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Abstract

In this paper, we introduce fully discrete Fourier-Spectral numerical scheme to solve the nonlocal Cahn—Hilliard equation
coupled with Navier—Stokes/Darcy equations, which represent a phase-field model for two-phase incompressible flow in either
the free flow regime or a Hele-Shaw cell. The proposed scheme achieves full decoupling while maintaining linearity and energy
stability through a combination of the Scalar Auxiliary Variable (SAV) method, which discretizes the nonlinear potential, and the
“Zero-Energy-Contribution” (ZEC) method, which handles the coupled nonlinear advective/surface tension terms. The efficiency
of this scheme is attributed to its linear decoupling structure and the fact that it requires only a few elliptic equations with
constant coefficients to be solved at each time step. We rigorously establish the scheme’s unconditional energy stability. Further,
some numerical simulations are provided in both 2D and 3D to show its effectiveness, including its accuracy, stability, and
efficiency.
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1. Introduction

The nonlocal Cahn—Hilliard model [1,2] has found widespread use in various scientific fields, such as materials
science, soft matter physics, and biophysics, to study complex systems exhibiting phase separations. Compared with
the classical Cahn—Hilliard model [3], which is primarily a phenomenological model, the nonlocal Cahn—Hilliard
model takes into account the effects of long-range forces such as van der Waals forces or electrostatic interactions,
which are critical in nonuniform systems and significantly influence the dynamics of phase separation. In fact, a
complete microscopic derivation of phase separation using the statistical mechanics approach leads to the nonlocal
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Cahn-Hilliard model [4] as opposed to the classical version. Therefore, from a physical perspective, when modeling
two-phase flows with interfacial effects, coupling the nonlocal Cahn—Hilliard equation with the fluid dynamical
equations to simulate a two-phase flow system is a more reasonable model than using the extensively employed
local Cahn—Hilliard model [5—13] in the aspect of accounting for the long-range forces present in the system, thereby
providing a more precise and physically consistent description of the fluid dynamics.

The primary objective of this article is to develop some efficient numerical schemes to solve the two-phase flow
model resulting from the coupling of the flow field with the nonlocal Cahn-Hilliard equation, where the flow field
comprises of two commonly-used regimes, the free flow (Navier—Stokes) and the Hele-Shaw flow (Darcy). Although
theoretical studies related to topics such as global attractor, existence and uniqueness of strong solutions, regularities,
and applications of these models (e.g., tumor models) exist, cf. [14-21], there has been a paucity of discussion
regarding the development of numerical algorithms for them. The current focus of numerical method design has
been primarily on the nonlocal Cahn—Hilliard equation itself, e.g., the convex-splitting method [22-24], the Invariant
Energy Quadratization approach [25-29] or its various version of Scalar Auxiliary variable approach [30,31], linear
stabilization method [32,33], etc. However, integrating the nonlocal Cahn—-Hilliard equation with the flow field leads
to a model with multiple nonlinear coupling terms, posing a daunting challenge in designing a trustworthy numerical
method that meets critical requirements such as unconditional energy stability, linearity, high order temporal
accuracy, and full decoupling. Notably, preserving the discrete energy dissipation law is of paramount importance
when dealing with nonlinear dissipative systems. Such a pursuit eliminates spurious numerical solutions, while
assuring the dependability and accuracy of the results. Furthermore, properties like linearity and full decoupling
offer a host of advantages for enhanced ease and efficiency of computations. Consequently, maintaining second-
order accuracy in time, while also upholding these pivotal properties, is imperative for ensuring the precision of the
numerical solution.

Hence, it is pertinent to pose the question of what obstacles are encountered in formulating numerical
methodologies, as expounded earlier, for the coupled models comprising the nonlocal Cahn—Hilliard equation and
either the Darcy or Navier—Stokes equations. A comprehensive investigation of the mathematical model structure
uncovers numerous intricate aspects that demand meticulous attention during the discretization process, including:
(i) the linear coupling between the velocity and pressure; (ii) the nonlinear coupling among the velocity and phase-
field variable in the advection and surface tension; and (iii) the nonlinear convolutional term with nonlocal effects
and the double-well potential with stiffness. Remarkably, numerous numerical methods have achieved success and
established credibility for each of the three aspects. For instance, the projection-type approach is a well-known and
efficient method for handling the linear coupling between velocity and pressure in (i) by solving two independent
momentum equation and the pressure projection Poisson-type equation. A range of numerical methods exist for
(iii), as mentioned earlier. In addition, various efficient approaches have been developed for (ii), such as fully-
implicit [9], semi-implicit [11], and stabilized explicit [6,7] methods. However, combining all three aspects in one
model presents a formidable challenge, as the authors have noticed that no successful attempts have been undertaken
to acquire numerical schemes that exhibit second-order accuracy, linearized, full decoupled, and unconditional
energy stable. Consequently, there is currently a lack of fully discrete schemes available for the flow-coupled
nonlocal Cahn-Hilliard model.

The objective of this research paper is to develop numerical schemes for solving the flow-coupled nonlocal
Cahn-Hilliard model that exhibits the numerical advantages described above to effectively capture the dynamics
and enable accurate simulations. To accomplish this goal, we propose to combine existing numerical algorithms,
including the projection method for solving the fluid equations, the SAV method for linear discretization of the
double-well potential, and the “Zero-Energy-Contribution” (ZEC) method for handling those coupled nonlinear
advective and surface tension terms. The ZEC method has been widely used for constructing decoupled numerical
schemes that involve the local Cahn—Hilliard equations and other equations, such as hydrodynamics, magnetic fields,
or others (see [34-38]). Both the SAV and ZEC methods involve introducing additional nonlocal variables and
constructing corresponding time-oriented ordinary differential equations (ODEs). In the SAV method, the nonlocal
variable is obtained by forcing the nonlinear convolutional term quadratically, and its corresponding ODE is derived
by subjecting the variable to a time derivative. The ZEC method, on the other hand, constructs the nonlocal variable
by combining the inner products of coupling terms with certain variables. By utilizing these methods and discretizing
the space using the Fourier-Spectral method, we can obtain a fully discrete numerical scheme that can effectively
solve the coupled system by solving only several decoupled, linear elliptic equations with constant coefficients, thus
allowing us to simulate the model efficiently, stably, and accurately.
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The paper is organized as follows. Section 2 provides a brief introduction to the two coupled models consisting
of the nonlocal Cahn—Hilliard equation coupled with Navier—Stokes/Darcy flow field. In Section 3, we develop two
fully discrete Fourier-Spectral numerical schemes for solving these two models and establish their unconditional
energy stability. We also provide a detailed implementation process. Section 4 presents several numerical examples
to validate the effectiveness of the proposed schemes. Finally, we give some concluding remarks in Section 5.

