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Positive scalar curvature on manifolds with boundary
and their doubles

Jonathan Rosenberg and Shmuel Weinberger
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Dedicated to Blaine Lawson on his 80th birthday, with appreciation and
admiration

Abstract: This paper is about positive scalar curvature on a com-
pact manifold X with non-empty boundary ∂X. In some cases, we
completely answer the question of when X has a positive scalar
curvature metric which is a product metric near ∂X, or when X
has a positive scalar curvature metric with positive mean curva-
ture on the boundary, and more generally, we study the relationship
between boundary conditions on ∂X for positive scalar curvature
metrics on X and the positive scalar curvature problem for the
double M = Dbl(X, ∂X).
Keywords: Positive scalar curvature, mean curvature, surgery,
bordism, K-theory, index.

1. Introduction

This paper is motivated by two important theorems of Blaine Lawson (one
with Misha Gromov and one with Marie-Louise Michelsohn) relating curva-
ture properties of a compact manifold with non-empty boundary to mean
curvature of the boundary:

Theorem 1.1 ([14, Theorem 5.7]). Let X be a compact manifold with bound-
ary, of dimension n, and let M = Dbl(X, ∂X) denote the double of X along
the boundary ∂X. If X admits a metric of positive scalar curvature with
positive mean curvature H > 0 along the boundary ∂X (with respect to the
outward-pointing normal), then M admits a metric of positive scalar curva-
ture.
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Theorem 1.2 ([16, Theorem 1.1]). If X is a compact manifold with non-
empty boundary, of dimension n �= 4, then X admits a Riemannian met-
ric with positive sectional curvature and positive mean curvature along the
boundary ∂X (with respect to the outward-pointing normal) if and only if
π1(X, ∂X) = ∗. Furthermore ([16, Theorem 1.2]), if X is parallelizable, then
one can replace positive sectional curvature in this result by constant positive
sectional curvature.

Theorem 1.2, in turn, is a consequence of an intermediate result which we
will also need:

Theorem 1.3 ([16, Theorem 3.1]). If M is a (normally oriented) hypersur-
face of positive mean curvature in a Riemannian manifold Ω of dimension n,
and if M ′ ⊂ Ω is obtained from M by attaching a p-handle to the positive
side (the side of increasing area) of M , then if n − p ≥ 2, one can arrange
(without changing the metric on Ω) for M ′ also to have positive mean cur-
vature, to be as close as one wants to M , and to agree with M away from a
small neighborhood of the Sp−1 ↪→ M where the handle is attached.

Remark 1.4. One should note that there are two different (and conflicting!)
sign conventions in use for mean curvature, so that the condition H > 0
along the boundary ∂X with respect to the outward-pointing normal in The-
orems 1.1 and 1.2 is what is called in other papers (such as [8, 1]) H > 0 with
respect to the inward-pointing normal. We will stick with the terminology in
[14], which means that close hypersurfaces parallel to the boundary in the
interior have smaller volume than the boundary, and that volume grows as
one moves outward. This condition is sometime called “strictly mean convex
boundary.”

Other proofs of Theorem 1.1 can be found in [8, Theorem 1.1] and in [1,
Corollary 34]. These two references make it clear that one can weaken the
condition H > 0 to H ≥ 0. However, as Christian Bär pointed out to us,
the theorem fails if one replaces H > 0 by H < 0. He kindly provided us
with the following simple counterexample. Let X be S2 with three open disks
removed, where each disk fits within a single hemisphere. (See Figure 1.) With
the restriction of the standard metric on S2, X has positive curvature (in fact
K = 1) and the mean curvature of each boundary circle is negative, as parallel
circles slightly inward from the boundary components have bigger length. But
the double of X is a surface of genus 2, which cannot have nonnegative scalar
curvature (by Gauss-Bonnet). The example can be jacked up to any higher
dimension by crossing with a torus.
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Figure 1: A 3-holed sphere.

Many years ago, we began studying whether there might be a sort of
converse to Theorem 1.1. Recently, Christian Bär and Bernhard Hanke [1]
have made a comprehensive study of boundary conditions (mostly involving
mean curvature) for scalar curvature properties of compact manifolds with
non-empty boundary, and this makes it possible to reexamine the question of a
possible converse to Theorem 1.1, which we have formulated as Conjecture 7.1,
the “Doubling Conjecture.” That is the principal subject of this paper. Our
main results on this question are Theorems 3.1, 3.3, 5.4, and 5.5.

Another closely related problem which we also study (in Section 4) is
the question of when a compact manifold with boundary admits a positive
scalar curvature metric which is a product metric in a neighborhood of the
boundary. We show that in optimal situations (depending on the fundamental
groups and whether or not things are spin and of high enough dimension) it
is possible to give necessary and sufficient conditions for this to happen.

Since the proof of Theorem 1.1 in [14] is a bit sketchy and it seems some
of the formulas there are not completely correct, we have redone the proof in
Section 6.

We would like to thank the referee and Rudolf Zeidler for helpful correc-
tions to the first draft of this paper.

2. The relatively 1-connected case

Because of Theorem 1.2, the simplest case to deal with is the one where X
and ∂X are connected and the inclusion ∂X ↪→ X induces an isomorphism
on π1. This case should philosophically be viewed as an analogue of Wall’s
“π-π Theorem” [27, Theorem 3.3], which says that relative surgery problems
are unobstructed if X and ∂X are connected and the inclusion ∂X ↪→ X
induces an isomorphism on π1.

Theorem 2.1. Let X be a connected compact spin manifold with boundary,
of dimension n ≥ 6, with connected boundary ∂X, and such that the inclusion
∂X ↪→ X induces an isomorphism on π1. Let M = Dbl(X, ∂X) denote the
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double of X along its boundary, which is a closed spin manifold of dimen-
sion n. Then the following statements are always true:

(1) M admits a metric of positive scalar curvature.
(2) ∂X admits a metric of positive scalar curvature.
(3) X admits a positive scalar curvature metric which is a product metric

in a collar neighborhood of ∂X.
(4) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the interior normal.
(5) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(6) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.

Proof. (6) is the conclusion of Theorem 1.2, and (1) then follows by Theo-
rem 1.1. To prove (2), observe that if π = π1(∂X), then the classifying map
c : ∂X → Bπ extends to a classifying map c̄ for X because of the fundamental
group assumption, and so (∂X, c) bounds (X, c̄) and the class of c : ∂X → Bπ
in Ωspin

n−1(Bπ) vanishes. Then by the Bordism Theorem ([18, Proposition 2.3]
or Theorems 4.1 and 4.11 in [21]), (2) holds. In fact, the proof of the Bordism
Theorem also yields (3), because the bordism over Bπ from Sn−1 to ∂X ob-
tained by punching out a disk from X can be decomposed into surgeries of
codimension ≥ 3, and then the Surgery Theorem [13, Theorem A] makes it
possible to “push” a standard positive scalar curvature metric on the n-disk
that is a product metric near the boundary across the bordism to a positive
scalar curvature metric on X that is a product metric near ∂X.

By the construction in Theorem 1.1, either in [14] or in Section 6, M has a
positive scalar curvature metric which is symmetric with respect to reflection
across ∂X. So this metric is what Bär and Hanke call a “doubling metric”
in [1]. This metric necessarily has vanishing second fundamental form on ∂X,
so (5) holds. (Alternatively, (5) trivially follows from (3).) By [1, Corollary
34], (4) holds as well. So we have shown that all the conditions hold.

If one keeps the condition that ∂X is connected and the condition that
π1(∂X) → π1(X) is surjective, but drops the condition that π1(∂X) → π1(X)
is injective, then the theorem has to be modified as follows.

Theorem 2.2. Let X be a connected compact manifold with boundary, of
dimension n ≥ 6, with connected boundary ∂X, and such that the inclusion
∂X ↪→ X induces a surjection on π1. Let M = Dbl(X, ∂X) denote the double
of X along its boundary, which is a closed manifold of dimension n. Then the
following statements are always true:
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(1) M admits a metric of positive scalar curvature.
(2) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.
(3) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(4) X admits a positive scalar curvature metric for which ∂X is totally

geodesic (i.e., has vanishing second fundamental form).

Proof. Again, (2) follows from Theorem 1.2 and then (1) follows from Theo-
rem 1.1. [1, Corollary 34] shows that (3) and (4) then follow.

Note that under the hypotheses of Theorem 2.2, it is not necessary true
that ∂X admits positive scalar curvature, and so in general X does not have a
positive scalar curvature metric which is a product metric in a neighborhood
of the boundary. A counterexample is given at the beginning of Section 5.

