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Abstract 

Discovery of target-binding molecules, such as aptamers and peptides, is usually 
performed with the use of high-throughput experimental screening methods. These methods 
typically generate large datasets of sequences of target-binding molecules, which can be enriched 
with high affinity binders. However, the identification of the highest affinity binders from these 
large datasets often requires additional low-throughput experiments or other approaches. 
Bioinformatics-based analyses could be helpful to better understand these large datasets and 
identify the parts of the sequence space enriched with high affinity binders. BinderSpace is an 
open-source Python package that performs motif analysis, sequence space visualization, 
clustering analyses, and sequence extraction from clusters of interest. The motif analysis, 
resulting in text-based and visual output of motifs, can also provide heat maps of previously 
measured user-defined functional properties for all the motif-containing molecules. Users can also 
run principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) 
analyses on whole datasets and on motif-related subsets of the data. Functionally important 
sequences can also be highlighted in the resulting PCA and t-SNE maps. If points (sequences) 
in two-dimensional maps in PCA or t-SNE space form clusters, users can perform clustering 
analyses on their data, and extract sequences from clusters of interest. We demonstrate the use 
of BinderSpace on a dataset of oligonucleotides binding to single-wall carbon nanotubes in the 
presence and absence of a bioanalyte, and on a dataset of cyclic peptidomimetics binding to 
bovine carbonic anhydrase protein. BinderSpace is openly accessible to the public via the GitHub 
website: https://github.com/vukoviclab/BinderSpace.  
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Introduction 

One of the essential steps in the development of new therapeutics and research tools is 
the discovery of molecules that bind with high affinity to target molecules1,2. The discovery of such 
molecules is challenging, especially if they are also required to simultaneously have selective 
binding to the target, and potentially also lead to another functionally important activity, such as 
emitting optical signals or inducing a targeted protein degradation3. A widely used approach for 
discovery of target-binding molecules relies on synthesis and screening of combinatorial libraries 
of molecules, which can be standalone or displayed on other entities, such as oligonucleotides or 
phages. In display experiments, the oligonucleotide sequence or the phage genome sequence 
can be read out by the next generation sequencing and provide unique encoding to each molecule 
in the library. The encoded libraries of molecules can be simultaneously screened in one pot for 
binding to the target of interest, and this process has been shown to result in a selection of high 
affinity binders from the original library.  

The types of molecules comprising the libraries can include the oligonucleotides 
themselves, functionalized nucleic acid polymers4, small molecules5,6, linear, cyclic or chemically 
modified peptides7–11, and novel hybrid molecules12. A method for selecting target binders from 
libraries of oligonucleotides of varying sequences13,14 is called SELEX (systematic evolution of 
ligands by exponential enrichment). This method can be performed in multiple rounds, where in 
each round, high affinity binders are getting more and more enriched in the set of oligonucleotides 
present in the solution and binding to the target. SELEX experiments typically result in a dataset 
of oligonucleotide sequences enriched in selection for target binding. The targets in SELEX 
experiments can include small molecules15, cancer cells16, carbon nanotubes17. Once 
oligonucleotides with high affinity binding to the target, also called aptamers, are identified, they 
can be used for various applications.  

Selection-based high-throughput screening of libraries of peptide-based molecules has 
also been developed over the last few decades. As mentioned above, widely used technologies 
for peptide-based ligand discovery are using experimental display technologies18–20 (e.g. phage, 
messenger RNA display). In these techniques, vast libraries of peptide-based molecules (as high 
as 1010) can be synthesized and assayed for binding to target proteins. Each ligand library is 
typically based on a single structural scaffold that contains peptide segments with fixed and 
variable amino acid positions, sometimes chemically modified by synthetic fragments7–9,21.  
Similar to SELEX, selection of peptides from phage or mRNA display libraries typically results in 
datasets of thousands of sequences of target-binding molecules. The obtained datasets are likely 
enriched with molecules with high affinity to targets. However, the definitive discovery of high 
affinity ligands requires additional low throughput experiments measuring the equilibrium 
dissociation constant KD for each selected molecule (oligonucleotide or peptide/peptidomimetic) 
and its target. These experiments are typically low-throughput and can be performed for a limited 
number of selected molecules. Thus, the identification of molecules with the highest affinity to 
targets requires further experiments or other approaches.  

