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Abstract. Using cohomological methods, we show that lattices in semisimple
groups are typically stable with respect to the Frobenius norm but not with respect
to the operator norm.

1 Introduction

Let I be a group and g = (G, d,)52; a family of groups G, equipped with bi-

o

invariant metrics d,. An asymptotic homomorphism ¢ = {¢,};2,

fromI'to g
is a family of maps ¢, : ' = G, such that forevery x,y € I,

nli>n(;lo dn(¢n(x)¢ll(y)’ qoﬂ(xy)) =0.

The group I is g-approximated if there is a separating asymptotic homomor-
phism to g, i.e., there is ¢ = {¢,};2; such that lim d,(¢,(x), 1g,) > O for every
1 #x e I'. The group T is said to be g-stable if for every asymptotic homomor-
phism ¢ = {9,}52, there exists a “true”” homomorphism y = { y,}72,, such that for
everyn € N, y, : I’ > G, is a homomorphism and for every x € T,

Tim d,(ya(x), ga(x)) = 0.

Namely, every asymptotic homomorphism is a small deformation of a true homo-
morphism. It is a standard fact that in case I' = (S | R) is a finitely presented
group defined by a finite set of generators S and a finite set of relations R, T is
g-stable iff for every € > O there exists > 0 such that for every n and for every
map p : S — G, if for every word w = sy - - - 8, in R, d,y(p(s1) - - - p(Si), 1g,) < O
then there exists a group homomorphism p : I' — G, such that for every s, S,
d,(p(s), p(s)) < ¢, cf. [2, Definition 3.2].
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The question of stability has been an intensive direction of research in recent
years (see [ 18] and the references therein). One of the motivations to study stability
is that it provides a path to prove g-inapproximability which has been (and still is)
a major open problem for various g’s, but was solved for some g’s using stability,
see [18] and [24].

The current paper concerns the case where I' is an irreducible lattice in a
semisimple Lie group. By a semisimple group G we mean a product of non-
compact (real) simple groups G = Hﬁ:l G;. Denote r; = rkr(G;) and

!
k(G)=r=>)r.
i=1
We say that G is higher rank if r > 2. Irreducible lattices in higher-rank
semisimple groups form an interesting class of groups enjoying the property of
super-rigidity, for example, and they are all arithmetic.
In this paper we will concern ourselves with the family of unitary groups
g = {U,(C)}2, with two different metrics, both derived from two different norms
on M, (C):

(F) The Frobenius norm (the L>-norm), i.e., for A € M, (C), ||A|lr = tr(A*A) and
dy(g,h) = |lg — hlr for g, h € Un(C).

(O) The operator norm (the L>°-norm), i.e., for A € M,,(C), [|Allop = supect [|Av]|
lloll=1
and &P (g, h) = [|g — hllop-

Our results say that higher-rank lattices behave very differently with respect to
these two metrics. We show that “almost all” (and conjecturally all) such lattices
are Frobenius stable but at the same time are operator instable.

To this end, let us recall the cohomological criterions for Frobenius stability
and operator instability given in [18] and [16], respectively.

Theorem 1.1. Let I be a finitely generated group.

(F) [18] If H¥(I', V) = O for every unitary representation of I' on any Hilbert
space V, then I is Frobenius stable.

(O) [16] Assume I is a linear group and H'(I', R) # 0 for some eveni > 0. Then T’
is not operator stable.

Theorem 1.1(F) [18] gave several examples of Frobenius stable groups, namely
lattices in simple p-adic Lie groups of rank > 3. This relies on the work of Garland
[20] and his followers ([18] and the reference therein), who proved cohomological
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vanishing below the rank for such p-adic groups, that is property [Tk —1] as defined
below. However, it left open the case of real simple groups. This is particularly
frustrating, as Garland’s method was designed as a p-adic analogue of the Mat-
sushima formula that was first proven in the context of real Lie groups. In fact, the
situation for real Lie groups is not as neat and clean as the in the p-adic case and
the cohomology below the rank is often non-zero.

The main goal is to settle the annoying discrepancy between the p-adic and
real worlds. What enables us doing so is the recent work of the first and the third
authors [5] which shows a vanishing result below the rank. However, in the real
case the vanishing does not hold for the trivial representation, that is the groups
satisfy property (T —1), but in general not [Tk ], as defined below.

Definition 1.2. A group I' has property [T,] if its cohomology H (T, V)
vanishes for every unitary I'-representation V and every 1 < i < n. It has property
(T,) if this holds provided V has no non-zero I'-invariant vectors.

It is a remarkable but easy fact that for n = 1, property (7;) is equivalent to
property [T}], and both properties are equivalent to Kazhdan’s property (T) for
countable groups (see [5, Lemma 3.2] ). However, for every n > 1 there exist
examples of groups satisfying property (7,,) but not property [7,,] (e.2., Sps,42(Z)).
Theorem 1.1, in particular, says that a [T,]-group is Frobenius stable. The lattices
in Theorem 1.3 below are only (75>)-groups, not necessarily [T>]-groups. In spite
of that, they are Frobenius stable.

As mentioned above, the starting point of this paper is the recent paper [5] which
shows that an irreducible lattice I' in a higher-rank semisimple Lie group G has
property (7,,—1), where n is the minimal rank of each non-compact factor of G [5,
Theorem B]. Theorem 1.1 strongly suggests that such I' is Frobenius stable if the
rank of each non-compact factor is at least 3, but falls short from proving it as
there might be a non-trivial second cohomology for the trivial representation. For
example, the group G = Sp(2g, R) has a universal central extension G with an
infinite abelian kernel which implies that HZ(G, R) and H*(T', R) are non-zero.
So I' does not have property [7T>] despite having property (77).

