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A B S T R A C T

We develop an accurate and robust numerical scheme for solving the incompressible hydro-
dynamically coupled Cahn–Hilliard system of the two-phase fluid flow system on complex
surfaces. Our algorithm leverages a number of efficient techniques, including the subdivision-
based isogeometric analysis (IGA) method for spatial discretization, the explicit Invariant
Energy Quadratization (EIEQ) method for linearizing nonlinear potentials, the Zero-Energy-
Contribution (ZEC) method for decoupling, and the projection method for the Navier–Stokes
equation to facilitate fully decoupled type implementations. The integration of these method-
ologies results in a fully discrete scheme with desired properties such as linearity, second-order
temporal accuracy, full decoupling, and unconditional energy stability. The implementation of
the scheme is straightforward, requiring the solution of a few elliptic equations with constant
coefficients at each time step. The rigorous stability proof of unconditional energy stability and
the implementation procedure are given in detail. Numerous numerical simulations on complex
curved surfaces are carried out to verify the effectiveness of the proposed numerical scheme.

1. Introduction

In this study, we investigate numerical approximations of the hydrodynamically coupled Cahn–Hilliard phase-field model [1],
pertaining to the incompressible two-phase fluid flow system, on complex curved surfaces. The Cahn–Hilliard equation, recognized
as the fundamental model within the phase-field framework, is generally derived through an energy variational approach applied to
the total free energy, encompassing both linear and nonlinear potentials. We note that extensive research has been dedicated to the
theoretical analysis and computational techniques associated with phase-field equations, along with their adaptable applications in
various systems, such as coupling with hydrodynamics to form multiphase flow systems, coupling with electromagnetic equations
to form multiphase magnetic fluids or ferromagnetic fluids, and coupling with heat equations to form dendritic crystal growth
systems, etc. However, it is also evident that the advancement of numerical methods and simulations for phase-field-related systems
has predominantly focused on traditional rectangular or box-shaped regions, with comparatively limited exploration in the context
of regions featuring complex closed manifolds or curved surfaces.
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It is worth emphasizing, however, that numerical simulations of hydrodynamic systems within surface geometries are important
or understanding the mechanical properties of key physical systems, including, but not limited to, soap bubble membranes [2–5],
ipid bilayers [6–10], and interface-embedded colloidal systems [11–15], etc. Numerical simulations of hydrodynamical systems on
urved surfaces have been relatively scarce thus far. The majority of efforts have focused on the development of spatial operator
iscretization methods, rather than the pursuit of achieving a numerical algorithm characterized by high spatio-temporal accuracy
nd unconditional energy stability. As a result, in the case of multiphase fluid flow systems coupled by the Cahn–Hilliard and
ydrodynamic equations on curved surfaces – systems that are notably more complex and nonlinear – there is a significant deficiency
n research efforts dedicated to developing numerical schemes and conducting computational simulations. It is important to note that
he model studied in this paper serves as the foundation and source for numerous phase-field type models. Therefore, investigating
he performance of this model on curved surfaces holds substantial guiding significance. In fact, we have identified only one recently
ntroduced numerical scheme [16], specifically designed for a hydrodynamically coupled Cahn–Hilliard system on a curved surface.
owever, it is imperative to underscore that the numerical scheme detailed in that study suffers from a lack of energy stability and

ts inherent nonlinear nature, potentially incurring substantial computational expenses.
Therefore, the goal of this article is to propose an efficient numerical algorithm to solve the hydrodynamically coupled Cahn–

illiard phase-field model, and then carry out the numerical simulation of drop dynamics under the gravity force, on the complex
urved surfaces. For this purpose, we consider the discretization in the spatial and temporal directions separately. Recognizing the
on-trivial nature of tackling computational challenges associated with surfaces featuring complex topologies, our objective is to
evise an efficient and accurate approximation method for discretizing these surfaces, thereby effectively reducing geometric errors
nherent in parametric approximations of such complexity.

The methodology of isogeometric analysis (IGA) has been witnessed to integrate the geometric simulation and the finite element
olution [17,18]. It employs the same spline-type basis functions, such as non-uniform rational B-splines (NURBS) or B-splines,
tc., for both the geometric representation of computer-aided design (CAD) models and the solution functions of the finite element
ethod (FEM). This uniform representation brings us some superiority over the classical finite element basis functions. The geometric

xactness can be maintained because it removes the geometric errors caused by mesh generation. It possesses high-order smoothness
or basis functions, providing higher accuracy per degree of freedom through its basic knot inserting and/or order elevating method.
his allows us to enhance the accuracy, efficiency, and quality of the solution method in computer-aided engineering (CAE).
ubdivision is a mature technique for generating smooth surfaces/volumes in computer graphics. It can support more flexible
eometry with any topology. It is well-known that subdivision surfaces can generate smooth surfaces with arbitrary topological
ontrol meshes using the quartering refinement technique [19–21]. Additionally, subdivision surfaces possess B-spline refinement
apabilities, making them a superior choice for finite element analysis with higher-order properties in computer-aided engineering
CAE) [22–26].

When considering the time discretization for the system, one of the widely recognized numerical difficulties lies in the inherent
tiffness of the Cahn–Hilliard equation, which is introduced by the nonlinear double-well potential incorporating the interfacial
idth parameter. The choice between fully implicit and explicit discretizations constitutes a well-acknowledged dilemma. A

imple fully implicit scheme entails significant computational costs and potential instability, often necessitating certain time-step
onstraints [27]. On the other hand, a fully explicit scheme offers convenience in implementation but tends to result in computational
nstability [28]. Hence, a common strategy for discretizing nonlinear terms is to combine explicit and implicit methods, effectively
itigating or removing the time step’s stability constraint. Prominent approaches in this context encompass nonlinear convex

plitting methods [29–31], linear Invariant Energy Quadratization (IEQ) methods [32–35] or its variant version of Scalar Auxiliary
ariable (SAV) method [36], etc. Frequently, when developing linear numerical discrete solution methods for the Cahn–Hilliard
quation with a focus on achieving unconditional energy stability, the choice of the latter two methods often provides a convenient
inear numerical approach. Importantly, they also ensure at least second-order time accuracy. Furthermore, as the Cahn–Hilliard
quations are extended to integrate with the hydrodynamic system, giving rise to a coupled multiphase fluid flow system, more
ntricate numerical challenges come into play. These challenges include addressing the discretization of the nonlinear coupling
erms arising from the integration of velocity and phase field variables to ensure the preservation of linearity, stability, and second-
rder accuracy. To tackle this numerical challenge, we can employ the so-called ZEC decoupling method which is quite effective
n handling the nonlinear couplings, see [37–40]. This method entails introducing a nonlocal auxiliary variable and devising a new
rdinary differential equation (ODE) for it. The ODE is used to transform the original system into an equivalent one that is more
menable to discretization, making it ‘‘algorithm-friendly’’. In this way, the coupling terms can be simply discretized using the
xplicit type methods to achieve the desired numerical scheme.

