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Abstract. Using cohomological methods, we show that lattices in semisimple

groups are typically stable with respect to the Frobenius norm but not with respect

to the operator norm.

1 Introduction

Let ! be a group and g = (Gn, dn)
∞
n=1 a family of groups Gn equipped with bi-

invariant metrics dn. An asymptotic homomorphism ϕ = {ϕn}∞n=1 from ! to g

is a family of maps ϕn : ! → Gn such that for every x, y ∈ !,

lim
n→∞

dn(ϕn(x)ϕn(y),ϕn(xy)) = 0.

The group ! is g-approximated if there is a separating asymptotic homomor-

phism to g, i.e., there is ϕ = {ϕn}∞n=1 such that lim dn(ϕn(x), 1Gn
) > 0 for every

1 $= x ∈ !. The group ! is said to be g-stable if for every asymptotic homomor-

phism ϕ = {ϕn}∞n=1 there exists a “true” homomorphism ψ = {ψn}∞n=1, such that for

every n ∈ N, ψn : ! → Gn is a homomorphism and for every x ∈ !,

lim
n→∞

dn(ψn(x),ϕn(x)) = 0.

Namely, every asymptotic homomorphism is a small deformation of a true homo-

morphism. It is a standard fact that in case ! = 〈S | R〉 is a finitely presented

group defined by a finite set of generators S and a finite set of relations R, ! is

g-stable iff for every ε > 0 there exists δ > 0 such that for every n and for every

map ρ : S → Gn, if for every word w = s1 · · · sm in R, dn(ρ(s1) · · ·ρ(sm), 1Gn
) < δ

then there exists a group homomorphism ρ̄ : ! → Gn such that for every s, S,

dn(ρ(s), ρ̄(s)) < ε, cf. [2, Definition 3.2].
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The question of stability has been an intensive direction of research in recent

years (see [18] and the references therein). One of the motivations to study stability

is that it provides a path to prove g-inapproximability which has been (and still is)

a major open problem for various g’s, but was solved for some g’s using stability,

see [18] and [24].

The current paper concerns the case where ! is an irreducible lattice in a

semisimple Lie group. By a semisimple group G we mean a product of non-

compact (real) simple groups G =
∏l

i=1 Gi. Denote ri = rkR(Gi) and

rk(G) = r =

l∑

i=1

ri.

We say that G is higher rank if r ≥ 2. Irreducible lattices in higher-rank

semisimple groups form an interesting class of groups enjoying the property of

super-rigidity, for example, and they are all arithmetic.

In this paper we will concern ourselves with the family of unitary groups

g = {Un(C)}∞n=1 with two different metrics, both derived from two different norms

on Mn(C):

(F) The Frobenius norm (the L2-norm), i.e., for A ∈ Mn(C), ‖A‖F = tr(A∗A) and

dF
n (g, h) = ‖g − h‖F for g, h ∈ Un(C).

(O) The operator norm (the L∞-norm), i.e., for A ∈ Mn(C), ‖A‖op = sup v∈Cn

‖v‖=1
‖Av‖

and dop
n (g, h) = ‖g − h‖op.

Our results say that higher-rank lattices behave very differently with respect to

these two metrics. We show that “almost all” (and conjecturally all) such lattices

are Frobenius stable but at the same time are operator instable.

To this end, let us recall the cohomological criterions for Frobenius stability

and operator instability given in [18] and [16], respectively.

Theorem 1.1. Let ! be a finitely generated group.

(F) [18] If H2(!,V) = 0 for every unitary representation of ! on any Hilbert

space V, then ! is Frobenius stable.

(O) [16] Assume ! is a linear group and Hi(!,R) $= 0 for some even i > 0. Then !

is not operator stable.

Theorem 1.1(F) [18] gave several examples of Frobenius stable groups, namely

lattices in simple p-adic Lie groups of rank ≥ 3. This relies on the work of Garland

[20] and his followers ([18] and the reference therein), who proved cohomological
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vanishing below the rank for such p-adic groups, that is property [Trk−1] as defined

below. However, it left open the case of real simple groups. This is particularly

frustrating, as Garland’s method was designed as a p-adic analogue of the Mat-

sushima formula that was first proven in the context of real Lie groups. In fact, the

situation for real Lie groups is not as neat and clean as the in the p-adic case and

the cohomology below the rank is often non-zero.

The main goal is to settle the annoying discrepancy between the p-adic and

real worlds. What enables us doing so is the recent work of the first and the third

authors [5] which shows a vanishing result below the rank. However, in the real

case the vanishing does not hold for the trivial representation, that is the groups

satisfy property (Trk−1), but in general not [Trk−1], as defined below.

Definition 1.2. A group ! has property [Tn] if its cohomology Hi(!,V)

vanishes for every unitary !-representation V and every 1 ≤ i ≤ n. It has property

(Tn) if this holds provided V has no non-zero !-invariant vectors.

It is a remarkable but easy fact that for n = 1, property (T1) is equivalent to

property [T1], and both properties are equivalent to Kazhdan’s property (T) for

countable groups (see [5, Lemma 3.2] ). However, for every n > 1 there exist

examples of groups satisfying property (Tn) but not property [Tn] (e.g., Sp2n+2(Z)).

Theorem 1.1, in particular, says that a [T2]-group is Frobenius stable. The lattices

in Theorem 1.3 below are only (T2)-groups, not necessarily [T2]-groups. In spite

of that, they are Frobenius stable.

As mentioned above, the starting point of this paper is the recent paper [5] which

shows that an irreducible lattice ! in a higher-rank semisimple Lie group G has

property (Tn−1), where n is the minimal rank of each non-compact factor of G [5,

Theorem B]. Theorem 1.1 strongly suggests that such ! is Frobenius stable if the

rank of each non-compact factor is at least 3, but falls short from proving it as

there might be a non-trivial second cohomology for the trivial representation. For

example, the group G = Sp(2g,R) has a universal central extension G̃ with an

infinite abelian kernel which implies that H2
c (G,R) and H2(!,R) are non-zero.

So ! does not have property [T2] despite having property (T2).

