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For a finite group G of not prime power order, Oliver showed that the obstruction
for a finite CW-complex F to be the fixed point set of a contractible finite
G-CW-complex is determined by the Euler characteristic χ(F ). (He also has similar
results for compact Lie group actions.) We show that the analogous problem for F
to be the fixed point set of a finite G-CW-complex of some given homotopy type is
still determined by the Euler characteristic. Using trace maps on K0 [2, 7, 18], we
also see that there are interesting roles for the fundamental group and the
component structure of the fixed point set.
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1. Introduction

The classical problem of what are the possible homotopy types of fixed sets of
cellular group actions on contractible finite CW-complexes was solved by L. Jones
[8] in the case of p-groups, and R. Oliver [10] for non-p-groups. Our aim in this
paper is to put the work of Oliver into a more general context, exposing where
the fundamental group does and where it does not play a role. The analogous
generalization of Jones’ work has very different features, which we discuss in the
companion paper [4].

The following is our original motivation. Suppose G is a finite group acting by
isometries on a compact Riemannian manifold X with non-positive curvature,
and the centre of the fundamental group π1(X) is trivial. Then the G-action
has a fixed point if and only if the induced homomorphism G → Out(π1(X))
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lifts to Aut(π1(X)). Here Out(π1(X)) is the group of outer automorphisms, and
Aut(π1(X)) is the group of genuine automorphisms. By taking the fundamental
group to be based at a fixed point, we see the lift is necessary. The sufficiency of
the condition follows by considering the group Γ of lifts of G to the universal cover.
Since the centre of π1(X) is trivial, the map Γ → G splits. By Cartan’s fixed point
theorem [3], any finite group of isometries of a simply connected non-positively
curved manifold has a fixed point.

If the action is not required to be by isometries, would the action still have a
fixed point? For a p-group acting on a finite K(π, 1) CW-complex with centreless
π, Smith theory implies that any action satisfying the lifting condition must have
a fixed point.

What about actions by a non-p-group?

Theorem 1.1. For any finite group G of not prime power order, there is a G-action
on some compact aspherical manifold X, with centreless π = π1(X), such that the
induced homomorphism G → Out(π1(X)) lifts to Aut(π1(X)), and yet the action
has no fixed point.

This result uses the method of Davis [5], which promotes constructions involv-
ing finite CW-complexes and compact aspherical manifolds with boundary to closed
aspherical manifolds. Consequently, we were led to investigate the role of the funda-
mental group in generalizing the theory of Oliver. In [4], we will see a contrastingly
different role in generalizing the theory of Jones.

It would be reasonable to believe that π1(X) plays a role in understanding the
possible fixed sets of group actions on X. In both [8, 10], at key points in the
construction, an obstruction in K̃0(Z[G]) arises, and one would expect that for
non-simply connected X, an analogous element of K̃0(Z[Γ]) arises. However, in this
paper, we shall see that the fundamental group does not intervene in this way for
non-p-groups (though, as we shall see, it does affect the possible trade-offs between
Euler characteristics of different components of fixed points). On the other hand,
we shall see in [4] that this is the case for p-groups.

We begin with some definitions. We say that a G-map f : X → Y between two
finite G-CW-complexes is a pseudo-equivalence if it is an unequivariant homotopy
equivalence. The pseudo-equivalence property is equivalent to requiring that the
induced map X × EG → Y × EG on the Borel constructions is a G-homotopy
equivalence. Note that X × EG → X is a G-map and an unequivariant homotopy
equivalence. However, the Borel construction is usually not a finite CW-complex,
so that the map is not a pseudo-equivalence in the sense of the present paper.

A pseudo-equivalent G-map does not necessarily have an inverse pseudo-
equivalent G-map. To make pseudo-equivalence into an equivalence relation, there-
fore, we need to allow two finite G-CW-complexes X,Y to be pseudo-equivalent if
they are related by a zig-zag sequence of pseudo-equivalent G-maps (all Zi,Wi are
finite G-CW-complexes)

X
f1←− Z1

g1−→ W1
f2←− Z2

g2−→ W2 ← · · · → Wn−1
fn←− Zn

gn−→ Y.

Then for any p-subgroup P of G, the Smith theory [17] can be applied to the
fixed sets of P to give H∗(XP ; Fp) ∼= H∗(Y P ; Fp). In particular, this implies that,
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if a p-group G acts freely on X, then the G-action on Y must also be free. If we
allowed infinite CW-complexes in our definition, we could not make this assertion
as EG → ∗ would be a pseudo-equivalence.

If G is not a p-group, however, it is still possible for X to have no G-fixed
point, and for Y to have G-fixed point. For the case Y is a single point, i.e., X is
contractible, Oliver [10] proved the following.

Theorem (Oliver): For any finite group G of not prime power order, there is a
number n(G), such that a contractible finite CW-complexes F is (homotopy equiva-
lent to) the fixed set of a finite contractible G-CW-complex, if and only if χ(F ) = 1
mod n(G).

By [10, theorem 5] and the subsequent corollary, we know n(G) = 1, i.e., there
is no condition at all on F , if and only if G is not of the form P � H � G, with P
and G/H having prime power orders, and H/P cyclic. For example, for G a non-
solvable group or an abelian group with at least three non-cyclic Sylow subgroups,
we have n(G) = 1.

We also know n(G) = 0, i.e., the obstruction is exactly the Euler characteristic,
if and only if G has a normal subgroup P of prime power order, such that G/P is
cyclic. In particular, a cyclic group has n(G) = 0.

For the complete determination of n(G), see [12, 13].
The following is our extension of Oliver’s theorem to general Y .

Theorem 1.2. Suppose G is a group of not prime power order, and Y is a finite
G-CW-complex with non-empty and connected fixed set Y G. Then a finite CW-
complex F is the fixed set of a finite G-CW-complex pseudo-equivalent to Y if and
only if χ(F ) = χ(Y G) mod n(G).

Remark 1.3. Given the Euler characteristic condition, we actually construct a
finite G-CW-complex X and a pseudo-equivalence X → Y , such that F = XG.
In particular, there is no need to use a zig-zag sequence of maps for the pseudo-
equivalence between X and Y .

Oliver introduces another number m(G). This number is the largest square-
free factor of n(G); it is the number for which the congruence χ(F ) = 1 mod
m(G) follows directly from the combination of the Lefshetz theorem and Smith
theory. The extra divisibility by n(G) in Oliver’s theorem above for finite G-
CW complexes comes from deeper algebraic K-theory considerations. As shown in
[15, § 2], this arises in answering the question about fixed sets of compact G-ANRs
(equivariant absolute neighbourhood retracts) that are not necessarily homotopy
finite.1 The same method, combined with the arguments of the present paper,
proves the G-ANR analogues of all our results, with m(G) replacing n(G). Such
results are relevant to locally linear group actions on topological manifolds. The

1Recall that for G trivial, according to West’s celebrated theorem [20], any finite dimensional
compact ANR is homotopy equivalent to a finite CW-complex. When G is non-trivial, as examples
of Quinn [15, 16] show, this is not true. Moreover, elementary examples show that there is no
analogue of Oliver’s theorem for general topological actions.
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following is the G-ANR analogue of theorem 1.2. Of course, the statement requires
us to slightly extend pseudo-equivalence to the compact G-ANR category.