Therefore, through the integration of the explicit-IEQ (EIEQ) method [32,33,41–43] for linearizing the nonlinear potential, the
EC method [37–40] for managing coupled nonlinear terms to achieve decoupled implementations, the projection method [44]
or separating the computation of the velocity field from the pressure, and the IGA method for the spatial discretization, we
stablish a fully-discrete numerical scheme tailored for solving the hydrodynamically coupled Cahn–Hilliard system on complex
urved surfaces. The numerical scheme is highly efficient, as it only necessitates solving a small number of decoupled elliptic
quations with constant coefficients at each time step. We also provide a rigorous demonstration of the scheme’s unconditional
nergy stability and solvability, and carry out several compelling numerical examples of drop dynamics on complex curved surfaces
o verify the robustness and accuracy of the scheme. The developed algorithm additionally serves as a framework for a geometrically
ccurate decoupling scheme to solve a wide range of flow-coupled phase-field systems on complicated surfaces, while maintaining
2

econd-order time accuracy, unconditional energy stability, decoupling structure, and linearity.
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The rest of this paper is organized as follows: In Section 2, we introduce the phase-field Cahn–Hilliard equation coupled with the
avier–Stokes (CH-NS) system on complex curved surfaces, and achieve the law of energy dissipation. In Section 3, we describe the

ully discrete time–space scheme, which combines the subdivision-based IGA method with temporal marching techniques including
IEQ, ZEC, and projection methods. We also provide rigorous proofs of the unconditional stability of energy and the solvability of
he final linear system achieved through the utilization of the nonlocal variable splitting technique. In Section 4, we present various
ngaging numerical examples. We give the conclusion in Section 5.

. Problem description

In this section, we provide a brief introduction to the CH-NS model on a complex curved surface of a closed manifold. This
ighly nonlinear system comprises the Cahn–Hilliard equation and the Navier–Stokes equations, commonly employed to represent
he dynamics of a two-phase incompressible fluid flow system. To lay the groundwork, we initially introduce some fundamental
oncepts related to surfaces in the next subsection.

.1. Preliminaries

Some basic notations for surfaces are provided here. Assuming the domain of interest is a surface, we proceed with surface
arameterization. For a sufficiently smooth and orientable surface  ∶= {𝐱(𝑢1, 𝑢2) ∈ R3 ∶ (𝑢1, 𝑢2) ∈ 𝒟 ⊂ R2}, with the help of its

parameterization (𝑢1, 𝑢2), we denote the following derivative formula

𝐱𝑢𝛼 = 𝜕𝐱
𝜕𝑢𝛼

, 𝐱𝑢𝛼𝑢𝛽 = 𝜕2𝐱
𝜕𝑢𝛼𝜕𝑢𝛽

, 𝛼, 𝛽 = 1, 2. (2.1)

We have the coefficients of the first fundamental form on a surface, 𝑔𝛼𝛽 = (𝐱𝑢𝛼 , 𝐱𝑢𝛽 ), 𝛼, 𝛽 = 1, 2, and the important surface normal

𝐧 =
𝐱𝑢1 × 𝐱𝑢2

‖𝐱𝑢1 × 𝐱𝑢2‖
, (2.2)

where (⋅, ⋅), ⋅ × ⋅ and ‖ ⋅ ‖ stand for the usual inner product, cross product and Euclidean norm in R3 respectively. We need denote
𝑔𝛼𝛽 ] = [𝑔𝛼𝛽 ]−1 and 𝑔 = det[𝑔𝛼𝛽 ] before introducing the following classical differential geometric operators.

.1.1. Tangential gradient operator
On the function space 𝐶1(), for any 𝑓 ∈ 𝐶1(), the tangential gradient operator ∇𝑠 is defined as

∇𝑠𝑓 = [𝐱𝑢1 , 𝐱𝑢2 ][𝑔𝛼𝛽 ][𝑓𝑢1 , 𝑓𝑢2 ]𝑇 ∈ R3. (2.3)

or a vector-valued function 𝐟 = [𝑓1,… , 𝑓𝑘]𝑇 ∈ 𝐶1()𝑘, the gradient ∇𝑠 is defined as

∇𝑠𝐟 = [∇𝑠𝑓1,… ,∇𝑠𝑓𝑘] ∈ R3×𝑘.

.1.2. Divergence operator
On the smooth vector field 𝐯 ∈ [𝐶1()]3, the divergence operator div𝑠 is defined as

div𝑠(𝐯) =
1
√

𝑔

[

𝜕
𝜕𝑢1

, 𝜕
𝜕𝑢2

]

[√

𝑔[𝑔𝛼𝛽 ][𝐱𝑢1 , 𝐱𝑢2 ]𝑇 𝐯
]

. (2.4)

2.1.3. Laplace–Beltrami operator
For any 𝑓 ∈ 𝐶2(), the Laplace–Beltrami operator (LBO) 𝛥𝑠 is defined as

𝛥𝑠𝑓 = div𝑠(∇𝑠𝑓 ). (2.5)

2.1.4. Sobolev space on surface
For a given constant 𝑘 and a function 𝑓 ∈ 𝐶∞(), we denote ∇𝑘𝑓 the 𝑘th order covariant derivative of function 𝑓 , with the

convention ∇0𝑓 = 𝑓 . Let

𝐶𝑘() =
{

𝑓 ∈ 𝐶∞() ∶ ∫𝑠
|∇𝑗𝑓 |2d𝐱 ≤ ∞ for 𝑗 = 0,… , 𝑘

}

,

and  be a compact surface with at least 𝑘th order smoothness Sobolev space 𝐻𝑘(), which is the completion of 𝐶𝑘() in the sense
of norm