For the results of Theorem 2.1, the spin restriction is not really necessary,
but the case where X is not spin but has a spin cover gets messy. For this
reason, it’s convenient to make the following definition.

Definition 2.3. If X is a manifold (with or without boundary), we say it is
totally non-spin if the second Stiefel-Whitney class w2 of X is non-zero on the
image of the Hurewicz map π2(X) → H2(X,Z). This is equivalent to saying
that the universal cover of X does not admit a spin structure.

The following result is an example of a modification to the totally non-spin
case.

Theorem 2.4. Let X be a connected compact oriented manifold with bound-
ary, of dimension n ≥ 6, with connected boundary ∂X, such that X and
∂X are totally non-spin, and such that the inclusion ∂X ↪→ X induces an
isomorphism on π1. Let M = Dbl(X, ∂X) denote the double of X along its
boundary, which is a closed oriented manifold of dimension n. Then the fol-
lowing statements are always true:

(1) M admits a metric of positive scalar curvature.
(2) ∂X admits a metric of positive scalar curvature.
(3) X admits a positive scalar curvature metric which is a product metric

in a collar neighborhood of ∂X.
(4) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the interior normal.
(5) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
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(6) X admits a positive scalar curvature metric which gives ∂X positive
mean curvature with respect to the outward normal.

Proof. This is exactly like the proof of Theorem 2.1, with spin bordism re-
placed by oriented bordism and with [18, Proposition 2.3] replaced by [18,
Theorem 2.13].

3. The simply connected case

Next, we consider the case where X and all the components of ∂X are simply
connected, but there can be multiple boundary components.

Theorem 3.1. Let X be a simply connected compact spin manifold with non-
empty boundary, with n = dim X ≥ 6. Note that ∂X can have any number
k of boundary components, ∂1X, . . . , ∂kX. Suppose all components of ∂X are
simply connected. Let M = Dbl(X, ∂X) denote the double of X along its
boundary, which is a closed spin manifold of dimension n. Then the following
are equivalent:

(1) M admits a metric of positive scalar curvature.
(2) All components ∂jX of ∂X admit metrics of positive scalar curvature.
(3) For each j = 1, . . . , k, the α-invariant α(∂jX) ∈ kon−1 vanishes.
(4) X admits a positive scalar curvature metric which is a product metric

in a collar neighborhood of ∂X.
(5) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(6) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.

Proof. If the number k of boundary components is 1, then the pair (X, ∂X)
is relatively 1-connected and all six conditions hold by Theorem 2.1. Thus for
most of the proof we can restrict to the case k ≥ 2. We begin by observing
that since X and all components of ∂X are simply connected, Van Kampen’s
Theorem implies that the fundamental group of M is the same as for the

graph Γ given by • • • if k = 1,
•

• •
•

if k = 2,

k︷︸︸︷•

• ... •
•

for larger k, and is thus the free group Fk−1 on k − 1
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Figure 2: Computing the αΓ-invariant.

generators. This is a group for which [21, Theorem 4.13] applies, and thus
M has a Riemannian metric of positive scalar curvature if and only if the
obstruction class αΓ(M) (the image of the ko-fundamental class of the spin
manifold M under the classifying map c : M → BFk−1 � Γ) vanishes in
kon(Γ) ∼= kon ⊕ kok−1

n−1. The component of αΓ(M) in kon is just the ordinary
α-invariant of M , i.e., the image of the fundamental class [M ] ∈ kon(M) under
the “collapse” map M → pt. This always vanishes since M , being a double
of a compact spin manifold with boundary, is always a spin boundary (the
boundary of the manifold obtained by rounding the corners of X × I). Hence
condition (1) holds if and only if the component of αΓ(M) in kok−1

n−1 vanishes.
It is easy to see that this is the same as the vanishing of all the α-invariants
α(∂jX) for all the boundary components ∂1X, . . . , ∂kX. Indeed, the sum of
these k α-invariants in kon−1 is just α(∂X) = 0, since ∂X is a spin boundary
and α is a spin bordism invariant. (In other words, the summand kok−1

n−1 in
kon(Γ) is better described as the set of elements in kok

n−1 that sum to 0.) And
we can compute the piece of αΓ(M) in one summand of kon−1 by taking the
α-invariant of the transverse inverse image of a point under the map M → S1

obtained by collapsing k − 2 of the loops in Γ � ∨
k−1 S1 and composing with

the classifying map c as in Figure 2. Thus (1) is equivalent to (3). Applying
Stolz’s Theorem [23] and using the assumption that n − 1 ≥ 5, we obtain the
equivalence of (2) and (3), and thus (1), (2), and (3) are all equivalent.

The equivalence of (2) and (4) is related to Chernysh’s Theorem ([7,
Theorem 1.1] and [10, Theorem 1.1] — see also [28, Corollary D]). Let’s
explain this in more detail, since Chernysh proves that the map R+(X, ∂X) →
R+(∂X) is a Serre fibration,1 but not that R+(X, ∂X) �= ∅. (In fact, even
in nice situations such as X = D8 and ∂X = S7, the map R+(X, ∂X) →
R+(∂X) is known not to be surjective.) Obviously (4) implies (2). If (2) holds,
we need to show that for some choice of positive scalar curvature metrics on

1Here R+(∂X) is the space of positive scalar curvature metrics on ∂X, and
R+(X, ∂X) is the space of positive scalar curvature metrics on X that restrict to
a product metric on a collar neighborhood of the boundary.
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∂jX, the metric on ∂X extends to a positive scalar curvature metric on X
which is a product metric in a collar neighborhood of the boundary. For this
we use the assumption that k ≥ 2, and we fix metrics of positive scalar
curvature on the boundary components ∂jX, 1 ≤ j ≤ k − 1. Then we can
view X as a spin cobordism from ∂1X

∐ · · · ∐
∂k−1X to −∂kX. The Gromov-

Lawson surgery theorem [13, Theorem A], in the variant found in [7, 10, 28],
shows that for some spin cobordism W between these manifolds, obtained
from X by doing surgeries on embedded 2-spheres with trivial normal bundles,
away from the boundary, to make the pair (W, ∂kX) 2-connected (the pair
(X, ∂kX) is already 1-connected by hypothesis), we can push the positive
scalar curvature metric on ∂1X

∐ · · · ∐
∂k−1X across the cobordism W to

get a positive scalar curvature metric on W restricting to product metrics on
collar neighborhoods of the boundary components. If W = X, we have shown
that (2) ⇒ (4). In general X and W will not be the same, but we can go
back from W to X by doing surgery on embedded (n − 3)-spheres away from
the boundary, so we can use the surgery theorem again to carry the metric
of positive scalar curvature over from W to X.

Now we need to check equivalence of the conditions (1)–(4) with (5)
and (6). But by [1, Theorem 33], existence of a positive scalar curvature
metric on X with H ≥ 0 (H denotes the mean curvature of ∂X with respect
to the outward normal) is equivalent to existence of a positive scalar curva-
ture metric with H > 0. Thus (5) implies (6). It is also trivial that (4) ⇒ (5),
so (1)–(4) implies (5) and (6). Theorem 1.1 shows that (6) implies (1) and
thus all the other conditions. Thus all six conditions are equivalent.

Remark 3.2. If the boundary of X is empty, then Dbl(X, ∂X) = X
∐ −X,

which clearly has a metric of positive scalar curvature if and only if X does.
So in this case (2) and (3) always hold, (4)–(6) amount to saying that X has a
metric of positive scalar curvature, and these conditions are equivalent to (1).

Once again, one can easily modify Theorem 3.1 to the non-spin case as
follows:

Theorem 3.3. Let X be a simply connected compact manifold with non-
empty boundary, with n = dim X ≥ 6. Note that ∂X can have any number
k of boundary components, ∂1X, . . . , ∂kX. Suppose all components of ∂X are
simply connected and that none of X and the ∂jX admit a spin structure.
Let M = Dbl(X, ∂X) denote the double of X along its boundary, which is a
closed oriented manifold of dimension n. Then the following are true:

(1) M admits a metric of positive scalar curvature.
(2) All components ∂jX of ∂X admit metrics of positive scalar curvature.
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(3) X admits a positive scalar curvature metric which is a product metric
in a collar neighborhood of ∂X.

(4) X admits a positive scalar curvature metric for which ∂X is minimal
(i.e., has vanishing mean curvature).

(5) X admits a positive scalar curvature metric which gives ∂X positive
mean curvature with respect to the outward normal.