Theorem 1.4. Suppose G is a group of not prime power order, and Y is a compact
G-ANR with non-empty and connected fixed set Y G. Then a finite CW-complex F
is the fixed set of a compact G-ANR pseudo-equivalent to Y if and only if χ(F ) =
χ(Y G) mod m(G).

An interesting class of actions is pseudo-trivial action, which means a finite
G-CW-complex X equivariantly homotopy equivalent to X with trivial action.
This is tantamount to saying that the G-map X → X/G splits. Any action on
a contractible CW-complex is pseudo-trivial. These actions frequently arise as G-
subspaces of more general G-spaces, and their analysis is important for inductive
arguments. Indeed this is implicit in the proof of our theorem 1.7 below, and is also
used in solving our motivating problem about aspherical manifolds.

If we apply theorem 1.2 to the case the action on Y is trivial, we find that F is
the fixed set of a pseudo-trivial, finite G-CW-complex homotopy equivalent to Y if
and only if χ(F ) = χ(Y ) mod n(G).

The fundamental group does not appear in theorem 1.2. However, there is an
important role for the fundamental group when Y G is not connected. The funda-
mental group and the action group interact as follows: As before, let Γ be the group
of liftings of G-actions on Y to the universal cover Ỹ . We have an exact sequence,
with some modification needed if the action is not effective [see discussion after
(6.1)],

1 → π1(Y ) → Γ → G → 1.

If ỹ ∈ Ỹ covers y ∈ Y , then we have isomorphism of isotropy groups Γỹ
∼= Gy. For

y ∈ Y G, this gives a splitting of the exact sequence. Various choices of ỹ over y
give a conjugacy class of splittings, and the conjugacy class depends only on the
connected component of Y G containing y.

To see the interaction of G with π1(Y ) at the level of fixed sets, we introduce the
following definition.

Definition. A G-action on Y is weakly G-connected if each connected component
of Y G corresponds to a different conjugacy class of lifts of G to Γ.

Recall that a G-space Y is said to be G-connected, if Y H is non-empty and
connected for every subgroup H of G. Evidently, G-connected implies weakly G-
connected, but the converse is often false. For example, a free action is weakly
G-connected but not G-connected. Another example is actions by isometries on
non-positively curved spaces, again by Cartan’s fixed point theorem.

Theorem 1.5. Suppose G is a cyclic group or more generally satisfies
n(G) = 0, F is a finite CW-complex, and Y is a finite G-CW-complex. If Y is weakly
G-connected, then a G-map f : F → Y can be extended to a pseudo-equivalence
g : X → Y , with X a finite G-CW-complex satisfying F = XG, if and only if for
each connected component C of Y G, we have χ(f−1(C)) = χ(C).
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As in [4], we call g : X → Y a pseudo-equivalence extension of f : F → Y . Specif-
ically, in such an extension, we require all spaces to be finite G-CW-complexes
(unless otherwise stated), and F = XG.

Since connected Y G implies weakly G-connected, theorem 1.5 generalizes theorem
1.2 in case n(G) = 0.

The theorem allows f−1(C) = ∅ for some connected components. It also allows
f−1(C) to be disconnected for some connected component C. Then X will no longer
be weakly G-connected, but our weakly G-connected hypothesis is on Y . Our proof
of the theorem uses the Hattori–Stallings trace [2, 7, 18], perhaps the most classical
of the trace maps from K-theory to Hochschild (or even cyclic) homology.

Even without the weakly G-connected assumption, our methods apply to give
some new constructions of actions, and some new necessary congruence conditions.
In this general setting, our results can be profitably compared to earlier work of
Oliver and Petrie [14] (which deals with a somewhat different problem) and Mori-
moto and Iizuka [9] (which is about pseudo-equivalence of G-CW-complexes with
finite fundamental groups).

Theorem 1.6. Suppose G is a finite group of not prime power order, and Y is a
finite G-CW-complex. Then there is a subgroup N(Y ) of Zπ0Y G

, such that a G-map
f : F → Y from a finite CW-complex F with trivial G-action has pseudo-equivalence
extension, if and only if

(χ(f−1(C)) − χ(C)) ∈ N(Y ).

For f : F → Y to have pseudo-equivalence extension g : X → Y , it is necessary
that the global Euler characteristic condition χ(F ) = χ(Y G) mod n(G) is satisfied.
The reason is that the mapping cone cX ∪g Y of the homotopy equivalence g is a
contractible G-CW-complex with fixed set (cX ∪g Y )G = cF ∪ Y G. Then Oliver’s
theorem implies χ(cF ∪ Y G) = 1 + χ(Y G) − χ(F ) = 1 mod n(G).

Conversely, the following result says that, if the local Euler characteristic
condition is satisfied for each connected component of Y G, then we have the
pseudo-equivalence extension.

Theorem 1.7. Suppose G is a group of not prime power order, F is a finite CW-
complex with trivial G-action, Y is a connected finite G-CW-complex, and f : F →
Y is a G-map. If χ(f−1(C)) = χ(C) mod n(G) for every connected component C
of Y G, then f has pseudo-equivalence extension.

The discussion on global versus local Euler characteristic conditions means
exactly that the group N(Y ) introduced in theorem 1.6 satisfies

n(G)ZA ⊂ N(Y ) ⊂ {(aC) ∈ ZA : n(G) divides
∑

aC}, A = π0Y
G.

We note two cases in which the two bounds for N(Y ) coincide. If Y G is connected,
then N(Y ) = n(G)Z, and we recover theorem 1.2. If n(G) = 1, then N(Y ) = ZA,
which means there is no obstruction at all.

Under the condition of theorem 1.5, we know N(Y ) is the lower bound n(G)ZA,
i.e., the local Euler characteristic condition is sufficient. To get a somewhat non-
trivial example where N(Y ) is isomorphic to the upper bound, we consider a finite
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contractible G-CW-complex Y , and any G-map f : F → Y satisfying the global
Euler characteristic condition χ(F ) = χ(Y G) = 1 mod n(G). By Oliver’s theory
[10], there is a finite contractible G-CW-complex X, such that F = XG. If we
extend f : F → Y to a G-map g : X → Y , then g is a pseudo-equivalence due to
the contractibility of X and Y . The extension exists as long as all the fixed sets
Y H are sufficiently highly connected. There is a G-representation V , such that the
representation sphere S(V ) has no fixed point by G, and is highly connected for
the fixed sets of proper subgroups (see the first remark after the proof of lemma
4.2). Then Z = Y ∗ S(V ) is still contractible, and satisfies ZG = Y G. Moreover, Z
becomes highly connected for the fixed sets of proper subgroups. The contractibility
implies that the natural map h : Y → Z is a pseudo-equivalence. Therefore, h ◦
f : F → Z can be extended to a pseudo-equivalent G-map g : X → Z.