‖𝑓‖𝐻𝑘() ∶=

( 𝑘
∑

𝑗=0
∫𝑠

|∇𝑗𝑓 |2d𝐱
)1∕2

. (2.6)

For any functions 𝜉, 𝜌 ∈ 𝐻1(), two classical inner products on the surface  are described as

(𝜉, 𝜌) = 𝜉𝜌 d𝐱, and (∇𝑠𝜉,∇𝑠𝜌) = ∇𝑠𝜉 ⋅ ∇𝑠𝜌 d𝐱.
3

∫𝑠 ∫𝑠



Computer Methods in Applied Mechanics and Engineering 424 (2024) 116901Q. Pan et al.

T
s
w

f
c

L

P

w

2.2. CH-NS system

Suppose  be a sufficiently smooth and orientable surface. We use 𝜙(𝐱, 𝑡) as a phase-field variable to mark the volume fraction
of the two different fluid components in the fluid mixture, i.e.,

𝜙(𝐱, 𝑡) =
{

− 1 fluid component 1,

1 fluid component 2.
(2.7)

hese two distinct regions of 𝜙(𝐱, 𝑡) are smoothly attached by a thin spanned region with a width of 𝑂(𝜀), 𝜀 ≤ 1. To simplify the
ystem, we make the assumption that the two fluids share the same density. Introducing the velocity field 𝐮 in the fluid mixture,
e assume the total free energy to be

𝐸(𝐮, 𝜙) = ∫𝑠

( 1
2
|𝐮|2 + 𝜆( 1

2
|∇𝑠𝜙|

2 + 𝐹 (𝜙))
)

d𝐱, (2.8)

which is a summation of the gradient potential |∇𝑠𝜙|
2 and Ginzburg–Landau type double-well functional 𝐹 (𝜙) = 1

4𝜀2 (𝜙
2 − 1)2. The

model parameter 𝜆 depends on the surface tension, which is defined as 2
√

2
3

𝜆
𝜀 [45]. The gradient entropy represents the hydrophilic

type of interaction or the tendency to mix, and the other double-well potential describes the hydrophobic type of interaction or the
tendency to separation.

The CH-NS system is characterized by adopting the 𝐻−1 gradient flow approach for the phase-field variable. Simultaneously,
the system assumes that the fluid is incompressible, adhering to the generalized Fick’s law, which dictates that the mass flux is
proportional to the chemical potential gradient. This combination of conditions results in the following formulation for the CH-NS
system:

𝐮𝑡 + (𝐮 ⋅ ∇𝑠)𝐮 − 𝜈𝛥𝑠𝐮 + ∇𝑠𝑝 + 𝜙∇𝑠𝜔 = 𝟎, (2.9)
div𝑠𝐮 = 0, (2.10)
𝜙𝑡 + ∇𝑠 ⋅ (𝐮𝜙) = 𝑀𝛥𝑠𝜔, (2.11)
𝜔 = 𝜆(−𝛥𝑠𝜙 + 𝑓 (𝜙)), (2.12)

where 𝑀 is the mobility parameters, 𝜔 is the chemical potential, 𝜙∇𝑠𝜔 is the surface tension term, ∇𝑠(𝐮𝜙) is the advection, 𝜈 is the
luid viscosity, 𝑝 is the pressure, and 𝑓 (𝜙) = 𝐹 ′(𝜙) = 1

𝜀 (𝜙
3 − 𝜙) and the variational derivative 𝜔 = 𝛿𝐸

𝛿𝜙 . In this article we only treat
losed surface domains, and remove all boundary conditions.

Next, we will show the character of the energy dissipation for the CH-NS dynamical system (2.9)–(2.12), as follows.

emma 2.1. The CH-NS dynamical system (2.9)–(2.12) satisfies
𝑑
𝑑𝑡

𝐸(𝜙,𝐮) = −𝑀‖∇𝑠𝜔‖
2 − 𝜈‖∇𝑠𝐮‖2 ≤ 0, (2.13)

where 𝐸(𝐮, 𝜙) is defined as (2.8).

roof. By taking the 𝐿2 inner products of (2.9) with 𝐮, considering (2.10) and using the integration by parts, we get
1
2
𝑑
𝑑𝑡

‖𝐮‖2 + 𝜈‖∇𝑠𝐮‖2 + (𝜙∇𝑠𝜔,𝐮) + ((𝐮 ⋅ ∇𝑠)𝐮,𝐮) = 0, (2.14)

here we apply (𝐮𝑡,𝐮) =
1
2

𝑑
𝑑𝑡‖𝐮‖

𝟐.
By taking the 𝐿2 inner products of (2.11) with −𝜔 and integration by parts, we get

𝑀‖∇𝑠𝜔‖
2 + (∇𝑠 ⋅ (𝐮𝜙), 𝜔) = −(𝜙𝑡, 𝜔). (2.15)

By taking the 𝐿2 inner product of (2.12) with 𝜙𝑡 and integration by parts, we obtain

𝜆 𝑑
𝑑𝑡

( 1
2
‖∇𝑠𝜙‖

2) + 𝜆 𝑑
𝑑𝑡 ∫𝑠

𝐹 (𝜙)𝑑𝐱 = (𝜔, 𝜙𝑡). (2.16)

By summing up the aforementioned three equalities and consolidating all three terms associated with 𝑑
𝑑𝑡 on the left-hand side, we

derive (2.13). □

In the preceding proof, the cancellation of inner products involving nonlinear terms is attributed to the properties stated as

(∇𝑠 ⋅ (𝐮𝜙), 𝜔) + (𝜙∇𝑠𝜔,𝐮) = 0 and ((𝐮 ⋅ ∇𝑠)𝐮,𝐮) = 0. (2.17)

These crucial zero equalities, referred to as the ‘zero-energy-contribution’ (ZEC) property (cf. [46,47]), arise from integration by
parts, causing these nonlinear terms to vanish and not contribute to the total energy. This property serves as a key element guiding
4

our approach to decoupling strategies.
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Fig. 3.1. (a): Vertex mask for a regular vertex, which has 6 adjacent vertices, and (b): Vertex mask for an irregular vertex, where the number of its adjacent

points is not equal to 6, and the weight coefficient is 𝛼 = 1 − 𝑛𝛽, 𝛽 = 1
𝑛

[

5
8
−
(

3
8
+ 1

4
cos 2𝜋

𝑛

)2
]

and 𝑛 is its valence. (c): Edge mask.