To handle this difficulty we argue in two steps. First we show that for ! which

has property (T2), its preimage !̃ in G̃ is a [T2]-group. To this end, we study the

exterior square ! ∧ ! of !. We show that ! ∧ ! is a [T2]-group provided ! is

a (T2)-group (Theorem 2.6). If ! is perfect then ! ∧ ! is the universal central

extension of !. Then we use another result of [5] to deduce that ! ∧ ! and !̃ are

commensurable and hence !̃ is also a [T2]-group. Theorem1.1 now shows that !̃ is

Frobenius stable. To deduce that ! is also Frobenius stable we use a generalization
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of a result of Deligne [19]. See Theorem 2.11, which shows that !̃ modulo its

profinite radical is commensurable with ! provided ! has the congruence subgroup

property. We then conclude the following theorem.

Theorem 1.3. Let G be a real semisimple Lie group and ! < G be an

irreducible lattice. We assume that each non-compact factor of G has rank at

least 3. Then ! is Frobenius stable with the possible exception that one of the

non-compact factors is of Hermitian type and ! does not have the congruence

subgroup property.

According to a well known conjecture of Serre [32], all the lattices in Theo-

rem 1.3 satisfy the congruence subgroup property. This has been proved in most

cases, in particular G = Sp(2g,R), see [31, Theorem 3]. So we believe that there

are no exceptions in the theorem. Moreover, we believe that all irreducible lattices

in higher-rank semisimple Lie groups are Frobenius stable.

The theorem above and the conjectural generalization are especially interesting

in view of [6] which shows, in particular, that these lattices are never Hilbert–

Schmidt stable. Recall that the Hilbert–Schmidt norm is nothing more than the

renormalization of the Frobenius norm, i.e., ‖A‖HS = n−1/2‖A‖F for A ∈ Mn(C).

Before passing to the operator norm case, let us mention an interesting corollary

of Theorem 1.3. In [18] some groups which cannot be Frobenius approximated

were presented for the first time. These are certain central extensions of lattices in

p-adic Lie groups which are somewhat difficult to describe, and the proof appealed

to Garland’s theory. Here are some examples which are easier to describe.

Corollary 1.4. Let G = Sp(2g,R), g ≥ 3, and let G̃ be its universal central

extension. For every lattice ! < G, in particular for ! = Sp(2g,Z), the preimage !̃

of ! in G̃ is not Frobenius approximated.

It is an interesting fact that Deligne’s work [19] is used in two different ways

to prove the above theorem and its corollary. First, we use the characterization of

the profinite radical to conclude the stability of ! from the one of !̃. Second, we

use the fact that there is a profinite radical, so !̃ is not residually finite, to conclude

that !̃ cannot be Frobenius approximated.

The result described so far will be described in full and proved in §2. In §3 we

will switch our attention to the case of an operator norm. Here one gets a fairly

complete result for uniform lattices.

Theorem 1.5. Let G be a semisimple real Lie group and ! < G a cocompact

lattice. Then ! is a not operator stable, with the only possible exceptions being

when G is locally isomorphic to either SO(n, 1) for n odd or SL3(R).
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Theorem 1.5 will follow from Theorem 1.1 by showing that the uniform lattices

in question carry some non-trivial even-degree cohomology. We now sketch the

proof of the above statement. We note that Matsushima’s formula [25] (or the later

Shapiro Lemma) yields an injection H∗
c (G,R) ↪→ H∗(!,R), where H∗

c denotes the

continuous group cohomology and ! < G is uniform. Thus it suffices to show

that G carries some non-trivial even-degreecontinuous group cohomology. We will

use the fundamental fact that the continuous group cohomology of a semisimple

Lie group is isomorphic to the singular cohomology of the corresponding dual

symmetric space, which is a compact manifold [13, Theorem IX.5.6]. Observe

that a compact manifold carries a non-trivial even-degree cohomology iff it is not

an odd-dimensional rational homology sphere. Indeed, if the dimension is even,

then the top class is such a non-trivial cohomology class, while if the dimension

is odd, the non-triviality of any odd-degree cohomology implies the non-triviality

of its even complimentary degree cohomology. We are thus left to show that

under the conditions of Theorem 1.5, the dual symmetric space of G is not an odd-

dimensional rational homology sphere. Fortunately, the compact symmetric spaces

which are rational homology spheres were completely classified by Wolf [36,

Theorem 1]. In particular, the only odd-dimensional rational homology spheres

are actual odd-dimensional spheres (or the corresponding projective spaces), with

a unique exception that corresponds to the dual symmetric space of SL3(R). The

final step in the proof of Theorem 1.5 follows by applying a classification by Borel

of all the presentations of odd-dimensional spheres as homogeneous spaces, which

in particular shows that these form Riemannian symmetric spaces only in the cases

SO(n + 1)/SO(n) for odd n [11], and noting that the latter are the dual symmetric

spaces of SO(n, 1) for odd n.

In §3.1 we will consider lattices in those semisimple Lie groups not covered by

Theorem 1.5, namely the groups SL3(R) and SO(n, 1) for n odd. We will show

in Corollary 3.7 that lattices in SL3(R) have finite index subgroups which are not

operator stable and the situation with lattices in SO(n, 1) will be summarized in

Corollary 3.13.

Finally, in §4 we will suggest and call attention to various open problems and

further research directions.
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2 Frobenius stability

2.1 The transgression associated with a central extension. We con-

sider a group !, an abelian group A and a central extension

(1) 1 → A → L
ρ−→ ! → 1.

Let k be another abelian group. For an element β ∈ Hom(A, k) we consider the

graph of −β,

gr(−β) = {(a,−β(a)) | a ∈ A} < A × k,

as a central subgroup of L × k and consider the associated quotient group

Lβ = L × k/ gr(−β).

Loosely speaking, Lβ is a version ofL in which A is replacedby k via β. The compo-

sition ofρwith the projectionL×k → L induces a homomorphism tgρ(β) : Lβ → !.

We obtain a commutative diagram whose rows are central extensions:

(2)

1 A L ! 1

1 k Lβ ! 1

β

ρ

tgρ(β)

where the maps L → Lβ and k → Lβ are induced by id×0 : L → L × k

and 0 × id : k → L × k correspondingly. We consider this extension as an element

of H2(!, k), thus we obtain a map

(3) tgρ : H1(A, k) ∼= Hom(A, k) → H2(!, k), β #→ tgρ(β).