With the advent of artificial intelligence (AI) approaches, there is a large interest in using 
experimental selection datasets for training machine learning (ML) models to predict 
oligonucleotides, peptide-based and other molecules with high affinity for targets4,22 or the highest 
ability to impart functional response to the target, such as the induction of a fluorescence signal23–

25. Bioinformatics analyses can be used to understand sequence composition of experimental 
datasets and also to assess the sequence patterns in sets of molecules predicted to have the 
highest affinity for targets by the ML models. For example, sequence motif analyses can 
determine the motifs that are enriched in experimental datasets, which can be useful because 
sequence motifs are known to be important in sequence affinity for the target26. Furthermore, 
comparative sequence motif analyses of control and selection datasets for one or multiple targets 
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could be a helpful guide for choosing candidate molecules for follow up experiments that test in 
finer detail the candidates’ target binding or functional activities. Bioinformatics analyses for motif 
discovery in DNA, protein, and peptide datasets have been developed and successfully applied 
to identify short DNA sequence segments (10-30 bp) implicated in gene regulation, for developing 
new aptamers22, for discovery of antimicrobial or anticancer peptides27, and many other 
applications. Widely used codes for motif discovery include MEME28 suite webserver and 
MERCI29 tool written in Perl. These codes have been optimized to perform the motif discovery 
tasks for longer sequences and may not have the options needed to analyze selection datasets, 
such as the identification of very short motifs in selection libraries of smaller molecules and the 
simultaneous analysis of control and selection datasets.  

Another useful bioinformatics analysis of sequence composition in selection datasets is 
the visual analysis in spaces of reduced dimensionality. Commonly used analyses include the 
principal component analyses (PCA) and t-distributed stochastic neighbor embedding (t-SNE), 
which can visualize the local and global structures within data. These analyses have been applied 
to large scale sequence datasets in biology, including the DNA methylation data30 and single-cell 
transcriptomes31. These analyses can be accompanied by the clustering approaches applied to 
data visualized in the reduced dimensionality spaces. The clustering approaches could be useful 
to identify which sequences are related to each other in these reduced dimensionality spaces. 
The sequences found to belong to the same clusters in the reduced dimensionality spaces as the 
highly functional sequences may also share their functional properties and could thus be of 
interest in the search for molecules with the highest affinity for targets and the highest ability to 
impart functional response to the target.  

To the best of our knowledge, there is currently no single toolkit package that integrates 
the motif discovery and reduced dimensionality sequence space visualizations for analyses of 
oligonucleotide and peptide-based selection datasets. Here, we developed a python package 
called BinderSpace, which is designed to examine and understand the sequence composition of 
datasets of oligonucleotides and peptide/peptidomimetic molecules obtained by selection 
processes in a fast and efficient manner. BinderSpace package can perform motif analyses of 
DNA, RNA, or peptide sequences in datasets, visualize sequences that contain specific motifs in 
reduced dimensionality spaces, and perform cluster analyses for whole sets or subsets of 
sequences. We demonstrate the application of our package to two types of datasets, namely, the 
datasets of oligonucleotides selected for binding to single-wall carbon nanotubes in the presence 
of serotonin analyte17,24 and datasets of cyclic peptidomimetics selected for binding to bovine 
carbonic anhydrase (BCA) protein target8.  

