SL performance deteriorates
with learned parameters (&, ﬁ) across all sample size settings due
to misspecification in learned parameter estimates and weights.
Table 2 shows a breakdown across error rates («p, f) at 60k sam-
ples. RW-SL outperforms SL when oracle parameters are known.
However, RW-SL and SL perform comparably when weights and
parameters are learned. This may be because RW-SL relies on es-
timates w in addition to &y, ﬁo, which could introduce instability
given misspecification in w. CP performs notably well under high
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error parameter symmetry (ie., agp = fp = .2). This is consistent
with prior results from the class-conditional label noise literature
[44, 47], which show that the optimal classifier threshold for mis-
classification risk does not change under symmetric label noise. CP
performs worse under high error asymmetry. We do not observe a
similar performance improvement in UP and UT in the symmetric
error setting because these baselines learn a weighted combina-
tion of 1o and 171, which differs from the target function 7 at all
classification thresholds.

5.3 Semi-synthetic experiments on healthcare
and employment data

In addition to our synthetic evaluation, we conduct experiments
using real-world data collected as part of randomized controlled
trials (RCTs) in healthcare and employment domains. While this
evaluation affords less control over the data generating process,
it provides a more realistic sample of data likely to be encoun-
tered in real-world model deployments. Evaluation via data from
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randomized or partially randomized experimental studies is use-
ful for validating counterfactual prediction approaches because
random assignment ensures that causal assumptions are satisfied
[12, 31, 66].

5.3.1 Randomized Controlled Trial (RCT) Datasets. In 2008, the
U.S. state of Oregon expanded access to its Medicare program via a
lottery system [21]. This lottery provided an opportunity to study
the effects of Medicare enrollment on healthcare utilization and
medical outcomes via an experimental design, commonly referred
to as the Oregon Health Insurance Experiment (OHIE). Lottery
enrollees completed a pre-randomization survey recording demo-
graphic factors and baseline health status and were given a one-year
follow-up assessment of health status and medical care utilization.
We refer the reader to Finkelstein et al. [21] for details. We use the
OHIE dataset to construct an evaluation task that parallels the label
choice bias analysis of Obermeyer et al. [50]. We use this dataset
rather than synthetic data released by Obermeyer et al. [50] be-
cause (1) treatment was randomly assigned, ruling out positivity
and ignorability violations possible in observational data, and (2)
OHIE data contains covariates necessary for predictive modeling.
We predict diagnosis with an active chronic medical condition over
the one-year follow-up period given D = 58 covariates, including
health history, prior emergency room visits, and public services use.
We predict chronic health conditions because findings from Ober-
meyer et al. [50] indicate that this outcome variable is a reasonable
choice of proxy for patient medical need. We adopt the randomized
lottery draw as the treatment. °

We conduct a second real-world evaluation using the JOBS
dataset, which investigates the effect of job retraining on employ-
ment status [66]. This dataset includes an experimental sample
collected by LaLonde [40] via the National Supported Work (NSW)
program (297 treated, 425 control) consisting primarily of low-
income individuals seeking job retraining. Smith and Todd [71]
combine this sample with a “PSID” comparison group (2,490 con-
trol) collected from the general population, which resulted in a final
sample with 297 treated and 2,915 control. This dataset includes
D = 17 covariates including age, education, prior earnings, and
interaction terms. 482 (15%) of subjects were unemployed at the
end of the study. Following Johansson et al. [31], we construct an
evaluation task predicting unemployment under enrollment (¢ = 1)
and no enrollment (¢ = 0) in a job retraining program conditional
on covariates.

5.3.2  Synthetic OME and selection bias. We experimentally manip-
ulate OME to examine how outcome regressions perform under
treatment-conditional error of known magnitude. We adopt diag-
nosis with a new chronic condition and future unemployment as a
target outcome for OHIE and JOBS, respectively. We observe proxy
outcomes by flipping target outcomes with probability («o, o). We
keep (a1, p1) fixed at (0,0). This procedure of generating proxy
outcomes by flipping available labels is a common approach for vet-
ting the feasibility of new methodologies designed to address OME