2. Two-phase flow model using the nonlocal Cahn-Hilliard equation

In this section, we provide a brief introduction to the two-phase flow models that consist of the nonlocal Cahn—
Hilliard equation coupled with the free flow (Navier—Stokes) model and the Hele-Shaw flow (Darcy) model. We
refer to these models as the nCHNS model and the nCHD model, respectively. Both models have been extensively
used to simulate the two-phase flow systems, with the nCHD model specifically designed to capture fluid dynamics
in porous media.

We assume that 2 € R%d = 2,3) denotes a smooth, bounded, and connected domain. For any functions
u(x), v(x) € L*(£2), we denote the L* inner product as (u, v) = [, u(x)v(x)dx, and the L* norm as ||u|| = /(u, u).
The phase-field function ¢(x) denotes the mass (or volume) fraction of two different fluid components in the fluid
mixture, 1.€.,

I fuid 1,
"5(“):{—1 fluid 2.

The two values are connected by a smooth thin layer. The nonlocal operator £ reads as (cf. [14,15]):
Lp(x) = / J(x = y)(¢x) — o(y))dy,
Q
where J(x) is the interaction kernel that is {2-periodic and satisfies the following properties
Jx)=J(—x), J(x)>0, Vx € {2
The nCHNS model, first introduced in [14,15], is described by the following equations:

¢+ V- -(up)=MAp, (2.1a)
=ML+ f(9)), (2.1b)
u +@-Viu—vAu+Vp+oVu =0, (2.1¢)
V-u=0, (2.1d)

where M > 0 denotes the mobility constant, A > 0 denotes the surface tension parameter, v > 0 denotes the fluid
viscosity, p denotes the pressure, u denotes the fluid velocity field, f(¢) = F'(¢) = —2(¢3 — @), € is related to
the width of the diffusive interface, u denotes the nonlocal chemical potential. We assume that all of the above
variables satisfy the periodic boundary conditions. The initial conditions are set as follows:

ul,—o = u(x), pli—o = po(x), dli—o = ¢o(x).

The system (2.1a)—(2.1d) holds an energy dissipation property. To obtain it, we need two important identities,
which also play an important role in deriving our analysis, read as

/ (Vi -u+ V- (u)u)dx =0, (220)

0

/ (u-Vu-udx =0. (2.2b)
0

Then, by taking the L? inner products of (2.1a)—(2.1c) with 1, —¢, and u, respectively, and then using integration
by parts and (2.2a)—(2.2b), we obtain
d

T Euon(u, ) = —M||Vul?* = v Vul?, (2.3)

where

1 A
Eip(u, ¢) = 2 /;2 lu’dx + 5(£¢,¢)+?»/Q F(¢)dx. (2.4)
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The nCHD model shares almost the same structure as the nCHNS model expect that the fluid momentum equation
is replaced with the Darcy’s law (see [20,21]):

¢+ V-(up)=MAp, (2.5a)
=MLy + f(9)), (2.5b)
tw,+au+Vp+oVu =0, (2.5¢)
V.u=0, (2.5d)

where u denotes the dimensionless seepage velocity, T is a positive parameter, « is the dimensionless hydraulic
conductivity. We assume that the boundary conditions of all the above variables are periodic too. The initial
conditions are set as u|,_g = Wo(x), pl,—g = Po(X), ¢l,—¢9 = Po(x).

Using the similar way, it can be derived that the nCHD system (2.5a)—(2.5d) follows the energy dissipation
property as

d
T E(0, ) = —M|Vul* — alul?, (2.6)
where
S0, ) = = / lu’dx + &<£¢, ®) + A / F(¢)dx. (2.7)
2 0 2 2

The Egs. (2.2a)—(2.2b), (2.4), and (2.7) reveal an important feature of the nonlocal Cahn-Hilliard Navier—
Stokes/Darcy system. Specifically, the two coupled terms ¢Vu, V - (u¢) and the term (u - V)u do not contribute
to the energy dissipation of the system, which is the so-called “zero-energy-contribution” property as described
in [34-38]. This unique property will be exploited in the construction of our numerical scheme.

3. Fully-discrete numerical schemes

To solve these two models, we discretize the space by using the Fourier-Spectral method [32,39], and integrate
several efficient temporal discretization methods, including the projection method for the flow field, the SAV
method [40,41] for linearizing the nonlinear term f(¢), and the ZEC approach to obtain the full decoupling
structure [34-38,42,43], to form fully discrete schemes.

3.1. Fourier spectral method

We first introduce some basic concepts and notations for the Fourier spectral method. Let §z > O be a time step
size and set , = ndt for 0 < n < Ny with T = Ny8t. We assume {2 = (—L, L)? and N denotes an even number.
Let h = 2L/N be the spatial step size. Define that {2, = {(x;, y;, zx)lx; = =L +ih,y; = =L+ jh,zx = —L +kh,
1 <i,j,k < N}. All periodic grid functions are denoted by M}, namely,

My ={f:9, — R| fis {,—periodic}.

We then define the discrete inner product of two functions f and g in M), as

N
(f.8)="h"Y_" fijsij: 3.1)

ij.k=1

and define the associated L? norm of f as

1 flle =S ) (3.2)

where fijx, gijr represent the values of f, g taken at the gri/q point (x;, ¥;, Zk)-
For a function f € M,, the discrete Fourier transform f = Pf is defined by
~ N A .miw nm N | <1 <N
fimn = i ij;l Sijk exp(—lfxi)exp(—lTyj)exp(—1Tzk), -7 +1<l,m,n< 5
4
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The function f can be reconstructed by using the inverse Fourier transform f = P’lfgiven by
1 A Im mmw nmw
fik=15 2. JemexplGTx)expl—y)expli—rz0, 1 =i j k< N.
l,m,n=—N/2+1

Let My = {Pf|f € My} and define (Dy fimn = (%) fimn» Dy limn = (%) fimns (D imn = (%) fimn- The
Fourier spectral approximations to the partial derivatives can be expressed as [39]

D,=P'D,P, D,=P'D,P, D,=P'D,P,

D! =P~ 'DIP, D= P 'D!P, D}= P 'D?P.
Suppose that ¥ € My, f = (f1, f2, f3) € My x M, x M, the discrete gradient, divergence and Laplace operators
are computed by

Vil = (D, Dy, D)’ Vi - f = Do fi + Dy fo+ Defs, Mnty = D2y + Dy + D2
For any J € M, and ¢, € M,;, we have L,¢, = (J ® )¢, — (J ® ¢;,), where the discrete convolution
J ® ¢y, € M, is defined componentwisely by
N
(J ® ¢h)i,j,k = h3 Z Ji—p.j—q,k—s¢h,pqs» 1 <i, ja k<N.
p.q,s=1