 

Methods  

Here, we describe the BinderSpace package, which analyzes datasets of related DNA and 
peptide-based sequences of molecules obtained in selection experiments. The analyses currently 
implemented in BinderSpace, summarized in Figure 1, include motif analysis, sequence space 
visualization, cluster analysis and sequence extraction from clusters of interest.   
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Figure 1. Overview of functionalities of the BinderSpace package. The inputs of the package (box 1) are DNA or 
peptide molecule sequences, including molecules with high-affinity binding to target (positive dataset) and molecules 
from control dataset assumed to have no high-affinity binding to target (negative dataset). The first output (box 2) is the 
analysis of motifs in positive and negative datasets. The second output (box 3) is the visual analysis of the sequence 
space from positive and negative datasets. The third output (box 4) is the cluster analysis of the sequence space plots. 

Sequences of molecules can be extracted from clusters of interest.  

 

Implementation. BinderSpace is an open-source package implemented in Python3. The source 
code is available on GitHub and can be installed or downloaded from PyPI (Python Package 
Index) repository. The repository contains a folder with the code and a folder with an example 
analysis in the tutorial form.  

Motif Search Task for Datasets of Affinity-Selected Molecules. Motif search is the first 
BinderSpace task in the analysis of datasets of affinity-selected DNA or amino acid-based 
molecules. The datasets can contain sequences with high affinity binding to the target, which are 
also called positive sequences. Alternatively, the datasets can contain both positive and negative 
sequences, where the negative (control) sequences are assumed to have no high-affinity binding 
to target.  

The motif search task, based on the Apriori alghorithm32, identifies top K motifs that are most 
frequent in the set of positive sequences. The output is the csv file with the list of motifs and their 
percentage in the set of positive sequences. When sets of both positive and negative sequences 
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are analyzed, then the motif search returns top K motifs that are most frequent in a positive set of 
sequences, and low frequency in a negative set. The output of the motif search (a csv file) 
provides a list of motifs, ranked according to the difference between the motif’s percentage in the 
set of positive sequences and the motif’s percentage in the set of negative sequences. Since our 
code is intended to analyze genetically encoded affinity-selected molecules of the same size but 
different sequences, it assumes that sequence lengths for all the molecules in the dataset are the 
same.  

 

Table 1. Summary of options in motif_search.py code.   

flag description default format 

    

-i 
calls the input file containing positive 

sequences (csv) 
- file name, required 

-n 
calls the input file containing negative 

sequences (csv) 
- file name 

-o 
defines the name of the output files 

listing the found motifs to be different 
from default (motifs.csv) 

motifs.csv file name 

-c 
defines if used for protein or DNA 

sequences 
amino_acids dna or amino_acids 

-f 
the minimal occurrence frequency for 

the positive sequences  
0.001  0<number < 1 

-m the minimal motif length 3 integer > 1 

-l the maximal motif length 
the length of the 
longest positive 

sequence 
integer > 1 

-g maximal number of gaps in motifs 0 integer ≥ 0 

-a maximal gap length 1 integer ≥  1 

-p 
number of processors used for running 

motif_search.py 
20 integer 

 

The motif search task is performed by running motif_search.py from the command line, a 
parallelized Python 3 code. The required and optional flags for running this code from the 
command line are listed and described in Table 1. The only required flag is (-i), which defines the 
file name of the input dataset of positive sequences. When using the optional flag (-n) to 
incorporate a second input dataset consisting of negative (control) sequences, the output will 
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include two statistical values: the Chi-square and P-value. In practical applications, the control 
dataset can contain sequences with low affinity for targets of interest or sequences found to have 
non-specific affinity for targets of interest. Alternatively, a separate function in module.py 
(random_sequence function) can also provide a negative dataset by generating a defined number 
of random sequences that are not present in the positive dataset.  

The motif search task has several other options, described in Table 1. There is a basic flag (-c) 
for choosing the type of molecules in the affinity selected dataset, either DNA or peptide. The 
search process is defined by the flag (-f), the minimal occurrence frequency of any given motif in 
the positive dataset, a parameter which affects the speed of the motif search. The minimal motif 
length (-m) and the maximal length of the motifs (-l) can be defined, as well as the number of gaps 
the motifs can have (-g), and the maximal gap length (-a). Finally, our motif search code can be 
performed on multiple processors, and the user can define the number of processors used with 
(-p) flag. While our motif search provides a comprehensive list of single motifs, extended motif 
families can be found with other software, such as GLAM2 within the MEME suite28, which 
visualizes motifs as sequence logos (Figure S2) allowing for the identification of specific motifs 
with an enrichment of amino acid families.  