To handle this difficulty we argue in two steps. First we show that for I which
has property (T>), its preimage T" in G is a [T»]-group. To this end, we study the
exterior square I' A I of I'. We show that I' A T is a [T,]-group provided T is
a (Ty)-group (Theorem 2.6). If I is perfect then I' A I is the universal central
extension of I'. Then we use another result of [5] to deduce that ' A T and T are
commensurable and hence I is also a [T5]-group. Theorem 1.1 now shows that T is
Frobenius stable. To deduce that I is also Frobenius stable we use a generalization
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of a result of Deligne [19]. See Theorem 2.11, which shows that I" modulo its
profinite radical is commensurable with I" provided I" has the congruence subgroup
property. We then conclude the following theorem.

Theorem 1.3. Let G be a real semisimple Lie group and I' < G be an
irreducible lattice. We assume that each non-compact factor of G has rank at
least 3. Then T is Frobenius stable with the possible exception that one of the
non-compact factors is of Hermitian type and I" does not have the congruence
subgroup property.

According to a well known conjecture of Serre [32], all the lattices in Theo-
rem 1.3 satisfy the congruence subgroup property. This has been proved in most
cases, in particular G = Sp(2g, R), see [31, Theorem 3]. So we believe that there
are no exceptions in the theorem. Moreover, we believe that all irreducible lattices
in higher-rank semisimple Lie groups are Frobenius stable.

The theorem above and the conjectural generalization are especially interesting
in view of [6] which shows, in particular, that these lattices are never Hilbert—
Schmidt stable. Recall that the Hilbert—Schmidt norm is nothing more than the
renormalization of the Frobenius norm, i.e., ||A||us = n~'/?||A||g for A € M, (C).

Before passing to the operator norm case, let us mention an interesting corollary
of Theorem 1.3. In [18] some groups which cannot be Frobenius approximated
were presented for the first time. These are certain central extensions of lattices in
p-adic Lie groups which are somewhat difficult to describe, and the proof appealed
to Garland’s theory. Here are some examples which are easier to describe.

Corollary 1.4. Let G = Sp(2g, R), g > 3, and let G be its universal central
extension. For every lattice T < G, in particular for T = Sp(2g, Z), the preimage T
of T in G is not Frobenius approximated.

It is an interesting fact that Deligne’s work [19] is used in two different ways
to prove the above theorem and its corollary. First, we use the characterization of
the profinite radical to conclude the stability of T" from the one of I". Second, we
use the fact that there is a profinite radical, so I is not residually finite, to conclude
that I" cannot be Frobenius approximated.

The result described so far will be described in full and proved in §2. In §3 we
will switch our attention to the case of an operator norm. Here one gets a fairly
complete result for uniform lattices.

Theorem 1.5. Let G be a semisimple real Lie group and I' < G a cocompact
lattice. Then T is a not operator stable, with the only possible exceptions being
when G is locally isomorphic to either SO(n, 1) for n odd or SL3(R).
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Theorem 1.5 will follow from Theorem 1.1 by showing that the uniform lattices
in question carry some non-trivial even-degree cohomology. We now sketch the
proof of the above statement. We note that Matsushima’s formula [25] (or the later
Shapiro Lemma) yields an injection H(G, R) — H*(I', R), where H} denotes the
continuous group cohomology and I' < G is uniform. Thus it suffices to show
that G carries some non-trivial even-degree continuous group cohomology. We will
use the fundamental fact that the continuous group cohomology of a semisimple
Lie group is isomorphic to the singular cohomology of the corresponding dual
symmetric space, which is a compact manifold [13, Theorem IX.5.6]. Observe
that a compact manifold carries a non-trivial even-degree cohomology iff it is not
an odd-dimensional rational homology sphere. Indeed, if the dimension is even,
then the top class is such a non-trivial cohomology class, while if the dimension
is odd, the non-triviality of any odd-degree cohomology implies the non-triviality
of its even complimentary degree cohomology. We are thus left to show that
under the conditions of Theorem 1.5, the dual symmetric space of G is not an odd-
dimensional rational homology sphere. Fortunately, the compact symmetric spaces
which are rational homology spheres were completely classified by Wolf [36,
Theorem 1]. In particular, the only odd-dimensional rational homology spheres
are actual odd-dimensional spheres (or the corresponding projective spaces), with
a unique exception that corresponds to the dual symmetric space of SL3(R). The
final step in the proof of Theorem 1.5 follows by applying a classification by Borel
of all the presentations of odd-dimensional spheres as homogeneous spaces, which
in particular shows that these form Riemannian symmetric spaces only in the cases
SO(n + 1)/ SO(n) for odd n [11], and noting that the latter are the dual symmetric
spaces of SO(n, 1) for odd n.

In §3.1 we will consider lattices in those semisimple Lie groups not covered by
Theorem 1.5, namely the groups SL3(R) and SO(n, 1) for n odd. We will show
in Corollary 3.7 that lattices in SL3(R) have finite index subgroups which are not
operator stable and the situation with lattices in SO(#n, 1) will be summarized in
Corollary 3.13.

Finally, in §4 we will suggest and call attention to various open problems and
further research directions.
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2 Frobenius stability

2.1 The transgression associated with a central extension. We con-
sider a group I', an abelian group A and a central extension

(1) 1AL 1.

Let k be another abelian group. For an element f € Hom(A, k) we consider the
graph of —p,
gr(—=p) ={(a, —p(@)) | a € A} <A xk,

as a central subgroup of L x k and consider the associated quotient group
Lf =L x k/ gr(—pf).