The OHIE experiment had imperfect compliance (= 30 percent of selected individuals
successfully enrolled [21]). Therefore, we predict diagnosis with a new chronic health
condition given the opportunity to enroll in Medicare. This evaluation is consistent
with many high-stakes decision-support settings granting opportunities to individuals,
which they have a choice to pursue if desired.
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[44, 47, 77]. This approach offers precise control over the magni-
tude of OME but suffers from less ecological validity than studying
multiple naturalistic proxies [50]. We opt for this semi-synthetic
evaluation because (1) the precise measurement relationship be-
tween naturally occurring proxies may not be fully known, (2)
the measurement relationship between naturally occurring prox-
ies cannot be manipulated experimentally, and (3) there are few
RCT datasets (i.e., required to guarantee causal assumptions) that
contain multiple proxies of the same target outcome.

Models used for decision support are typically trained using
data gathered under a historical decision-making policy. When
prior decisions were made non-randomly, this introduces selection
bias (T 4 X) and causes distribution shift between the popula-
tion that received treatment t in training data, and the full pop-
ulation encountered at deployment time. Therefore, we emulate
selection bias in the training dataset, and evaluate models over a
held-out test set of randomized data. We insert selection bias in
OHIE data by removing individuals from the treatment (lottery
winning) arm with household income above the federal poverty
line (10% of the treatment sample). This resembles an observational
setting in which low-income individuals are more likely to receive
an opportunity to enroll in a health insurance program (e.g., Medi-
caid, which determines eligibility based on household income in
relation to the federal poverty line). We restrict our analysis to
single-person households, yielding N = 12, 994 total samples (6, 189
treatment, 6, 805 control).

We model selection bias in JOBS data by including samples from
the observational and experimental cohorts in the training data.
Because the PSID comparison group consists of individuals with
higher income and education than the NSW group, there is consider-
able distribution shift across the NSW and PSID cohorts [31, 40, 71].
Therefore, a model predicting unemployment over the control pop-
ulation (consisting of NSW and PSID samples) may suffer from
bias when evaluated against test data that only includes samples
from the NSW experimental arm. Thus we split data from the NSW
experimental cohort 50-50 across training and test dataset, and only
include PSID data in the training dataset.

5.3.3 Experimental setup. We include a Conditional Target (CT)
model in place of a TPO model because counterfactual outcomes
are not available in experimental data. CT provides a reasonable
upper-bound on performance because identifiability conditions are
satisfied in an experimental setting [53]. However, it is not possible
to report accuracy over potential outcomes because counterfac-
tual outcomes are unobserved. Therefore, we report error in ATE
estimates 7 — 7, for

r=E[Y" |T=1]-E[Y"|T=0], #:=E[HX)]-E[fo(X)]

where 7 corresponds to the ground-truth treatment effect reported
by prior work [16, 31] and #j; is a learned model discussed in § 5.1.
One subtlety of this comparison is that our outcome regressions
target the conditional average treatment effect, while 7 reflects the
ATE across the full population. Following prior evaluations [31],
we compare all methods against the ATE because the ground-truth
CATE is not available for JOBS or OHIE data. ® We report results

®While our insertion of synthetic selection bias (§5.3.2) introduces distribution shift
such that p(X|T = 1) differs from p(X|T = 0), it does not alter ground-truth
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Figure 5: Bias in ATE estimates on OHIE and JOBS data. Error bars indicate standard error over ten runs. CT is a model with
oracle access to target outcomes and RW-SL is our proposed approach.

over a test fold of randomized data that does not contain flipped
outcomes or selection bias. Appendix A.4 contains additional setup
details.

5.3.4 Results. Figure 5 shows bias in ATE estimates 7 — 7 over 10
runs on JOBS and OHIE data. The left panel compares CP, UT, UP,
and the oracle CT model against RW-SL/SL with oracle parameters
(@0, Po), (a1, p1). We show performance of RW-SL with learned pa-
rameters (o, BO), (1, ﬁ}) on the right panel. The left panel shows
that CP is highly sensitive to measurement error. This is because
measurement error introduces bias in estimates of the conditional
expectations, which propagates to treatment effect estimates. Be-
cause UT and UP do not condition on treatment, they estimate an
average of the outcome functions n; and 7}, and generate predic-
tions near 0. Therefore, while UT and UP perform well on OHIE
data due to a small ground-truth ATE (r = 0.015), they perform
poorly on JOBS (r = —0.077). SL and RW-SL with oracle parameters
at, Br perform comparably to the CT model with oracle access to
target outcomes across all measurement error settings.