By the explicit description given in [30, Proposition (1.6.6)], this map is the

transgression with k coefficients associated with the extension (1), and by [30,

Proposition (1.6.7)], it fits in the associated Inflation-Restriction five-term exact

sequence

0 → H1(!, k) → H1(L, k) → H1(A, k)
tgρ−→ H2(!, k) → H2(L, k).(4)

The following lemma will be needed in the proof of Theorem 2.6.
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Lemma 2.1. Assume k is a field of characteristic 0 and the transgression

tgρ is an isomorphism. Then H1(L, k) ∼= H1(!, k) and H2(L, k) embeds into

H1(!, k) ⊗ H1(A, k). In particular, if ! has a finite abelianization then

H2(L, k) = H1(L, k) = 0.

Proof. The fact that H1(!, k) ∼= H1(L, k) follows immediately from the ex-

actness of (4) using the assumption that tgρ is an isomorphism. We proceed to

show that H2(L, k) embeds into H1(!, k) ⊗ H1(A, k).

We consider the Hochschild–Serre–Lyndon spectral sequence associated with

the central extension (1). Its E2-term is given by

(5) E
pq
2 = Hp(!,Hq(A, k)) ∼= Hp(!, k) ⊗ Hq(A, k).

We are interested in the line p + q = 2. The term E11
∞ = E11

3 embeds into

E11
2

∼= H1(!, k) ⊗ H1(A, k).

Hence it is enough to show that E02
∞ = E20

∞ = 0. By [30, Proposition (2.4.3)],

d01
2 = tgρ. Since this is an isomorphism, in particular a surjection, we deduce that

E20
∞ = E20

3 = 0. We are left to show that E02
∞ = E02

4 = 0. We will do so by showing

that d02
2 : E02

2 → E21
2 is injective, thus E02

3 = 0. Roughly speaking, d02
2 is injective

because it could be identified with the symmetrization map of an exterior algebra.

The proof below will make this statement precise.

Note that the isomorphism (5) represents the E2-term as graded algebra, namely

the product of the graded algebras H∗(!, k) and H∗(A, k). Upon identifying the H0-

factors in the E2-term with k we may view d01
2 as a map d̃01

2 : H1(A, k) → H2(!, k).

Note that d01
2 (1 ⊗ x) = d̃01

2 (x) ⊗ 1 under this notation and recall that this is an

isomorphism. Furthermore, we have

(6) H∗(A, k) ∼= (∗H1(A, k).

Consider the following diagram:

(2H1(A, k) H1(A, k) ⊗ H1(A, k)

H0(!, k) ⊗ H2(A, k) H2(!, k) ⊗ H1(A, k)

E02
2 E21

2

(6) ∼=

σ

d̃01
2

⊗id ∼=

(5) ∼= (5) ∼=
d02

2

where σ is the symmetrization map x ∧ y #→ x ⊗ y − y ⊗ x.
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Fix x∧y ∈ (2H1(A, k). It corresponds to (1⊗x) ·(1⊗y) ∈ H0(!, k)⊗H2(A, k).

By the derivation property,

d02
2 ((1 ⊗ x) · (1 ⊗ y)) = d01

2 (1 ⊗ x) · (1 ⊗ y) − (1 ⊗ x) · d01
2 (1 ⊗ y)

= (d̃01
2 (x) ⊗ 1) · (1 ⊗ y) − (1 ⊗ x) · (d̃01

2 (y) ⊗ 1)

= d̃01
2 (x) ⊗ y − d̃01

2 (y) ⊗ x.

This shows that the diagram commutes. As the symmetrization map σ over a field

of characteristic 0 is injective, we conclude that d02
2 is injective. !

2.2 The exterior square. In this subsection we review an important con-

struction that we believe should be better known, the exterior square of a group

and the associated short exact sequence (9). The exterior square was first defined

and studied in [26] but it was named only much later, in [15, §2.7], in the context

of the study of non-abelian tensor products. A thorough and clear presentation of

the subject is given in the thesis [29].

Let ! be a group. The (non-abelian) exterior square of !, denoted ! ∧ !,

is the group generated by the symbols x ∧ y, for every x, y ∈ !, under the relations

xx′ ∧ y = (xx′x−1 ∧ xyx−1)(x ∧ y), x ∧ yy′ = (x ∧ y)(yxy−1 ∧ yy′y−1)

and

x ∧ x = 1

for every x, x′, y, y′ ∈ ! (the first line of relations defines the tensor square, ! ⊗ !,

and the second line provides a natural homomorphism ! ⊗ ! → ! ∧ !). The

relations are such that x ∧ y #→ [x, y] induces a homomorphism ! ∧ ! → [!,!].

We now consider an abelian group k and a central extension

(7) 1 → k → L
π−→ ! → 1.

We get a natural homomorphism

(8) π̄ : ! ∧ ! → [L,L], x ∧ y #→ [s(x), s(y)],

where s : ! → L is a set theoretical section for π. Indeed, one checks easily

that [s(x), s(y)] does not depend on the choice of the section s, thus induces a well

defined map !×! → [L,L] which extends to !∧! using the standard commutator

relations. In particular, the identity central extension id : ! → ! gives rise to a

group homomorphism īd : !∧! → [!,!] and we get īd = π|[L,L] ◦ π̄. By the main

result of [26] we have ker(īd) ∼= H2(!,Z), which gives us the central extension

(9) 1 → H2(!,Z) → ! ∧ !
īd−→ [!,!] → 1.
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See [15, §2.7] and [29, §3.8.4 and §3.4.1]. We obtain an element

h(π) ∈ Hom(H2(!,Z), k)

fitting the following commutative diagram:

(10)

1 H2(!,Z) ! ∧ ! [!,!] 1

1 k L ! 1

h(π) π̄

π

Interpreting the extension π as an element in H2(!, k) we obtain a map

h : H2(!, k) → Hom(H2(!,Z), k), π #→ h(π).