PCA and t-SNE Analyses. The second BinderSpace task is performing the PCA and t-SNE 
analyses on datasets of DNA or peptide-based molecules. These analyses can be performed on 
whole datasets and on motif-related subsets of the data. The code binder_space.py performs 
these analyses, and we recommend the user to use this code as a Jupyter notebook, in order to 
be able to interact with the code and make modifications as needed.  

The simplest analyses in PCA and t-SNE space are analyses in two- and three-dimensional 
space, which allow the user to plot and visually examine the dataset in these reduced dimension 
spaces. The PCA and t-SNE analyses in binder_space.py are performed using the modules 
implemented in scikit-learn with parameters found to work best on the DNA dataset that we used 
for testing. However, the section for t-SNE analysis includes detailed guidance on hyperparameter 
testing that the user should perform as a routine part of the analysis. For both PCA and t-SNE 
analyses, the sequences of molecules in the datasets are represented either as (1 x N) matrices 
for peptide-based molecules containing N amino acids or (1 x M) matrices for DNA molecules 
containing M nucleotides (Table S1).  

The user can decide what dataset is to be analyzed. Namely, the user can analyze whole datasets 
or subsets of datasets, such as subsets of sequences that contain desired motifs. The code 
guides the user how to perform each type of analysis and recommends how to perform 
optimization of the hyperparameters.  

The code can also output PCA and t-SNE coordinates of the analyzed sequences for all the 
dimensions present in the datasets, when performing the t-SNE analysis with the regular scikit-
learn library. These coordinates are written out as csv output. For large datasets, such as the 
DNA dataset we used for testing (>750,000 sequences), t-SNE analysis of the whole sequence 
space may be slow. In that case, we provide a suggestion for using cuML library for t-SNE analysis 
in our code, which enables only a two-dimensional analysis and currently supports a Linux-like 
system33.  

Clustering Analysis of Datasets in PCA and t-SNE Space. The next option provided by our 
codes, distributed as Jupyter notebooks, is to perform cluster analysis on the two-dimensional 
maps obtained in PCA and t-SNE analyses. Based on the shape of the data in the maps, the user 
can choose to perform clustering using any of four clustering methods implemented in scikit-learn 
library, including density-based spatial clustering of applications with noise (DBSCAN), balanced 
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iterative reducing (Birch), Gaussian Mixture and k-means. For the DBSCAN method34, we advise 
users to test two parameters for improving the clustering results, ε, the maximum distance 
between two points for these points to be categorized as a cluster, and min_samples, the 
minimum number of samples that form a cluster. For the Birch method, the user can examine the 
clustering results for different values of the number of clusters to be obtained and the threshold 
parameter. In the Gaussian Mixture method, the clustering results may be improved by varying 
several parameters, including the number of clusters (n_components), covariance type, the 
number of iterations performed, and the method used for initial definitions of clusters 
(init_params). In the K-means methods, the user may change clustering results by adjusting the 
hyperparameter defining the number of clusters to be obtained.  

Example Datasets. Two datasets, summarized in Table 2, were used to demonstrate the 
BinderSpace options. SDNA dataset, obtained by Jeong, Landry and co-workers and reported in 
Ref.17, contains 18-nt long DNA sequences, and is divided into sub-datasets of positive and 
negative sequences SDNA-pos and SDNA-neg. SDNA-pos contains sequences selected for 
binding to single walled carbon nanotubes (SWNTs) in the presence of a serotonin 
neurotransmitter analyte, and SDNA-neg contains sequences selected for binding to SWNTs only 
(control sequences). The dataset of affinity-selected peptidomimetics BCA-pos and BCA-neg, 
initially obtained in experiments by Ekanayake, Derda and co-workers and described in Ref.8, 
contains 1,3-diketone bearing macrocyclic peptides (DKMP), formed of peptide fragments that 
vary in sequence covalently bound to 1,3-diketone group fragments. The molecules in this dataset 
were selected for binding to bovine carbonic anhydrase (BCA), identified by panning against BCA 
and found to be significantly enriched in panning to BCA when compared to panning against a 
control protein bovine serum albumin (BSA).  