While we observe that re-weighting improves performance in
our synthetic evaluation (given oracle parameters), we do not ob-
serve a similar advantage of RW-SL over SL in this experiment.
Our results parallel other empirical evaluations of re-weighting
for counterfactual modeling tasks on real-world data (e.g., see §
3.4.2 in [13]). One potential explanation for this finding is that our
predictive model class (multi-layer MLPs) is large enough to learn
the target regressions n; and 7 for OHIE and JOBS data, even after
our insertion of synthetic selection bias. As a result, re-weighting
may not be required to learn a reasonable estimate of 1; and n]

7 because the conditional outcome distribution p(Y*|T) remains unchanged. This
setup recreates the unconfounded observational setting in which causal identification
assumptions are satisfied [61].
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given available data. This interpretation is supported by strong
performance of the oracle CT model.

As shown on the right panel of Figure 5, RW-SL performance
is highly sensitive to the choice of anchor assumption used to
estimate parameters (o, ,éo), (a1, ,él) as indicated by increased bias
in 7 and greater variability over runs. In particular, RW-SL performs
poorly when Min/Max and Br/Max pairs of anchor assumptions are
used to estimate error rates because the max anchor assumption
is violated on OHIE and JOBS data. We shed further light on this
finding by fitting the CT model to estimate 75, 47 on OHIE data,
then computing inferences over a validation fold X, ;. This analysis
reveals that

min Ay ~ 2.23 - e”%, max fig ~ 0.85
x€Xpal x€Xyal

min A7 ~ 1.02- e™>, max i} ~ 0.81
x€Xpal x€Xyal

which suggests that the min anchor assumption that minyex, , i} =
0 is reasonable for t € {0, 1}, while the max anchor assumption that
maxyex,, f; = 1is violated for both t € {0, 1}. Therefore, because
the min anchor assumption is satisfied for these choices of target
outcome, and the ground-truth base rate is known in this experi-
mental setting, RW-SL demonstrates strong performance given the
Br/Min combination of anchor assumptions. In contrast, because
the max anchor is violated, estimating f; by taking the supremium
of fj; (x) introduces bias in ﬁt, which results in poor performance
of RW-SL with Min/Max and Br/Max anchors. Applying this same
procedure to the unemployment outcome targeted in JOBS data
also reveals a violation of the max anchor assumption. These results
underscore the importance of selecting anchor assumptions in close
consultation with domain experts because it is not possible to verify
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anchor assumptions by learning 7; when the target outcome of
interest is unobserved.

6 DISCUSSION

In this work, we show the importance of carefully addressing in-
tersectional threats to model reliability during the development
and evaluation of predictive models for decision support. Our theo-
retical and empirical results validate the efficacy of our unbiased
risk minimization approach. When OME parameters are known,
our method performs comparably to a model with oracle access to
target potential outcomes. However, our results underscore the im-
portance of vetting anchoring assumptions used for error parameter
estimation before using error rate estimates for risk minimization.
Critically, our experimental results also demonstrate that correcting
for a single threat to model reliability in isolation is insufficient
to address model validity concerns [55], and risks promoting false
confidence in corrected models. Below, we expand upon key con-
siderations surfaced by our work.