By [29, §3.6.4], themap h is the epimorphismappearing in theUniversalCoefficient

Theorem:

(11) 0 → Ext1Z(!/[!,!], k) → H2(!, k)
h−→ Hom(H2(!,Z), k) → 0.

Next, we specialize (11) to k = H2(!,Z) and, using the fact that h is surjective,

we find a central extension π0 in H2(!,H2(!,Z)) such that h(π0) is the identity

in Hom(H2(!,Z),H2(!,Z)). The commutative diagram (10) specializes to the

following commutative diagram:

(12)

1 H2(!,Z) ! ∧ ! [!,!] 1

1 H2(!,Z) L0 ! 1

h(π0)=id π̄0

π0

A central extension, such as π0, fitting in (12) is called a Schur covering of !.

We note that Schur coverings form initial objects in the category of extensions of !

where morphisms are taken to be homoclinisms [29, §3.6.5]:

We now consider the transgression (3)

tgπ0
: Hom(H2(!,Z), k) → H2(!, k),

specialized to the extension π0.

Lemma 2.2. For a Schur covering extension π0 of ! the corresponding trans-

gression tgπ0
splits (11) and provides an explicit decomposition

H2(!, k) = tgπ0
(Hom(H2(!,Z), k)) ⊕ Ext1Z(!/[!,!], k).
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Proof. We need to show that h ◦ tgπ0
= id. Since h is surjective, we may fix

an arbitrary extension π, as in (7), representing an element of H2(!, k), and show

that h(π) = h ◦ tgπ0
◦h(π). For convenience, we write π′ = tgπ0

◦h(π) and argue to

show h(π) = h(π′). Note that h(π) is given in the diagram (10). Specializing (2) to

ρ = π0 and β = h(π), we obtain

1 H2(!,Z) L0 ! 1

1 k L
h(π)

0 ! 1

h(π)

π0

π′

which, when precomposed with (12), gives rise to

1 H2(!,Z) ! ∧ ! [!,!] 1

1 k L
h(π)

0 ! 1

h(π) π̄′

π′

where we conclude the central vertical map to be π̄′, as indicated, as it agrees on

elements of the form x ∧ y with the corresponding map defined in (8). We deduce

from (10), specialized to π′, that indeed h(π) = h(π′). !
Next, we consider the central extension īd given in (9) and the associated

transgression tgīd : Hom(H2(!,Z),V) → H2([!,!],V).

Lemma 2.3. Given a group ! and an abelian group k, we have tgīd ◦h = i,

where i : H2(!, k) → H2([!,!], k) is the map associated with the inclusion

[!,!] ↪→ !.

Proof. We fix a Schur covering π0 of ! and obtain an associated splitting of

H2(!, k) as in Lemma 2.2. Since Ext1Z(!/[!,!], k) is in the kernels of both h and i,

we are left to show that tgīd ◦h = i on tgπ0
(Hom(H2(!,Z), k)). By the naturality of

the transgression, applied to the homomorphism of extensions (12), we obtain the

following commutative square:

Hom(H2(!,Z), k) tgπ0
(Hom(H2(!,Z), k))

Hom(H2(!,Z), k) H2([!,!], k)

tgπ0

id i
h

tgīd

By Lemma 2.2 we have the commutativity of the upper left triangle, which in turn

gives the commutativity of the lower right triangle. This finishes the proof. !
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2.3 The properties (T2) and [T2].

Lemma 2.4. Let ! be a group and let ( < ! be a finite index subgroup.

If ! satisfies property (Tn), then ( also satisfies property (Tn) and the restriction

homomorphism Hm(!,C) → Hm((,C) is an isomorphism for every m ≤ n. If !

satisfies property [Tn], then ( also satisfies property [Tn].

Proof. Let m ≤ n. Let V be a unitary representation of (, and let U be

the corresponding induced unitary representation of !. By Shapiro’s lemma,

Hm((,V) ∼= Hm(!,U). If V has no non-trivial (-invariant vectors then U has

no non-trivial !-invariant vectors and by (Tn), Hm(!,U) = 0. We conclude that

Hm((,V) = 0, thus ( has property (Tn). In case V = C, we have

U = L2(!/() = C ⊕ L2
0(!/(),

thus

Hm((,C) ∼= Hm(!,C) ⊕ Hm(!,L2
0(!/())

and the second summand vanishes by property (Tn). It follows that restriction

homomorphism Hm(!,C) → Hm((,C) is an isomorphism for every m ≤ n. In

particular, if ! satisfies property [Tn] then ( also satisfies property [Tn]. !
Weconsider the central extension īdgiven in (9) and the associated transgression

tgīd : Hom(H2(!,Z),V) → H2([!,!],V).

Lemma 2.5. Let ! be a group which satisfies property (T2). Then the associ-

ated transgression tgīd : Hom(H2(!,Z),C) → H2([!,!],C) is an isomorphism.

Proof. By the Universal Coefficient Theorem (11) we see that h is an isomor-

phism, as ! has finite abelianization. By Lemma 2.4 we have that

i : H2(!,C) → H2([!,!],C)

is an isomorphism and by Lemma 2.3 we conclude that tgīd is an isomorphism as

well. !

Theorem 2.6. Let ! be an FP2 group which satisfies property (T2). Then

! ∧ ! satisfies property [T2].

Proof. Since ! has (T2), in particular, it has (T). Hence ! has a finite

abelianization. By Lemma 2.4 we conclude that [!,!] satisfies (T2). So [!,!]

has a finite abelianization, too. We set A = H2(!,Z). Since ! satisfies FP2,

it is finitely generated, thus A is a finitely generated abelian group. By [14,
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Proposition VIII.5.1], the finite index subgroup [!,!] < ! also satisfies FP2.

Using [21, Proposition 2.2] we conclude from (9) that ! ∧ ! satisfies FP2 as well.

Let V be a unitary ! ∧ !-representation. By [5, Theorem 3.7], the vanishing of

Hi(!∧!,W) for i ∈ {1, 2} and everyunitary!-representationW is equivalent to the

correspondingvanishing for every irreducible unitary !-representationW. We may

and will assume that V is irreducible. In case V = C is the trivial representation,

Lemma 2.5 says that tgīd is an isomorphism. Thus Hi(!∧!,V) = 0 by Lemma 2.1,

specialized to L = ! ∧ !. We may thus assume that V is a non-trivial irreducible

unitary !-representation.