3. IGA-EIEQ scheme on the surface

In this section, we present the spatiotemporally fully discrete scheme for the model system (2.9)–(2.12). The IGA paradigm
unifies the shape parameterization methods adopted in CAD and the discretization techniques used in FEM. We consider the
domains of geometrically and topologically complex surface. Subdivision surfaces originate from CAD (see [19–21]) and are widely
applied in computer animation applications. The subdivision technique can generate smooth surfaces on unstructured meshes,
which is similar to B-splines or NURBS on structured meshes. In the FEM method, subdivision surfaces have superior conditions for
square integrability with second-order derivatives. We adopt the recently developed subdivision-based IGA framework for spatial
discretization and introduce the EIEQ method, merging the ZEC concept and the projection approach for time marching [41–43]. We
prove that the discrete scheme is unconditionally energy stable and present the corresponding decoupling implementation approach
to obtain high computational efficiency.

3.1. Subdivision-based IGA method for space discretization

The well-known IGA methodology adopts the NURBS/T-splines [48–51], which uses the same set of basis functions to describe
the solution domain and implement the numerical computation of PDEs. The framework of IGA not only develops the seamless
integration between FEM and CAD, but also has higher numerical exactness than FEM through 𝑝-refinement, ℎ-refinement, and even
𝑘-refinement with the knot insertion and/or order elevation. Therefore we can improve the accuracy of the numerical simulation
without destroying the original geometric properties, which removes the interactive communication with the CAD system.

Subdivision technology was proposed in computer graphics area, which can construct smooth surfaces from arbitrary topological
meshes by designing a set of simple and efficient refinement schemes [19,20], and handle complicated geometric models
while maintaining original characteristics near boundaries through straightforward extensions, such as concave/convex angles
and sharp/smooth creases. Subdivision is compatible with NURBS, which has the capability of the refineability of B-spline
techniques. Both Loop subdivision [24,26] and Catmull–Clark subdivision [25] have been utilized in IGA. The subdivision-based
IGA methodology can be viewed as the natural choice for higher-order FEM in engineering practice, see [22–24,26] as well.

In this work, we apply loop subdivision surfaces based on triangle meshes, or more exactly, the essential subdivision shape
functions, for the discretization method of the weak form. The surface subdivision technique possesses superior conditions of high-
order smoothness and suitability for any topological structure, which is widely used in high-order model such as shell model [22,23].
We can generate spline-class surfaces using repeated refinement on a given initial mesh, which is essentially a discretization method.
In addition to the flexible expression of geometric shapes, the high-order smoothness of subdivision surfaces also makes them ideal
for solving high-order PDEs.

3.1.1. Loop subdivision
We adopt Loop subdivision approach [20], which creates quartic box-splines defined on three-directional triangular meshes with

arbitrary topological structure. We know that the quartic box-splines are defined on a translationally invariant three-dimensional
mesh, which means that the mesh is only composed of triangular patches, and each control vertex is related to adjacent triangular
patches. As different from quartic box-splines, for Loop scheme, each control vertex can have any number of triangular patches, and
the resulting refiner surfaces can be at least 𝐶1 continuous. In each refinement step, the refined meshes are achieved by repeating
quadrilateral segmentation of the previous mesh, with each refinement step subdividing the triangle into four smaller triangles.
The position of each control vertex is recalculated as a weighted average of itself and its neighboring control vertices. The weight
coefficients are represented in the form of subdivisions stencils. Vertex stencils are introduced to recalculate the coordinates of
existing control vertices of the coarse mesh (see Fig. 3.1(𝑎) and (𝑏)). Edge stencils are introduced to compute the coordinates of
control vertices generated on the edge during each quartering (see Fig. 3.1(𝑐)). It should be noted that the weight coefficients only
depend on the connect relationship of the mesh and not on the actual positions of the control vertices.
5
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Fig. 3.2. (a): We can evaluate a regular Loop subdivision surface patch with its neighboring 12 control points. (b): We can evaluate an irregular loop subdivision
urface patch whose neighboring control points are not equal to 12. The point marked in the hollow ring is an irregular point whose valence is five not six.
c): Quartering this patch can get four sub-patches. Three sub-patches marked in 1, 2, 3 are computable, and one sub-patch marked in 4 is uncomputable, which
hould be repeatedly quartered to obtain more sub-patches.

We need to compute quantities, such as the tangential vector and curvature, at any location on the parameterized subdivision
urface. Loop subdivision can generate box-splines on patches supported only by regular control vertices, i.e.,

𝐱(𝑢1, 𝑢2) =
12
∑

𝑖=1
𝐵𝑖(𝑢1, 𝑢2)𝐱𝑘𝑖 . (3.1)

e use (𝑢1, 𝑢2, 1 − 𝑢1 − 𝑢2) denote the barycentric coordinates of the unit parametric triangle and 𝐱𝑘𝑖 denote its 2-ring surrounding
eighbor control vertices of the control triangle (see Fig. 3.2(𝑎)), and use 𝐵𝑖 as the quartic box-splines (see the details in [21]).
patch containing irregular control vertices whose valence is different from 6 can also be parameterized with box spline shape

unctions. It is crucial to recognize that in the process of refinement, only regular vertices are generated through the original coarse
riangular mesh divided by quartered separating, which means that the valence of all new vertices is 6 (see Fig. 3.2(𝑏) and (𝑐)).
bviously, the total number of irregular control vertices in the mesh remains unchanged, and their influence domain finally closes

o the limit of zero. Therefore, in the process of repeated subdivision and refinement, we can obtain more and more regular patches.
e should note that Stam proposed a fast parameterization method for subdivision surfaces, which coincides with the spline surface

n the regular patch [21].