The discrete nonlocal diffusion operator £, on any grid function f € M, through the use of £, = P‘ILA;,P by
(see [32]):

~ A A N N
Ehf]mn = )"lmnflmna ——+1 =< la m,n < —,
2 2
where A, are the eigenvalues of £, given by
N I mi nm
Mmn = 1° Z Jijk(l - exp(—ifxi)exp(—iTyj)exp(—iTZk))-

ijk=1
Furthermore, we have the following discrete integration by parts formulas (cf. [32]) that read as:

(W, Vi f) ==V, f). (¥, Ang) = —(Vih, Vig), Y. g € My, f € M. (3.3)
3.2. Numerical scheme of nCHNS model

To apply the SAV method to linearize the nonlinear term f(¢), we need introduce a nonlocal variable U(¢) as

v = | / F(é)dx + Co, (3.4)
0

where the constant Cy > 0. Then, we can use the variable U to reformulate the chemical potential p as:
1=xr(L+HU),

=1 / H()dx, (3.5)
2Ja

where H(¢) = —J@ ____ 1n fact, by integrating the second equation in (3.5) over ¢ and given the initial

o F@dx+Cy

condition of Ul|,—y = f o F(do(x))dx + Cp, we can obtain (3.4). This allows us to recast the equation of the

chemical potential 1 in (2.1b) and (2.5b) into the equivalent reformulation in (3.5). Therefore, it can be concluded
that (3.5) is simply an alternative representation of the chemical potential w in (2.1b) and (2.5b).

To apply the ZEC approach to get the decoupled structure, we shall introduce another nonlocal variable Q which
satisfies the following ODE system as

0= [ (V- @+ @V -+ @ Vu-u)dx,
Qlio= 1.

(3.6)
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From (2.2a)—(2.2b), we can see that the time derivative of Q is zero, i.e., Q; = 0. Furthermore, from the initial
condition Q|;—o = 1, we can conclude that Q remains constant at 1 for all time.
Thanks to (3.5) and (3.6), we can rewrite the nCHNS system (2.1a)—(2.1d) as

¢+ OV - (up) = MAp, (3.7a)

uw=xrx(Lp+HU), (3.7b)

U = l/ H(¢p)p,dx, (3.7¢)
2Ja

W+ Qu-Viu—vAu+ Vp+ Q¢pVu =0, (3.7d)

V.u=0, 3.7e)

0 = /Q (V- @o)t+@Vi) - u+ @ Vyu-u)dx, (3.70)

with the following initial conditions

ul,_g =ug(x), pli—g = po(x), ¢lio = do(x), Ql,o =1, Ul,op = \//Q F(¢o(x))dx + Co.

Remark 3.1. Note that we multiply Q to the terms in Eq. (3.7d). However, by using the fact that O = 1, we
know this modification will not affect the whole system. It is worth noting that the rationale behind the persistent
modifications to the PDE lies in the realization that although these alterations may be equivalent at the PDE level —
that is, in the continuous setting — they are essential in facilitating the development of the algorithms when dealing
with discretizations. As such, one could assert that the modified PDE is algorithmically-favorable.

We can show that the equivalent system (3.7a)—(3.7f) holds the energy dissipation law.

Lemma 3.1. The system (3.7a)—(3.7f) holds the following energy dissipation property
d
B @)= =MVl = v|Vul?, (3.8)

where

Ll |Q|2
E(u,¢)=5/ uPdx + = (£¢ 6 +auP + 28

Proof. By taking the L? inner product of (3.7a)—(3.7b) with u and —¢,, respectively, we obtain
(&, ) + Q_/ V- (u)udx = —M|Vu|?,
10

~ b+ Lo o)+ w/ Heydx =0,
2dt Q

By multiplying (3.7¢c), (3.7f) with 2AU and Q, respectively, we have

d B
1= (U )—AU/QHqs,dx —0,
d 2
E(%) =0 /Q<V () + (@Vu) -u+ (u-Viu- u)dx.

By taking the L? inner product of (3.7d) with u and using (3.7¢), we arrive at
1d
2dt

By summing up the above five equations together, we obtain (3.8). [

|u|2dx +v||[Vu|?® + Q/ ((u Vu-u+¢Vu- u)dx =0.
(9]

Now we are able to develop the fully discrete numerical scheme as follows.
6
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For n > 1, assuming that (¢}, u}, U}, 0}, Q). v}, p;) and (¢~ ,uh -1 LUy~ t ;- v Z_] u, ,pZ_l) are
known, we obtain ¢/ € M, uitt € M,, U € R, Q) € R € M3, ”+1 e M3, pitt e M, by

solving the following discrete scheme:

¢n+l _4¢Z +¢Z_l

351 + O3V - (u ) = MA T, (3.9a)
MZ+1 _ )\(,C ¢n+l 4 Hn,*U;:Jrl (¢n+l ¢Z,*))’ (391’))
1
3UT =AU+ U = S(H 3¢"+‘ 47 + "), (3.9¢)
3Qn+1 4Q” + Qn_ n, n, n n n n n ~n
28th e = (Vi ), i) A (80 V™ 4 (- Vioug), w; ), (3.9d)
3! — 4w’ +u ! e s
s T O @ VW — v AT+ Vi + O3 Vi = 0, (3.9¢)
3 N
55 @ =@V = P =0, (3.9
v, -uptt =0, (3.92)

where S > 0 is a stabilization parameter,
wt =2y —wy gt =200 — ¢ty =2 — Tt HY = Hgy ).

We show the fully discrete scheme (3.9a)—(3.9¢g) holds the energy stability unconditionally, as follows. Note the
following two identities will be used in the proof:

Ba—4b+c)a—2b+c)=(a—b)?—((b—c)+2a—2b+c), (3.10a)
2B3a —4b+c,a)=a’> —b>+ (2a —b)> —(2b —c)* + (a — 2b + ¢)*. (3.10b)

Theorem 3.1. The scheme (3.92)—(3.9¢) satisfies the discrete energy stability as follows

1 -
5<E,’z“ E}) < =M Va7 — vl Va7,

where

B = (0 12 —w) + (<£h¢"“ P (e - o207 - )

4 _<|U;,l+1 |2 + |2U;l’l+1 _ U;:|2) <|Qn+l| 4 |2Qn+l Q;’”Z) (311)
8 n n n
+ —||vhp 5+ ||¢ =l

Proof. Taking the L? inner product of (3.9¢) with 287!, we obtain

(3t — 4w} +wp w4 2800 )| Vi + 281V, )