Loosely speaking, L is a version of L in which A is replaced by k via 8. The compo-
sition of p with the projection Lxk — Linduces ahomomorphismtg,(8): ! >T.
We obtain a commutative diagram whose rows are central extensions:

1 A LT 1
) lﬁ i J
(0]
1 k AN 1

where the maps L — L# and k — L/ are induced by idx0 : L — L x k
and O x id : k — L x k correspondingly. We consider this extension as an element
of H*(T', k), thus we obtain a map

3) tg, : H'(A, k) = Hom(A, k) - HX (T, k), B~ tg,(B).

By the explicit description given in [30, Proposition (1.6.6)], this map is the
transgression with &k coefficients associated with the extension (1), and by [30,
Proposition (1.6.7)], it fits in the associated Inflation-Restriction five-term exact
sequence

4) 0— HY (T, k) > HY(L, k) = H' (A, k) —th H* (T, k) = H*(L, k).

The following lemma will be needed in the proof of Theorem 2.6.
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Lemma 2.1. Assume k is a field of characteristic O and the transgression
tg, is an isomorphism. Then H'(L,k) = HY(T, k) and H*(L, k) embeds into
H\ (T, k) ® H'(A, k). In particular, if T has a finite abelianization then

H*(L,k)=H'(L,k)=0.

Proof. The fact that H'(T', k) = H'(L, k) follows immediately from the ex-
actness of (4) using the assumption that tg, is an isomorphism. We proceed to
show that H?(L, k) embeds into H\(T, k) ® H'(A, k).

We consider the Hochschild—Serre—Lyndon spectral sequence associated with
the central extension (1). Its E,-term is given by

Q) EY = HP(T', HY(A, k)) = H (T, k) ® HU(A, k).
We are interested in the line p + g = 2. The term E!! = E%l embeds into
EN' =T HY(T, k) @ HY(A, k).

Hence it is enough to show that Egg = Egg = 0. By [30, Proposition (2.4.3)],
' =tg - Since this is an isomorphism, in particular a surjection, we deduce that
EX = E3° = 0. We are left to show that E%2 = E9> = 0. We will do so by showing
that d9?: ES*> — E3! is injective, thus EY> = 0. Roughly speaking, d9? is injective
because it could be identified with the symmetrization map of an exterior algebra.
The proof below will make this statement precise.

Note that the isomorphism (5) represents the E>-term as graded algebra, namely
the product of the graded algebras H*(T", k) and H*(A, k). Upon identifying the H°-
factors in the E,-term with k we may view d3! asamap dy': H'(A, k) — H*(T, k).
Note that dgl(l ®x) = ng(x) ® 1 under this notation and recall that this is an
isomorphism. Furthermore, we have

(6) H*(A, k) = A*H'(A, k).
Consider the following diagram:

AN’HY (A, k) —2Z—— HY(A, k) @ H'(A, k)

(6)l; ! ®idiz

HOT, k) ® H*(A, k) H(T, k) @ H'(A, k)
(S)J’:V (S)Jz
E92 dy’ E2!
2 2

where ¢ is the symmetrization mapx Ay — x @y — y ® X.



8 U. BADER, A. LUBOTZKY, R. SAUER AND S. WEINBERGER

Fix xAy € A’HY(A, k). Tt corresponds to (1 ®x)- (1 ®y) € H (T, k) H*(A, k).
By the derivation property,

A(1@x)- 10y)=d'(1®x) - (1”y)—(1®x) - -d'(1Qy)
= @'W)R1)-(1®y)—(1®x) - (B
='Wy ') ®x.

This shows that the diagram commutes. As the symmetrization map o over a field
of characteristic O is injective, we conclude that d32 is injective. O

2.2 The exterior square. In this subsection we review an important con-
struction that we believe should be better known, the exterior square of a group
and the associated short exact sequence (9). The exterior square was first defined
and studied in [26] but it was named only much later, in [15, §2.7], in the context
of the study of non-abelian tensor products. A thorough and clear presentation of
the subject is given in the thesis [29].

Let I' be a group. The (non-abelian) exterior square of ', denoted I' A T,
is the group generated by the symbols x A y, for every x, y € I', under the relations

W Ay =dxT AT AY), XA =@ ANy ApyyTh
and
xAx=1

for every x, x', v,y € T (the first line of relations defines the tensor square, ' ® T,
and the second line provides a natural homomorphism I' ® I' — I' AT). The
relations are such that x A y — [x, y] induces a homomorphism I' AT — [T, I'].
We now consider an abelian group k and a central extension

7) l5k>L-5T -1
We get a natural homomorphism
®) 7:TAT = [L L, xAy= [s(x),s0)],

where s : ' — L is a set theoretical section for z. Indeed, one checks easily
that [s(x), s(v)] does not depend on the choice of the section s, thus induces a well
definedmap I' x I' — [L, L] which extends to I AT using the standard commutator
relations. In particular, the identity central extension id : I' — I" gives rise to a
group homomorphism id: TAT = [T, I'] and we get id = 7|jL..jo 7. By the main
result of [26] we have ker(i?l) = Hy(I', Z), which gives us the central extension

9) 1= HyT,7Z) > T AT —5 [, T] - 1.
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See [15, §2.7] and [29, §3.8.4 and §3.4.1]. We obtain an element
h(rw) € Hom(H»(T', Z), k)
fitting the following commutative diagram:

1l —— H,T,Z2) —— T AT —— [I,T] —— 1

o ]

1 k L z r 1

Interpreting the extension 7 as an element in H?(I, k) we obtain a map
h: H*T, k) — Hom(Hy(T', Z), k), m > h(x).

By [29, §3.6.4], the map & is the epimorphism appearing in the Universal Coefficient
Theorem:

(11) 0= Exty(T'/[T, T1, k) = HA(T, k) — Hom(Hx(T, Z), k) —> 0.