In general, we have not yet completely ascertained the pattern which determines
where between the two given extremes N(Y ) actually is, although one can easily
produce examples where either extreme is realized.

Remark 1.8. That being said, if Y G = ∅, then it is impossible to construct a
pseudo-equivalent action with non-empty fixed set in the context of this paper.
However, using zig-zag compositions of pseudo-equivalence maps, sometimes, but
not always, it is possible to get from such an action to one whose fixed set is
arbitrary.

Our results about finite G-CW-complexes (and compact G-ANRs) apply to com-
pact Lie group actions, as well. In [11], Oliver extended his theorem to the case G is
a compact Lie group. He calls G p-toral if the identity component G0 is a torus, and
G/G0 is a p-group. This is precisely the case Smith theory applies. Then Oliver’s
(and Quinn’s) results apply to his problem in the case when G is not p-toral, for any
prime p. This means two possibilities: (1) if G/G0 is not of prime power order and
G0 is a torus, then the results for G are the same as those for G/G0; (2) if G0 is not
a torus, then we have n(G) = 1, and there is no Euler characteristic obstruction to
making fixed sets. By the direct geometric arguments in § 3 and 4, this also holds
in our general setting.

The paper is organized as follows. In § 2 and 3, we prove theorem 1.7 for the case
all FC = f−1(C) are not empty. The case some FC = ∅ requires separate treatment,
and we prove this case in § 4. This completes the proof of theorem 1.7. Theorem
1.2 immediately follows from theorem 1.7. The special case FC = ∅ is geometrically
significant because it gives actions without fixed points. In fact, we also prove
theorem 1.1 in § 4.

In § 5, we use a formal construction and theorem 1.7 to prove theorem 1.6.
In § 6, we prove two results that give necessary conditions on the Euler char-
acteristics. Theorem 6.2 is for rational pseudo-equivalence under a cyclic group
action. Theorem 6.3 is for pseudo-equivalence under the action by a group satisfying
n(G) = 0. Theorem 1.5 is a consequence of the two theorems.

We would like to thank K. Pawa�lowski, R. Oliver and M. Morimoto for valuable
conversations about this work. We would also like to thank the referee for suggesting
a number of improvements to the exposition.
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2. Cell-wise partition of Euler characteristic

The proof of theorem 1.7 starts with the observation that we can inductively apply
Oliver’s construction to cells of Y G. Recall that a CW-complex Y is regular if
every cell σ is given by an embedding Dk → Y . This implies that the boundary
∂σ of the cell is a sphere Sk−1 embedded in Y . Then χ(σ) = χ(Ddim σ) = 1, and
χ(∂σ) = χ(Sdim σ−1) = 1 − (−1)dim σ.

Lemma 2.1. Suppose Y is a finite CW-complex, and f : F → Y is a map. If
χ(f−1(σ)) = 1 mod n for every cell σ of Y , then χ(F ) = χ(Y ) mod n.

The lemma allows n = 0, which means dropping ‘mod n’ in the statement. In the
following proof, all Euler characteristic equalities are true mod n.

Proof. If dim Y = 0, then Y consists of finitely many points y1, y2, . . . , yk, and
F = ∪k

i=1f
−1(yi) is a disjoint union. By the assumption, we have χ(f−1(yi)) = 1.

Therefore, χ(F ) =
∑k

i=1 χ(f−1(yi)) = k = χ(Y ).
Suppose dimY = d, and the lemma is proved for finite CW-complexes of dimen-

sion < d. We have Y d−1 = Y0 ⊂ Y1 ⊂ · · · ⊂ Yk−1 ⊂ Yk = Y , where Y d−1 is the
(d − 1)-skeleton of Y , and Yi is obtained by attaching one d-cell to Yi−1. By
the inductive assumption, we have χ(f−1(Y d−1)) = χ(Y d−1). Suppose we already
proved χ(f−1(Yi−1)) = χ(Yi−1). Let Yi = Yi−1 ∪ σ for a d-cell σ. Then Yi−1 ∩ σ is a
CW-complex of dimension < d. Therefore, we have χ(f−1(Yi−1 ∩ σ)) = χ(Yi−1 ∩ σ)
by the inductive assumption. Combined with χ(f−1(σ)) = 1 = χ(σ), we get

χ(f−1(Yi)) = χ(f−1(Yi−1)) + χ(f−1(σ)) − χ(f−1(Yi−1 ∩ σ))

= χ(Yi−1) + χ(σ) − χ(Yi−1 ∩ σ) = χ(Yi).

Inductively, this proves χ(F ) = χ(f−1(Yk)) = χ(Yk) = χ(Y ). �

The converse of lemma 2.1 is true up to homotopy equivalence.

Lemma 2.2. Suppose Y is a finite connected regular CW-complex. Suppose F �= ∅
and f : F → Y is a map, such that χ(F ) = χ(Y ) mod n. Then there is a homotopy
equivalence φ : F 
 F̂ and a map f̂ : F̂ → Y , such that f̂φ 
 f , and χ(f̂−1(σ)) = 1
mod n for every cell σ of Y .

Proof. We call a cell top cell if it is not in the boundary of any other cell. Fix
c ∈ F and a top cell β containing f(c). We regard β as the ‘base cell’ of Y . For
each top cell σ different from β, there is a continuous path γ : [−1, 1] → Y , such
that γ(−1) = f(c), γ(−1, 0) ∩ σ = ∅ and γ(0, 1] ⊂ σ̊ = σ − ∂σ. This implies that
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γ(0) ∈ ∂σ, and f(c) is the only other possible point on the path lying inside ∂σ.

For any two spaces A and B, we glue cones cA and cB to F by identifying the cone
points with c. The new space F ′ = F ∪c (cA ∪ cB) is homotopy equivalent to F .
We further extend f to f ′ : F ′ → Y by mapping the cones to the path γ in Y . The
map is ‘straightforward’ on cA and is ‘twisted’ on cB, as illustrated by the picture.
Let χ(A) = a and χ(B) = b. Then we have

χ(f ′−1(σ)) = χ(f−1(σ)) + a + 2b,

χ(f ′−1(∂σ)) = χ(f−1(∂σ)) + a + 3b,

χ(f ′−1(Y − σ̊)) = χ(f−1(Y − σ̊)) + b.

It is therefore possible to choose a and b, such that χ(f ′−1(σ)) = χ(σ) = 1 and
χ(f ′−1(∂σ)) = χ(∂σ) = 1 − (−1)dim σ. By χ(F ) = χ(Y ) mod n, this implies that
χ(f ′−1(Y − σ̊)) = χ(Y − σ̊) mod n.