- - (3.12)
+ 28t Qp N @ Vi WY + 281 Q0 (- ViUt ) = 0.
By taking the L? inner product of (3.9f) with u}*', we have
wtl bl oarny _ 201 n+1 n+1
W™ —w"w,) = 3 — (Viu(p, ™ — pp) ) =0. (3.13)
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By using (3.13) and (3.10b), we deduce
Gy —du) +uf !
= Gt = 3wt Aty + Gupt — 4u) +u)” uZ“)
— <3ﬁ2+1 3un+1 ~n+1 +uz+1> <3uz+1 _ 4uh +uh u;zl+1> (3.14)
(IIu”Hllh = gl + 1120y — gl — (20 —wy
+ g™t = 2w+ w7 + 301G G — et ).
We rewrite (3.9f) as

3 3
55 —ut v, pitt = o Wt v, (3.15)
Square both sides of (3.15), and multiply the obtained equation with %, we derive

—<|| wtE =t + —<||vhp"+1||h —IVap} ) = 28t (@, Vi pih). (3.16)
Further, by taking the L? inner product of (3.9f) with 251‘u”+1 we get

(™0 = 0+ g — ) = 0, (3.17)
Combining (3.12), (3.14), (3.16) and (3.17), we obtain
1 n n n n n n n—
5 (I “nh w2+ 12057 = wh 2 — 12uf — w1+ - 2w 4w )

. 252 ) y 3.18
”u A T (N “nh—||vhph||h)+25fvllvh A o

+ 281Q”+1((uh’ SVl *, Yy + 280 Q0 B Vi Wt = 0.
Taking the L? inner product of (3.92) and (3.9b) with 287} ™ and —(3¢) ™" — 4! + ¢ 1), respectively, we derive

Bopt —Agh 4+ oyt — 260 Q) (g, Vi) 4 28t M| Vi I = 0, (3.19)

and

)"U}:’+1(Hn* 3¢Vl+1 4¢]};l+¢ >+_(¢n+1 ¢Z *’3¢n+1 4¢Z+¢Z—l>

(3.20)
< n+1 3¢n+l 4¢Z +¢ >+)‘-(£h¢z+l 3¢I’l+1 4¢Z +¢Z—l> —
By multiplying (3.9c) and (3.9d) by ZAU"+1 and 261 Q”Jrl and using (3.10b), we obtain
,\<|U;+‘|2 — UM+ UM = UPPR = 208 — U U - 20) + U |2) Ao
= AU H™ 30 —Agy 4 7).
and
1 .
E(IQZHI 10317 + 1203 — Q4P = 1205 — Q3P+ 10, =205 + 037'1)
— 28t Qnﬂ((“h Vh)llz * ﬁZH) 28tQ"+1< ¢Z * Vh,u"H> (3.22)
428t Qn+1(¢z *Vhﬂz *, ﬁ2+1)'
Hence, by combining (3.18)—(3.22), and using (3.10a), we arrive at
SO0+ 2 ) + ((,chcb"*‘ 1)+ (e — o). 207 — a7)
25t
(0P ot - o) + 5 (105 P+ 20y - o) + —||vhp"“||,, o — i

8
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1 A
= S (I3 + 120 — w1 12) = S ((£ngh 07) + (£4C85 — @7, 207 ¢;:—1>)

2812

n— 1 n n n—
= 2R + Uy - P - —(IQh|2 +120; - 0;7'P) - —||vhph||,,
= — 2800 ||V, up I — 28t MV G — ||u"+1 2uz +u g - ||u

_ _(L (¢n+l _2¢Z +¢ ) ¢n+l 2¢Z +¢Z—l> ||¢n+l _2¢Z +¢Z_l 2

— AUt =20 + U - IQ”“ —200 + Q',:— 2,

which completes the proof. [

Remark 3.2. From Theorem 3.1, we know that the fully discrete numerical scheme follows the modified discrete
energy dissipation property. However, in view of numerical approximation, we find the proposed scheme preserve

energy dissipation property of the original system.

Remark 3.3. Despite its appearance as a coupled scheme rather than a full decoupling scheme, the fully discrete
scheme outlined in Eqs. (3.92)—(3.9g) can be effectively implemented with decoupled type computations. This can
be achieved by leveraging the nonlocal nature of the variable Q, which enables the implementation of decoupled

computations in the overall computation process, shown as follows.

In the subsequent five steps, we will elaborate on the fully-decoupled implementation process in greater detail.

Step 1: Using Q7™', we split ¢/ ™', 1™, U into the following form

n+l n+1 n+] n+1
n+l n+l n+l n+1
My =ty QR My s
n+1 n+l1 n+1yprn+l1
u " =0, +0,7U;".

By substitutlng (3.23) into (3.92)—(3.9c), we obtain
5 ( (4)1111?—1 Qn+1¢n+l) 4(1);: n ¢n—l) + QZ+1vh . (un,*d)z,*)
= MM (ui" + 05 ),

n n n S n n n
:“hl+1 + 0 Hﬂh;l = (ﬁh + z)( hl+1 + 0, ! H)

Hence, according to Q}™,

n+|_ n+l n—1
2M5t¢ = Antty 2M8t(¢h O )

n n n,* n n S n
witt = aLue) ™ + H U + - ¢ H— =),

1
1 1 s s
2M5t¢’"+ = Appgy ' — 7 (¢Z u, "),

Mz;—l — )\(Eh¢n+l + Hn *U/;LZ-H + ¢n+l).

We use the nonlocal variable U} and U;;; ! to continue to split the variables as:

n+1 n+1 n+1 ;n+l1 n+1 n+1 n+1, n+l
Gui =Pt T U Puins My = M T Uy Mg
n+1 n+1 n+1 ;n+1 n+l1 n+l1 n+1 n+l1
=0 TUw Gnns My = My + Uy g, -

9

S
FLH (U 0 )~ 2 500

we decompose the above system into the following two systems

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Substituting (3.27) into (3.25)—(3.26), and decomposing the resulted equations according U,:’]Jr Vand U ;112+ !, we obtain

n n—1

2z it = Al + % a8)
Hit = MEd + ol — e,
2M5t i = Aty 520

Wi = Mg + S+ ), '
St = Ayt - SO, .
ot = MLadpa)! + —2¢>;:;11>,
2M8t¢;‘l;21 = hl’vgzlv an
Wi = MG + S o+ H) '

Here, we assume that the boundary conditions for ¢Zl+l', ¢ZI"21, ¢Z;', ¢Z;21, MZTII, MZTZI, MZZI, and MZZZI are all

periodic.
As a result, the values of ¢Z;1 and ,uzi*jl for i, j = 1,2 can be easily obtained, given that Eqs. (3.28)—(3.31)
represent linear systems. Furthermore, the values of (qﬁﬁz] MZTZI) and (qb,’l‘;zl MZ;ZI) satisfy the same system, which

: : n+l _ ;n+l1 n+1 n+1
implies that ¢, = ¢,5, and w5 = 5, -

Step 2: We compute U;;™', U/ By using (3.9¢) and (3.23), we arrive at

1
U];li‘rl + Ql‘l+1Un+1 2<Hn * ¢l‘l+1 Qn+1¢l‘l+1> + g}’l7

where " = $(4U} — Up™") — {(H", 4¢) — ¢}, 7").