We will show the vanishing of Hi(! ∧ !,V), i ∈ {1, 2}, via the Hochschild–

Serre–Lyndon spectral sequence associated with the central extension (9). Specif-

ically, we show that E
pq

2 = 0 for p + q ≤ 2 where

E
pq

2 = Hp([!,!],Hq(A,V)).

By Schur’s lemma, A acts on V via a character χ. First suppose that χ is non-

trivial. Then the group cohomology H∗(A,V) = Ext∗C[A](C,V) vanishes since

multiplication with some a ∈ A in any of the two variables of the Ext-term induces

the same endomorphism of the group cohomology. Hence it is simultaneously

the identity and multiplication with χ(a) which is only possible if the Ext-term

vanishes. We conclude that E
pq

2 = 0 for every p, q. Now suppose that χ is

trivial. This means that V is coming from a non-trivial irreducible unitary [!,!]-

representation. Since [!,!] has property (T2), we have that Hi([!,!],W) = 0

for every i ∈ {0, 1, 2} and any unitary [!,!]-representation with no non-trivial

invariant vectors. The [!,!]-modules H∗(A,V) in the E2-term of the spectral

sequence are unitary [!,!]-representations with no invariant vectors since they

are isomorphic to H∗(A,C) ⊗ V (with the trivial action on H∗(A,C)). So the E
pq
2 -

entries are zero for p + q ≤ 2. We conclude that, indeed, Hi(! ∧ !,V) = 0

for i ∈ {1, 2}. !

2.4 Central extensions of semisimple Lie groups and their lattices.
We will denote by H∗

c the continuous group cohomology. Recall that the funda-

mental group of a connected Lie group is always abelian.

Proposition 2.7. For a connected semisimple Lie group with finite center G,

π1(G) ⊗ C ∼= H2
c (G,C).

In the proof belowwe will denote by H∗
s the singular cohomology of topological

spaces.
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Proof. We let K < G be a maximal compact subgroup, U < G(C) be a

compact form of G containing K, and X = U/K be the corresponding dual sym-

metric space. By [27, Theorem 1.1], G is homotopy equivalent to K. Thus by the

Hurewicz theorem,

π1(G) ⊗ C ∼= π1(K) ⊗ C ∼= H1
s (K,C).

By the van Est isomorphism [13, Theorem IX.5.6], H∗
c (G,C) ∼= H∗

s (X,C). The

Serre spectral sequence, associated with the fibration U → X and with the E2-term

E
pq

2 = H
p
s (X,H

q
s (K,C)), converges to H∗

s (U,C). As U is a connected compact

Lie group, the cohomology ring of U is an exterior algebra generated by classes

in odd degrees [12, Proposition 7.3]. Since U is semisimple, we obtain that

H1
s (U,C) = H2

s (U,C) = 0. From the five-terms exact sequence

0 → E10
2 → H1

s (U,C) → E01
2 → E20

2 → H2
s (U,C)

we deduce that E01
2

∼= E20
2 . Hence

H1
s (K,C) ∼= H0

s (X,H
1
s (K,C)) ∼= H2

s (X,H
0
s (K,C)) ∼= H2

s (X,C).

Thus π1(G) ⊗ C ∼= H2
c (G,C). !

Proposition 2.8. Let G be a connected semisimple Lie group with finite center

and no compact factors. Let ! < G be a lattice. Denote by G̃ → G the universal

cover and let π : !̃ → ! be the pull back of !. If G has property (T) and real rank

at least 3, then the natural map π̄ : ! ∧ ! → [!̃, !̃] < !̃ has a finite kernel and

image of finite index.

Remark 2.9. We note that for G = SL3(R), G̃ → G is a double cover, hence

so is !̃ → ! for any lattice ! < G. However, by (9), the kernel of

! ∧ ! → [!,!]

is isomorphic to H2(!,Z), which varies dramatically. This follows from a com-

putation by Soulé of H2(!,C). Indeed, while H2(SL3(Z),C) = 0 by [33, Theo-

rem 4(iii)], there is a sequence of congruence subgroups !i < SL3(Z) such that the

second Betti number of !i tends to ∞ by [33, Theorem 7(ii)]. See also Remark 3.6.

Proof. We note that !̃ has property (T) by [7, Theorem 3.5.2]. We identify

the kernel of π : !̃ → ! with π1(G). By property (T), both [!̃, !̃] < !̃ and

[!,!] < ! are of finite index, thus we identify the kernel of the restriction

map π : [!̃, !̃] → [!,!] with a finite index subgroup of π1(G).
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By the universal property of ! ∧ ! we have īd = π ◦ π̄ : ! ∧ ! → [!,!],

which is surjective. Since the kernel of π is central, the image of π̄ is normal and

[!̃, !̃]/π̄(! ∧ !) is abelian. Using (T), we conclude that the image of π̄ is of finite

index.

The kernel of īd is H2(!;Z) and the kernel of π is a finite index subgroup

of π1(G). These two finitely generated abelian groups have the same rank by

Proposition 2.7 since the restriction map H2(G,C) → H2(!,C) is an isomorphism

by [5, Theorem C] and rkR G ≥ 3. We conclude that π̄ has a finite kernel. !

Theorem 2.10. Let G be a semisimple Lie group with finite center and no

compact factors. Let ! < G be a lattice. Denote by G̃ → G the universal cover

and let !̃ → ! be the pull back of !. If all simple factors of G are of real rank at

least 3, then G and ! have property (T2) and G̃ and !̃ have property [T2].

Proof. The fact that G and ! have property (T2) is proved in [5]. By Theo-

rem 2.6, we get that ! ∧ ! has property [T2] and by Proposition 2.8 we deduce

that also !̃ has property [T2]. Specializing to a cocompact lattice ! < G, it also

follows, by Shapiro’s Lemma, that G̃ has the property [T2], as then !̃ < G̃ is a

cocompact lattice satisfying property [T2]. !