Proof. Assertion (2) follows immediately from [13, Corollary C]. As in the
proof of Theorem 3.1, π1(M) ∼= Fk−1, a free group. When k = 1, we can
apply Theorem 2.4. So we can assume k ≥ 2. To prove (1), we can apply
[21, Theorem 4.11] or [12, Theorem 1.2], which says that it suffices to show
that there is a manifold with positive scalar curvature representing the same
class as M in Hn(BFk−1,Z) = Hn(

∨k−1
1 S1,Z) = 0 (since n > 1). So this is

automatic. The proof of the remaining conditions is exactly the same as for
Theorem 3.1.

4. Obstruction theory for the relative problem

In this section we extend some of the results of Theorem 2.1 and Theorem 3.1
to get a general obstruction theory and a conjectured answer for the following
problem:

Question 4.1. Suppose that X is a connected compact spin manifold of
dimension n with non-empty boundary ∂X (which could be disconnected).
Assume that ∂X admits a metric of positive scalar curvature. (When the fun-
damental groups of the components ∂1X, . . . , ∂kX of ∂X are nice enough and
n ≥ 6, the Gromov-Lawson-Rosenberg Conjecture holds and one has a neces-
sary and sufficient condition for this in terms of KO-theoretic “α-invariants”
απ1(∂jX)(∂jX). See Theorem 4.2 below.) When does X admit a metric of
positive scalar curvature which is a product metric in a collar neighborhood
of ∂X?

To explain our approach to this, we first establish some notation. The
fundamental groupoid Λ of ∂X is equivalent to

∐
j Λj , the disjoint union of

the groups Λj = π1(∂jX), where ∂1X, . . . , ∂kX are the components of ∂X
and we pick a basepoint in each component. The classifying space BΛ is
homotopy equivalent to

∐
j BΛj . There is a classifying map cΛ : ∂X → BΛ,

unique up to homotopy equivalence, which is an isomorphism on fundamental
groups on each component. The spin structure of X determines spin structures
on each ∂jX and thus ko-fundamental classes [∂jX] ∈ kon−1(∂jX). By [21,
Theorem 4.11] (or if you prefer, [12, Theorem 1.2]), the question of whether
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or not ∂jX admits a metric of positive scalar curvature only depends on
cΛ

∗ ([∂jX]) ∈ kon−1(BΛj), and so the question of whether or not ∂X admits a
metric of positive scalar curvature only depends on cΛ

∗ ([∂X]) ∈ kon−1(BΛ).
Furthermore, the image of cΛ

∗ ([∂X]) under “periodization” (inverting the Bott
element) per : kon−1(BΛ) → KOn−1(BΛ), followed by the KO-assembly map
A : KOn−1(BΛ) → KOn−1(C∗

r,R(Λ)) (or one could use the full C∗-algebra
here), is an obstruction to positive scalar curvature on ∂X. Thus if for each
j, periodization and assembly are injective for Λj , we obtain the Gromov-
Lawson-Rosenberg Conjecture:

Theorem 4.2 ([21, Theorem 4.13]). Suppose (X, ∂X) is a connected com-
pact spin manifold of dimension n with non-empty boundary ∂X. With the
above notation, if ∂X admits a metric of positive scalar curvature, then
A ◦ per(cΛ

∗ ([∂X])) = 0 in KOn−1(C∗
r,R(Λ)). If n ≥ 6 and if A and per are

injective for Λ, then vanishing of cΛ
∗ ([∂X]) ∈ kon−1(BΛ) is necessary and

sufficient for ∂X to admit a metric of positive scalar curvature.

Now in the situation of Theorem 4.2, one also has a ko-fundamental class
[X, ∂X] ∈ kon(X, ∂X), which maps under the boundary map of the long
exact sequence of the pair (X, ∂X) to [∂X] ∈ kon−1(∂X). Let Γ = π(X) and
Λ = π(∂X) as above. (Note that we are using the fundamental groupoids to
avoid having to make changes of basepoint. But there is a natural map of
topological groupoids Λ → Γ.) We have the following commuting diagram of
ko-groups, coming from the long exact sequences of the pairs (X, ∂X) and
(BΓ, BΛ):

(1) [X, ∂X] ∂

∩

[∂X]

∩

kon(X)

cΓ
∗

kon(X, ∂X) ∂

cΓ,Λ
∗

kon−1(∂X)

cΛ
∗

kon(BΓ) kon(BΓ, BΛ) ∂
kon−1(BΛ).

One of course gets similar diagrams with ko replaced by H (ordinary ho-
mology), Ωspin, and KO (periodic K-homology). If ∂X admits a metric of
positive scalar curvature, then Question 4.1 is meaningful. Here is our first
major result on Question 4.1.

Theorem 4.3. Suppose (X, ∂X) is a connected compact spin manifold of di-
mension n ≥ 6 with non-empty boundary ∂X. Let Γ = π(X) and Λ = π(∂X)
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Figure 3: The spin bordism W from (Y, ∂Y ) to (X, ∂X).

be the fundamental groupoids. As explained above, note that (X, ∂X) defines
a class cΓ,Λ

∗ ([X, ∂X]) ∈ Ωspin
n (BΓ, BΛ). Suppose there is another compact

spin manifold (Y, ∂Y ) of the same dimension, defining the same class in
Ωspin

n (BΓ, BΛ). If Y admits a metric of positive scalar curvature which is
a product metric in a neighborhood of the boundary, then so does X.

Remark 4.4. Note that Theorem 4.3 includes the assertion that if ∂X is
connected and Γ = Λ, then since in this case the relative groups for (BΓ, BΛ)
vanish for any homology theory, we conclude that X always has a metric of
positive scalar curvature which is a product metric in a neighborhood of the
boundary. We already know this from Theorem 2.1.

Proof. Note that the condition of the theorem implies allows for Y to be dis-
connected or to have more boundary components than X. But the condition
implies that there is a spin manifold W with corners, of dimension n + 1,
giving a spin bordism from (Y, ∂Y ) to (X, ∂X), which restricts on the bound-
ary to a spin bordism of closed manifolds from ∂Y to ∂X. Furthermore, this
bordism is “over” BΛ on the boundary and BΓ on the interior. We can num-
ber the boundary components of X as ∂1X, . . . , ∂kX, so that ∂Y =

∐
j ∂jY

and W gives a spin bordism from ∂jY to ∂jX over BΛj . See Figure 3, which
illustrates the case k = 2.

Now we proceed as in the proof of the Gromov-Lawson bordism theorem
[13, Theorem B], or more exactly of the generalization of this to the non-
simply connected case [21, Theorem 4.2]. Start with a metric of positive scalar
curvature on Y that is a product metric in a neighborhood of the boundary.
We can do surgeries by attaching handles of dimensions 1 and 2 to adjust ∂Y
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so that it has the same number of components as ∂X and so that ∂jY has
the same fundamental group Λj as ∂jX. These surgeries are in codimension
3 or more since dim ∂jY ≥ 5, so we can do this preserving positive scalar
curvature on the successive transformations of ∂jY . We always extend the
metric to a collar neighborhood in W so as to be a product metric near this
component of the boundary. Similarly, we can then do surgeries on the interior
of Y and then on the interior of W so that these have the same fundamental
group Γ as X. Then the bordism from Y to X can be decomposed into a
sequence of surgeries (over BΛ on the bordism from ∂Y to ∂X and over BΓ
in the interior) in codimension 3 or more so that we can carry the metric
across the bordism, preserving the positive scalar curvature conditions. The
spin condition is used to know that whenever we want to do surgery on an
embedded 1-sphere or 2-sphere, it has trivial normal bundle and thus the
surgery is possible.

The work of Stolz and Jung leading to [21, Theorem 4.11] can be used to
give a substantial improvement to Theorem 4.3. (Note that Jung’s work was
never published, but that his results were reproved by Führing in [12].)

Theorem 4.5. Suppose (X, ∂X) is a connected compact spin manifold of di-
mension n ≥ 6 with non-empty boundary ∂X. Let Γ = π(X) and Λ = π(∂X)
(and remember that Λ can have multiple connected components). As explained
above, note that (X, ∂X) defines a class cΓ,Λ

∗ ([X, ∂X]) ∈ kon(BΓ, BΛ). If this
class vanishes in this relative ko-homology group, then X admits a metric of
positive scalar curvature which is a product metric in a neighborhood of the
boundary.