Next, we specialize (11) to k = H>(I', Z) and, using the fact that % is surjective,
we find a central extension 7o in H>(I', Hy(T", Z)) such that h(m) is the identity
in Hom(H,(T', Z), H»(T", Z)). The commutative diagram (10) specializes to the
following commutative diagram:

l — s H[,Z) — s TAT —— [[,T] —— 1

(12) lh(ﬂo):id JEO i

1 —— Hy(T,7) Lo o r 1

A central extension, such as mg, fitting in (12) is called a Schur covering of T.
We note that Schur coverings form initial objects in the category of extensions of I'
where morphisms are taken to be homoclinisms [29, §3.6.5]:

We now consider the transgression (3)

tg,,, : Hom(Hy(T', Z), k) = H*(T, k),
specialized to the extension 7.

Lemma 2.2. For a Schur covering extension wo of I the corresponding trans-
gression tg, splits (11) and provides an explicit decomposition

H*(T, k) = tg, (Hom(H»(T', Z), k)) @ Exty(I'/[T', T'], k).
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Proof. We need to show that 2 o tg, = id. Since & is surjective, we may fix
an arbitrary extension 7, as in (7), representing an element of H*(T, k), and show
that A(z) = h o tg,, oh(rx). For convenience, we write 7’ = tg, oh(r) and argue to
show h(x) = h(x’). Note that h(x) is given in the diagram (10). Specializing (2) to
p =mo and f = h(x), we obtain

o

1 —— HQ(F, Z) L() r 1
lh(n’) l l
1 k o™, r 1

which, when precomposed with (12), gives rise to

1 — H,T',Z2) —— T AT —— [I,T] —— 1

S

1 k L® —r T 1

where we conclude the central vertical map to be 7/, as indicated, as it agrees on
elements of the form x A y with the corresponding map defined in (8). We deduce
from (10), specialized to #’, that indeed h(x) = h(z’). O

Next, we consider the central extension id given in (9) and the associated
transgression tg;g: Hom(H»(I', Z), V) — H*([T, T1, V).

Lemma 2.3. Given a group I" and an abelian group k, we have tg;goh = i,
where i : H*(I', k) — H*([T',T'], k) is the map associated with the inclusion
[[,T]— T.

Proof. We fix a Schur covering 7y of I" and obtain an associated splitting of
H?(T, k) asin Lemma 2.2. Since Ext%(l"/[l", I'1, k) is in the kernels of both / and i,
we are left to show that tg;; oh =i on tg, (Hom(Hx(I', Z), k)). By the naturality of
the transgression, applied to the homomorphism of extensions (12), we obtain the
following commutative square:

Hom(Hy(T', Z), k) & tg, (Hom(Hy(T', Z), k))

lid &h li

Hom(Hx(T, Z), k) ——2 s H2([T, T, k)

By Lemma 2.2 we have the commutativity of the upper left triangle, which in turn
gives the commutativity of the lower right triangle. This finishes the proof. (|
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2.3 The properties (7,) and [73].

Lemma 2.4. Let I" be a group and let A < T be a finite index subgroup.
If T satisfies property (T,), then A also satisfies property (T,) and the restriction
homomorphism H™(I', C) —» H™(A, C) is an isomorphism for everym < n. If T’
satisfies property [T,], then A also satisfies property [T,].

Proof. Let m < n. Let V be a unitary representation of A, and let U be
the corresponding induced unitary representation of I'. By Shapiro’s lemma,
H™(A,V) = H™T', U). If V has no non-trivial A-invariant vectors then U has
no non-trivial I'-invariant vectors and by (7,,), H™(I', U) = 0. We conclude that
H™(A, V) =0, thus A has property (7). In case V = C, we have

U=L*T'/A)=CaLYT/A),

thus
H"(A, OO ZH™Y T, C)®H"(T, L%(F/A))

and the second summand vanishes by property (7},). It follows that restriction
homomorphism H"(I', C) — H™(A, C) is an isomorphism for every m < n. In
particular, if T satisfies property [T;] then A also satisfies property [T;,]. O

‘We consider the central extension id given in (9) and the associated transgression
tgig : Hom(Hx(T', Z), V) = H*([T, T, V).

Lemma 2.5. Let I be a group which satisfies property (T,). Then the associ-
ated transgression tg;g: Hom(H,(T', Z), C) — H*([T', T'l, C) is an isomorphism.

Proof. By the Universal Coefficient Theorem (11) we see that 4 is an isomor-
phism, as I" has finite abelianization. By Lemma 2.4 we have that

i: H(I',C) - H*([I',T'],C)

is an isomorphism and by Lemma 2.3 we conclude that tg;5 is an isomorphism as
well. O

Theorem 2.6. Let I' be an FP, group which satisfies property (T3). Then
I' A T satisfies property [T>].

Proof. Since I' has (73), in particular, it has (7). Hence I' has a finite
abelianization. By Lemma 2.4 we conclude that [T, I'] satisfies (7). So [T, ']
has a finite abelianization, too. We set A = H,(I',Z). Since I satisfies FP5,
it is finitely generated, thus A is a finitely generated abelian group. By [14,
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Proposition VIIL.5.1], the finite index subgroup [I', '] < I also satisfies FP;.
Using [21, Proposition 2.2] we conclude from (9) that I' A T satisfies FP, as well.
Let V be a unitary I' A I'-representation. By [5, Theorem 3.7], the vanishing of
H(I' AT, W)fori € {1, 2} and every unitary I'-representation W is equivalent to the
corresponding vanishing for every irreducible unitary I'-representation W. We may
and will assume that V is irreducible. In case V = C is the trivial representation,
Lemma 2.5 says that tg;5 is an isomorphism. Thus H(I' AT, V) = 0 by Lemma 2.1,
specialized to L = I’ A T'. We may thus assume that V is a non-trivial irreducible
unitary I'-representation.