According to Qthl we derive
1
U};lfrl — E(Hn*,¢gl+l> +gl‘l’
1 (3.32)
n+1 n,x n+1
Uh2+ = E(H J h;_ )

Together with (3.27), we have

1

Upt = S ¢l + URT ) + ¢,
1

U;:;—l — 2<Hn* ¢Z;—]l n+l¢}r:;—21).

1 1
Assuming that 1 — E(H”‘*, Zf“zl) #0and 1 — E(H”‘*, ,’E“;) # 0 (shown below), we get

1 +1 1 +1
F(H"" dyiy) + 8" ntl _ F(H"" dj51)

+1
Uni =1 L g githy R T Ligns grthy
_§<H’v¢h12> _§<H’v¢h22>
We now prove the assumption. By taking the L? inner product of (3.29) with — 2M o ,U,ZTZI and ¢h12 , respectively,
we have

AS 2M 6t
—A(H", g = MLy 4 + Il I + 5= 1Vl 1 > 0
which indicates

1 n
1= S(H", ) #0.
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1
Noticed that ¢ZT21 = qb,’l’zrzl. Hence, we have 1 — E(H"’*, ¢Z;21) # 0.
Once U;:1+l and U,;’ZH are obtained, we update ¢ZT', q‘)}’l’;’l, MZTI, MZ;.H by using (3.27).

Step 3: We compute i} *'. Using Q7+, we split the velocity field @i} ™' as

~n+l __ ~n+l n+1~n+1
u =, +0, w, . (3.33)

Together with (3.9¢), we get

3 1
! — v AT =~V pl + ——(du] —uh,
28t 28t (3.34)
3 ) .
25 Wi VA = — T VDT — gV

Here, we assume that the boundary conditions of (ﬁZTl LU 1) are periodic. One can easily obtain (ﬁ’,ﬁl, ﬁZ;l), due

to the fact that (3.34) are constant-coefficient elliptic systems.
Step 4: We compute QZH. By using (3.9d), (3.23) and (3.33), we derive

3 w1 1 -1
-~ n = — (40" — O" ,
(25t 772)Qh 25t( Qh Qh )+ m

where
i = (Vi - i), i) 4 (o Vi ™ w5 + (- vioug* a0 =1, 2.

3
Assuming that % 12 # 0 (shown below), we have

405 — 05" + 28
28t(5- — )
~n+1

We now prove the above assumption. By taking the L? inner product of (3.34) with (0, &}; '), we have

+1
0,7 =

3
n,* nk ~n+1 n,% ko ~n+1 ~n+1,2 ~n+12
— (@™ Viou® W) — (g Vi "L W) = 2_&”“22 Il + vIvVag; Il = 0.

By taking the L2 inner product of (3.26) with 3" and —53-¢}7", respectively, we derive
1 3A
=37 Ve @G T ) = IV I+ S it 43
3)‘S n+12 3)” * yn+1 n+1
+ W'|¢h2 I + m(l‘]n by - Ups > >0,
where the last inequality applies the second equation in (3.32). According to the above two equations, we know
that —m, > 0, i.e., 25 "2 # 0. Once Q! is obtained, we can compute ¢ ™', wi*', UM, &' by using (3.23)
and (3.33).
Step 5: We compute p ' and u/*!. By using (3.9f) and (3.9g), we obtain
3
1 St
—Appytt = —Aupj — 2Ttvh S TTARS
By solving the above discrete Poisson equation, we obtain ¢Z+1. Finally, we can get uZ“ by using
. 25t
UZ+1 — uz-H _ ?Vh(plrlt-&-l _ pz)

As evident from the aforementioned five steps, it is apparent that all the equations requiring a solution contain
an independent variable. Hence, our numerical scheme is deemed fully decoupled, thus rendering it highly efficient.

3.3. Numerical scheme of nCHD model

We now attempt to construct an efficient fully discrete scheme for the nCHD system. Drawing upon a similar
approach employed in the nCHNS model, we define a nonlocal variable Q and an associated ODE system, presented

11
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below:
0= [ (V- (wowe+ @V -u)x.
2

Q|t=0 =1
Through the application of identity (2.2a), it can be deduced that (3.35) is equivalent to Q, = 0, Q|,—¢ = 1 with
the solution of Q(t) = 1.
By combining (3.35) with the reformulation of the chemical potential u, as shown in (3.5), and by multiplying
the corresponding terms by the variable Q, we can rewrite the nCHD system (2.52)—(2.5d) as

(3.35)

¢+ OV - (up) = MAp, (3.36a)
nw=xrLp+ HU), (3.36b)
1
U == / H(p)p,dx, (3.36¢)
2Ja
W +au+Vp+ Q0opVu =0, (3.36d)
V.u=0, (3.36e)
0= / (V () + (@Vpu) - U)dx, (3.36f)
o)
_ f@& . . . L . i
where H(¢) = NI and the system is equipped with the periodic boundary conditions and the following

initial conditions a|,—g = wo(x), pli=o = po(x), Pli=0 = Po(x), Qli=o =1, U|;=0 = \/fuQ F(¢o(x))dx + Co.

The system adheres to the energy dissipation law, as its process closely resembles that of Lemma 3.1. Therefore,
we will skip over the process of deriving the energy law of the PDE and proceed directly to the fully discrete
Fourier-Spectral scheme for the system (3.36a)—(3.36f), that reads as follows.

For n > 1, assuming that (¢}, u}, Uy, U}, O}, u}, pj) and (¢Z_I,ILZ_1, U,’Z’_l,ﬁz_l, Qz_l,uz_l,pz_l) are
known, we find ¢} € My, uit' € M, U € R, QF € R e M3, ult! € M3, pit! € My, such
that

3¢Z+1 _4¢Z +¢271

551 + Oy - () = M At (3.37a)
S n
wi T =L HYUT + S0 - 63), (3.37b)
1
BURH —AUR + UL = S (" 39T — 497 + 471, (3.37¢)
3Qn+1_4Qn+Qn71 R i . o
s =V T, ) (0 Vi, 1), (3.37d)
3aft —du! +ul ) )
—h 28th h + O[llZ+1 + VhPZ + Qz+1¢h,*vhuh,* =0, (3.37¢)
3 - n n
r%mz*l — ™+ Vi(ppt = phy =0, (3.37)
Vi -w =0, (3.37g)

where S > 0 is a stabilization parameter, and
wyt = 2wy —w g =20 — gy =2 — T HY = HGR).