Proof. First of all, note that by Theorem 4.3, there is a subgroup Ωspin,+
n (BΓ,

BΛ) of Ωspin
n (BΓ, BΛ) such that X admits a metric of positive scalar cur-

vature which is a product metric in a neighborhood of the boundary if and
only if cΓ,Λ

∗ ([X, ∂X]) lies in this subgroup. (This subset is a subgroup since
the condition is clearly stable under disjoint union and orientation reversal,
which represent addition and inversion in the spin bordism group.) So we
just need to show that the kernel of α(Γ,Λ) : Ωspin

n (BΓ, BΛ) → kon(BΓ, BΛ)
lies in Ωspin,+

n (BΓ, BΛ). In addition, we can localize and check this separately
after localizing at 2 and after inverting 2. After localizing at 2, we can in-
voke [24, Theorem B], which says that after localizing at 2, the kernel of
Ωspin

n (Z, W ) → kon(Z, W ) is, for any Z and W , generated by the image of
a transfer map associated to HP2-bundles. What this means geometrically
is that there is a generating set for the kernel consisting of pairs (X, ∂X)
(mapping to (Z, W )) which can be taken (up to bordism) to be fiber bundles
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HP2 → (X, ∂X) → (Y, ∂Y ), with structure group the isometry group of HP2,
where dim Y = n − 8. If X is of this form, just give Y a metric which is a
product metric near the boundary and lift it to a metric on X which on the
fibers is the usual metric on HP2, but rescaled to have very large curvature.
This will have positive scalar curvature and still be a product metric near the
boundary.

Now we just have to study the kernel of α after inverting 2. For this we
can use [12, Corollary 3.2], which says that for any space Z, the kernel of
α : Ωspin

∗ (Z)[ 1
2 ] → ko∗(Z)[ 1

2 ] is generated by manifolds which carry a posi-
tive scalar curvature metric. Almost exactly the same argument works in the
relative case.

Incidentally, there is an exact counterpart to Theorems 4.3 and 4.5 in the
totally non-spin case (Definition 2.3).

Theorem 4.6. Suppose (X, ∂X) is a connected compact oriented manifold
of dimension n ≥ 6 with non-empty boundary ∂X. Suppose that X and each
component of ∂X is totally non-spin. Let Γ = π(X) and Λ = π(∂X). Suppose
there is another compact oriented manifold (Y, ∂Y ) of the same dimension,
defining the same class in Ωn(BΓ, BΛ). If Y admits a metric of positive scalar
curvature which is a product metric in a neighborhood of the boundary, then
so does X.

Proof. This is exactly like the proof of Theorem 4.3 except for a few points
regarding the totally non-spin condition. Start with an oriented bordism W
from Y to X, as in Figure 3 (except that it can’t be spin since X is not). As
in the proof of Theorem 4.3, start by doing surgeries on the boundary so that
∂Y has the same number of components as ∂X, and number them so that
∂W gives a bordism from ∂jY to ∂jX over Λj and so that the appropriate
piece ∂jW of ∂W has fundamental group Λj . Recall that w2 restricted to the
image of the Hurewicz map gives the obstruction to triviality of the normal
bundle for embedded 2-spheres. Since w2(∂jX) is non-zero on the image of
the Hurewicz map, we consider the commutative diagram

π2(∂jX)
w2

π2(∂jW )
w2

Z/2

(where the horizontal map on the top is induced by the inclusion ∂jX ↪→ ∂jW )
and do surgeries on 2-spheres (which have to have trivial normal bundles)
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representing generators of the kernel of w2 on π2(∂jW ), in order to make
(∂jW, ∂jX) 2-connected. Similarly, we can make (W, X) 2-connected by the
same argument. The rest of the proof is as before.

Theorem 4.7. Suppose (X, ∂X) is a connected compact oriented manifold
of dimension n ≥ 6 with non-empty boundary ∂X. Assume that X and each
component of ∂X is totally non-spin. Let Γ = π(X) and Λ = π(∂X) and
note that (X, ∂X) defines a class cΓ,Λ

∗ ([X, ∂X]) ∈ Hn(BΓ, BΛ;Z). If this
class vanishes in this relative homology group, then X admits a metric of
positive scalar curvature which is a product metric in a neighborhood of the
boundary.

Proof. By Theorem 4.6, there is a subgroup Ω+
n (BΓ, BΛ) such that X admits

a metric of positive scalar curvature which is a product metric in a neighbor-
hood of the boundary if and only if the bordism class cΓ,Λ

∗ ([X, ∂X]) lies in this
subgroup. (Again, this is a subgroup and not just a subset, for the same rea-
sons as in the proof of Theorem 4.5.) We just need to show that Ω+

n (BΓ, BΛ)
contains the kernel of Ωn(BΓ, BΛ) → Hn(BΓ, BΛ;Z). As in the spin case,
it suffices to do the calculation separately first after localizing at 2 and then
after inverting 2. If we localize at 2, then it is known2 that MSO becomes
an Eilenberg-MacLane spectrum, or in other words, the Atiyah-Hirzebruch
spectral sequence Hp(Z, Y ; Ωq) ⇒ Ωp+q(Z, Y ) always collapses after localiz-
ing at 2, and Ωn(Z, Y )(2) =

⊕
p+q=n Hp(Z, Y ; Ω(2),q) for any Z and Y . Apply

this with Z = BΓ and Y = BΛ. Since Gromov and Lawson showed [13] that
Ω∗ has a set of additive generators which are closed oriented manifolds of
positive scalar curvature, the result localized at 2 clearly follows. The result
after inverting 2 follows from [12], just as in the spin case.

Now we can give a complete answer to Question 4.1 when the relevant
fundamental groups are nice enough. First we need to discuss an obstruction
to a positive answer to Question 4.1. This involves C∗-algebraic K-theory. We
always work over R instead of over C, though this makes very little difference
in the formal structure of the argument. C∗-algebras of fundamental groupoids
may be unfamiliar to many readers, but note from the theory of groupoid C∗-
algebras [17] that for X a nice path-connected locally compact space such as
a connected manifold, C∗(π(X)) is strongly Morita equivalent to the group
C∗-algebra C∗(π1(X, x0)), for any choice of a basepoint x0 in X. In fact
C∗(π(X)) ∼= C∗(π1(X, x0))⊗K, where K is the algebra of compact operators.

The following result is really due to Chang, Weinberger and Yu [6, The-
orem 2.18] and to Schick and Seyedhosseini [22, Theorem 5.2]; the following
is just a slight repackaging of their results in our current language.

2This is really due to Wall [26], but one can find it more explicitly in [25].
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Theorem 4.8 (Obstruction to PSC with Product Structure on the Bound-
ary). Suppose (X, ∂X) is a connected compact spin manifold of dimension n
with non-empty boundary ∂X. Let Γ = π(X) and Λ = π(∂X). Suppose that
Γ and Λ both satisfy injectivity of the KO-assembly map AΓ : KO∗(BΓ) →
KO∗(C∗(Γ)) and injectivity of the periodization map perΓ : ko∗(BΓ) →
KO∗(BΓ) (and similarly for Λ). Also assume injectivity of the periodization
map perΓ,Λ : kon(BΓ, BΛ) → KOn(BΓ, BΛ). Then vanishing of the class
cΓ,Λ

∗ ([X, ∂X]) ∈ kon(BΓ, BΛ) is necessary for X to admit a Riemannian met-
ric of positive scalar curvature which is a product metric in a neighborhood of
the boundary.

Proof. Note that by diagram (1), cΓ,Λ
∗ ([X, ∂X]) maps to cΛ

∗ ([∂X]) ∈
kon−1(BΛ), which since AΛ and perΛ are injective, must vanish by Theo-
rem 4.2 for ∂X to admit a positive scalar curvature metric. Thus, at a min-
imum, we know that cΓ,Λ

∗ ([X, ∂X]) must be in the kernel of the boundary
map, and thus must be the image of a class in kon(BΓ). The rest of the proof
can really be found in [6] and [22], but we’ll just restate the argument in
slightly different form. Suppose that X has been given a Riemannian metric
gX which is a positive scalar curvature product metric dt2 + g∂X on a neigh-
borhood of the boundary. We can attach a metric cylinder ∂X × [0, ∞) to X
along ∂X, using the metric dt2 + g∂X on the cylindrical end. The noncom-
pact manifold X̂ = X ∪∂X ∂X × [0, ∞), equipped with the complete metric
g

X̂
obtained by patching together gX and the product metric dt2 + g∂X on

the cylindrical end, has uniformly positive scalar curvature off a compact set.
Therefore ∂/

X̂
is invertible off a compact set and thus Fredholm. Since X̂ is

diffeomorphic to X̊ = X � ∂X (it is just X̊ with a collar attached to the
boundary), ∂/

X̂
together with the multiplication action of CR

0 (X̂) define a
class in KOn(X, ∂X) ∼= KKO(CR

0 (X̂), C�n), where C�n is the real Clifford al-
gebra acting on the spinor bundle, and this class is an analytic representative
for the class perX,∂X [X, ∂X] ∈ KOn(X, ∂X). For future use, note that the
inclusion X̂ ↪→ X ∪∂X ∂X × [0, ∞] � X (where the final � denotes “is homo-
topy equivalent to”) gives us a class ĉX ∈ KKO(CR

0 (X̂), C(BΓ)). (If there is
no finite model for BΓ, this is interpreted as lim−→ KKO(CR

0 (X̂), C(Z)), as Z
runs over finite subcomplexes of BΓ.)