We will show the vanishing of H(I' AT, V), i € {1,2}, via the Hochschild—
Serre—Lyndon spectral sequence associated with the central extension (9). Specif-
ically, we show that E5? = 0 for p + g < 2 where

EY' = HP([T, T'], HY(A, V)).

By Schur’s lemma, A acts on V via a character y. First suppose that y is non-
trivial. Then the group cohomology H*(A, V) = Extg4(C, V) vanishes since
multiplication with some a € A in any of the two variables of the Ext-term induces
the same endomorphism of the group cohomology. Hence it is simultaneously
the identity and multiplication with y(a) which is only possible if the Ext-term
vanishes. We conclude that E5? = 0 for every p,q. Now suppose that y is
trivial. This means that V is coming from a non-trivial irreducible unitary [T", I']-
representation. Since [I', I'] has property (7>), we have that H([I', T], W) = 0
for every i € {0, 1,2} and any unitary [I', I']-representation with no non-trivial
invariant vectors. The [I', I']-modules H*(A, V) in the E,-term of the spectral
sequence are unitary [, [']-representations with no invariant vectors since they
are isomorphic to H*(A, C) ® V (with the trivial action on H*(A, C)). So the E5?-
entries are zero for p + g < 2. We conclude that, indeed, H(I' AT, V) = 0
forie{l1,2}. O

2.4 Central extensions of semisimple Lie groups and their lattices.
We will denote by H the continuous group cohomology. Recall that the funda-
mental group of a connected Lie group is always abelian.

Proposition 2.7. For a connected semisimple Lie group with finite center G,
71(G) ® C = H*(G, C).

In the proof below we will denote by H; the singular cohomology of topological
spaces.
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Proof. We let K < G be a maximal compact subgroup, U < G(C) be a
compact form of G containing K, and X = U/K be the corresponding dual sym-
metric space. By [27, Theorem 1.1], G is homotopy equivalent to K. Thus by the
Hurewicz theorem,

m1(G)®C = 7 (K)®C = H!(K, C).

By the van Est isomorphism [13, Theorem 1X.5.6], H:(G,C) = H} (X, C). The
Serre spectral sequence, associated with the fibration U — X and with the E,-term
EY? = HY(X, HI(K, C)), converges to H(U,C). As U is a connected compact
Lie group, the cohomology ring of U is an exterior algebra generated by classes
in odd degrees [12, Proposition 7.3]. Since U is semisimple, we obtain that
HNU, C) = H>(U, C) = 0. From the five-terms exact sequence

0— EX - H\(U,C) - EY' - E3° - H>(U,C)
we deduce that EY! = E5°. Hence
H!(K,C) = H)(X, H{(K, C)) = H}(X, H)(K, C)) = H}(X, C).
Thus 7,(G) ® C = H*(G, C). O

Proposition 2.8. Let G be a connected semisimple Lie group with finite center
and no compact factors. Let T < G be a lattice. Denote by G — G the universal
coverandletw : T — T be the pull back of . If G has property (T) and real rank
at least 3, then the natural map r : T AT — [T, 1] < T has a finite kernel and

image of finite index.

Remark 2.9. We note that for G = SL3(R), G — G is a double cover, hence
sois I' = T for any lattice I' < G. However, by (9), the kernel of

TAT — [T, T]

is isomorphic to Hy(I', Z), which varies dramatically. This follows from a com-
putation by Soulé of H*(I", C). Indeed, while H*(SL3(Z), C) = 0 by [33, Theo-
rem 4(iii)], there is a sequence of congruence subgroups I'; < SL3(Z) such that the
second Betti number of I'; tends to co by [33, Theorem 7(ii)]. See also Remark 3.6.

Proof. We note that T has property (T) by [7, Theorem 3.5.2]. We identify
the kernel of 7 : I’ — T with z,(G). By property (T), both [T, N < T and
[[,T] < T are of finite index, thus we identify the kernel of the restriction
map 7 : [, T'] — [T, T'] with a finite index subgroup of 7z,(G).
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By the universal property of I' A T" we have id=rgoz:TAT - [T, T,
which is surjective. Since the kernel of 7 is central, the image of 7 is normal and
[[, T'1/@(T A T)is abelian. Using (T), we conclude that the image of 7 is of finite
index.

The kernel of id is H,(T';Z) and the kernel of 7 is a finite index subgroup
of m1(G). These two finitely generated abelian groups have the same rank by
Proposition 2.7 since the restriction map H*(G, C) — H*(I", C) is an isomorphism
by [35, Theorem C] and rkg G > 3. We conclude that 7 has a finite kernel. O

Theorem 2.10. Let G be a semisimple Lie group with finite center and no
compact factors. Let T' < G be a lattice. Denote by G — G the universal cover
and let T — T be the pull back of T. If all simple factors of G are of real rank at
least 3, then G and T have property (T») and G and T have property [T5).

Proof. The fact that G and I" have property (73) is proved in [5]. By Theo-
rem 2.6, we get that I’ A I" has property [7>] and by Proposition 2.8 we deduce
that also T" has property [7>]. Specializing to a cocompact lattice I' < G, it also
follows, by Shapiro’s Lemma, that G has the property [T3], as then I'<Gisa
cocompact lattice satisfying property [7>]. U

2.5 A recollection of CSP and a result of Deligne. A lattice ' < G
being arithmetic means that there is a number field k£, a semisimple simply
connected k-algebraic subgroup H of GL, such that there is an epimorphism
[1e V(b H(ky) — G with compact kernel and the image of H(O) is commensurable
with T'. Here V. (k) is the set of Archimedean valuations of k£ and O is the ring of
integers of k.