We now show that the fully discrete scheme (3.37a)—(3.37g) is unconditionally energy stable.

Theorem 3.2. The scheme (3.37a)—(3.37g) satisfies the discrete energy stability as follows

1 N
gw;z“ — &N < =MV — @,
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where
(c/’]/i;H’l (” n+1||h+||2un+l ul}'lt”i) ((£h¢n+1 l1+1) (Eh(2¢n+l ¢h) 2¢n+1 ¢]}":))
(|U"+‘|2+|2U"+‘ ULP) + (|Q"+‘|2+|2Q”+‘ 0;1?) (3-38)

+1 1 2
IIVP" I + |I<i>”+ — &l

Proof. By taking the L? inner product of (3.37¢) with 25t~”+1 we obtain

T3 — dup +w W) + 280§ + 266V )

+ 28t Qp @ Vi w ) = 0. 59
By taking the L? inner product of (3.37f) with ul*!, we obtain
@ —wt uty =0,
Then, we can derive
(3ﬁ2+1 —4uf +up ot
= —(Ilu”+1 7 — gl -+ 120 — w1 — 120 — w7 (3.40)
+ ™ =2+ R 4 3R — .
By taking the square of (3.37f) and using (3.37g), (3.3), we have
u' ! 281 n+l i+ 2617 )2 ntl
—I| I + —IIVhp I; = || I + —IIVhph Il + 28t (W, ™, Vi pj). (3.41)
Further, by taking the L? inner product of (3.37f) with 25tu”+1 we get
(1 — g+ g — ) = 0. (3.42)
By combining (3.39), (3.40), (3.41), (3.42) and (3.10b), we derive
> (g ||h — I+ 20— = 2 — w2 )
R 2500 %(uvh AR AT 643
+ 23tQ”+1(¢Z’*Vh;LZ st =o.
By taking the L? inner product of (3.37a)—(3.37b) with 26tu"+1, (3¢”+] —4¢; + d)Z_I), we have
Bt =gy + o ) = 280 QT (Wl oy, Vi) 4 28t M| Vi I = 0, (3.44)
AUn+1 (Hn * 3¢n+1 4¢n _{_(p;:fl) + Z_S( n+1 (p}rll*’ 3¢n+1 4¢Z +¢Zﬁ )
— (T 3T —dgr 4+ ¢y + AL T, 30T — Al +op ) =0, (3.45)
Multiplying (3.37¢), (3.37d) by 24U and 28¢ Q™" and then using identity (3.10b), we obtain
,\<|U;+1|2 — UM+ 20— UPP = U - U UM =200 + U;;—1|2)
= 2UTH™ 3¢ — dgp +p ), (3.46)
(IQ"“I — 103 + 120" = Q4 = 1205 = Q7' + 105 =20 + 057'1)
— 23th+l(¢Z'*V /LZ * ﬁZH) 28[Q"+1( Z*‘PZ*’ VhlLZ+l>~ (3.47)

13
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Hence, by combining (3.43)—(3.47), we arrive at
= (0 + 12! — i) + (<£h¢"+‘ o)+ (La 20+ = 0. 267" — 47)
+ AU+ U~ UR) + S (1057 + 205 — 03F) + 210, I + 21y - g1
— (0 + 120 — i 2) = (s 01) + (L 20) — 91, 26 — 017

2
n— 1 n n n— 25t2 n )\'S n n—
— (0P + 20 - U ) = S (1008 + 120 — 017 'F) - —||vhph||i e

= — 28t} — 280 MVt I — S — 20 +uz‘1||i e
— —(z: @ =200+ a7 =2 0 - —2¢;: + Il
— AUt —2up + U - |Q”+l —-207 + Qz— %,

It complete the proof of the theorem. D

Next, we present a detailed implementation process for the scheme (3.37a)—(3.37g). It should be noted that the
equations in this scheme are nearly identical to (3.92)—(3.9g), with the exception of (3.37d) and (3.37e). Therefore,
the computation of ¢>”+1, uZ“ and U} "*1 can be computed in the same way as described in Steps 1 and 2 of the
previous section. Now we turn to the computed scheme for the variables a "H and QZH.

n+1 n+]

Step 3: We compute thrl Using the nonlocal variable Q;"", we split ;" as
uZ-H — ~n+l + Qn+1 n+1- (348)
By substituting (3.48) into (3.37e) and decomposing the obtained equation according to Q'”rl we obtain
3 ~n+1 ~n+1 n n—1
r2_8tu T tau ' =-V,p} + 2_&(4‘111 —u, ),
3 ~n+1 ~n 1 n,% n,*
tZ_(Stu’J +ally' = —¢ Vi

with the periodic boundary conditions. The above equations are very straight forward to be solved.
Step 4: We compute QhJrl By using (3.23), (3.48) and (3.37d), we arrive at

n+1 n n—1
o 407 — o,
(28t 62)Q}, ( 0,— 0, )+b6
where 6; = (Vj, - (u}; "¢ *) ,u”“) (B Vaug™, ﬁzlﬂ), i =1, 2. We can obtain 2% — 0, # 0 by using the similar
way as the scheme for the nCHNS model.

By combining the above two steps 3 and 4 with the steps 1, 2, 5 for the nCHNS model, the solution to the
scheme (3.37a)—(3.37g) is obtained using full decoupling type computations.

4. Numerical simulations

In this section, we aim to demonstrate the accuracy and energy stability of the suggested schemes through various
numerical examples, including accuracy/stability tests, as well as simulations of spinodal decomposition, fingering
instability, and bubble rising. These simulations enable us to evaluate the effectiveness of the proposed schemes in
accurately and consistently capturing physical phenomena.

4.1. Accuracy and stability tests

In this example, we set the computed domain as {2 = [—m, 7], and set the initial conditions as

do(x, y) = cos(2x) cos(2y), ug(x, y) = (0,0)", po(x, y) =0
14
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(a) nCHNS model. (b) nCHD model.

Fig. 4.1. Accuracy tests in time for the (a) nCHNS model and (b) nCHD model.

The kernel used is defined as J(x,y) = 4 exp(—= ” =——). The model parameters for the nCHNS model are set as:

v =100, A =0.01, e = 0.1, M = 0.01, Co = 10, and S = 2, and the model parameters of nCHD model are set
as: =100, 7=1,A=0.01,¢e =0.1, M =0.01, Co =10, and S = 2.