Now assume in addition that gX has positive scalar curvature everywhere,
and consider the Mishchenko-Fomenko index problem for ∂/

X̂
with coefficients

in the Mishchenko-Fomenko flat C∗(Γ)-bundle over X̂. Positivity of the scalar
curvature and flatness of the bundle guarantee that the operator has vanish-
ing index in the sense of C∗(Γ)-linear elliptic operators. By the Mishchenko-
Fomenko Index Theorem, this C∗-index is the image of [∂/

X̂
] ∈ KOn(X, ∂X)
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under ĉX : KO∗(X, ∂X) → KO∗(BΓ), followed by the assembly map AΓ (see
for example [20]). Since the assembly map is injective, we have ĉX([∂/

X̂
]) = 0

in KOn(BΓ). Recall that we are trying to show that cΓ,Λ
∗ ([X, ∂X]) = 0 in

kon(BΓ, BΛ). Since we are assuming perΓ,Λ is injective, it suffices to show
that perΓ,Λ ◦cΓ,Λ

∗ ([X, ∂X]) = 0 in KOn(BΓ, BΛ). Now chase the commuta-
tive diagram:

(2) kon(X)
cΓ

∗

perX

kon(X, ∂X)
cΓ,Λ

∗

perX,∂X

kon(BΓ)

perΓ

kon(BΓ, BΛ)

perΓ,ΛKOn(X)
cΓ

∗

KOn(X, ∂X)
cΓ,Λ

∗

ĉX

KOn(BΓ) KOn(BΓ, BΛ).

The class whose vanishing we are trying to show lies in the group in
the lower right, and is the same as cΓ,Λ

∗ ([∂/X ]), where [∂/X ] ∈ KOn(X, ∂X).
Since this is the image of ĉX([∂/X ]) = 0 in KOn(BΓ), this class vanishes, as
desired.

Remark 4.9. It might be useful to remark that the injectivity assumptions
in Theorem 4.8 on the periodization and assembly maps don’t necessarily
have to hold in all degrees, just in the degrees where the relevant indices
appear (n for X and n − 1 for ∂X).

One can also repackage the argument in the proof using not just group or
groupoid C∗-algebras but also certain relative C∗-algebras. A complication in
doing that is that the reduced group C∗-algebra C∗

r is functorial for injective
group homomorphisms, but not for surjective group homomorphisms. Indeed,
for some discrete groups G, C∗

r (G) is known to be simple (see [15] for a
characterization of when this happens), hence there cannot be a morphism
C∗

r (G) → R corresponding to the map of groups G � {1}. We can get
around this problem by defining C∗(Γ, Λ) to be the mapping cone (see [19,
§1] of the map on full C∗-algebras C∗(Λ) =

⊕
j C∗(Λj) → C∗(Γ) induced

by the morphism of groupoids Λ → Γ coming from the inclusion of ∂X

into X. Note that we are using the maximal groupoid C∗-algebra here, and
are working with real C∗-algebras throughout. Thus there is a canonical short
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exact sequence

0 → C0(R) ⊗ C∗(Γ) → C∗(Γ, Λ) → C∗(Λ) → 0,

making the KO-spectrum of C∗(Γ, Λ) into the homotopy fiber of the map of
KO-spectra associated to C∗(Λ) → C∗(Γ). Then we can think of the idea of
the proof as dealing with vanishing of a “relative index” in KOn(C∗(Γ, Λ)).
Note that injectivity of the KO-assembly map for the maximal C∗-algebra
follows from injectivity of the KO-assembly map for the reduced C∗-algebra,
and thus is automatic for torsion-free groups satisfying the Baum-Connes
Conjecture. Injectivity of the KO-assembly map for the relative C∗-algebra
is a more obscure condition, but it holds by diagram chasing if Γ and the Λj

are K-amenable and the assembly maps for each of them are isomorphisms
(for example if they are free, free abelian, or surface groups).

Putting Theorems 4.5 and 4.8 together, we obtain:

Corollary 4.10. Suppose (X, ∂X) is a connected compact spin manifold of
dimension n ≥ 6 with non-empty boundary ∂X. Let Γ = π(X) and Λ =
π(∂X). Suppose that Γ, the Λj, and the pair (Γ, Λ) satisfy both injectivity of
the KO-assembly map AΓ : KO∗(BΓ) → KO∗(C∗(Γ)) and injectivity of the
periodization map perΓ : ko∗(BΓ) → KO∗(BΓ) (and similarly for the Λj and
the periodization map for the pair). Then vanishing of the class c∗([X, ∂X]) ∈
kon(BΓ, BΛ) is necessary and sufficient for X to admit a Riemannian metric
of positive scalar curvature which is a product metric in a neighborhood of the
boundary.

Proof. This is simply the amalgamation of Theorems 4.5 and 4.8.

Remark 4.11. One might wonder how generally the hypotheses of Theo-
rem 4.8 are valid. The injectivity of the periodization map usually has to
be checked by an ad hoc comparison of the Atiyah-Hirzebruch spectral se-
quences for ko∗ and KO∗. It usually fails in general for groups with torsion,
but sometimes it may hold in certain special dimensions.

For the hypothesis about injectivity of the assembly map, more general
techniques often apply for the groupoids Γ and Λj , and then for the relative
groups one can apply the following simple lemma.

Lemma 4.12. Suppose one has compatible splitting maps for AΓ and AΛ,
i.e., there are splitting maps sΛ : KO∗(C∗(Λ)) → KO∗(BΛ) for AΛ and
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sΓ : KO∗(C∗(Γ)) → KO∗(BΓ) for AΓ such that

KO∗(BΛ) KO∗(BΓ)

KO∗(C∗(Λ))

sΛ

KO∗(C∗(Γ))

sΓ

commutes. Then the relative assembly map A(Γ,Λ) is injective.

Proof. Chase the diagram

KOn(BΛ)

AΛ

KOn(BΓ)

AΓ

KOn(BΓ, BΛ) ∂

AΓ,Λ

KOn−1(BΛ)

AΛ

· · ·

KOn(C∗(Λ))

sΛ

KOn(C∗(Γ))

sΓ

KOn(C∗(Γ, Λ)) ∂
KOn−1(C∗(Λ))

sΛ

· · · .

If x ∈ KOn(BΓ, BΛ) goes to 0 under AΓ,Λ, then by commutativity of the
right square and injectivity of AΛ, it maps under ∂ to 0 in KOn−1(BΛ), and
hence comes from a class y ∈ KOn(BΓ). But y = sΓ ◦AΓ(y), and AΓ(y) maps
to 0, so AΓ(y) is the image of some z ∈ KOn(C∗(Λ)). By commutativity of
the diagram in the statement of the Lemma, y is the image of sΛ(z), and thus
x, the image of y, must vanish.

One can apply Lemma 4.12 in the following context. Suppose all the
fundamental groups belong to a class of groups for which one can prove split
injectivity of the KO-theory assembly map in a functorial way. There are
many such classes, using “dual Dirac” methods or embeddings into Hilbert
spaces. One may also have to assume injectivity of the map Λ → Γ (at least
if one just assumes that Γ is coarsely embeddable into a Hilbert space). Then
the hypothesis of Lemma 4.12 holds and one gets injectivity of the relative
assembly map as well.