6.1 Decision points and complexities in
measurement error modeling

Our work speaks to key complexities faced by domain experts,
model developers, and other stakeholders while examining proxies
in ADS. One decision surfaced by our work entails which mea-
surement error model best describes the relationship between the
unobserved outcome of policy interest and its recorded proxy. We
open this work by highlighting a measurement model decision
made by Obermeyer et al. [50] during their audit of a clinical risk
assessment: that error rates are fixed across treatments. Our work
suggests that failing to account for treatment-conditional error in
OME models may exacerbate reliability concerns. However, at the
same time, the error model we adopt in this work intentionally
abstracts over other factors known to impact proxies in decision
support tasks, including error rates that vary across covariates. Al-
though this simplifying assumption can be unreasonable in some
settings [3, 24], including the one studied by Obermeyer et al. [50],
it is helpful in foregrounding previously-overlooked challenges
involving treatment effects and selection bias. In practice, model de-
velopers correcting for measurement error may wish to combine our
methods with existing unbiased risk minimization approaches de-
signed for group-dependent error where appropriate [77]. Further,
analyses of measurement error should not overlook more funda-
mental conceptual differences between target outcomes and proxies
readily available for modeling (e.g., when long-term child welfare
related outcomes targeted by a risk assessment differ from imme-
diate threats to child safety weighted by social workers [33, 33]).
This underscores the need to carefully weigh the validity of proxies
in consultation with multiple stakeholders (e.g., domain experts,
data scientists, and decision-makers) while deciding whether OME
correction is warranted.

A second decision point highlighted in this work entails the
specific measurement error parameters that govern the relationship
between target and proxy outcomes. In particular, our work under-
scores the need for a tighter coupling between domain expertise
and data-driven approaches for error parameter estimation. Cur-
rent techniques designed to address OME in the machine learning
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literature — which typically examine settings with “label noise” -
rely heavily upon data-driven approaches without close consider-
ation of whether the underlying measurement assumptions hold
[44, 49, 77, 79]. While application of these assumptions may be
practical for methodological evaluations and theoretical analysis
[57, 64, 65], these assumptions should be carefully vetted when ap-
plying OME correction to real-world proxies. This is supported by
our findings in Figure 5, which show that RW-SL performs poorly
when the anchor assumptions used for error parameter estima-
tion are violated. Our flexible set of anchor assumptions provides
a step towards a tighter coupling between domain expertise and
data-driven approaches in measurement parameter estimation.

6.2 Challenges of linking causal and statistical
estimands

Our counterfactual modeling approach requires several causal iden-
tifiability assumptions [53], which may not be satisfied in all deci-
sion support contexts. Of our assumptions, the most stringent is
likely ignorability, which requires that no unobserved confounders
influenced past decisions and outcomes. While recent modeling
developments may ease ignorability-related concerns in some cases
[13, 56], model developers should carefully evaluate whether con-
founders are likely to impact a model in a given deployment context.
At the same time, our results show that formulating algorithmic
decision support as a “pure prediction problem” that optimizes pre-
dictive performance without estimating causal effects [36] imposes
equally serious limitations. If the policy-relevant target outcome
of interest is risk conditional on intervention (as is often the case in
decision support applications), an observational model will gener-
ate invalid predictions for cases that historically responded most to
treatment [13]. Our results, which empirically demonstrate poor
performance of observational PU and TU models that overlook
treatment-effects, corroborate prior findings indicating that coun-
terfactual modeling is required to ensure the reliability of RAIs in
decision support settings [13]. Taken together, our work suggests
that domain experts and model developers should exercise consid-
erable caution while mapping the causal estimand of policy interest
to the statistical estimand targeted by a predictive model [43].
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A APPENDIX

This appendix contains the following subsections:
e A.1 provides a discussion of our re-analysis of audit data
released by Obermeyer et al. [50].
e A.2 contains omitted proofs for theorems introduced in § 4.
e A.3 contains omitted algorithm pseudocode.
e A.4 contains additional details and results for experiments
reported in Section 5.

Sample FPR FNR N
Full population 0.37 0.38 48,784
Unenrolled 0.37 0.39 48332
Enrolled 0.64 0.13 452

Table 3: Treatment-conditional OME parameters computed
using synthetic data released by Obermeyer et al. [50].

Sample FPR FNR N
Full population 0.36 0.39 48,784
Unenrolled 0.36  0.39 48,360
Enrolled 0.65 0.14 424

Table 4: Treatment-conditional OME parameters computed
after re-applying synthpop on released synthetic data.

A.1 Re-analysis of data published by
Obermeyer et al. [50]

Obermeyer et al. [50] release publicly available synthetic dataset
corresponding to their audit of a clinical risk assessment.” Synthetic
data was generated via the R package synthpop, which preserves
moments and covariances of the original dataset. The synthetic
data release is sufficient to replicate the main analyses reported
over the raw (unmodified dataset) reported in [50]. This makes it
likely that our analysis closely preserves the true statistics reported
on raw data, as our only analysis step involves thresholding raw
scores and computing conditional probabilities.