The lattice I' < G is said to have the congruence subgroup property
(CSP) if the kernel of m - H(@) is finite where the symbol indicates the
profinite completion, respectively. The intersection of all finite index subgroups
of I is called the profinite radical of I', denoted PR(I"). The following theorem
was essentially proved by Deligne [19]. For a clear and concise exposition see [35]
as well as [18, §5.2].

Theorem 2.11 (Deligne). Let I' < G be a lattice satisfying the congruence
subgroup property. Assume that w1(G) is infinite. Let G — G be the universal
cover, which is the universal central extension of G. Then the preimage T is not

residually finite. Furthermore,
PR(I) c ker(T — T)

is a subgroup of finite index.
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2.6 Proof of Theorem 1.3 A finitely generated linear group is residually
finite by Malcev’s theorem. Accordingly, for a finitely generated group I', every
homomorphism to a linear group factors via I'/ PR(I").

Lemma 2.12. Let T be a finitely generated group. Let N < T' be a normal
subgroup of T contained in PR(T"). If T is Frobenius stable then so is I'/N.

Proof. Let ¢ = (¢,) be an asymptotic homomorphism of I'/N. Let
p:I'>T/N

be the projection. So ¢ o p = (¢, o p) is an asymptotic homomorphism of T'.
By assumption, ¢ o p is approximated by a sequence of true homomorphisms
v = (y,). For every n € N, the image y,,(I') is a finitely generated linear group,
hence residually finite. Thus each y, factors through I'/ PR(I"), in particular,
through I'/N. The induced homomorphism on I'/N approximates ¢. (|

Lemma 2.13. Let I be a finitely presented group and let N < T" be a finite
normal subgroup. If T is Frobenius stable then also I'/N is Frobenius stable.

In the proof below, || - || means the Frobenius norm.

Proof. Welet Fs — I be a surjection from the free group on a finite set S and
assume as we may that there exists a subset N C S whose image is N. Let R C F
be a finite set of relations for T and let T = RUN C F. s, which is a finite set of
relations for I'/N.

For every € > 0 there exists 0 > 0 such that every Frobenius J-almost repre-
sentation of I" is Frobenius e-close to a representation. That is, for every homo-
morphism p : Fg — U(n) such that for every r € R, ||p(r) — 1|| < J, there exists
a homomorphism p’ : Fg — U(n) such that for every r € R, p'(r) = 0 and for
every s € S, || p(s) — p'(9)] < e.

We let o be the minimum of max,cy ||7(n) — 1||, ranging over all non-trivial
irreducible representations = of N.

We fix € > 0. Without loss of generality, we assume € < a/2. We choose
accordingly and again, without loss of generality, we assume 0 < a/2. Let
p : Fs — U(n) be a homomorphism such that for every r € T, ||p(t) — 1|| < 0.
In particular, for every r € R, ||p(r) — 1]| < J, thus there exists a homomorphism
p' : Fs — U(n) such that for every r € R, p'(r) = 1 and for every s € S,
lp(s) — p'(s)|l < €. We view p’ as a representation of I'. Restricting to N, we get
that for everyn € N,

Ip' () = 1l < llp(m) — P’ + Il p(n) — 1| < €+6 < a.
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‘We note that the Frobenius norm of a representation majorizes the Frobenius norm
of any subrepresentation. It follows that p’|y contains no non-trivial irreducible
subrepresentation, thus for every ¢t € T, p'(¢) = 1. We conclude that p’ descends to
a representation of I'/N, which is e-close to p. (|

Corollary 2.14. Let T be a finitely generated group and let N < T" be a normal
subgroup such that U'/N is finitely presented. Assume that the intersection of N
with the profinite radical of T is of finite index in N. If U is Frobenius stable then
also T' /N is Frobenius stable.

Proof. Let Ny be the intersection of N with the profinite radical of I". Then
I' /Ny is an extension of I'/N by the finite group N/Ny, hence it is finitely presented.
By Lemma 2.12, applied for Ny < I', I' /Ny is Frobenius stable and by Lemma 2.13,
applied to N/Ny <t I' /Ny, T'/N is Frobenius stable. O

Proof of Theorem 1.3. Let ' < G be as in Theorem 1.3. Then I" has (75)
by [5]. If no factor of G is of Hermitian type, then H*(G, C) = 0 and by [5] also
H*(T',C) = 0, thus T has [75], so it is Frobenius stable by Theorem 1.1. From
now on we assume that at least one of the factors of G is of Hermitian type, thus
7 : G — G has an infinite kernel. We denote T' = z7!(T"). By Theorem 2.10, T
is a [T»]-group and by Theorem 1.1 it is Frobenius stable. We let N < T" be the
kernel of the extension I' — I'. By Corollary 2.14, if the intersection of N with
the profinite kernel of " is of finite index in N, then I' is Frobenius stable. By
Theorem 2.11, this is indeed the case, as I' is assumed to have the congruence
subgroup property. Thus I' is Frobenius stable. (|

3 Operator instability

The following is essentially due to J. Wolf and A. Borel.

Theorem 3.1. Let U be a compact connected Lie group, K < U a closed
subgroup containing no normal subgroup of U and assume that M = U/K is a
Riemannian symmetric space. Then M is an odd-dimensional rational homology
sphere if and only if, up to a cover, either U = SO(n + 1) and K = SO(n) for some
oddn or U =SUQ3) and K = SO(3).