5. More complicated cases with non-trivial fundamental
groups

Now we move on to the more complicated situation, where ∂X is not nec-
essarily connected, or ∂X is connected but the inclusion ∂X ↪→ X does not
induce an isomorphism on fundamental groups. In the latter case, the con-
clusions of Theorems 2.1, 3.1, and 4.5 have to fail in some situations, as
one can see from the following simple example (mentioned also in [1]). Let
X = T n−2 × D2, which has boundary the (n − 1)-torus ∂X = T n−1. The
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double of X is M = Dbl(X, ∂X) = T n−2 × S2, which obviously has a metric
of positive scalar curvature (because of the S2 factor). On the other hand, ∂X
cannot have a positive scalar curvature metric. It is also clear (since one can
give T n−2 a flat metric and give D2 the metric corresponding to a spherical
cap around the north pole of a standard 2-sphere, either close to the pole or
extending beyond the equator) that one can arrange for X to have a posi-
tive scalar curvature metric so that the mean curvature H of ∂X is either
strictly positive or strictly negative. So for this example, of the six conditions
in Theorem 3.1, (1), (5), and (6) hold, and (2) and (4) fail. ((3) holds but
does not say much, since the α-invariant gives insufficient information in the
non-simply connected case.)

Definition 5.1. Extending standard terminology from the case of 3-mani-
folds, we say that X has incompressible boundary if for each component ∂jX
of ∂X, the map π1(∂jX) → π1(X) induced by the inclusion is injective.

The incompressible case is the easiest case and also the one in which we
get the strongest conclusion.

Theorem 5.2. Let X be a connected compact spin manifold of dimension n ≥
6 with non-empty incompressible boundary ∂X. X can have any number k of
boundary components, ∂1X, . . . , ∂kX. Let M = Dbl(X, ∂X). Pick basepoints
in each boundary component of X and let Γ = π1(X) (this can be with respect
to any choice of basepoint), Λj = π1(∂jX), and Λ =

∐
j Λj. Suppose that

injectivity of the periodization map per and of the KO-assembly map A both
hold for the fundamental group Γ ∗Λ Γ of M . Then the following conditions
are equivalent:

(1) M admits a metric of positive scalar curvature.
(2) X admits a positive scalar curvature metric which is a product metric

in a neighborhood of the boundary ∂X.
(3) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(4) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.

Proof. As we have already mentioned, (2) ⇒ (3) is trivial, (4) ⇒ (1) is The-
orem 1.1 and (4) ⇐⇒ (3) ⇒ (1) is part of [1, Corollary 34]. So it suffices to
show that (1) ⇒ (2), and we can try to apply Theorem 4.5. Let [M ] be the ko-
fundamental class of M in kon(M). This restricts (since M = X∪∂X (−X) and
thus int X is an open submanifold of M) to the ko-fundamental class [X, ∂X]
of X in kon(X, ∂X) = kon(M, −X) (by excision). This, in turn, maps under
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the ko-homology boundary map to the ko-fundamental class [∂X] of ∂X in
kon−1(∂X). We get a commutative diagram

(3) [M ]

∩

[X, ∂X]

∩

[∂X]

∩

kon(M)
cM

kon(X, ∂X) ∂

cX

kon−1(∂X)
c∂X

kon(B(Γ ∗Λ Γ)) kon(BΓ, BΛ) ∂
kon−1(BΛ).

The commutativity of the square on the right comes from naturality of the
boundary maps, but the incompressibility assumption is needed to get com-
mutativity of the square on the left. Indeed, without this assumption, the
commutativity must fail; just think of the simple example where Γ is the triv-
ial group and Λ = Z, and X = D2 with boundary ∂X = S1 = BΛ, M = S2.
Then B(Γ ∗Λ Γ) = ∗, and [M ] �→ 0 in ko2(∗) (since M admits positive scalar
curvature), while [X, ∂X] is a generator of ko2(D2, S1) ∼= ko2(R2) ∼= ko0(∗) =
Z and cX : ko2(D2, S1) → ko2(∗, S1) is an isomorphism.

So we need to explain why the left-hand square in (3) commutes when
we assume incompressibility. The explanation is that π1(M) is the pushout
or colimit of the diagram Γ Λ Γ (in the category of groupoids),
so Bπ1(M) is the homotopy pushout (hocolim) of BΓ BΛ BΓ in
spaces. This is usually not the same as the ordinary pushout since the kernel
of Λj → Γ is invisible in the homotopy colimit, but it is the same when each
Λj injects into Γ, i.e., ∂X is incompressible. (See [9, §10] for an explanation.)
So in that case we get the commutativity via excision for ko, since B(Γ ∗Λ Γ)
with B(Λ∗Λ Γ) collapsed is the the same as BΓ with BΛ collapsed, and hence
the relative groups kon(B(Γ ∗Λ Γ), B(Λ ∗Λ Γ)) and kon(BΓ, BΛ) are the same
in this case.

Alternatively, following the point of view in [3, Appendix to Chapter II],
note that π1(M) is associated to the graph of groups shown in Figure 4. More
precisely, the universal cover of this graph is a tree on which π1(M) acts,
with Γ stabilizing the vertices and with the edges stabilized by the Λj . By
Bass-Serre theory, this action on a tree corresponds to the decomposition of
π1(M) as Γ ∗Λ Γ, and displays π1(M) as an extension of Γ by a free group.
From this picture we can also read off B(Γ ∗Λ Γ) as the ordinary pushout of
BΓ BΛ BΓ.

Now because of the hypothesis on π1(M) and the assumption that M ad-
mits a metric of positive scalar curvature, we can apply [21, Theorem 4.13],
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Γ •

Λ1

...
Λk

• Γ

Figure 4: The graph of groups for computing π1(M).

and deduce that the image of [M ] under cM (the leftmost downward ar-
row in (3)) vanishes in kon(B(Γ ∗Λ Γ)). Chasing the diagram, we see that
(cX)∗([X, ∂X]) and (c∂X)∗([∂X]) also vanish, so by Theorem 4.5, X admits a
positive scalar curvature metric which is a product metric in a neighborhood
of ∂X.

We don’t quite get the same sort of theorem in the totally non-spin case
since we don’t know what all the obstructions are (if any) in this situation
where there is no Dirac operator. However, we can at least prove the following.

Theorem 5.3. Let X be a connected compact totally non-spin manifold
of dimension n ≥ 6 with non-empty incompressible boundary ∂X, and let
M = Dbl(X, ∂X). There can be any number k of boundary components
∂1X, . . . , ∂kX, but assume that each of these is also totally non-spin. Pick
basepoints in each boundary component and let Γ = π1(X) (this can be with
respect to any choice of basepoint), Λj = π1(∂jX). Suppose that Γ has fi-
nite homological dimension and that n ≥ hom dim Γ + 2. Then the following
conditions all hold:

(1) M admits a metric of positive scalar curvature.
(2) X admits a positive scalar curvature metric which is a product metric

in a neighborhood of the boundary ∂X.
(3) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(4) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.

Proof. The description of π1(M) is just as in the proof of Theorem 5.2, so
Γ∗Λ Γ splits as F �Γ, where F is a free group. That means hom dim π1(M) ≤
hom dim Γ+ 1. Since the Λj ’s are subgroups of Γ, they also have finite homo-
logical dimension bounded by hom dim Γ. Also, by the long exact sequence
of the pair, hom dim(BΓ, BΛ) ≤ max(hom dim Γ, hom dim Λ + 1) < n. So
by our assumption on n, c∗[M ] = 0 in Hn(Bπ1(M);Z), c∗([∂jX]) = 0 in
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Hn−1(BΛ;Z), and c∗([X, ∂X]) = 0 in Hn(BΓ, BΛ;Z). Since M and the ∂jX
are all totally-non-spin, we conclude by [21, Theorem 4.11] or by [12, Theo-
rem 1.2] that all of them admit metrics of positive scalar curvature. Then we
obtain (2), and thus also (3) and (4), by Theorem 4.7.

Now we go on to the non-incompressible case, as well as to the case where
X is not spin but has spin boundary. In the latter case, even if X and ∂X
are both simply connected, we cannot expect X to have a positive scalar
curvature metric which is a product metric near the boundary. For example,
∂X could be an exotic sphere in dimension ≡ 1 or 2 mod 8 with non-zero
α-invariant. Then ∂X is an oriented boundary but not a spin boundary, and
thus there is an oriented manifold (which can be chosen simply connected)
having ∂X as its boundary. The double of this manifold is simply connected
and non-spin, so it admits positive scalar curvature by [13, Corollary C]. In
this case, by Theorem 1.2, X has a positive scalar curvature metric which has
positive mean curvature on the boundary, even though it can’t have a positive
scalar curvature metric which is a product metric near the boundary, since ∂X
does not admit positive scalar curvature. We will see other generalizations of
this later. First we consider the non-incompressible spin case of the converse
to Theorem 1.1.