We probe the implications of naively estimating population OME
parameters by reanalyzing public synthetic data published as part
of the audit study. Our analysis estimates proxy error parameters
by binarizing continuous cost (Y) and chronic active condition (Y*)
outcomes at the 55th risk percentile: the threshold used in practice
to drive enrollment recommendations. While this choice of target
outcome is itself imperfect [20], we use chronic active conditions as
a reference outcome to match the original comparison conducted
by Obermeyer et al. [50].

Our analysis (Table 3) finds that the false positive and false
negative rates of the cost of care proxy varies substantially across
program enrollment status. In particular, the false negative rate is
65.8% lower among patients enrolled in the program as compared
to the full population, while the FPR is 72.9% higher. This difference
is consistent with closer medical supervision: under enrollment,
patients may incur greater costs due to expanded care, even after

"https://gitlab.com/labsysmed/dissecting-bias
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controlling for the number of underlying active chronic conditions.
In contrast, OME parameters among the unenrolled resemble the
population average because the vast majority of patients (= 99%)
are turned away from the program. We verify that this finding is not
an artifact of synthetic data generation by re-applying synthpop
on data provided by [50] and re-computing error parameters via
the same procedure described above (Table 4). While we observe
minor variations in error parameters after re-applying synthpop,
the large difference in error rates across the full population and
enrollment conditions persists.

Triangulating the downstream impacts of this error parameter
discrepancy is challenging. To preserve privacy, the research team
did not release covariates needed to re-train an algorithm. Prior
program enrollment decisions were also non-randomized, meaning
that differences in error parameters could be attributed to unmea-
sured confounders. Nevertheless, the difference in error parameters
across enrolled and unenrolled carries serious implications for the
diagnosis and mitigation of outcome measurement error.

A.2 Omitted results and proofs

We begin by providing a roof of Theorem 4.1. This proof follows
from unbiased risk minimization results from the label noise [11,
47,52, 73] and counterfactual prediction [31] literature.

Proor. We will show that RZ’E(ﬁ) =R;(ft) = R;(fr), ¥t = {0, 1}
We begin by showing the first equality. We have that
RY (i) = Bp [wOOUf:(X). Y) | T = 1]
= Epe [WOOLfi(X). Y0) | T = 1]
=Ep [wX)I(£i(X), Y0)]
where the first equality holds by consistency (2) and the second
by ignorability (3). As a result, we can express both equalities over
potential outcomes Yz, Y;" ~ p*. Next, let p;(X) := p(X|T = t) and
let fﬁ (x) = Ey, [£(f:(x),Y:) | X = x] be the expected pointwise

surrogate loss of f; evaluated at x. Then by Lemma 2 of [31], we
have

R = [ w0l (p i

_ pi(x)
xex p(x)
=R;(ft)
for w(x) = p(x)/ps(x). The second equality assumes positivity
(4) and ignorability (3). Applying Bayes’ to p(x)/p;(x) and rear-
ranging

w(x)fﬁ (x)p(x)dx

P _ p(T=t) _  p(T=1)
pX=x|T=t) p(T=tX=x) (@2t-1)-m(x)+1-1t
which is the weighting function in (4). Next, we show that

R;(ft) = R;(ft), which follows from Lemma 1 of [47]. Given

w(x) =

8Obermeyer et al. [50] report robustness checks examining whether differential pro-
gram effects by race could impact their study of label bias. The authors found no such
differential effects by race. As a result, their main analyses are not likely to be impacted
by the findings of our re-analysis. Nevertheless, the model reliability challenges we
study in this work could impact all individuals in the study population, if unaddressed.
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_ l—r]t(x) _ l—at ar
’“‘(")‘( 7 (x) )’T‘( B 1—/@)

we can express (1) as 7¢(x) = Tnj(x) by assumption 1. This
error model is invertable via 7y (x) = T~ 0+ (x) for

71 L ( 1= - )
1—ar—pr -t 1-ar |’
Let £(f; (x)) = (£(f;(x),0), £(f:(x),1))T be a vectorized loss cor-
responding to labels e € {0, 1}2. Then we have that