Proof. It follows from [36, Theorem 1] that, up to a cover, either M is an
actual odd-dimensional sphere or M = SU(3)/ SO(3). However, [11, Theorem 3]
classifies the pairs K < U for which U/K is an odd-dimensional sphere, and while
comparing to the classification of compact symmetric spaces, one gets that the
only fitting pair is U = SO(n + 1) and K = SO(n). O
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Remark 3.2. Note that a compact manifold M is an odd-dimensional rational
homology sphere if and only if for all eveni > 0, H{(M, Q) = 0, where H? denotes
the singular cohomology of M. The “only if” part is obvious and the “if” part
follows by Poincaré duality. Indeed, assuming that for all eveni > 0, Hi(M, Q) = 0
and M is not an odd-dimensional rational homology sphere, if n = dim(M) is even
we get a contradiction by setting i = n, and if n is odd we get some j < n with
H/(T', Q) # 0, thus also H"7(I", Q) # 0 by Poincaré duality, and either j is even
or n — jis even.

For a locally compact group G, we denote by H; the continuous group coho-
mology.

Corollary 3.3. Let G be a semisimple real Lie group not locally isomorphic
to SO(n, 1) for some odd n or SL3(R). Then for some eveni > 0, Hé(G, R) #O0.

Proof. Follows at once from Theorem 3.1, by Remark 3.2 and the fact that
the continuous group cohomology of G is isomorphic to the singular cohomology
of its dual symmetric space. (|

Theorem 3.4. Let G be a semisimple real Lie group not locally isomorphic
to SO(n, 1) for some odd n or SL3(R), and let ' < G be a cocompact lattice. Then
for some even i > 0 we have H(I', R) # 0.

Proof. By Matsushima’s formula [25] we have an injection
HI(G,R) = H*(I', R),

thus this follows by Corollary 3.3. U
Proof of Theorem 1.5. Immediate by Theorem 3.4 and Theorem 1.1(0O). [J

3.1 Lattices in SL3(R) and SO(#n, 1).

Theorem 3.5. Let I' be a lattice in SL3(R). Then there exists a finite index
subgroup T < T satisfying H*(I'1, Q) # 0. Moreover, for every finite index
subgroup Ty < T'y, H*(I'», Q) #0.

Proof. We first note that if I'; < I'; is of finite index then H*(I'{, Q) injects
into H*(I'2, Q) by Shapiro’s Lemma. This proves the “moreover” part.

The Euler characteristic of G and its lattices is O and the homological dimension
is bounded by 5, the dimension of the corresponding symmetric space. We denote
b, = H'(I', Q) and note that b; = 0 by property T.
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The lattice I' = SL3(Z) is of Q-rank 2, hence of rational cohomological di-
mension 3, that is by = bs = 0, and the same applies also to its subgroups of
finite index. It follows that for these groups b, = b3 — 1. By [3, Theorem 2], the
kernel of SL3(Z) — SL3(Z/7) has b3 > 5815, hence b, > 5814 (see also [33,
Theorem 7]). By Shapiro’s Lemma the theorem follows for every lattice which is
commensurable with SL3(Z), thus for every non-uniform lattice.

‘We thus may and will assume that " is cocompact. Without loss of generality,
let T be torsion-free. By Poincaré duality we have bs = by = 1, by = b; = 0 and
b3z = b,. By [22, Theorem B], there are finite quotients of I" with arbitrarily large
2-Sylow subgroups (actually for every prime). In particular, there exists a finite
index subgroup I'o € I' which surjects on Z/2 x Z/2. We let I'} < I’y be the
kernel of this surjection and consider M = I')\G/K. Note that I'y/I"; acts on M.
By [17, Theorem D] (due to Davis and Weinberger) we get that M is not a rational
homology sphere and we conclude that b,(I';) # 0. O

Remark 3.6. Since the compact dual of SL3(R) is a rational homology sphere,
the preceding theorem and a theorem of Venkataramana [34] imply that the virtual
second Betti number of a lattice in SL3(IR) is infinite.

Corollary 3.7. Let T be a lattice in SL3(R). Then there exists a finite index
subgroup I'y < T such that every finite index subgroup I', < T'| is not operator
stable.

Proof. Immediate by Theorem 3.5 and Theorem 1.1(0O). ]

The use of [17, Theorem D] in the proof of Theorem 3.5 used the fact that the
dimension of the symmetric space of SL3(R) is 5, which is 1 mod 4. In a similar
manner we get the following.

Proposition 3.8. Let " be a cocompact lattice in SO(n, 1) for n = 4k + 1.
Then there exists an even i > 0 and a finite index subgroup 'y < T satisfying
H(T'y, Q) #0. Moreover, for every finite index T'» < T'y, H(I'», Q) #O.

Proof. The dimension of the symmetric space of SO(#n, 1) is 1 mod 4. Apply-
ing [22, Theorem B] and [17, Theorem D], just as in the proof of Theorem 3.5, we
get that M = I'|\G/K is not a rational homology sphere, and the proof follows by
Remark 3.2. ]

The following follows from the celebrated solution by Agol and Wise of the
virtual Haken conjecture.
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Theorem 3.9 ([1]). Let T" be a cocompact lattice in SO(3, 1). Then there
exists a finite index subgroup T'y < T such that for every 0 < i < 3, H(I';, Q) #0.
Moreover, for every finite index T, < Ty, H/(I',, Q) #0.

The following is due to Bergeron and Clozel.

Theorem 3.10 ([8, Corollary 1.8]). Let I' be an arithmetic lattice in SO(n, 1),
n #3. In case n =7, assume T is not of the form °D,. Then there exists a finite
index subgroup I'y < T such that for every 0 < i < n, Hi(Fl, Q) #0. Moreover,
for every finite index Ty < T'y, H(I'», Q) #O0.

Remark 3.11. In [9, Theorem 1.1] Bergeron and Clozel show that for lat-
tices in SO(7, 1) of the form ®Dy, it holds that all congruence subgroups have
by =0. The corresponding questions regarding non-congruence subgroups and
higher cohomologies are still open.