The basic construction above reduces the problem to the restriction map
f ′| : f ′−1(Y − σ̊) → Y − σ̊, which still satisfies the Euler characteristic condition
in the lemma. This accommodates an inductive argument. We make the stronger
inductive assumption that f ′−1(Y − σ̊) can be extended to F ′′ by glueing cones
(identifying cone points with c), and f ′| : f ′−1(Y − σ̊) → Y − σ̊ can be extended to
f ′′ : F ′′ → Y − σ̊, such that χ(f ′′−1(τ)) = 1 mod n for every cell τ of Y − σ̊. Then
F̂ = F ′′ ∪c (cA ∪ cB) is obtained by glueing cones to F (identifying cone points
with c). Therefore, F̂ is homotopy equivalent to F , and f̂ = f ′ ∪ f ′′ : F̂ → Y is
homotopy equivalent to f . Moreover, we still have χ(f̂−1(τ)) = χ(f ′′−1(τ)) = 1 for
every cell τ of Y − σ̊. By applying lemma 2.1 to the restriction f̂ | : f̂−1(∂σ) → ∂σ,
where cells of ∂σ are cells of Y − σ̊, we get

χ(f̂−1(∂σ)) = χ(∂σ) = 1 − (−1)dim σ = χ(f ′−1(∂σ)).

On the other hand, we have

χ(f̂−1(σ)) − χ(f̂−1(∂σ)) = χ(f̂−1(̊σ)) = χ(f ′−1(̊σ)) = χ(f ′−1(σ)) − χ(f ′−1(∂σ)).

Therefore, χ(f̂−1(σ)) = χ(f ′−1(σ)) = 1.
There are two problems with the induction argument. The first is that Y − σ̊

may not be connected. The second is that there may be only one top cell β.
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The case Y − σ̊ not connected happens only when σ is a 1-cell, with only one
end v0 attached to Y − σ̊, and other end v1 being ‘free’. In addition to glueing cA
and cB, we may further glue a cone cC, with the map from cC to Y extending all
the way to v1. Then we have

χ(f ′−1(σ)) = χ(f−1(σ)) + a + 2b + c,

χ(f ′−1(v0)) = χ(f−1(v0)) + a + 3b + c,

χ(f ′−1(v1)) = χ(f−1(v1)) + c,

χ(f ′−1(Y − σ̊)) = χ(f−1(Y − σ̊)) + b.

It is then possible to choose a, b, c, such that χ(f ′−1(σ)) = χ(f ′−1(v0)) =
χ(f ′−1(v1)) = 1. The rest of the inductive argument is the same.

Finally, we consider the case Y has only one top cell β. In this case, the assump-
tion already says χ(f−1(β)) = 1, and additional cone construction over β does not
change this fact. What we need to do is to improve χ(f−1(σ)) to 1 for cells σ in
∂β. The problem is then reduced to the restriction map f | : f−1(∂β) → ∂β. The
induction may continue over ∂β. �

3. Non-empty fixed point set

We prove theorem 1.7, for the case FC = f−1(C) is not empty for every connected
component C of Y G. The next section deals with the case some FC = ∅.

To construct the pseudo-equivalence extension, we will first homotopically mod-
ify f : F → Y G to a better map described in lemma 2.2. Then we construct the
extension by inducting on skeleta of Y G. The following justifies the homotopy
modification of f .

Lemma 3.1. Suppose Y is a finite G-CW-complex, and F is a finite CW-complex
with trivial G-action. If a G-map f : F → Y has pseudo-equivalence extension, and
we change f, F, Y by equivariant homotopy, then the new map also has pseudo-
equivalence extension.

Proof. Suppose g : X → Y is a pseudo-equivalence extension of f : F → Y . We
homotopically change f, F, Y one by one, and argue about the pseudo-equivalence
extension of the new map.

First, suppose f is G-homotopic to f ′ : F → Y . By the equivariant version of
the homotopy extension property, the G-homotopy extends to a G-homotopy from
g : X → Y to another G-map g′ : X → Y . Then the G-map g′ extends f ′, and g′ is
still a pseudo-equivalence.

https://doi.org/10.1017/prm.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.75


10 S. Cappell, S. Weinberger and M. Yan

Second, suppose φ : F → F ′ is a G-homotopy equivalence. Then there is a G-map
f ′ : F ′ → Y , such that f : F → Y is G-homotopic to f ′ ◦ φ : F → F ′ → Y . By the
argument above, f ′ ◦ φ has pseudo-equivalence extension g′ : X → Y . Then X ′ =
X ∪φ F ′ (glueing F ⊂ X to F ′ by φ) is a G-CW-complex with F ′ as the fixed set,
and the G-map g′ ∪ f ′ : X ′ → Y is a pseudo-equivalence extension of f ′.

Finally, suppose ψ : Y → Y ′ is a G-homotopy equivalence. Then ψ ◦ f : F → Y ′

is extended to a pseudo-equivalence ψ ◦ g : X → Y ′. �

For the inductive construction (on skeleta of Y G) of pseudo-equivalence extension,
we use the following result.

Lemma 3.2. Suppose G is a group of not prime power order, K is a finite G-CW-
complex and F = KG.

1. If χ(F ) = 1 mod m(G), then K can be extended to a finite G-CW-complex
X, such that F = XG, X is (dim X − 1)-connected and Hdim X(X; Z) is a
projective ZG-module.

2. If χ(F ) = 1 mod n(G), then K can be extended to a finite contractible
G-CW-complex X, such that F = XG.

Proof. The first statement is [10, theorem 2], and Oliver called the G-CW-complex
X in the statement a G-resolution. The second statement is essentially the corollary
to [10, theorem 3]. More precisely, we may use [11, theorem 2], which is even
applicable to compact Lie group actions: Let F be a family of subgroups of G
as defined by tom Dieck, meaning closed under subgroup and conjugation. If F
contains all the prime toral subgroups, X and Z are finite G-CW-complexes, Z is
contractible and χ(XH/NH) = χ(ZH/NH) for all H �∈ F , then X can be extended
to a finite contractible G-CW-complex Y , such that the isotropy subgroups of
Y − X are in F .

Let

δH =
∑

j

(−1)j(number of cells of type G/H × Dj).

Then the proof of [11, lemma 14] shows that χ(XH/NH) = χ(ZH/NH) for all
H �∈ F if and only if δH(X) = δH(Z) for all H �∈ F .

By [11, theorem 3], the assumption χ(F ) = 1 mod n(G) implies F = ZG for a
finite contractible G-CW-complex Z. Let F be the family of all the prime toral
subgroups of G. By adding G/H × Dj to K, for H �∈ F ∪ {G}, it is easy to get
a finite G-CW-complex L, such that δH(L) = δH(Z) for all H �∈ F ∪ {G}. Since
H �= G in the construction of L, we have LG = KG = F = ZG. Therefore, we also
have δG(L) = χ(LG) = χ(ZG) = δG(Z), and we get δH(L) = δH(Z) for all H �∈ F .
This implies χ(LH/NH) = χ(ZH/NH) for all H �∈ F . Then by the interpretation
of [11, theorem 2] above, L extends to a finite contractible G-CW-complex X, such
that the isotropy subgroups of X − L are in F . Since G is not an isotropy subgroup
of X − L, we have XG = LG = F . �

Proof of theorem 1.7 in case all FC �= ∅. The G-CW-complex Y is G-homotopy
equivalent to a regular G-CW-complex. If all FC are not empty, then we apply
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lemma 2.2 to homotopically modify all FC → C, such that χ(f−1(σ)) = 1 mod
n(G) for every cell σ of Y G. By lemma 3.1, it is sufficient to construct a
pseudo-equivalence extension under the additional assumption.