.1.2. Loop subdivision finite element
We next analyze the smoothness and convergence properties of loop subdivision schemes. For the convergence properties of

ubdivision schemes at each control vertex, we should consider their one-ring adjacent control vertices. We denote an assembly
atrix

𝐗0 = (𝐱0, 𝐱1, 𝐱2, ⋯ , 𝐱𝑛)𝑇 , (3.2)

here 𝐗0 is a (𝑛+1)×3 matrix, and valence 𝑛 denotes the number of its connected edges. The superscript 0 indicates the subdivision
evel. We can compute the positions of 𝐗𝑘, where the initial positions 𝐗0 is multiplied 𝑘 times with the subdivision matrix 𝐒

𝐗𝑘 = 𝐒𝑘𝐗0. (3.3)

e can refer the fast algorithm about the subdivision matrix 𝐒𝑘 as [21] because it depends only on the valence of the control vertex
nd unrelated to the control vertex positions. A limit surface can be achieved as the subdivision level 𝑘 → ∞, whose every control
ertex has the explicit position, as described in the following Lemma 3.1. The limit surface of Loop subdivision is 𝐶2 everywhere
xcept at the extraordinary vertices where it is 𝐶1.

emma 3.1. Let 𝐱𝑘0 be a control vertex of valence 𝑛 on the mesh 𝛺𝑘
ℎ, and 𝐱𝑘𝑗 , 𝑗 = 1,… , 𝑛, be its 1-ring neighbor-controlled vertices. All

hese vertices converge to a single position

𝐱̂0 = (1 − 𝑛𝑙)𝐱𝑘0 + 𝑙
𝑛
∑

𝑗=1
𝐱𝑘𝑗 , 𝑙 = 1

𝑛 + 3∕(8𝛽)
, (3.4)

as the subdivision time 𝑘 → ∞ (see [20] for the proof).

A quartic box spline shape function contains two rings of neighboring elements as its support, which consists of piecewise
polynomial surface patches that run smoothly across the surrounding patch boundaries. The finite element solution procedure is
implemented on the limit surface. Loop basis functions naturally satisfy the 𝐻2-smoothness requirement of the fourth-order PDEs
and exactly describe arbitrary topology, which provides a uniform mathematical description for representing both the geometry
6
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and the physics character of the complex geometry. We perform actual calculations at the Gaussian integral points on the limit
surface (3.4), so we need to establish a mapping from the unit parameter triangle to the control surface patch, where we can refer
it to [24–26].

3.2. Spatiotemporal fully discrete formation

3.2.1. Reformulation
Firstly, according to the initial version of IEQ strategy, we only need to define a local-type auxiliary variable 𝑈 as

𝑈 (𝜙) =
√

𝐹 (𝜙) − 𝑆
2𝜀2

𝜙2 + 𝐵. (3.5)

ere, the negative term − 𝑆
2𝜀2 𝜙

2 can be bounded for any 𝑆, and the constant 𝐵 needs to be positive to make sure the summation of
all terms in the square root is always positive. The goal of designing the variable 𝑈 is to guarantee the original energy (2.8) to be
quadratic. Using the new variable 𝑈 , the new CH-NS system can be rewritten as

𝐮𝑡 + (𝐮 ⋅ ∇𝑠)𝐮 − 𝜈𝛥𝑠𝐮 + ∇𝑠𝑝 + 𝜙∇𝑠𝜔 = 𝟎, (3.6)
div𝑠𝐮 = 0, (3.7)
𝜙𝑡 + ∇𝑠 ⋅ (𝐮𝜙) = 𝑀𝛥𝑠𝜔, (3.8)

𝜔 = 𝜆(−𝛥𝑠𝜙 + 𝑆
𝜀2

𝜙 +𝐻𝑈 ), (3.9)

𝑈𝑡 =
1
2
𝐻𝜙𝑡, (3.10)

here the new term

𝐻(𝜙) =
𝑓 (𝜙) − 𝑆

𝜀2
𝜙

√

𝐹 (𝜙) − 𝑆
2𝜀2 𝜙

2 + 𝐵
. (3.11)

Secondly, we modify the IEQ method to the explicit-IEQ (EIEQ) method combined with the ZEC method by introducing an
auxiliary nonlocal variable and design a special type but trivial ODE for it. We introduce another nonlocal variable 𝑄(𝑡) and an ODE
system related to it that reads as

{

𝑄𝑡 = (∇𝑠 ⋅ (𝐮𝜙), 𝜔) + ((𝐮 ⋅ ∇𝑠)𝐮,𝐮) + (𝜙∇𝑠𝜔,𝐮) + 𝜆(𝐻𝑈,𝜙𝑡) − 𝜆(𝐻𝜙𝑡, 𝑈 ),

𝑄|𝑡=0 = 1.
(3.12)

Obviously, from (2.17), we get 𝑄𝑡 = 0. Using the initial condition 𝑄|𝑡=0 = 1, we get the exact solution of (3.12) is 𝑄(𝑡) ≡ 1. The
last two terms in (3.12) correspond to the EIEQ technique [32,33,41–43], while the first three terms in (3.12) belong to the ZEC
decoupling method [37–40]. Note that the objective of designing 𝑄 in this manner is to achieve the decoupled type scheme while
nsuring the energy stability, as detailed in Theorem 3.2 and Section 3.2.4.