Theorem 5.4. Let X be a connected compact manifold of dimension n ≥ 6
with non-empty boundary ∂X. There can be any number k of boundary com-
ponents ∂1X, . . . , ∂kX. Assume that X is spin and that Γ = π1(X) has finite
homological dimension less than n and satisfies the Baum-Connes Conjecture
with coefficients and the Gromov-Lawson-Rosenberg conjecture. (As an exam-
ple, Γ could be free abelian, free, or a surface group.) Let M = Dbl(X, ∂X) be
the double of X along ∂X, a closed n-manifold. Then the following conditions
are equivalent:

(1) M admits a metric of positive scalar curvature.
(2) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(3) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.

Proof. We have π1(M) = Γ ∗Λ Γ by Van Kampen’s Theorem. (This means
the colimit of the diagram Γ Λ Γ.) We have the “folding map”
f : M � X, sending each point x ∈ X and the corresponding point x̄ ∈ −X
both back to x, which is split by the inclusion of X into M , and thus an
induced split surjection of groups f∗ : Γ ∗Λ Γ → Γ. By lifting to the universal
cover of X and arguing as in the proof of Theorem 3.1, we see that Γ ∗Λ Γ
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p
n

n

q

Figure 5: The Atiyah-Hirzebruch spectral sequence for computing
kon(Bπ1(M)). The corresponding spectral sequence for KOn(Bπ1(M)) is sim-
ilar except that it extends into the fourth quadrant, and the map from this
spectral sequence to that one preserves differentials affecting the line p+q = n.
Typical differentials are shown in color.

splits as F �Γ, where F is a free group. Thus if we know Baum-Connes with
coefficients for Γ, the same follows for π1(M) = Γ ∗Λ Γ. Furthermore, the
homological dimension of π1(M) is at most one more than the homological
dimension of Γ, and is thus ≤ n. This implies injectivity of the periodization
maps kon(BΓ) → KOn(BΓ) and kon(Bπ1(M)) → KOn(Bπ1(M)), because
any differentials in the Atiyah-Hirzebruch spectral sequences Hp(BΓ, koq) ⇒
kop+q(BΓ) and Hp(BΓ, KOq) ⇒ KOp+q(BΓ) affecting the line p+q = n have
to be the same (and similarly for Bπ1(M)), because Hp vanishes for p > n.
(See Figure 5.) Since Γ and π1(M) both have finite homological dimension,
they are torsion-free and Baum-Connes implies that the KO assembly maps
for both are injective.

As before, it suffices to prove that (1) ⇒ (3). So assume M has a metric
of positive scalar curvature. It will be convenient to denote by Λ′ the image of
Λ in Γ, so that also π1(M) = Γ∗Λ′ Γ. Start by choosing a collar neighborhood
(diffeomorphic to ∂X × [0, 1]) of ∂X inside X and let ∂′X =

∐
∂′

jX be a
“parallel copy” of ∂X inside this collar. First assume that for each j, Kj =
ker

(
Λj � Λ′

j) is finitely generated. Then we modify each ∂′
jX to form a new

hypersurface Zj , by doing a finite number of surgeries on embedded circles
to kill off the kernel Kj , inserting the necessary 2-handles inward in X, as in
Figure 6. Note that the fact that Kj dies in π1(X) is what guarantees that
we can build the necessary 2-handles inside X.

After this initial surgery step, we have a new manifold Y with boundary,
of codimension 0 in X, with ∂Y = Z =

∐
Zj incompressible in X. Thus
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X ∂′
jX ∂jX

collar

2-handle

Figure 6: First step in the proof of Theorem 5.4. Zj is the result of attaching
2-handles to ∂′

jX to reduce the fundamental group to Λ′
j .

positive scalar curvature for M implies via the proof of Theorem 5.2 that
Y has a metric of positive scalar curvature which is a product metric in
neighborhood of ∂Y . We double the region between ∂Y (which we recall is
∂′X modified by surgeries) and ∂X across ∂X, obtaining a manifold W with
boundary of codimension 0 in M , whose boundary looks like two copies of ∂Y ,
and is thus incompressible. (See Figure 7.) Since the fundamental group of ∂Y
is, by construction, a quotient of that of ∂X, Van Kampen’s Theorem gives
that π1(∂Y ) ∼= π1(W ), with the isomorphism induced by the inclusion. Thus
W is a π1-preserving spin cobordism over Bπ1(∂Y ) from ∂Y to its reflection
across ∂X. (See Figure 7 again.) By the surgery theorem for positive scalar
curvature metrics ([13] and [10, Corollary 6.2]), we can extend the metric on
Y to a positive scalar curvature metric on Q = Y ∪∂Y W which is a product
metric in a neighborhood of ∂Q (the reflection of the original ∂Y across ∂X).
At this point, ∂Y is now a two-sided totally geodesic hypersurface in Q. By a
slight deformation, using [1, Proposition 28], we can preserve positive scalar
curvature on Q but arrange for ∂Y to have positive mean curvature. Now
observe that ∂X ⊂ Q is obtained by adding handles back to ∂Y , the duals
of the surgeries used to construct Y from X, and these are in codimension 2.
So we can apply Theorem 1.3 to deform ∂X so that it has positive mean
curvature. Since X is inside Q, which has positive scalar curvature, we have
proven that (1) ⇒ (3).

There is just one more step if one or more of the kernels Kj is not finitely
generated. The problem now is that it appears we need to do infinitely many
surgeries to get from X to Y and back again. However, we can construct a
sequence of modifications of ∂jX (each obtained from the previous one by
attaching more 2-handles into the interior of X), say Z

(k)
j , k = 1, 2 . . ., so

that π1(Z(k)
j ) → Λ′

j as k → ∞. We get a sequence X(k) of manifolds with
boundary, ∂X(k) =

∐
j Z

(k)
j , and ko-homology classes, the images of [X, ∂X]

in kon(X(k), ∂X(k)) which tend to 0 in the limit. By the behavior of homology
under inductive limits, there must be some finite stage at which [X(k), ∂X(k)]
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Y

∂Y

W
∂W∂X

Figure 7: Second step in the proof of Theorem 5.4. First we construct a
positive scalar curvature metric on Y (light color), then push it across W
(dark color), and then get back to ∂X from ∂Y by doing outward-pointing
surgeries.

vanishes, and thus X(k) has a positive scalar curvature metric which is a
product metric near the boundary. The proof is now concluded as before.

The analogous theorem in the totally non-spin case is this:

Theorem 5.5. Let X be a connected compact manifold of dimension n ≥
6 with non-empty boundary ∂X. There can be any number k of boundary
components ∂1X, . . . , ∂kX. Assume that X is totally non-spin. Pick basepoints
in each boundary component and let Γ = π1(X) (this can be with respect to
any choice of basepoint), Λj = π1(∂jX). Assume that for each j, the image of
Λj in Γ is finitely presented. Suppose that Γ has finite homological dimension
and that n ≥ hom dim Γ + 2. Let M = Dbl(X, ∂X) be the double of X along
∂X, a closed n-manifold. Then the following conditions hold:

(1) M admits a metric of positive scalar curvature.
(2) X admits a positive scalar curvature metric for which ∂X is minimal

(i.e., has vanishing mean curvature).
(3) X admits a positive scalar curvature metric which gives ∂X positive

mean curvature with respect to the outward normal.

Proof. Note that M is totally non-spin and its dimension n exceeds the ho-
mological dimension of π1(M) = Γ∗Λ Γ, which is no more than hom dim Γ+1,
as in the proof of Theorem 5.3. So by [21, Theorem 4.11] or [12, Theorem
1.2], M admits a metric of positive scalar curvature, verifying (1). To check
(2) and (3), we apply the same argument as in Theorem 5.4; i.e., we first do
surgeries into the interior to kill off the kernel of Λj → Γ for each j, ending
up with a connected totally non-spin manifold Y of codimension 0 in X with
incompressible boundary. Now recall that X is totally non-spin, and so is Y ,
but some of the boundary components ∂jY might “accidentally” fail to be
totally non-spin. If this is the case for some j, do an additional surgery to
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take a connected sum of ∂jY with a tubular neighborhood of an embedded 2-
sphere in the interior of Y whose normal bundle is non-trivial (such 2-spheres
exist since Y is totally non-spin). After doing this, all the ∂jY will also be
totally non-spin, and hence will admit metrics of positive scalar curvature for
the same reason as M (since the condition on the homological dimension of Γ
inherits to subgroups). Now we can apply Theorem 5.3 to Y , and then apply
Theorem 1.3 to get positive mean curvature on the boundary of X.