Denote Z = Y G, which has trivial G-action. We first extend f : F → Z to a
pseudo-equivalence h : W → Z by inducting on the skeleta of Z.

We assume F k−1 = f−1(Zk−1) is already extended to a G-CW-complex W k−1

with (W k−1)G = F k−1. Moreover, we assume that f |Fk−1 is extended to a G-map
hk−1 : W k−1 → Zk−1, such that h−1

k−1(σ) is contractible for every cell σ of Zk−1.
The inductive assumption holds for k = 0, because Z−1 = F−1 = ∅.

Let σ be a k-cell of Z. Then χ(f−1(σ)) = 1 mod n(G) by our assumption. Taking
f−1(σ) and f−1(σ) ∪ h−1

k−1(∂σ) as F and K in the second part of lemma 3.2, we may
extend f−1(σ) ∪ h−1

k−1(∂σ) to a finite contractible G-CW-complex Wσ, such that
WG

σ = f−1(σ). Since σ is contractible and has trivial G-action, we may further
arrange to extend f |σ ∪ hk−1|∂σ to a G-map hσ : Wσ → σ, such that h−1

σ (∂σ) =
h−1

k−1(∂σ).
Let W k = W k−1 ∪ (∪dim σ=kWσ), where the union identifies h−1

k−1(∂σ) ⊂ Wσ with
the same subset in W k−1. Then we have G-map hk = hk−1 ∪ (∪dim σ=khσ) : W k →
Zk, such that (W k)G = F k−1 ∪ (∪dim σ=kf−1(σ)) = Fk. Moreover, we have
h−1

k (σ) = Wσ if dim σ = k, and h−1
k (σ) = h−1

k−1(σ) if dim σ < k. Therefore h−1
k (σ)

is contractible for every cell σ of Zk.
When k = dim Z, we get h = hdim Z : W = W dim Z → Z, such that WG = F , and

h−1(σ) is contractible for every cell σ of Z. This implies that h : W → Z = Y G is
a homotopy equivalence.

Next, we further extend h : W → Z = Y G ⊂ Y to a pseudo-equivalence
g : X → Y .

The equivariant neighbourhood nd(Z) of Z in Y is the mapping cylinder of
a G-map λ : E → Z. We try to factor λ through a G-map λ̃ : E → W . Then
λ = h ◦ λ̃, and we have a G-map from the mapping cylinder of λ̃ : E → W to
the mapping cylinder of λ : E → Z. The G-map extends to a G-map g = id ∪
h : X = (Y − nd(Z)) ∪λ̃ W → Y = (Y − nd(Z)) ∪λ Z. We have XG = WG = F ,
and g extends f . Moreover, since h is a pseudo-equivalence, g is also a pseudo-
equivalence.

It remains to construct the lifting λ̃. Since G fixes no points on E, we can con-
struct the lifting if h : W → Z is highly connected for the fixed sets of proper
subgroups of G acting on W . Recall that we actually constructed h : W → Z in
such a way that, for every cell σ in the (regular) CW-complex Z, h−1(σ) is con-
tractible. Let S be the disjoint union of all the G-orbits appearing in E. Then S is
a compact set, such that all the isotropies on E appear in S. Then we may take the
cell-wise join of h : W → Z with S × Z → Z several times to get h′ : W ′ → Z. This
means h′−1(σ) = h−1(σ) ∗ S ∗ · · · ∗ S. Since h−1(σ) is contractible, h′−1(σ) is still
contractible. Since G fixes no points of S, we get W ′G = WG = F . Therefore, h′ is
still a pseudo-equivalence extension of f . On the other hand, the fixed sets of proper
subgroups of G acting on h′−1(σ) become more and more highly connected as we
repeat the join construction more and more times. Therefore, we may construct the
lifting λ̃ by using h′ instead of h. �

https://doi.org/10.1017/prm.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.75


12 S. Cappell, S. Weinberger and M. Yan

For the G-ANR case, we only need to modify the proof in the very last cell.
We may use Quinn’s ‘wrinkling’ trick from [15, § 2] to remove the K̃0-obstruction
arising in the first part of lemma 3.2, or more systematically, use his exact sequence
in [16] for the topological Whitehead groups and Wall finiteness groups where the
relevant K-groups are quotiented by the image of the assembly map.

4. Empty fixed point

We still need to prove theorem 1.7 for the case some FC = ∅. In this case, χ(FC) =
χ(C) mod n(G) means χ(C) = 0 mod n(G). A typical example is that C is the
circle S1, and our proof starts with this special case. In fact, we first concentrate
on the case Y = Y G = S1.

Lemma 4.1. Suppose G is a group of not prime power order. Then there is a pseudo-
equivalence X → S1, such that X is a finite G-CW-complex without fixed points,
and G fixes S1.

The idea is to find a finite and simply connected G-CW-complex Z without
fixed points, and a G-map h : Z → Z inducing zero homomorphism on the reduced
homology. Then the mapping torus X of h together with the natural map to S1

gives what we want. We may take Z = S(V ) and take h to be the self map of S(V )
in the following result.

Lemma 4.2. Suppose G is a group of not prime power order, and V is a linear
G-representation. If V G = 0 and all Sylow subgroups of G are isotropy groups of
V , then there is a degree 0 G-map from the unit sphere S(V ) to itself.

Proof. Let P be a Sylow subgroup and let NP be its normalizer in G. Since P is
an isotropy subgroup, the fixed subspace V P is not a zero subspace. Let D be a
small equivariant disk neighbourhood of a point x ∈ S(V P ). Then D is an NP -
representation. Moreover, since V is a linear representation, the NP -representation
is independent of the size of D. This means that the radial extension gives an
NP -equivariant homeomorphism D/∂D ∼= S(V ) sending ∗ = ∂D/∂D to x. Then
we may construct an NP -map

S(V ) = (S(V ) − D) ∪∂D D → S(V ) ∨x D/∂D → S(V ).

The first map collapses ∂D to x, and the second map uses the NP -equivariant
homeomorphism D/∂D ∼= S(V ). The map can be extended to a G-map

hx : S(V ) → S(V ) ∪Gx (G ×NP D/∂D) → S(V ).