R (f) = ExBy> p: (x) L(fe(X), Y] = Ex [0} (X) Te(f:(X))]
=Ex[n, 00T (T (£ (X)] = Bx[e (T )e(f(X))]
=Exy, [€(f:(X), Yo)] = Ry(fr)
Therefore, R;(f;) = R;(f;) for a surrogate loss constructed via

£ = (T~ YHe(f(X)). Multiplying £(f; (X)) by T~! and rearranging
yields (5). ]

Next, we prove Theorem 4.2 showing that error parameters are
identifiable under combinations of assumptions stated in Table 1.

Proor. To begin, observe that the error model (1) expresses the
conditional proxy class probability #; as a linear function of ;
with two unknowns. Therefore, given knowledge of the target class
probability cj ; = n; (x;) and proxy class probability c;,; = 1;(x;) at
two distinct points (c
equation

*

L ct,;) and (c;‘,j, ct,j), we can set up a linear

Cti = (1-p)- C;,’ +ar - (1- C;:i)

. . ©)
crj=(1-P) - cpjtar: (1- ct’j)
and solve for error parameters
* L L
3 Ct,l' 'ct,] Ct,l Ct,j
= — % (10)
i~ e
.. ¥ _ . * 0 ok . ¥, .
Cti Ct,j Cti +ct,i ct,j +Ct’j ct,i Ct,j
Br= e (11)
ti = “tj

provided that c;"i + c;‘, It Identification of the specific cases in
Table 1 follows from application of (10). When «; and f; are both
known, identification is not required. When one of f; (@) is known,
the corresponding a; (f;) can be given by

cri — (1= Pr) - c; ci—critar-(1-cp;)
ar = & > ﬂt = * (12)
(1-¢;;) Cri

Therefore, only one anchor assumption (ct*,l., ¢t,i) is required
given knowledge of a; or ;. However, by (12), note that c;‘)i #1
is required for identification of a; and ¢} j#0is required for
identification of f;. This rules out combinations denoted by (X) in
Table 1. Error parameters can be derived directly from (10) if a;
and f; are both unknown so long as ct*,l. # cz i The specific values

of (¢4, c;‘ ;) corresponding to min, max, and base rate anchors can
be comptited via

c;; = inf {nf(xi)}, cpi= inf {n:(x;)} (Min anchor)
> x;i€X x;i€X
;= sup {n;(xi)}, cri= sup {n:(x;)} (Max anchor)
x;€X xiEX
;i =Eln; (X1 cri = B[ (X)] (Base rate anchor)
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Above, the min anchor holds because 7; is a strictly monotone in-
creasing transform of n; by 1 such that ¢ ; = arginf,, ¢ x{n:(x)} =
arginf,. ¢y {n; (x)}. The max anchor holds by the same argument.
The base rate anchor holds because Ex [n;(x)] = Ex[n; (x) - (1 -
B —ar) +ar].

Finally, observe that 5;(x) is defined over potential outcomes
Y; ~ p* rather than observational proxies Y ~ p. Identification of
n: from observational data follows from

ne(x) =p(Vr =11X=x) =p(Y=1X=x,T=1t)  (13)

where the equality holds by ignorability (3) and consistency (2). By
positivity (4), we have that the support of 1;(x) is defined Vx € X,
which guarantees that the min and max anchor will be defined.

m}

A.3 Algorithms

The RW-SL and CCPE algorithms presented in § 4 partition train-
ing data into disjoint folds to learn d;, ,ét, 7, and minimize the
re-weighted surrogate risk. We also provide a version of these algo-
rithms with cross-fitting to improve data efficiency. Cross-fitting is
useful when using limited data to fit multiple nuisance functions
and improves data efficiency while limiting over-fitting [34].