Remark 5.6. By the same reasoning as in the proof of Theorem 5.4, one
can dispense with the finite presentation hypothesis on the images of Λj in Γ.
Even though, when one of these images is not finitely presented, it won’t
be possible to modify Y in finitely many steps so as to have incompressible
boundary, c∗([Y, ∂Y ]) vanishes in Hn(BΓ, B image(Λ);Z) = 0, and thus will
vanish in Hn(Bπ1(Y ), Bπ1(∂Y );Z) for Y “close enough” to having incom-
pressible boundary, and then we can proceed as before.

6. The Gromov-Lawson doubling theorem

Since the proof of Theorem 1.1 in [14] is somewhat sketchy, we include for the
convenience of the reader a more detailed proof. We should mention that the
paper [1] also gives another approach to “doubling.” Indeed, [1, Corollary 34]
gives a homotopy equivalence between R+(X)H>0 (positive scalar curvature
metrics on X with positive mean curvature on ∂X) and R+(X)Dbl (positive
scalar curvature metrics on X with vanishing second fundamental form on the
boundary, that extend to reflection-invariant positive scalar curvature metrics
on Dbl(X, ∂X) = M).

Proof of Theorem 1.1. Following the proof in [14], let I = [−1, 1], give X × I
the product metric, and identify X with X × {0}. Let

N = {(x, t) ∈ X × I : dist ((x, t), X1) ≤ ε} ⊂ X × R,

where X1 is the complement in X of a small open collar around ∂X. Then
the double M is obtained by smoothing the C1 manifold ∂N . We give N the
metric inherited from X × I. The portions of ∂N given by X1 × {ε} and
X1 × {−ε} are smooth and isometric to X1, but the second derivative of the
metric is discontinuous at points in ∂X1 × {±ε} like z in Figure 8. As in [14],
choose x ∈ ∂X1 and let σ be a small geodesic segment in X passing through
x and orthogonal to the boundary of X1. Then (σ × I) ∩ N is flat and totally
geodesic in N , and a local picture of it near x looks like Figure 8. In this
plane we have the unit vector field r (‘r’ for right) which along σ × {t} is the
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Figure 8: Slice of N normal to X1.

X1 × {ε sin θ}

ṽj•
y

∂N

Figure 9: Slice of N through y parallel to X1.

unit tangent vector pointing away from the interior of X1. We also have the
unit vector field d (‘d’ for down) pointing downward along the lines {m}×R,
m ∈ X. If we instead take a slice of N parallel to X1 through a point y at
angle θ from X1 (see Figure 8 and Figure 8 in [14]), we get a picture like
Figure 9.

Choose an orthonormal frame v1, . . . , vn−1 for Tx(∂X1) that diagonalizes
the second fundamental form for ∂X1 in X1 with respect to the outward-
pointing normal vector vector field n, which at x coincides with r. Thus
we can assume that the shape operator has the form S∂X1vj = μjvj , and the
mean curvature H∂X1 of ∂X1 is

∑
j μj . The assumption of the theorem implies

that this is positive. (Positive mean curvature of ∂X in X implies positivity
of H∂X1 if X1 is close enough to X.) At a point y ∈ ∂N at distance ε from
x ∈ ∂X1 as in Figure 8, the outward-pointing normal vector to N is given
by n = cos θ r − sin θ d. There is an orthonormal frame w0, w1, . . . , wn−1 for
Ty(∂N) with w0 = cos θ d+sin θ r, and with wj close to the parallel transport
ṽj of vj . Since σ ×R is totally geodesic in X ×R and ∂N ∩ (σ ×R), shown in
Figure 8, consists of σ × {±ε} joined together by a semicircular arc of radius
ε, it follows that w0, which lies in this 2-plane, is an eigenvector for the shape
operator of ∂N , with eigenvalue 1

ε . On the other hand, for j = 1, . . . , n − 1,
∇wj d = 0 and so

S∂N (wj) = −∇wj n ≈ cos θ μjwj

and so by the Gauss curvature formula, the scalar curvature κ∂N of ∂N at y
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works out to

κ∂N ≈ κX +
n−1∑
j=1

2
ε

cos θ μj +
∑

1≤j �=k≤n−1
cos2 θ μjμk

= κX + 2 cos θ

ε
H∂X1 + cos2 θ H2

∂X1 −
n−1∑
j=1

cos2 θ μ2
j .

Since κX and H∂X1 are positive, this is positive and tends to κX as θ → ±π
2 .

So we can round the corners at these points keeping positivity of the scalar
curvature. (Note that the formula obtained here is slightly different from the
one in [14], but this doesn’t affect the conclusion.)

7. Open problems

We have left several open problems in our discussion. In this section, we list
a few of these and say something about where they stand.

(1) The most obvious question is how generally a converse to Theorem 1.1
is valid. One can state this as

Conjecture 7.1 (“Doubling Conjecture”). If X is a compact manifold
with boundary and M = Dbl(X, ∂X) admits a metric of positive scalar
curvature, then X admits a metric of positive scalar curvature with
positive mean curvature on ∂X.

At the moment we do not know of any counterexamples, nor do we
know of any technology that could be used to disprove this in general.
Conjecture 7.1 has now been proved in dimension 3 by Carlotto and Li
[5, 4]. Note by the way that [1, §2.3] gives an obstruction to a manifold
X with boundary admitting a positive scalar curvature metric with
H > 0 on the boundary, but it can’t give any counterexamples to the
Doubling Conjecture since in all cases where the obstruction applies, it
applies to the double as well.

(2) Another question is how generally Corollary 4.10 and Theorem 4.6 can
hold. One cannot get rid of the dimension restriction, since Theorem 4.7
fails when dim X = 5, as one can see from the following counterexam-
ple. Let Y be a smooth non-spin simply connected projective algebraic
surface (over C) of general type, for example a hypersurface of degree
d in CP3 of even degree d ≥ 4. Then b+

2 (Y ) = 1 + (d−1)(d−2)(d−3)
3 > 1

and Y has non-trivial Seiberg-Witten invariants, hence does not admit
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a metric of positive scalar curvature. Let X = Y × [0, 1], which is a com-
pact 5-manifold with boundary. The double M of X along its boundary
is Y × S1, which is a closed totally non-spin 5-manifold with funda-
mental group Z, and which thus admits positive scalar curvature as a
consequence of the theorem of Stolz and Jung ([21, Theorem 4.11] or
[12, Theorem 1.2]). However X cannot admit a positive scalar curvature
metric which is a product metric near the boundary, since ∂X = Y �−Y
does not admit a metric of positive scalar curvature. Yet the relative
homology group H5(B∗, B(∗ � ∗);Z) vanishes.
One can modify this counterexample so that it is even a counterexample
to the weaker Theorem 4.6. Let Y ′ be a connected sum of copies of CP2

with the same signature −d
3 (d2 −4) as Y , and let X ′ = Y ′ × [0, 1]. Then

X ′ obviously has a product metric of positive scalar curvature, while
X does not; yet they represent the same class in Ω5(B∗, B(∗ � ∗);Z) ∼=
Ω4 ∼= Z since that class is detected just by the signature.

(3) Suppose X is a compact manifold with boundary, of dimension n ≥ 6
so that our theorems apply. A major problem is to try to determine the
homotopy type of R+(X)H>0 (positive scalar curvature metrics on X
with positive mean curvature on ∂X) when this space is non-empty, or
at least to give nontrivial lower bounds on the homotopy groups. As we
mentioned before, [1, Corollary 34] shows that this space is homotopy
equivalent to R+(M)Z/2, the reflection-invariant positive scalar curva-
ture metrics on the double M = Dbl(X, ∂X). And [1, Corollary 40]
shows that when ∂X admits a positive scalar curvature metric, then
considering the space of positive scalar curvature metrics with product
boundary conditions would give us the same homotopy type. In this
case (when there is a positive scalar curvature metric which is a prod-
uct metric near the boundary) and when everything is spin, [2, 11] give
lower bounds on the homotopy groups of R+(X)H>0 in terms of the
KO-groups of the C∗-algebra of the fundamental group. It is possible
that a similar analysis, using APS methods as in [1, §2.1], would also
work with the weaker boundary condition H > 0.
The references just cited, and other similar ones, also say something
about the homotopy type of R+(M) (the positive scalar curvature met-
rics with no equivariance condition), but it’s not immediately clear
how this translates into information about R+(M)Z/2. An example
worked out in [1, Corollary 45 and Remark 46] does give a case where
R+(X)H>0 has infinitely many path components and infinite homo-
topy groups in all dimensions, but the construction is somewhat ad
hoc.
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