2.5 A recollection of CSP and a result of Deligne. A lattice ! < G

being arithmetic means that there is a number field k, a semisimple simply

connected k-algebraic subgroup H of GLn such that there is an epimorphism∏
s∈V∞(k) H(kv) " G with compact kernel and the image of H(O) is commensurable

with !. Here V∞(k) is the set of Archimedean valuations of k and O is the ring of

integers of k.

The lattice ! < G is said to have the congruence subgroup property
(CSP) if the kernel of Ĥ(O) → H(Ô) is finite where the symbol indicates the

profinite completion, respectively. The intersection of all finite index subgroups

of ! is called the profinite radical of !, denoted PR(!). The following theorem

was essentially proved by Deligne [19]. For a clear and concise exposition see [35]

as well as [18, §5.2].

Theorem 2.11 (Deligne). Let ! < G be a lattice satisfying the congruence

subgroup property. Assume that π1(G) is infinite. Let G̃ → G be the universal

cover, which is the universal central extension of G. Then the preimage !̃ is not

residually finite. Furthermore,

PR(!̃) ⊂ ker(!̃ → !)

is a subgroup of finite index.
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2.6 Proof of Theorem 1.3 A finitely generated linear group is residually

finite by Malcev’s theorem. Accordingly, for a finitely generated group !, every

homomorphism to a linear group factors via !/PR(!).

Lemma 2.12. Let ! be a finitely generated group. Let N # ! be a normal

subgroup of ! contained in PR(!). If ! is Frobenius stable then so is !/N.

Proof. Let φ = (φn) be an asymptotic homomorphism of !/N. Let

p : ! → !/N

be the projection. So φ ◦ p = (φn ◦ p) is an asymptotic homomorphism of !.

By assumption, φ ◦ p is approximated by a sequence of true homomorphisms

ψ = (ψn). For every n ∈ N, the image ψn(!) is a finitely generated linear group,

hence residually finite. Thus each ψn factors through !/PR(!), in particular,

through !/N. The induced homomorphism on !/N approximates φ. !

Lemma 2.13. Let ! be a finitely presented group and let N # ! be a finite

normal subgroup. If ! is Frobenius stable then also !/N is Frobenius stable.

In the proof below, ‖ · ‖ means the Frobenius norm.

Proof. We let FS → ! be a surjection from the free group on a finite set S and

assume as we may that there exists a subset N̄ ⊆ S whose image is N. Let R ⊂ FS

be a finite set of relations for ! and let T = R ∪ N̄ ⊂ FS, which is a finite set of

relations for !/N.

For every ε > 0 there exists δ > 0 such that every Frobenius δ-almost repre-

sentation of ! is Frobenius ε-close to a representation. That is, for every homo-

morphism ρ : FS → U(n) such that for every r ∈ R, ‖ρ(r) − 1‖ < δ, there exists

a homomorphism ρ′ : FS → U(n) such that for every r ∈ R, ρ′(r) = 0 and for

every s ∈ S, ‖ρ(s) − ρ′(s)‖ < ε.

We let α be the minimum of maxn∈N ‖π(n) − 1‖, ranging over all non-trivial

irreducible representations π of N.

We fix ε > 0. Without loss of generality, we assume ε ≤ α/2. We choose δ

accordingly and again, without loss of generality, we assume δ ≤ α/2. Let

ρ : FS → U(n) be a homomorphism such that for every t ∈ T , ‖ρ(t) − 1‖ < δ.

In particular, for every r ∈ R, ‖ρ(r) − 1‖ < δ, thus there exists a homomorphism

ρ′ : FS → U(n) such that for every r ∈ R, ρ′(r) = 1 and for every s ∈ S,

‖ρ(s) − ρ′(s)‖ < ε. We view ρ′ as a representation of !. Restricting to N, we get

that for every n ∈ N,

‖ρ′(n) − 1‖ ≤ ‖ρ(n) − ρ′(n)‖ + ‖ρ(n) − 1‖ < ε + δ ≤ α.
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We note that the Frobenius norm of a representation majorizes the Frobenius norm

of any subrepresentation. It follows that ρ′|N contains no non-trivial irreducible

subrepresentation, thus for every t ∈ T , ρ′(t) = 1. We conclude that ρ′ descends to

a representation of !/N, which is ε-close to ρ. !

Corollary 2.14. Let ! be a finitely generated group and let N#! be a normal

subgroup such that !/N is finitely presented. Assume that the intersection of N

with the profinite radical of ! is of finite index in N. If ! is Frobenius stable then

also !/N is Frobenius stable.

Proof. Let N0 be the intersection of N with the profinite radical of !. Then

!/N0 is an extension of !/N by the finite group N/N0, hence it is finitely presented.

By Lemma 2.12, applied for N0#!, !/N0 is Frobenius stable and by Lemma 2.13,

applied to N/N0 # !/N0, !/N is Frobenius stable. !
Proof of Theorem 1.3. Let ! < G be as in Theorem 1.3. Then ! has (T2)

by [5]. If no factor of G is of Hermitian type, then H2(G,C) = 0 and by [5] also

H2(!,C) = 0, thus ! has [T2], so it is Frobenius stable by Theorem 1.1. From

now on we assume that at least one of the factors of G is of Hermitian type, thus

π : G̃ → G has an infinite kernel. We denote !̃ = π−1(!). By Theorem 2.10, !̃

is a [T2]-group and by Theorem 1.1 it is Frobenius stable. We let N # !̃ be the

kernel of the extension !̃ → !. By Corollary 2.14, if the intersection of N with

the profinite kernel of !̃ is of finite index in N, then ! is Frobenius stable. By

Theorem 2.11, this is indeed the case, as ! is assumed to have the congruence

subgroup property. Thus ! is Frobenius stable. !

3 Operator instability

The following is essentially due to J. Wolf and A. Borel.

Theorem 3.1. Let U be a compact connected Lie group, K < U a closed

subgroup containing no normal subgroup of U and assume that M = U/K is a

Riemannian symmetric space. Then M is an odd-dimensional rational homology

sphere if and only if, up to a cover, either U = SO(n + 1) and K = SO(n) for some

odd n or U = SU(3) and K = SO(3).