Table 2. Summary of datasets used to demonstrate BinderSpace use. X labels the variable positions in molecules. 

Molecule type Dataset Length 
Sequence 
template 

Number of 
sequences 

DNA 
SDNA-pos 18-nt  C6-X18-C6 570,926 

SDNA-neg 18-nt  C6-X18-C6 219,382 

peptidomimetic 
BCA-pos 6-aa SXCXXXC-DKMP 7,815 

BCA-neg 6-aa SXCXXXC-DKMP 7,644 

 

 

Results and Examples 

Motif Search.  

After importing the positive and negative datasets, BinderSpace analyzes the sequences for 
frequently occurring motifs. Then, it outputs the observed sequence motifs and their frequencies 
within the positive and negative dataset. The motifs can be fully sequence-based or can contain 
gaps. The output includes csv files that each contain sequence motifs of a given length.  

We first demonstrate the motif search functionality on SDNA and BCA datasets. The example 
outputs of top 5 motifs of two different lengths with and without gaps in sequences are shown in 
Figure 2a-b. The motif_search.py program generates a csv file output for each motif length. 
Motifs of all lengths larger than the user-defined minimal length for the used datasets are found 
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within a single search. In addition to the comprehensive list of motifs and their percentages in the 
set of positive or negative sequences being outputted in csv format, our code can also provide a 
visual output of top motifs along with their associated percentages colored according to 
magnitudes (Figure 2a-b), for a convenient visual evaluation on how represented the motif is in 
the studied dataset. Figure 2a also shows the capability of our code to visualize values of a 
functional property of interest for sequences containing each motif. For SDNA dataset, the 
functional property is the optical fluorescence emission change, called ΔF/F, after the addition of 
serotonin analyte to an aqueous sample containing single walled carbon nanotubes wrapped by 
DNA sequences with the listed motifs. This option can be useful to identify visually which motifs 
are associated with high values of the functional property of interest. The BCA dataset of 
peptidomimetic molecules contains lists of only four variable amino acids within molecules. Our 
motif search can identify 4 amino acid motifs with two gaps, as well as the 2 and 3 amino acid 
motifs, as shown in Figure 2b and Table S4.  

 

Figure 2. Examples of the visual output of motifs found using BinderSpace for two example datasets. The 
output of the motif analysis is a csv file (complete list) and a heatmap (top motifs list) in which the motifs are sorted 
depending on the occurrence percentage in the positive class. a) Heatmap of top 10-nt long motifs with one or no gaps 
from the SDNA dataset, colored according to percentages in positive and negative subsets (left). Heatmap of ΔF/F 
values for DNA sequences containing those motifs, obtained in experiments24 (right). b) Heatmap of top 4-amino acid 
long motifs with two gaps from BCA dataset. c) Heatmap of top 9-nt long motifs without gaps from SDNA dataset. 

 

The running time of BinderSpace's motif_search.py was assessed on a desktop workstation 
equipped with an Intel Corporation Xeon E7 v3/Core i7 processor and 32 GB of memory, while 
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searching for motifs within the SDNA dataset, which comprises a total of 790,308 sequences. The 
duration of execution relies on the frequency option setting (-f) and the number of gaps (-g). The 
process is expedited with higher frequencies and fewer gaps, as illustrated in Table S2. For 
example, for SDNA dataset with default frequency of 0.001 and 1 gap, the running time to 
generate all motifs 8 nt and longer in length was 1,128 s (18.8 min). However, when we change 
the frequency to 0.01%, the running time reduces to 85 s (1.42 min). In contrast, the same search 
on a laptop powered by an 11th Generation Intel Core i7-11800H Processor and 64 GB of memory 
allocated to the CPU lead to the running time of 43.19 s. The running time of BinderSpace to find 
motifs for BCA dataset, containing in total 15,459 amino acid sequences four amino acids in 
length, was always less than 3 seconds (Table S2).  