Theorem 3.12 ([23, Theorem 3.5]). Forn > 3 andalatticel’ < G = SO(n, 1),
if M = T'\G/K admits a codimension I totally geodesic submanifold, then there
exists a finite index subgroup T'y < T such that H'(T';, Q) # 0. Moreover; for every
finite index T» < T'y, H{(T'», Q) #O.

We note that for n > 3, for all known non-arithmetic lattices I' < G = SO(n, 1),
M =T'\G/K admits a codimension 1 totally geodesic submanifold.

Corollary 3.13. Let I be a cocompact lattice in G = SO(n, 1), n odd. Assume
either one of the following conditions:

e n=23.

e n=4k+1.

e n =4k +3 and T is arithmetic, but not of the form °Dy in case n = 7.

e I'\G/K has a codimension 1 totally geodesic submanifold.
Then there exists a finite index subgroup I') < T such that every finite index
subgroup 'y < T’y is not operator stable.

Proof. Immediate by Theorem 1.1(O), given Theorem 3.9, Theorem 3.10 and
Theorem 3.12 (taking into account Remark 3.2). ]

4 Remarks and suggestions for future research

4.1 Non-uniform lattices. Theorem 1.5 gives a pretty good picture of the
operator instability of uniform lattices. The situation with non-uniform lattices
is a priori different, as the next proposition applies to all non-uniform lattices
in SL,(R).
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Proposition 4.1. Every virtually free group is operator stable.

Proof. This follows from [18, Remark 5.2], as virtually free groups are of
rational cohomological dimension 1. (|

However, we believe that non-uniform lattices in simple Lie groups other than
SL,(R) are not operator stable. In fact, we can show it in many cases by some ad
hoc arguments, but we lack a unified treatment. Let us illustrate this with an easy
example.

Proposition 4.2. Forn > 16, every lattice in SL,(R) is not operator stable.

Proof. Setting G = SL,(R) and letting I' < G be a lattice, we have by [5]
that the restriction homomorphism H:(G, C) — H(T', C) is an isomorphism for
i <1k(G) =n — 1, and in particular for i = 14. It is well known that

H'(G,C) = H/(SU(n)/ SO(n), C)

and the cohomology ring of SU(n)/ SO(n) is an exterior algebra. By [28, Theorem
II1.6.7 on p. 149] it has generators in degrees 5 and 9, hence also an element in
degree 14=5+9. Thus H'%(T", C) # 0 and we conclude by Theorem 1.1(0) that T’
is not operator stable. O

A more sophisticated method by Ash—Borel [4, Theorem 3.1] in combination
with Theorem 1.1(0) yields the following result (and actually much more) by
producing even dimensional virtual cohomology classes via modular symbols.

Proposition 4.3. Let O be the ring of integers in a number field. Then SL,(O)

for n > 2 contains a finite index subgroup that is not operator stable.

4.2 p-Schatten norms. The p-Schatten norm of M,(C) is
[All, = (tr((A* AP )P

This generalizes the Frobenius norm, obtained for p = 2. We define the metric d/,
on U(n) by db(g, h) = |lg — hll, and set g, = (U(n), db)).

In [18] the lattices in £-adic simple Lie groups of rank at least 3 were shown
to be Frobenius stable. In [24] this result was extended to any p-Schatten norm,
provided ¢ is large enough with respect to p. The starting point of the current paper
was to extend [18] from ¢-adic Lie groups to real Lie groups by replacing Garland’s
theory by [5] (and references therein). This applies only to unitary representation
and we do not know how to extend it to other Banach spaces, i.e., we do not know
how to prove the p-Schatten stability for any p & 2 and any higher rank lattice in a
real simple Lie group.
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4.3 S-arithmetic groups and /-adic groups. A uniform lattice I in a
(virtual) product of locally compact groups G; and G, for which H*>%(G;, C) #0
is operator instable: By the Kiinneth formula the continuous cohomology of G
is non-zero in an even positive degree. By the Shapiro lemma it injects into the
cohomology of I', and so we can apply Theorem 1.1(O).

We apply this observation to the case of S-arithmetic groups. In the following,
let kK be a number field, O < k the ring of integers, S a finite set of primes
containing S, the Archimedean primes and let G be a k-algebraic group. We let
I' = G(Og) = G(k) N GL(Og) for some embedding G — GL,. Note that I' is a
lattice in G := [],.¢ G(k,). An immediate consequence of the above observation
is:

Proposition 4.4. If G(k,,) is non-compact for two different places v, v, € S
and I < G is uniform, then I is operator instable.

By a remarkable result of Blasius—Franke—Grunewald [10, Theorem 1] (note
that the tensor symbol ® should be a sum symbol & in loc. cit.), the assumption
that I is uniform could be removed in many cases:

Proposition 4.5. Asssume that G is simply connected (as a k-group). Assume
that G(kyo) is not compact and there exists a non-Archimedean place v € S such
that G(k,) is non-compact. Assume further that G(kwo) is locally isomorphic neither
to SL3(R) nor to SO(n, 1) for some odd n. Then T is operator unstable.

Proof. According to [10, Theorem 1] the cohomology of G(k) injects into
the cohomology of I'. We conclude by Corollary 3.3 and Theorem 1.1(0). O

The current paper puts the real case more or less in line with the £-adic case as
far as the Frobenius norm is concerned. For the operator norm it even puts the real
case ahead of the {-adic case. While our Theorem 1.5 shows that almost all uniform
lattices in real semisimple Lie groups are operator unstable, our understanding of
the ¢-adic case is far from being complete. If G is a simple ¢-adic group of
rank r and I' < G a lattice (necessarily cocompact), then by Garland’s theorem,
H(I',C) = 0 for every 0 < i < r, while H'(I', C) # 0. Thus if r is even, I is
operator unstable by Theorem 1.1(0). However, for odd » we know nothing!
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