If we fix an orientation of S(V ), then D inherits the orientation, and the homeo-
morphism D/∂D ∼= S(V ) has degree ±1. By composing with the −1 map along a
1-dimensional subspace of V P , we may change the sign of the degree of the home-
omorphism. Therefore, we may arrange to have the degree of hx to be 1 + |G/NP |
or to be 1 − |G/NP |. If we apply the construction at several points x ∈ S(V P ) with
disjoint orbits Gx, then we get a G-map S(V ) → S(V ) of degree 1 + a|G/NP | for
any integer a. If we apply the construction to the Sylow subgroups P1, P2, . . . , Pn
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for all the distinct prime factors of |G|, then we get a G-map S(V ) → S(V ) of
degree 1 +

∑
ai|G/NPi|, where a1, a2, . . . , an can be any prescribed integers. Since

|G/NP1|, |G/NP2|, . . . , |G/NPn| are coprime, we get degree 0 by suitable choice of
the integers ai. �

Remark 4.3. We may further make S(V ) highly connected for the fixed sets
of proper subgroups. Specifically, the kernel of the augmentation ε(

∑
g∈G agg) =∑

ag : RG → R is a representation satisfying the condition of the lemma. The direct
sum of several copies of this kernel also satisfies the condition of the lemma. By
taking the direct sum of sufficiently many copies, the fixed sets of S(V ) for proper
subgroups are highly connected.

Remark 4.4. Lemma 4.1 is valid for non-prime toral compact Lie groups. Moreover,
the remark above on the high connectivity is also valid.

Suppose a compact Lie group G is not prime toral. If the identity component G0 is
not abelian (i.e., not torus), then by [11, theorem 5], there is a finite contractible G-
CW-complex Z without fixed points. In fact, Z can be a disk with smooth G-action.
Then X = Z × S1 → S1 is a pseudo-equivalence, and XG = ∅.

If G0 is abelian, then the order of G/G0 is not prime power. We may apply lemma
4.2 to G/G0, and then take the mapping cylinder to construct X. We obtain a
G/G0-pseudo-equivalence X → S1, and X has no G/G0-fixed points. This induces
a G-pseudo-equivalence X → S1, and X still has no G-fixed points.

Alternatively, we may use Bartsch’s study of the existence of Borsuk–Ulam the-
orems [1] to find degree 0 G-map from a fixed point free representation sphere to
itself. The equivalence of properties (c) and (d) of his theorem 1 gives such a map
for finite groups of non-prime power order. The equivalence of properties (c) and
(d′) of his theorem 2 gives such a map for non-prime toral compact Lie groups. The
map on the representation sphere has degree 0 because it takes the whole sphere
into a proper sub-sphere.

Proof of theorem 1.7 in case some FC = ∅. Assume FC = ∅ for some C. Then the
condition χ(FC) = χ(C) mod n(G) means χ(C) = 0 = χ(S1) mod n(G).

If FC = ∅, then we introduce F ′
C = S1 → C, where the map can be any one.

If FC �= ∅, then we let F ′
C = FC , and let the map F ′

C → C be FC → C. Then
f : F → Y G extends to f ′ : F ′ = ∪F ′

C → Y G. The modification f ′ satisfies the Euler
characteristic condition in the theorem, and all F ′

C are not empty. Since the theorem
is already proved for the case all FC �= ∅, f ′ has a pseudo-equivalence extension
X ′ → Y , with X ′G = F ′.

It remains to homotopically replace the extra circles added to F by something
that have no fixed points. The equivariant neighbourhood nd(S1) of one such circle
in X ′ is the mapping cylinder of a G-map λ : E → S1. By lemma 4.1 and the remarks
after the proof of lemma 4.2, there is a highly connected (for the fixed sets of proper
subgroups) pseudo-equivalence μ : W → S1, such that W has no fixed point. By the
high connectivity, λ can be lifted to a G-map λ̃ : E → W . Then we have λ = μ ◦ λ̃.
Let X = (X ′ − nd(S1)) ∪λ̃ W be obtained by glueing the boundary E of nd(S1) to
W , and this is done for all F ′

C = S1 ⊂ X ′ that were used to replace empty FC . Then
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λ = μ ◦ λ̃ and the pseudo-equivalence μ induce a pseudo-equivalence X → X ′ =
(X ′ − nd(S1)) ∪λ S1. The composition X → X ′ → Y is then a pseudo-equivalence
extension of f with XG = F . �

We end the section by using lemma 4.1 to prove theorem 1.1.

Proof of theorem 1.1. By lemma 4.1, there is a G-CW-complex X without fixed
point, and a pseudo-equivalence f : X → S1, where G fixes S1. By thickening, we
may assume X is a manifold with boundary. Let C be the mapping cylinder of
f . Then the inclusion X → C is a pseudo-equivalence. We can now do a Davis
construction [5, 6] equivariantly on X (by triangulating the boundary) and mapping
to the Davis construction on C (with respect to the boundary of X). This produces a
G-action on a closed aspherical manifold M , with a pseudo-equivalence to the same
construction on C. Since C has a fixed point, the G-action on π = π1(C) = π1(X)
lifts to Aut(π). On the other hand, the G-action on M has no fixed point, because
the original action on X did not. �

It is an interesting problem whether the action constructed in the proof can exist
on classical aspherical manifolds, e.g., hyperbolic manifolds. For odd order cyclic
group (or the order is a power of 2), [19] shows the answer is negative.

5. Obstruction group

We prove theorem 1.6.
For a finite G-CW-complex Y , let N(Y ) ⊂ Zπ0Y G

be the collection of

ν(g) = (χ(FC) − χ(C))C∈π0Y G , FC = g−1(C) ∩ XG,

for all pseudo-equivalences g : X → Y . We prove N(Y ) is a group, by showing that
it is closed under negative and addition operations.

For a pseudo-equivalence g : X → Y , we construct its negative to be the double
mapping cylinder of g

g : X = Y ∪ X × [0, 1] ∪ Y → Y.

Then g is still a pseudo-equivalence, with FC = C ∪ FC × [0, 1] ∪ C, and χ(FC) −
χ(C) = −(χ(FC) − χ(C)). Therefore, ν ∈ N(Y ) implies −ν ∈ N(Y ).

The negative construction has the following properties:

1. X contains a copy of Y , and the non-equivariant homotopy equivalence can
be a homotopy retraction of X to Y .

2. FC is connected. Therefore, the connected components of the fixed sets of X
and Y are in one-to-one correspondence.

We call a pseudo-equivalence with the two properties retracting equivalence. Since
the double negative satisfies ν(g) = ν(g), every element in N(Y ) is represented by
a retracting equivalence.
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For two retracting equivalences g1 : X1 → Y and g2 : X2 → Y , the addition g1 ∪
g2 : X1 ∪Y X2 → Y is still a retracting equivalence. It is also easy to see that ν(g1 ∪
g2) = ν(g1) + ν(g2). Therefore, ν1, ν2 ∈ N(Y ) implies ν1 + ν2 ∈ N(Y ).

This completes the proof that N(Y ) is an abelian subgroup. Next, we prove that
N(Y ) is indeed the obstruction to pseudo-equivalence extension.

By the definition of N(Y ), if f : F → Y extends to a pseudo-equivalence
g : X → Y , such that XG = F , then (χ(FC) − χ(C))C∈π0Y G = ν(g) ∈ N(Y ).

Conversely, suppose f : F → Y satisfies (χ(FC) − χ(C))C∈π0Y G ∈ N(Y ). Then
(χ(FC) − χ(C))C∈π0Y G = ν(g′) for a pseudo-equivalence g′ : X ′ → Y . This means
χ(FC) = χ(F ′

C), where F ′
C = g′−1(C) ∩ X ′G.