To evaluate the convergence order in time, we employ a spatial grid with sufficiently fine resolution (consisting
of 1282 Fourier modes) to ensure that the spatial error is insignificant compared to the temporal error. Fig. 4.1(a)
and (b) display the L? norm errors between the computed solutions and exact solutions of the scheme (3.9a)—(3.9g)
for the nCHNS model and (3.37a)—(3.37g) for n"CHD model, respectively, at + = 0.5. These results demonstrate
that the proposed schemes exhibit second-order temporal accuracy.

We continue to verify the energy stability of the developed schemes. The computational domain is set as
2 = [—m, 7]* and 1282 Fourier modes are used to discretize the space. The initial conditions are set as follows:

—V(x —x)? +y?

G ), uo(x, y) = (0,0, po(x,y)=0
DE

2
doCx,y)=1- Y tanh("

i=I

where i = 1.4,r, = 0.5, x; = —0.8, x, = 1.7. The kernel J(x, y) is defined as J(x, y) = exp(—x 242 ). For the
nCHNS model, we set the parameters as v = 100, A = 0.01, ¢ = 0.05, M =1, Cy = 10, and S = 2, whlle for the
nCHD model, we set the parameters as ¢« = 100, t = 1, A = 0.01, ¢ = 0.05, M =1, Cy = 10, and S = 2. We
plot the computed modified discrete energy (3.11) by varying time steps for the nCHNS model in Fig. 4.2(a). The
obtained energy curves exhibit a monotonic decay, providing evidence for the energy decay property. To further
illustrate the accuracy of the modified discrete energy, we compare the temporal evolution curves of the original
energy (2.4) and the discrete energy (3.11) in Fig. 4.2(b), using 8t = 0.01/23. The overlap of these two energy
curves supports the consistency between these two energies. Similarly, for the nCHD model, we carry out similar
numerical tests, and the results are shown in Fig. 4.3(a) and (b). As the phenomena observed are exactly similar to
those of the nCHNS model, we refrain from going into further detail.

4.2. Spinodal decomposition

In this numerical test, we perform a spinodal decomposition, which is a benchmark phenomenon of the Cahn-
Hilliard equation. This phenomenon refers to the spontaneous separation of a homogeneous mixture of two or
more substances into distinct regions or domains with different compositions. Spinodal decomposition is a critical
research area in materials science, as it is a common mechanism in the formation of microstructures in various
systems, including alloys, polymers, and liquid crystals, and the resulting microstructure can significantly affect the
material’s physical and chemical properties.

15
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(a) Energy evolution using different time steps.  (b) Original and modified energy with §t = 0.01/23.

Fig. 4.2. Stability tests for the nCHNS model.
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(a) Energy evolution using different time steps.  (b) Original and modified energy with 6t = 0.01,/23.

Fig. 4.3. Stability tests for the nCHD model.

We carry out the spinodal decomposition simulation in 2D and 3D using the nCHD model, respectively, where
the 2D domain is set as {2 = [—x, 7]? and the 3D domain is set as {2 = [—, 7]°. The initial conditions are set as

¢o(x) = ¢y + 0.001 rand(x), uy(x) =0, po(x) =0,

where rand(x) € [—1, 1] denotes a random function follows the normal distribution. The kernel J(x) is set as
J(x) = ﬁexp(—i—j), d = 2, 3. The parameters are set as @ = 100, 7 = 1,A =0.01,e =0.025, M =1,Cy =
10, S = 2,8t = 0.01. We use 2562 Fourier modes for 2D case, and 128> Fourier modes for 3D case. For the
2D case, we plot the profiles of ¢ at various times for the initial condition with ¢y = 0.5 in Fig. 4.4. The final
equilibrium solution exhibits a circular phase due to the coarsening effects. Similarly, Fig. 4.5 shows the profiles
of 3D isosurface of {¢p = 0}, which also display a final circular equilibrium state. In Fig. 4.6, we plot the time
evolution of the total free energy functional (3.38) for both 2D and 3D simulations, confirming the energy decaying
property of our scheme.

4.3. Fingering instability of nCHD model

When a liquid droplet is placed in a rotating Hele-Shaw cell, the resulting centrifugal force induces instability
and deformation in the fluid interface. This instability leads to the development of finger-like protrusions, a common

16
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Fig. 4.5. 3D spinodal decomposition with initial condition ¢9 = 0.5 and snapshots are taken at ¢ at ¢ = 5, 10, 20, 50.
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(a) 2D spinodal decomposition. (b) 3D spinodal decomposition.

Fig. 4.6. The energy evolution for the spinodal decompositions: (a) 2D and (b) 3D.

phenomenon observed in various fluid systems. The competition between surface tension, which tends to smoothen
the interface, and the interfacial energy associated with the contact line, which drives the formation of fingers,
characterizes this instability. The centrifugal force generated by the cell’s rotation perturbs the fluid interface, leading
to the formation of fingers. Over time, these fingers undergo growth in size and number, and their dynamics are
governed by a combination of viscous and capillary forces.

In this numerical example, our focus is to examine the fingering pattern instability that arises in this scenario.
This is achieved by incorporating the effect of the rotational force into the Darcy equation. Specifically, we replace
the momentum equation (2.5¢) with a modified version that accounts for the rotational force, namely,

1+
Tw, +au+Vp+oVu = gT¢( 2r + 2w(e, x w),

17
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Fig. 4.7. 2D fingering instability example with the surface tension parameter A = le—5, in which snapshots of ¢ are taken r =0, 1, 2, 3,
5, 6, 8 and 10.

where ¢, = (0,0, 1), and r = (x, y) for 2D and r = (x, y, 0) for 3D. The kernel J(x) is taken to be J(x) =
—mexp(—%), d =2,3.

We also carry out 2D and 3D simulations respectively, where space is discretized by using 5122 Fourier modes
for a 2D domain of {2 = [, 7]?, and 1283 Fourier modes for 3D domain of {2 = [—, 7]3. The initial conditions
of 2D simulation read as

r—/x2+y?
do(. ) = tanh(——"2), wp(x, ) = (0,07 po(x. y) =0,
where r = 1.3 + 0.01rand(x, y). The initial conditions of 3D simulation read as

Y e
do(x, . z) = tanh( - Y

where r = 1 4+ 0.01rand(x, y, z). The model parameters are set as

T=1,a=400,M =0.01,e =0.015,Co=10,S =2, 0w =5,g = 5.