 
Figure 3. Examination of the sequence space covered by the SDNA dataset. The maps were generated by 
applying the PCA or t-SNE methods for dimensionality reduction to 18-nt long DNA sequences initially represented as 
1 x 18 arrays. a) Comparison of top 500 sequences from SDNA-pos (orange) and SDNA-neg datasets (green), shown 
together with sequences containing C*CATTCCGCT motif from SDNA-pos (blue) and SDNA-neg (red) datasets. The 
motif was identified in ACGCCAACACATTCCGCT sequence (fluorescent green point), a functionally interesting 
sequence24. The principal component (PC) space is obtained from the complete SDNA dataset. b) Comparison of the 
same sequences as in panel a with t-SNE analysis. The t-SNE space is obtained from the complete SDNA dataset. c) 
Comparison of sequences containing C*CATTCCGCT motif from SDNA-pos (blue) and SDNA-neg (red) datasets. The 
PC space is obtained from SDNA sequences containing the C*CATTCCGCT motif. d) Comparison of the same 
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sequences as in panel c with t-SNE analysis. The t-SNE space is obtained from SDNA sequences containing the 
C*CATTCCGCT motif. 

 

Examining the Sequence Space Covered by Datasets of Affinity-Selected Molecules. To 
visualize the sequence space of affinity-selected molecules in SDNA dataset, PCA and t-SNE 
analyses were performed for 18-nt DNAs initially represented as 1 x 18 encoded arrays (Table 
S1). Figure 3a-b shows the location of top 500 SDNA-pos and SDNA-neg dataset sequences, 
shown overlapped with all the SDNA-pos and SDNA-neg sequences containing C*CATTCCGCT 
motif, identified in a functionally interesting sequence in a previous study17 
(ACGCCAACACATTCCGCT, labeled as E6#6, the sixth most abundant sequence in the sixth 
round of selection for binding to serotonin analyte in the presence of the SWNT sample). The 
particular sequence and motif were selected because a sample of single-walled carbon 
nanotubes wrapped by this sequence had 169% increase in optical emission in the presence of 
serotonin analyte17, as measured for (8,6) SWNTs at the wavelength of 1195 nm. The PCA and 
t-SNE analyses were performed in the spaces defined by all 790,308 sequences from the SDNA 
dataset, but only selected sequences are visualized in those spaces for clarity. Figure 3a-b shows 
that four subsets of DNA sequences cover similar regions of the sequence space in both PCA 
and t-SNE analyses. Due to the high overlap, it is difficult to say which regions of PCA and t-SNE 
spaces are associated with sequences that bind to serotonin analyte versus sequences that do 
not bind to serotonin analyte.  

Figure 3c-d shows the location of SDNA-pos and SDNA-neg sequences containing 
C*CATTCCGCT motif in PCA and t-SNE spaces based on the subset of SDNA sequences 
containing this motif. The plots have separated clusters of sequences, especially in the t-SNE 
space, and the clusters have different compositions of SDNA-pos and SDNA-neg sequences with 
the C*CATTCCGCT motif. One possible use of datasets of affinity-selected molecules, such as 
the SDNA dataset, is to train machine learning models to predict new high-affinity binding 
sequences. The analyses in Figure 3 show the degree of separation between SDNA-pos and 
SDNA-neg sequences. These analyses can help us decide if ML models could be predictive and 
accurate. For example, since there is better separation between SDNA-pos and SDNA-neg 
sequences in Figure 3c-d, the dataset used in this figure will likely lead to better quality ML 
models than the datasets analyzed in Figure 3a-b, for which the points representing SDNA-pos 
and SDNA-neg sequences have poorer separation and greater overlap. However, because ML 
models would be based on smaller subsets of data containing specific overrepresented pattern / 
motif, the ML models would not generalize to predictions for sequences without this motif. 
Depending on the goals of the projects, the user is recommended to examine the maps generated 
from both complete datasets and extracted subsets to determine if predictive ML models can be 
obtained based on these sets of sequences.  