Proof. It follows from [36, Theorem 1] that, up to a cover, either M is an

actual odd-dimensional sphere or M = SU(3)/SO(3). However, [11, Theorem 3]

classifies the pairs K < U for which U/K is an odd-dimensional sphere, and while

comparing to the classification of compact symmetric spaces, one gets that the

only fitting pair is U = SO(n + 1) and K = SO(n). !
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Remark 3.2. Note that a compact manifold M is an odd-dimensional rational

homology sphere if and only if for all even i > 0, Hi
s(M,Q) = 0, where H∗

s denotes

the singular cohomology of M. The “only if” part is obvious and the “if” part

follows by Poincaré duality. Indeed, assuming that for all even i > 0, Hi
s(M,Q) = 0

and M is not an odd-dimensional rational homology sphere, if n = dim(M) is even

we get a contradiction by setting i = n, and if n is odd we get some j < n with

Hj(!,Q) $= 0, thus also Hn−j(!,Q) $= 0 by Poincaré duality, and either j is even

or n − j is even.

For a locally compact group G, we denote by H∗
c the continuous group coho-

mology.

Corollary 3.3. Let G be a semisimple real Lie group not locally isomorphic

to SO(n, 1) for some odd n or SL3(R). Then for some even i > 0, Hi
c(G,R) $= 0.

Proof. Follows at once from Theorem 3.1, by Remark 3.2 and the fact that

the continuous group cohomology of G is isomorphic to the singular cohomology

of its dual symmetric space. !

Theorem 3.4. Let G be a semisimple real Lie group not locally isomorphic

to SO(n, 1) for some odd n or SL3(R), and let ! < G be a cocompact lattice. Then

for some even i > 0 we have Hi(!,R) $= 0.

Proof. By Matsushima’s formula [25] we have an injection

H∗
c (G,R) ↪→ H∗(!,R),

thus this follows by Corollary 3.3. !

Proof of Theorem 1.5. Immediate by Theorem 3.4 and Theorem 1.1(O). !

3.1 Lattices in SL3(R) and SO(n, 1).

Theorem 3.5. Let ! be a lattice in SL3(R). Then there exists a finite index

subgroup !1 ≤ ! satisfying H2(!1,Q) $= 0. Moreover, for every finite index

subgroup !2 ≤ !1, H2(!2,Q) $= 0.

Proof. We first note that if !2 ≤ !1 is of finite index then H∗(!1,Q) injects

into H∗(!2,Q) by Shapiro’s Lemma. This proves the “moreover” part.

The Euler characteristic of G and its lattices is 0 and the homological dimension

is bounded by 5, the dimension of the corresponding symmetric space. We denote

bn = Hn(!,Q) and note that b1 = 0 by property T.
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The lattice ! = SL3(Z) is of Q-rank 2, hence of rational cohomological di-

mension 3, that is b4 = b5 = 0, and the same applies also to its subgroups of

finite index. It follows that for these groups b2 = b3 − 1. By [3, Theorem 2], the

kernel of SL3(Z) → SL3(Z/7) has b3 > 5815, hence b2 > 5814 (see also [33,

Theorem 7]). By Shapiro’s Lemma the theorem follows for every lattice which is

commensurable with SL3(Z), thus for every non-uniform lattice.

We thus may and will assume that ! is cocompact. Without loss of generality,

let ! be torsion-free. By Poincaré duality we have b5 = b0 = 1, b4 = b1 = 0 and

b3 = b2. By [22, Theorem B], there are finite quotients of ! with arbitrarily large

2-Sylow subgroups (actually for every prime). In particular, there exists a finite

index subgroup !0 ⊆ ! which surjects on Z/2 × Z/2. We let !1 # !0 be the

kernel of this surjection and consider M = !1\G/K. Note that !0/!1 acts on M.

By [17, Theorem D] (due to Davis and Weinberger) we get that M is not a rational

homology sphere and we conclude that b2(!1) $= 0. !

Remark 3.6. Since the compact dual of SL3(R) is a rational homology sphere,

the preceding theorem and a theorem of Venkataramana [34] imply that the virtual

second Betti number of a lattice in SL3(R) is infinite.

Corollary 3.7. Let ! be a lattice in SL3(R). Then there exists a finite index

subgroup !1 ≤ ! such that every finite index subgroup !2 ≤ !1 is not operator

stable.

Proof. Immediate by Theorem 3.5 and Theorem 1.1(O). !
The use of [17, Theorem D] in the proof of Theorem 3.5 used the fact that the

dimension of the symmetric space of SL3(R) is 5, which is 1 mod 4. In a similar

manner we get the following.

Proposition 3.8. Let ! be a cocompact lattice in SO(n, 1) for n = 4k + 1.

Then there exists an even i > 0 and a finite index subgroup !1 ≤ ! satisfying

Hi(!1,Q) $= 0. Moreover, for every finite index !2 ≤ !1, Hi(!2,Q) $= 0.

Proof. The dimension of the symmetric space of SO(n, 1) is 1 mod 4. Apply-

ing [22, Theorem B] and [17, Theorem D], just as in the proof of Theorem 3.5, we

get that M = !1\G/K is not a rational homology sphere, and the proof follows by

Remark 3.2. !
The following follows from the celebrated solution by Agol and Wise of the

virtual Haken conjecture.
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Theorem 3.9 ([1]). Let ! be a cocompact lattice in SO(3, 1). Then there

exists a finite index subgroup !1 ≤ ! such that for every 0 ≤ i ≤ 3, Hi(!1,Q) $= 0.

Moreover, for every finite index !2 ≤ !1, Hi(!2,Q) $= 0.

The following is due to Bergeron and Clozel.

Theorem 3.10 ([8, Corollary 1.8]). Let ! be an arithmetic lattice in SO(n, 1),

n $= 3. In case n = 7, assume ! is not of the form 6D4. Then there exists a finite

index subgroup !1 ≤ ! such that for every 0 ≤ i ≤ n, Hi(!1,Q) $= 0. Moreover,

for every finite index !2 ≤ !1, Hi(!2,Q) $= 0.

Remark 3.11. In [9, Theorem 1.1] Bergeron and Clozel show that for lat-

tices in SO(7, 1) of the form 6D4, it holds that all congruence subgroups have

b1 = 0. The corresponding questions regarding non-congruence subgroups and

higher cohomologies are still open.