As remarked earlier, we may further assume that g′ is a retracting equivalence.
Then we may regard f as mapped into Y ⊂ X ′. This means f is the composition
(i : Y → X ′ is the inclusion)

f = g′ ◦ (i ◦ f) : F
i◦f−−→ X ′ g′

−→ Y.

Since Y ⊂ X ′, and connected components of the fixed sets of X ′ and Y are in
one-to-one correspondence, we have

C = Y ∩ F ′
C , FC = f−1(Y ∩ F ′

C) = (i ◦ f)−1(F ′
C),

and

χ((i ◦ f)−1(F ′
C)) = χ(FC) = χ(F ′

C).

By theorem 1.7, this implies that i ◦ f has pseudo-equivalence extension
h : X → X ′. Then g′ ◦ h : X → Y is a pseudo-equivalence extension of f . This
completes the proof of theorem 1.6.

6. The role of the fundamental group

In this section, we develop an equivariant Euler–Wall characteristic of a finite
G-CW-complex; it lies in K0(R[Γ]), for rings R in which the orders of isotropy
groups are invertible. We apply this to get further restrictions on the Euler
characteristics of components of fixed sets under pseudo-equivalences.

We first elaborate on the lifted G-actions to the universal cover that we use to
define the weakly G-connected property in the introduction.

Let p : Ỹ → Y be the universal cover, with free action on Ỹ by the fundamental
group π = π1(Y ). A G-action on Y lifts to self homeomorphisms of Ỹ . All the
liftings form a group Γ fitting into an exact sequence

1 → π → Γ → G → 1. (6.1)

Strictly speaking, we only get an exact sequence with G/G0 in place of G, where
G0 consists of all the elements of G that act trivially on Y . Then we replace Γ by
the pullback of Γ → G/G0 ← G and still get (6.1) with G instead of G/G0.

Let ỹ ∈ Ỹ , y = p(ỹ). The induced homomorphism Γỹ → Gy of isotropy groups
is an isomorphism. If y ∈ Y G, then we get a splitting G = Gy

∼= Γỹ ⊂ Γ of (6.1).
If ỹ and ỹ′ are in the same connected component Ĉ of p−1(Y G), then Γỹ = Γỹ′ .
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Therefore, we may denote Γỹ = ΓĈ , and the splitting G ∼= ΓĈ ⊂ Γ depends only
on Ĉ.

The connected component Ĉ covers a connected component C of Y G. The other
connected components of p−1(C) are aĈ, a ∈ π. Therefore, a connected component
C of Y G gives a π-conjugacy class of splittings of (6.1),

ΓC = {ΓaĈ = aΓĈa−1 : a ∈ π}.

Example 6.1. The complex conjugation action of G = Z2 on circle Y = S1 has
fixed point components C1 = {1} and C−1 = {−1}. The universal cover is p(t) =
eit : Ỹ = R → Y . The group Γ consists of σn(t) = t + 2nπ (liftings of the identity,
which form π1(Y )) and ρn(t) = −t + 2nπ (liftings of the conjugation). We have

p−1(C1) = {2nπ : n ∈ Z}, p−1(C−1) = {(2n + 1)π : n ∈ Z};
Ĉ1 = {0}, Ĉ−1 = {π};
Γ{2nπ} = {1, ρ2n} = σn

1 ΓĈ1
σ−n

1 , Γ{(2n+1)π} = {1, ρ2n+1} = σn
1 ΓĈ−1

σ−n
1 .

We have two conjugate families of splittings

ΓC1 = {Γ{2nπ}}, ΓC−1 = {Γ{(2n+1)π}}.

A splitting of (6.1) corresponds to a semi-direct product decomposition Γ = π �

G. The π-conjugacy classes of splittings form the cohomology set H1(G;π) (not
necessarily a group because π may not be commutative).

A G-map g : X → Y has a pullback g̃ : X̃ → Ỹ along the universal cover p : Ỹ →
Y . The map g̃ is a Γ-map, and induces a map of Z[Γ]-chain complexes g̃∗ : C(X̃) →
C(Ỹ ). If g is a pseudo-equivalence, then g̃∗ has a Z[π]-chain homotopy inverse ϕ.

Let R be a ring, say the rational numbers Q, such that |G| is invertible in R. Then
we may use one splitting Γ = π � G to get a R[Γ]-chain map 1

|G|
∑

u∈G uϕ : C(Ỹ ) →
C(X̃). This is a R[Γ]-chain homotopy inverse of

g̃∗ ⊗ R : C(X̃) ⊗ R → C(Ỹ ) ⊗ R.

In particular, g̃∗ ⊗ R is a R[Γ]-chain homotopy equivalence.
Since |G| is invertible in R, and the isotropy groups of the Γ-action are isomorphic

to subgroups of G, we know C(X̃) ⊗ R and C(Ỹ ) ⊗ R consist of finitely generated
projective R[Γ]-modules. Then the R[Γ]-chain complexes give the Euler characteris-
tic elements χΓ(X̃) and χΓ(Ỹ ) in K0(R[Γ]). The R[Γ]-chain homotopy equivalence
g̃∗ ⊗ R implies χΓ(X̃) = χΓ(Ỹ ).

The G-cells Gσ of Y are in one-to-one correspondence with Γ-cells Γσ̃ of Ỹ , where
σ̃ is any cell of Ỹ over σ. The Euler characteristic of C(Ỹ ) ⊗ R is

χΓ(Ỹ ) =
∑

G-cells of Y

(−1)dim σ[R[Γσ̃]] ∈ K0(R[Γ]).

Here Γσ̃ = Γ/Γσ̃ is a Γ-orbit, and R[Γσ̃] is a projective R[Γ]-module. For a finite
subgroup H, the rank [2, 7, 18] of the projective R[Γ]-module R[Γ/H] is ((γ) is
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the conjugacy class of γ in Γ)

rank(R[Γ/H]) =
1
|H|

∑
h∈H

h ∈ ⊕(γ)⊂ΓR(γ).

By χΓ(X̃) = χΓ(Ỹ ), we have rank(χΓ(X̃)) = rank(χΓ(Ỹ )).

Theorem 6.2. Suppose G is a cyclic group acting on a finite G-CW-complex
Y . Suppose γ ∈ Γ is mapped to a generator of G, and 〈γ〉 is the cyclic subgroup
generated by γ. If g : X → Y is a rational pseudo-equivalence, then

∑
〈γ〉∈ΓC

χ(FC) =
∑

〈γ〉∈ΓC

χ(C).

The sum is over all components C of Y G satisfying 〈γ〉 ∈ ΓC .

If Y is weakly G-connected, then there is at most one C satisfying 〈γ〉 ∈ ΓC , and
the proposition says χ(FC) = χ(C) for each C. In other words, the local Euler char-
acteristic condition in theorem 1.7 is necessary and sufficient. This proves theorem
1.5 for the case G is cyclic, and we have N(Y ) = n(G)Zπ0Y G

.