Therefore, by combining the two new variables 𝑈 and 𝑄, we rewrite the system (3.6)–(3.10) into the following equivalent form:

𝐮𝑡 +𝑄(𝐮 ⋅ ∇𝑠)𝐮 − 𝜈𝛥𝑠𝐮 + ∇𝑠𝑝 +𝑄𝜙∇𝑠𝜔 = 𝟎, (3.13)
div𝑠𝐮 = 0, (3.14)
𝜙𝑡 +𝑄∇𝑠 ⋅ (𝐮𝜙) = 𝑀𝛥𝑠𝜔, (3.15)

𝜔 = 𝜆(−𝛥𝑠𝜙 + 𝑆
𝜀2

𝜙 +𝑄𝐻𝑈 ), (3.16)

𝑈𝑡 =
1
2
𝑄𝐻𝜙𝑡, (3.17)

𝑄𝑡 = (∇𝑠 ⋅ (𝐮𝜙), 𝜔) + (𝜙∇𝑠𝜔,𝐮) + ((𝐮 ⋅ ∇𝑠)𝐮,𝐮) + 𝜆(𝐻𝑈,𝜙𝑡) − 𝜆(𝐻𝜙𝑡, 𝑈 ). (3.18)

he initial conditions read as
⎧

⎪

⎨

⎪

⎩

𝜙|𝑡=0 = 𝜙0, 𝜔|𝑡=0 = 𝜆(−𝛥𝑠𝜙0 + 𝑓 (𝜙0)), 𝑝|𝑡=0 = 𝑝0, 𝐮|𝑡=0 = 𝐮0,

𝑄|𝑡=0 = 1, 𝑈 (𝜙) =
√

𝐹 (𝜙0) −
𝑆
2𝜀2 𝜙

2
0 + 𝐵.

(3.19)

Note that we multiply the surface tension term 𝜙∇𝑠𝜔 and the advection term ∇𝑠 ⋅ (𝐮𝜙) by the nonlocal variable 𝑄. However, it
is important to emphasize that (3.13)–(3.18) remains unaffected as 𝑄(𝑡) ≡ 1. In addition, integrating (3.17) with respect to time 𝑡
and incorporating the initial condition (3.19) enables us to readily obtain the original system (2.12).

The inherent characteristic of the hydrodynamically coupled phase-field system is its adherence to the energy dissipation law.
Consequently, the newly transformed system (3.13)–(3.18) also preserves the structure of the energy dissipation law, as stated in
7

the following Theorem 3.1.



Computer Methods in Applied Mechanics and Engineering 424 (2024) 116901Q. Pan et al.

P

w

F

a

Theorem 3.1. The transformed equivalent system (3.13)–(3.18) holds the law of the energy dissipation as
𝑑
𝑑𝑡

𝐸(𝜙,𝑄,𝑈, 𝐮) = −𝑀‖∇𝑠𝜔‖
2 − 𝜈‖∇𝑠𝐮‖2 ≤ 0, (3.20)

where

𝐸(𝜙,𝑄,𝑈, 𝐮) = ∫

(

1
2
|𝐮|2 + 𝜆

2
|∇𝑠𝜙|

2 + 𝜆𝑆
2𝜀2

|𝜙|2 + 𝜆|𝑈 |

2 − 𝜆𝐵
)

d𝐱 + 1
2
|𝑄|

2 − 1
2
. (3.21)

roof. By taking the 𝐿2 inner product of (3.13) with 𝐮, then applying (3.14), we obtain
1
2
𝑑
𝑑𝑡

‖𝐮‖2 + 𝜈‖∇𝑠𝐮‖2 = −𝑄((𝐮 ⋅ ∇𝑠)𝐮,𝐮) −𝑄(𝜙∇𝑠𝜔,𝐮). (3.22)

By taking the 𝐿2 inner product of (3.15) with 𝜔, we get

(𝜙𝑡, 𝜔) = −𝑀‖∇𝑠𝜔‖
2 −𝑄(∇𝑠 ⋅ (𝐮𝜙), 𝜔). (3.23)

By taking the 𝐿2 inner product of (3.16) with −𝜙𝑡 in 𝐿2 space, and using the integration by parts to get

− (𝜔, 𝜙𝑡) = −1
2
𝜆 𝑑
𝑑𝑡

‖∇𝑠𝜙‖
2 − 𝜆𝑆

2𝜀2
𝑑
𝑑𝑡

‖𝜙‖2 − 𝜆𝑄(𝐻𝑈,𝜙𝑡). (3.24)

By taking the 𝐿2 inner product of (3.17) with 2𝜆𝑈 , we obtain

𝜆 𝑑
𝑑𝑡

‖𝑈‖

2 = 𝜆𝑄(𝐻𝜙𝑡, 𝑈 ), (3.25)

here 2𝜆(𝑈𝑡, 𝑈 ) = 𝜆 𝑑
𝑑𝑡‖𝑈‖

2.
By multiplying (3.18) with 𝑄, we obtain

𝑑
𝑑𝑡

(

|𝑄|

2

2

)

= −𝑄(𝐮𝜙,∇𝑠𝜔) +𝑄(𝜙∇𝑠𝜔,𝐮) +𝑄((𝐮 ⋅ ∇𝑠)𝐮,𝐮)

+ 𝜆𝑄(𝐻𝑈,𝜙𝑡) − 𝜆𝑄(𝐻𝜙𝑡, 𝑈 ).
(3.26)

After combining (3.22)–(3.26) and observing that all terms with the factor 𝑄 cancel out, we derive the law of energy dissipation
(3.21). □

3.2.2. Numerical scheme
In this subsection, we describe the fully discrete scheme for solving the transformed dynamical system (3.13)–(3.18). In what

follows, the time step size is denoted as 𝛿𝑡 > 0 and 𝑡𝑛 = 𝑛𝛿𝑡. The test functions are chosen as 𝜉ℎ, 𝜃ℎ, 𝜗ℎ, 𝜍ℎ, 𝜁ℎ ∈ 𝐻2(ℎ), which is
the finite element space supported by Loop subdivision elements described in Section 3.1.

Assuming that 𝐮̃𝑘ℎ, 𝜙
𝑘
ℎ, 𝜔𝑘

ℎ, 𝑈
𝑘
ℎ , 𝑄

𝑘, 𝐮𝑘ℎ for 𝑘 = 𝑛, 𝑛 − 1, 𝑛 − 2, and 𝑛 ≥ 2 are known, we proceed with the update:

⎧

⎪

⎨

⎪

⎩

𝜙∗
ℎ = 2𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ , 𝜔∗

ℎ = 2𝜔𝑛
ℎ − 𝜔𝑛−1

ℎ , 𝐮∗ℎ = 2𝐮𝑛ℎ − 𝐮𝑛−1ℎ ,

𝑈∗
ℎ = 𝑈 (𝜙∗

ℎ), 𝐻∗
ℎ = 𝐻(𝜙∗

ℎ), 𝜙∗
ℎ𝑡 =

5𝜙𝑛
ℎ − 8𝜙𝑛−1

ℎ + 3𝜙𝑛−2
ℎ

2𝛿𝑡
.