Theorem3.12 ([23, Theorem3.5]). For n > 3 and a lattice!< G = SO(n, 1),

if M = !\G/K admits a codimension 1 totally geodesic submanifold, then there

exists a finite index subgroup !1 ≤ ! such that H1(!1,Q) $= 0. Moreover, for every

finite index !2 ≤ !1, H1(!2,Q) $= 0.

We note that for n > 3, for all known non-arithmetic lattices ! < G = SO(n, 1),

M = !\G/K admits a codimension 1 totally geodesic submanifold.

Corollary 3.13. Let ! be a cocompact lattice in G = SO(n, 1), n odd. Assume

either one of the following conditions:

• n = 3.

• n = 4k + 1.

• n = 4k + 3 and ! is arithmetic, but not of the form 6D4 in case n = 7.

• !\G/K has a codimension 1 totally geodesic submanifold.

Then there exists a finite index subgroup !1 ≤ ! such that every finite index

subgroup !2 ≤ !1 is not operator stable.

Proof. Immediate by Theorem 1.1(O), given Theorem 3.9, Theorem 3.10 and

Theorem 3.12 (taking into account Remark 3.2). !

4 Remarks and suggestions for future research

4.1 Non-uniform lattices. Theorem 1.5 gives a pretty good picture of the

operator instability of uniform lattices. The situation with non-uniform lattices

is a priori different, as the next proposition applies to all non-uniform lattices

in SL2(R).
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Proposition 4.1. Every virtually free group is operator stable.

Proof. This follows from [18, Remark 5.2], as virtually free groups are of

rational cohomological dimension 1. !
However, we believe that non-uniform lattices in simple Lie groups other than

SL2(R) are not operator stable. In fact, we can show it in many cases by some ad

hoc arguments, but we lack a unified treatment. Let us illustrate this with an easy

example.

Proposition 4.2. For n ≥ 16, every lattice in SLn(R) is not operator stable.

Proof. Setting G = SLn(R) and letting ! < G be a lattice, we have by [5]

that the restriction homomorphism Hi
c(G,C) → Hi(!,C) is an isomorphism for

i < rk(G) = n − 1, and in particular for i = 14. It is well known that

Hi
c(G,C) ∼= Hi

s(SU(n)/SO(n),C)

and the cohomology ring of SU(n)/SO(n) is an exterior algebra. By [28, Theorem

III.6.7 on p. 149] it has generators in degrees 5 and 9, hence also an element in

degree 14=5+9. Thus H14(!,C) $= 0 and we conclude by Theorem 1.1(O) that !

is not operator stable. !
A more sophisticated method by Ash–Borel [4, Theorem 3.1] in combination

with Theorem 1.1(O) yields the following result (and actually much more) by

producing even dimensional virtual cohomology classes via modular symbols.

Proposition 4.3. Let O be the ring of integers in a number field. Then SLn(O)

for n > 2 contains a finite index subgroup that is not operator stable.

4.2 p-Schatten norms. The p-Schatten norm of Mn(C) is

‖A‖p = (tr((A∗A)p))1/p.

This generalizes the Frobenius norm, obtained for p = 2. We define the metric dp
n

on U(n) by dp
n(g, h) = ‖g − h‖p and set gp = (U(n), dp

n).

In [18] the lattices in .-adic simple Lie groups of rank at least 3 were shown

to be Frobenius stable. In [24] this result was extended to any p-Schatten norm,

provided . is large enough with respect to p. The starting point of the current paper

was to extend [18] from .-adic Lie groups to real Lie groups by replacing Garland’s

theory by [5] (and references therein). This applies only to unitary representation

and we do not know how to extend it to other Banach spaces, i.e., we do not know

how to prove the p-Schatten stability for any p $= 2 and any higher rank lattice in a

real simple Lie group.
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4.3 S-arithmetic groups and l-adic groups. A uniform lattice ! in a

(virtual) product of locally compact groups G1 and G2 for which H∗>0
c (Gi,C) $= 0

is operator instable: By the Künneth formula the continuous cohomology of G

is non-zero in an even positive degree. By the Shapiro lemma it injects into the

cohomology of !, and so we can apply Theorem 1.1(O).

We apply this observation to the case of S-arithmetic groups. In the following,

let k be a number field, O < k the ring of integers, S a finite set of primes

containing S∞, the Archimedean primes and let G be a k-algebraic group. We let

! = G(OS) = G(k) ∩ GL(OS) for some embedding G ↪→ GLn. Note that ! is a

lattice in G :=
∏

ν∈S G(kν). An immediate consequence of the above observation

is:

Proposition 4.4. If G(kνi
) is non-compact for two different places ν1, ν2 ∈ S

and ! < G is uniform, then ! is operator instable.

By a remarkable result of Blasius–Franke–Grunewald [10, Theorem 1] (note

that the tensor symbol ⊗ should be a sum symbol ⊕ in loc. cit.), the assumption

that ! is uniform could be removed in many cases:

Proposition 4.5. Asssume that G is simply connected (as a k-group). Assume

that G(k∞) is not compact and there exists a non-Archimedean place ν ∈ S such

thatG(kν) is non-compact. Assume further thatG(k∞) is locally isomorphic neither

to SL3(R) nor to SO(n, 1) for some odd n. Then ! is operator unstable.

Proof. According to [10, Theorem 1] the cohomology of G(k∞) injects into

the cohomology of !. We conclude by Corollary 3.3 and Theorem 1.1(O). !
The current paper puts the real case more or less in line with the .-adic case as

far as the Frobenius norm is concerned. For the operator norm it even puts the real

case ahead of the .-adic case. While our Theorem1.5 shows that almost all uniform

lattices in real semisimple Lie groups are operator unstable, our understanding of

the .-adic case is far from being complete. If G is a simple .-adic group of

rank r and ! < G a lattice (necessarily cocompact), then by Garland’s theorem,

Hi(!,C) = 0 for every 0 < i < r, while Hr(!,C) $= 0. Thus if r is even, ! is

operator unstable by Theorem 1.1(O). However, for odd r we know nothing!
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