), wo(x, y,2) =(0,0,0)", po(x,y,2) =0,

In Fig. 4.7, we plot snapshots of the phase-field variable ¢ at different times where the surface tension A = le—35,
depicting the formation and evolution of finger-like structures on the fluid interface in a rotating Hele-Shaw cell.
Initially, the circular droplet of fluid owns a smooth and continuous interface. As the rotation of the Hele-Shaw cell
is initiated, the centrifugal forces generate perturbations on the fluid interface, leading to the formation of initial
finger-like protrusions. These initial protrusions undergo significant growth in size and number, eventually evolving
into a highly complex pattern of finger-like structures that exhibit highly non-uniform shapes and sizes, with some
fingers growing faster than others. In Fig. 4.8, we conduct a series of numerical simulations with varying surface
tension parameters A, which demonstrate that the surface tension plays a crucial role in determining the number
and shape of the finger-like structures formed on the fluid interface. Specifically, as surface tension decreases, we
observe an increase in the number of finger-like structures formed.

The 3D numerical simulations, presented in Fig. 4.9, also demonstrate the formation of finger-like structures
over time, with the isosurfaces of {¢ = 0} showing the evolution of these structures. Varying the surface tension
parameter A in Fig. 4.10 directly affects the number of fingers formed, with smaller values of A leading to the
formation of a larger number of fingers, consistent with the 2D simulations. These findings are also qualitatively
consistent with the results obtained from the numerical simulations in [43] and the experimental results in [44,45].
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Fig. 4.9. 3D fingering instability example with the surface tension parameter A = le—4, in which snapshots of ¢ are taken at t =0,5,6,7
and 8.

Fig. 4.10. Comparisons of the number of formed fingers in 3D with various surface tension parameters A = le—3, 7e—4, Se—4, le—4.

4.4. Rayleigh instability of nCHNS model

The Rayleigh instability is a well-known hydrodynamic instability that occurs when a liquid thread or column
is subjected to external perturbations such as gravity, surface tension, and viscosity. When the magnitude of the
perturbation is small, the instability initially manifests as small ripples on the surface of the liquid thread. However,
as time progresses, the instability causes the formation of bulges or beads along the length of the thread. Eventually,
the bulges become so large that they break up into smaller droplets, which results in the fragmentation of the liquid
thread.

In this example, we simulate the Rayleigh instability using the developed scheme (3.37a)—(3.37g) to solve the
nCHNS model. The computational domain is set as {2 = [—m, ] x[—n/2, 7 /2] x[—m /2, w/2]. The initial condition
is set as a liquid thread with a small perturbation on the interface, which is given by

0.4 — /y* + 22 4+ 0.05 cos(2x)
V2e

), uo(x,y,2) =(0,0,0)", po(x,y,z)=0.
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Fig. 4.11. The example of Rayleigh instability of nCHNS model, in which, snapshots of the isosurface of {¢ = 0} are taken at r = 0, 8§,
14, 15 and 30.

The kernel is set as J(x) = }5 exp(—:—i), and the parameters are defined as v = 0.01, A = 0.005,¢ = 0.1, M =

0.05,Cop =10, S = 2,5t = 0.01. We use 128 x 64 x 64 Fourier modes to discretize the space. Fig. 4.11 presents
snapshots of the isosurface {¢p = 0} at different times, illustrating the topological structure change of the interface
over time and showing how the initial liquid column undergoes pinch-off, forming satellite droplets as a result.

4.5. Bubble rising of nCHNS model

In this example, we simulate the dynamics of a rising bubble under the influence of a gravity field using the
nCHNS model and the numerical scheme (3.9a)—(3.9¢). The gravity force is approximated using the Boussinesq
approximation, which involves equipping the Navier—Stokes equation with a gravity field given by

1+¢
W+ @ Vu—vAu+Vp+oVu = T(pl — 02)8;

where p; is the fluid density inside the bubble and p, is the density of the surrounding fluid medium, g is the
gravitational acceleration with g = (0, —go)” for 2D and g = (0, 0, —go)” for 3D. The convolution kernel J(x) is
taken as J(x) = ﬁ exp(—:—i), d=2,3.

We first carry out the 2D case. Set the computational domain as {2 = [—mx, 7] X [—27, 2] and 128 x 256
Fourier modes are used to discretize the domain. The parameters are set as go = 10, p; = 1, po =2, 2 = 0.005, € =
0.05, M =0.01, Cy = 10, S =2, 6t = 0.01, and the initial conditions are set as

3_ /52 52
do(x, y) = tanh("L x6+(y T o, ) = (0,007, pox. ) = 0.

The snapshots of ¢ at different times for v = 0.1 and v = 0.25 are plotted in Fig. 4.12(a) and (b), respectively.
When the liquid has a lower viscosity (v = 0.1), we observe the rising droplet’s edges being stretched into thin
filaments, which eventually break into multiple smaller droplets. In contrast, for the more viscous fluid (v = 0.25),
the droplet retains its crescent shape throughout the rising process without breaking.

For 3D simulations, we discretize the domain {2 = [—m, 7] x [—7, 7] x [—27, 27r] using 64 x 64 x 128 Fourier
modes, and set the model parameters as go = 10,0 = 1,00 = 2,v = 1,A = 0.005,¢ = 0.1,M = 0.1,Cy =
10, § = 2, §t = 0.01. The initial conditions are set as

/3= /x2+y2+(z + 572
€

In Fig. 4.13, we plot the isosurfaces of {¢ = 0} at different times. Upon observation, it is evident that the dynamic

movements of a single bubble rising in 3D are comparable to those observed in 2D environment (Fig. 4.12(a)).

As the droplet rises due to the force of gravity, it undergoes significant deformation, transforming from a spherical

shape into a cap shape.

T
$o(x, y, 7) = tanh( ), uo(x,y,2) =(0,0,0)", po(x,y,z)=0.

5. Conclusions

This paper presents efficient numerical schemes for a coupled system consisting of the nonlocal Cahn—Hilliard
model with two flow regimes, the Navier—Stokes equation’s free flow, and the Darcy flow’s Hele-Shaw cell. The
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Fig. 4.12. The 2D bubble rising example, where napshots of the phase-field variable ¢ are taken at r = 0, 2, 5, 8 and 9.5 for different
viscosity parameter (a) v = 0.1 and (b) v = 0.25.

Fig. 4.13. The 3D bubble rising example, where snapshots of isosurface {¢ = 0} are taken at t =0, 2, 5, 8 and 10.
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proposed scheme offers several desirable numerical features, such as second-order accuracy in time, linearity,
unconditional energy stability, and a fully decoupled structure. The scheme combines the projection method, the SAV
method, the Fourier spectral method, and the ZEC decoupling technique, leveraging the inherent properties of the
coupled terms. The linearity and fully decoupled structure of the proposed scheme enable practical implementation
efficiency. Rigorous proofs are provided for the scheme’s unconditional energy stability and practical implementation
process, and several 2D and 3D numerical examples are performed to demonstrate the scheme’s accuracy and
effectiveness.
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