Proof. Since γ ∈ Γ is mapped to a generator of G, by the formula for rank(Q[Γσ̃]) =
rank(Q[Γ/Γσ̃]), the conjugacy class (γ) appears in rank(Q[Γσ̃]) if and only if a
conjugate of γ fixes σ̃. Moreover, for such σ̃, we have

rank(Q[Γσ̃]) =
1
n

n−1∑
i=0

(γi), n = |G|.

The elements γi are not Γ-conjugate because they are mapped to non-conjugate
elements of the cyclic group G. Therefore, the coefficient of (γ) in rank(Q[Γσ̃])
is 1

n .
The terms Q[Γσ̃] of C(Ỹ ) ⊗ Q are in one-to-one correspondence with G-cells Gσ

of Y . If a conjugate of γ fixes σ̃, by γ mapped to a generator of G, we know G
fixes σ. Therefore, σ is in a connected component C of Y G satisfying 〈γ〉 ∈ ΓC .
Conversely, any such σ gives 1

n (γ) in the corresponding rank(Q[Γσ̃]). Therefore,
the coefficient of (γ) in

rank(χΓ(Ỹ )) =
∑

G-cells Gσ of Y

(−1)dim σrank(Q[Γσ̃])

is
∑

G-cell Gσ of C satisfying 〈γ〉 ∈ ΓC

(−1)dim σ 1
n

=
1
n

∑
〈γ〉∈ΓC

χ(C).

We have the same calculation for the pullback X̃, and find that the coefficient
of (γ) in rank(χΓ(X̃)) is 1

n

∑
〈γ〉∈ΓC

χ(FC). Then we conclude 1
n

∑
〈γ〉∈ΓC

χ(FC) =
1
n

∑
〈γ〉∈ΓC

χ(C). �

https://doi.org/10.1017/prm.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.75


18 S. Cappell, S. Weinberger and M. Yan

Next, we apply the idea to G satisfying n(G) = 0. This means there is a normal
subgroup P , such that |P | = pl for a prime p, and G/P is cyclic of order n. We may
further assume that p and n are coprime. The liftings of P -actions give an exact
sequence

1 → π → Π → P → 1. (6.2)

Here Π is the pre-image of P under Γ → G, and (6.2) is part of (6.1).
Each connected component C of Y G is contained in a connected component D

of Y P . Then p−1(C) ⊂ p−1(D), and each connected component Ĉ of p−1(C) is
contained in a connected component D̂ of p−1(D). The pair (Ĉ, D̂) gives a pair of
compatible splittings G ∼= ΓĈ ⊂ Γ and P ∼= ΓD̂ ⊂ Π of (6.1) and (6.2). All the pairs
(Ĉ, D̂) are related by π-translations, and the corresponding pairs of splittings are
π-conjugate. Then we get a π-conjugacy class of compatible splittings (we fix one
pair (Ĉ, D̂) in the second expression)

ΓCD = {all (ΓĈ ,ΓD̂)} = {(aΓĈa−1, aΓD̂a−1) : a ∈ π}.

Theorem 6.3. Suppose P is a normal p-subgroup of G, and G/P is a cyclic
group of order prime to p. Suppose X,Y are finite G-CW-complexes, and a G-
map g : X → Y is a pseudo-equivalence. Then for connected components C0,D0 of
Y G, Y P satisfying C0 ⊂ D0, we have

∑
ΓCD0=ΓC0D0

χ(FC) =
∑

ΓCD0=ΓC0D0

χ(C).

The sum is over all connected components C of Y G satisfying ΓCD0 = ΓC0D0 .

The condition ΓCD0 = ΓC0D0 means the following: We fix one connected compo-
nent D (denoted D0 in the proposition) of Y P , and consider all the connected
components C of Y G that are contained in D. Then we further distinguish
these C by the conjugation classes of the associated splittings. The sum of Euler
characteristics is over such conjugation classes.

If all connected components C inside D have non-conjugate splittings, then the
sum is over a single C, and we get χ(FC) = χ(C) for every C inside D. Furthermore,
suppose Y has the property that, if connected components C and C ′ of Y G give
conjugate splittings, then C and C ′ belong to different connected components of
Y P . Of course, a weakly G-connected Y has this property. Under this property, we
get χ(FC) = χ(C) for every connected component C of Y G. This proves theorem
1.5 for the case n(G) = 0.

Proof. The cyclic group H = G/P acts on Y P , and the group H̃ of liftings of
H-actions to p−1(Y P ) fits into an exact sequence

1 → π → H̃ → H → 1. (6.3)

By Smith theory [4, 17], we know gP : XP → Y P is an Fp[H̃]-homology equivalence.
This implies gP is a Zpk [H̃]-homology equivalence for all k.
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The homology equivalence is a sum of homology equivalences on connected com-
ponents [4]. Let C,D, Ĉ, D̂ be given as in the discussion before the proposition.
Since G has fixed set C in D, we know H = G/P acts on D. Then D̂ covers D, and
the group HD̂ of liftings of H-actions to D̂ fits into an exact sequence

1 → πD̂ → HD̂ → H → 1. (6.4)

Here πD̂ is the subgroup of translations a ∈ π satisfying aD̂ = D̂, and (6.4) is part
of (6.3). Let F̂D be the pullback of g−1(D) ∩ XP → D ← D̂, then the restriction of
gP induces a Zpk [HD̂]-chain homology equivalence

gP
∗ : C(F̂D) ⊗ Zpk → C(D̂) ⊗ Zpk . (6.5)

We note that ΓĈ/ΓD̂
∼= H. In fact, by ΓĈ/ΓD̂ ⊂ HD̂, we have a splitting of (6.4).

For fixed D, D̂, the other choices of Ĉ ⊂ D̂ over the same C give πD̂-conjugations
of the splitting. These conjugations are in one-to-one correspondence with the con-
jugations of the pair (ΓĈ ,ΓD̂). Therefore, ΓCD is also the πD̂-conjugacy class of
the splittings of (6.4).

Let γ ∈ ΓĈ/ΓD̂ correspond to a generator of the cyclic group H. Since p and n are
coprime, the order n = |H| = |ΓĈ/ΓD̂| is invertible in the ring Zpk . Therefore, both
chain complexes in (6.5) consist of projective Zpk [HD̂]-modules, and the homology
equivalence is a Zpk [HD̂]-chain homotopy equivalence. Then we may apply the
same idea as in the proof of theorem 6.2, with Q replaced by Zpk , and get a similar
conclusion. We fix C0,D0, Ĉ0, D̂0, and get the generator γ ∈ ΓĈ0

/ΓD̂0
⊂ HD̂0

. Using
the conjugacy class ΓCD0 explained above, we conclude

∑
〈γ〉∈ΓCD0

χ(FC) =
∑

〈γ〉∈ΓCD0

χ(C) mod pk.

Here the equality is mod pk because it is an equality in Zpk . We note that 〈γ〉 ∈ ΓCD0

is the same as ΓCD0 = ΓC0D0 . Moreover, this equality holds mod pk for all k, which
means the equality holds as integers. �
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