Algorithm 3: Re-weighted risk minimization with surro-
gate loss (cross fitting)
Input: Data W = {(X;, T;, Vi) }I_, ~ p
Output: Learned estimator 7; (x)
Partition ‘W into Wy, W, W3
for (m,n,p) € {(1,2,3),(3,1,2),(2,3,1)} do
On Wy, estimate parameters &;", ﬁ;" «— CCPE(‘Wy,)
On ‘W, learn 7, (x) by regressing T ~ X
On Wp, use 7 (x), 0?;", ,B;’j :[o solve
i p(x) < argming, g R¥(fi)

end

Return combined predictions 7 (x) = % 22:1 ﬁt!p (x)

Algorithm 4: Conditional class probability estimation
(cross fitting)
Input: Data “V ~ p
Output: Parameter estimates &y, B;
Partition V into Vi, V»
for (m,n) € {(1,2),(2,1)} do
On V,,, learn ﬁ;"(x) by regressing Y ~ X | T =t
On Vj,, estimate error parameters:
& = min{i (0}, B} = 1-max(i ()

end

Return averaged parameters ¢; = % Zizl ar,

Br=3 3% B
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Figure 6: Comparison of models across small sample size
regimes. SL and RW-SL with oracle parameters maintain per-
formance parity with TPO across settings with 1k+ samples,
but demonstrate worse performance than TPO in the most
data scarce setting with 250 samples.

A.4 Additional experimental details and results

A.4.1  Setup details. In our synthetic evaluation, we sample from
target class probability functions 15 (x) = .4+ .4 cos(9x +5.5), Vx €
[-1,-.237]; .5 + .3 sin(8x + .9) + .15sin(10x + .2) + .05 sin(30x +
:2),¥x € (-.237,1] and 57 (x) = .5 - .5sin(2.9x + .1) and sample
treatments from the linear function 7 (x) = .35x + .5 (Figure 3).

We train all models with a binary-cross entropy loss. We use
the same 4-layer MLP implemented via PyTorch with hidden layer
sizes (40, 30, 10) for all models discussed in § 5.1. Where relevant,
we also fit 7(x) and 7; (x) (used in CCPE) via the same architecture.
We train all models for 10 each epochs each at learning rate n =
.5e~3. Hyperparameters were selected via a hyperparameter sweep
optimizing accuracy on Y; with respect to the TPO model.

In our semi-synthetic experiments, we run all models in the
synthetic experiment without sample splitting and cross-fitting.
While cross-fitting improves data efficiency and typically performs
better in low sample settings, the treatment group in JOBS data
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had very few positive (unemployment) outcomes. As a result, we
observed poor convergence of our MLP models across folds when
performing sample splitting on this dataset. Therefore we run JOBS
without sample splitting and cross-fitting, and maintain the same
setting with OHIE data for consistency. We use a 4-layer MLP with
layer sizes (30, 20, 10) for JOBS data and a 4-layer MLP with layer
sizes (40, 30, 10) for OHIE data. We use 1 = 1e — 3 for JOBS data
and 1 = 5e — 3 for OHIE data. We train JOBS and OHIE models for
15 and 20 epochs respectively. We with the synthetic experiment,
we select hyperparamters by optimizing model performance with
respect to the oracle TC model and use the same settings across
all models. Note that 7 = 0.015 and 7 = —0.077 for the outcomes
targeted in OHIE and JOBS, respectively.

A.4.2 Additional results. Theorem 4.1 shows that the re-weighted
surrogate loss recovers the loss with respect to target potential
outcomes in expectation. Because we do not provide a finite sample
convergence rate for our method, we extend our synthetic evalua-
tion to a low sample size regime to empirically test the performance
of RW-SL on finite samples of limited size. Figure 6 shows a con-
vergence plot for this experiment. We perform this analysis with
the same set of hyperparameters used in the main experimental
results reported in § 5. This plot indicates that the performance of
all methods deteriorates as sample availability decreases, with per-
formance upper bounded by the oracle TPO model. SL and RW-SL
with oracle parameters achieve performance at near parity with
TPO in sample settings above 500 samples, and begin to show rapid
performance deterioration at 250 samples. This indicates that both
SL and RW-SL tend to perform reliably in small sample settings
when parameters and weights are known. However, SL and RW-SL
with learned parameters performs poorly across all sample settings.
This is likely due to cascading errors arising from bias in error
parameter estimates. UT and UP both learn a function predicting
the average outcome response 7j(x) ~ .61,Vx € X in the setting
with 250 and 500 samples. As a result, these methods demonstrate
accuracy lower than 50% in the small sample settings.
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