Clustering Analysis and Extraction of Sequences from Specific Clusters. Our results in 
Figure 3c-d show that points in the reduced dimensionality sequence space sometimes form 
clusters. These clusters, visible by eye, have varying compositions of sequences originating from 
positive and negative parts of datasets. In fact, some clusters predominantly contain the 
sequences from positive datasets, i.e. the molecules that have high affinity binding to the target. 
We hypothesize that such clusters are more likely to contain functionally important sequences, 
which could be of interest for more detailed further investigations in experiments. To identify which 
sequences belong to clusters and to extract those sequences, we added the clustering analysis 
functionality into our Jupyter notebook codes for analyses of datasets of affinity-selected 
molecules. 
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Figure 4 shows example clustering analyses using the t-SNE map of sequences containing 
C*CATTCCGCT motif from SDNA-pos and SDNA-neg datasets. The same map is shown with 
the labeling of clusters obtained by four different methods, including DBSCAN, Birch, Gaussian 
Mixture, and k-means methods. When performing the clustering analyses, all four methods 
required tuning of hyperparameters to improve the labeling of clusters. Among four tested 
methods, the best labeling of clusters was obtained with the DBSCAN method (Figure 4a), using 
ε = 6 and 20 as the minimum number of points forming a cluster. Birch and Gaussian Mixture 
methods performed well when labeling small clusters, but poorly when labeling the big cluster. 
Our tuning the hyperparameters for Birch and Gaussian mixture methods did not improve the 
clustering results. The labeling of clusters by the k-means method was also worse than by the 
DBSCAN method, since one visually distinct large cluster is labeled as multiple clusters, and 
adjustments in the number of clusters lead to mislabeling of small clusters, as seen in the bottom 
left part of the plot in Figure 4d. After the clustering analysis, the code has an option to output 
the sequences that form a specific cluster of interest in the csv format file.  

 

Figure 4. Clustering analysis of the t-SNE map of sequences containing the C*CATTCCGCT motif in the SDNA 
dataset. The clustering analysis is performed on the two-dimensional t-SNE map described and shown in Figure 3c. 
a) Clustering analysis using the DBSCAN method, with ε = 6 and 20 as the minimum number of points forming a cluster. 
b) Clustering analysis using the Gaussian Mixture method, with settings of 9 clusters, spherical covariance type, and 
5000 iterations. c) Clustering analysis using the BIRCH method, with settings of 9 clusters. d) Clustering analysis using 

the k-means method, with settings of 7 clusters.   

Conclusion  
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The BinderSpace package is a tool for analyzing datasets of sequences of DNA and peptide-
based molecules, obtained in selection experiments, such as SELEX13,14 and phage display18, 
among others. Our open-source package, implemented in Python3, can perform motif analysis, 
sequence space visualization, cluster analyses, and sequence extraction from clusters of interest. 
One of the key features of BinderSpace is its motif search task, based on the Apriori algorithm, 
which works even for datasets of very short sequences. The motif analysis, providing text-based 
and visual output, can also be accompanied by visual maps of user-defined functional properties 
for all the motif-containing molecules for which the functional property was previously measured. 
Users can also run PCA and t-SNE analyses on their datasets, which can be performed on whole 
datasets and on motif-related subsets of the data. Functionally important sequences can also be 
highlighted in the resulting PCA and t-SNE maps. If points (sequences) in two-dimensional maps 
in PCA or t-SNE space form clusters, users can perform the clustering analyses on their data. 
Overall, BinderSpace can be used to investigate the relationships between molecule sequences 
and mechanisms of molecular recognition of the binding targets by these sequences. 
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