(3.27)

urthermore, we calculate 𝐮̃𝑛+1ℎ , 𝜙𝑛+1
ℎ , 𝜔𝑛+1

ℎ , 𝑈𝑛+1
ℎ , 𝑄𝑛+1, 𝐮𝑛+1ℎ by the following second-order difference formula (BDF2):

(

3𝐮̃𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ
2𝛿𝑡

, 𝝃ℎ

)

+𝑄𝑛+1((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝝃ℎ) + 𝜈(∇𝑠𝐮̃𝑛+1ℎ ,∇𝑠𝝃ℎ) (3.28)

+(∇𝑠𝑝
𝑛
ℎ, 𝝃ℎ) +𝑄𝑛+1(𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝝃ℎ) = 0,

(

3𝜙𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ

2𝛿𝑡
, 𝜃ℎ

)

−𝑄𝑛+1(𝐮∗ℎ𝜙
∗
ℎ,∇𝑠𝜃ℎ) = −𝑀(∇𝑠𝜔

𝑛+1
ℎ ,∇𝑠𝜃ℎ), (3.29)

(

𝜔𝑛+1
ℎ , 𝜗ℎ

)

= 𝜆(∇𝑠𝜙
𝑛+1
ℎ ,∇𝑠𝜗ℎ) +

𝜆𝑆
𝜀2

(𝜙𝑛+1
ℎ , 𝜗ℎ) + 𝜆𝑄𝑛+1(𝐻∗

ℎ𝑈
∗
ℎ , 𝜗ℎ), (3.30)

(

3𝑈𝑛+1
ℎ − 4𝑈𝑛

ℎ + 𝑈𝑛−1
ℎ

2𝛿𝑡
, 𝜍ℎ

)

= 1
2
𝑄𝑛+1 (𝐻∗

ℎ𝜙
∗
ℎ𝑡, 𝜍ℎ

)

, (3.31)

3𝑄𝑛+1 − 4𝑄𝑛 +𝑄𝑛−1

2𝛿𝑡
= −(𝐮∗ℎ𝜙

∗
ℎ,∇𝑠𝜔

𝑛+1
ℎ ) + (𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
ℎ ) + ((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃

𝑛+1
ℎ ) (3.32)

+𝜆(𝐻∗
ℎ𝑈

∗
ℎ ,

3𝜙𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ

2𝛿𝑡
) − 𝜆(𝐻∗

ℎ𝜙
∗
ℎ𝑡, 𝑈

𝑛+1
ℎ ), (3.33)

nd

(∇𝑠(𝑝𝑛+1ℎ − 𝑝𝑛ℎ),∇𝑠𝜁ℎ) = − 3
2𝛿𝑡

(∇𝑠 ⋅ 𝐮̃𝑛+1ℎ , 𝜁ℎ), (3.34)

𝐮𝑛+1 = 𝐮̃𝑛+1 − 2𝛿𝑡 (∇ 𝑝𝑛+1 − ∇ 𝑝𝑛 ). (3.35)
8
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Remark 3.1. The time derivative is discretized using the BDF2 method. However, achieving a high-order formula like BDF3/4
poses significant challenges, primarily due to stability issues. Additionally, a direct discretization method is used in the above
scheme. Specifically, linear components are implicitly treated, while nonlinear components involving a nonlocal variable 𝑄 are
treated through the explicit-implicit schemes. It means that we implicitly process the term 𝑄, and explicitly process all other terms.
The decoupling method of the above scheme is obviously coupled and must fully utilize the nonlocal characteristics of the 𝑄 variable.
Next, we will demonstrate the energy stability of the developed scheme, followed by the implementation details of decoupling.

Remark 3.2. We adopt a projection-based approach for the incompressible fluid dynamic system. This algorithm can decouple the
calculation of pressure and velocity fields. The results show that the velocity field and pressure field can obtain second-order and
first-order accuracy in time, respectively, and strict error estimates are provided [52]. The reason for the first-order accuracy loss
of pressure is the application of artificial homogeneous Neumann boundary conditions to the pressure [53].

The final velocity field is denoted as 𝐮𝑛ℎ, and the intermediate velocity field is denoted as 𝐮̃𝑛ℎ, which satisfy the divergence-free
condition in a discrete sense. For ∇𝑣ℎ, 𝑣ℎ ∈ 𝑂ℎ, we take the 𝐿2 inner product of (3.35) to obtain

(𝐮𝑛+1ℎ ,∇𝑠𝑣ℎ) = −(∇𝑠 ⋅ 𝐮̃𝑛+1ℎ , 𝑣ℎ) −
2𝛿𝑡
3

(∇𝑠(𝑝𝑛+1ℎ − 𝑝𝑛ℎ),∇𝑠𝑣ℎ). (3.36)

Therefore, from (3.34), we derive

(𝐮𝑛+1ℎ ,∇𝑠𝑣ℎ) = 0. (3.37)

3.2.3. Energy stability
We aim to demonstrate that the proposed discrete scheme (3.28)–(3.35) unconditionally satisfies the energy dissipation law,

akin to the continuous system (3.13)–(3.18). Prior to presenting the proof in Theorem 3.2, we introduce two identities that will be
repeatedly used:

2(𝑎 − 𝑏, 𝑎) = |𝑎|2 − |𝑏|2 + |𝑎 − 𝑏|2, (3.38)
2(3𝑎 − 4𝑏 + 𝑐)𝑎 = |𝑎|2 − |𝑏|2 + |2𝑎 − 𝑏|2 − |2𝑏 − 𝑐|2 + |𝑎 − 2𝑏 + 𝑐|2. (3.39)

Theorem 3.2. The discrete scheme (3.28)–(3.35) is second-order convergent and unconditionally energy stable, i.e., satisfies the following
iscrete energy dissipation law:

𝐸𝑛+1 − 𝐸𝑛

𝛿𝑡
≤ −𝑀‖∇𝑠𝜔

𝑛+1
ℎ ‖

2 − 𝜈‖∇𝑠𝐮̃𝑛+1ℎ ‖

2 ≤ 0, (3.40)

where, for an integer 𝑘 ≥ 0, the discrete energy 𝐸𝑘 is defined as

𝐸𝑘 = 1
2
(‖𝐮𝑘ℎ‖

2 + ‖2𝐮𝑘ℎ − 𝐮𝑘−1ℎ ‖

2) + 2𝛿𝑡2
3

‖∇𝑠𝑝
𝑘
‖

2

+𝜆
2
(‖∇𝑠𝜙

𝑘
ℎ‖

2 + ‖2∇𝑠𝜙
𝑘
ℎ − ∇𝑠𝜙

𝑘−1
ℎ ‖

2) + 𝜆𝑆
2𝜀2

(|𝜙𝑘
ℎ|

2 + |2𝜙𝑘
ℎ − 𝜙𝑘−1

ℎ |

2)

+𝜆(|𝑈𝑘
|

2 + |2𝑈𝑘 − 𝑈𝑘−1
|

2) + 1
2
(|𝑄𝑘

|

2 + |2𝑄𝑘 −𝑄𝑘−1
|

2) − 𝜆𝐵|| − 1
2
.

(3.41)

roof. By taking the test function 𝝃ℎ = 2𝛿𝑡𝐮̃𝑛+1ℎ in (3.28), we get

(3𝐮̃𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ ) + 2𝛿𝑡𝑄𝑛+1((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃
𝑛+1
ℎ ) + 2𝜈𝛿𝑡‖∇𝑠𝐮̃𝑛+1ℎ ‖

2

+2𝛿𝑡(∇𝑠𝑝
𝑛
ℎ, 𝐮̃

𝑛+1
ℎ ) + 2𝛿𝑡𝑄𝑛+1(𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
ℎ ) = 0.

(3.42)

We rewrite (3.35) as

𝐮̃𝑛+1ℎ − 𝐮𝑛+1ℎ = 2𝛿𝑡
3

∇𝑠(𝑝𝑛+1ℎ − 𝑝𝑛ℎ). (3.43)

Taking the 𝐿2 inner product of the above equality with 𝐮𝑘ℎ with 𝑘 = 𝑛 + 1, 𝑛, 𝑛 − 1, we derive

(𝐮̃𝑛+1ℎ − 𝐮𝑛+1ℎ ,𝐮𝑛+1ℎ ) = 2𝛿𝑡
3

(∇𝑠(𝑝𝑛+1ℎ − 𝑝𝑛ℎ),𝐮
𝑛+1
ℎ ) = 0, (3.44)

and
(3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ − 𝐮𝑛+1ℎ )

= (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 2𝛿𝑡
3

∇𝑠(𝑝𝑛+1ℎ − 𝑝𝑛ℎ)) = 0,
(3.45)

where (3.37) is used.
We reformulate the first term in (3.42) as

(3𝐮̃𝑛+1ℎ −4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ )

=(3𝐮̃𝑛+1ℎ −3𝐮𝑛+1ℎ + 3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ )

=(3𝐮̃𝑛+1ℎ − 3𝐮𝑛+1ℎ , 𝐮̃𝑛+1ℎ ) + (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ ).

(3.46)

where we add the underlined term −3𝐮𝑛+1 + 3𝐮𝑛+1, which is zero.
9
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For the first split term (3𝐮̃𝑛+1ℎ − 3𝐮𝑛+1ℎ , 𝐮̃𝑛+1ℎ ) in (3.46), we deduce

(3𝐮̃𝑛+1ℎ − 3𝐮𝑛+1ℎ , 𝐮̃𝑛+1ℎ ) = (3𝐮̃𝑛+1ℎ − 3𝐮𝑛+1ℎ , 𝐮̃𝑛+1ℎ ) + (3𝐮̃𝑛+1ℎ − 3𝐮𝑛+1ℎ ,𝐮𝑛+1ℎ )

= (3𝐮̃𝑛+1ℎ − 3𝐮𝑛+1ℎ , 𝐮̃𝑛+1ℎ + 𝐮𝑛+1ℎ )

= 3‖𝐮̃𝑛+1ℎ ‖

2 − 3‖𝐮𝑛+1ℎ ‖

2,

(3.47)

here the added underlined term is actually zero, as can be seen from (3.44).
For the second split term (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ ) in (3.46), we deduce

(3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ ) = (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ − 𝐮𝑛+1ℎ + 𝐮𝑛+1ℎ )

= (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ − 𝐮𝑛+1ℎ ) + (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ ,𝐮𝑛+1ℎ )

= (3𝐮𝑛+1ℎ − 4𝐮𝑛ℎ + 𝐮𝑛−1ℎ ,𝐮𝑛+1ℎ )

= 1
2
(‖𝐮𝑛+1ℎ ‖

2 − ‖𝐮𝑛ℎ‖
2 + ‖2𝐮𝑛+1ℎ − 𝐮𝑛ℎ‖

2 − ‖2𝐮𝑛ℎ − 𝐮𝑛−1ℎ ‖

2

+ ‖𝐮𝑛+1ℎ − 2𝐮𝑛ℎ + 𝐮𝑛−1ℎ ‖

2),

(3.48)

here the underlined term is zero due to (3.45), and the last equality is derived using (3.39).
Thus, the first term in (3.42) can be written as

(3𝐮̃𝑛+1ℎ −4𝐮𝑛ℎ + 𝐮𝑛−1ℎ , 𝐮̃𝑛+1ℎ )

=1
2
(‖𝐮𝑛+1ℎ ‖

2 − ‖𝐮𝑛ℎ‖
2 + ‖2𝐮𝑛+1ℎ − 𝐮𝑛ℎ‖

2 − ‖2𝐮𝑛ℎ − 𝐮𝑛−1ℎ ‖

2

+ ‖𝐮𝑛+1ℎ − 2𝐮𝑛ℎ + 𝐮𝑛−1ℎ ‖

2) + 3‖𝐮̃𝑛+1ℎ ‖

2 − 3‖𝐮𝑛+1ℎ ‖

2.

(3.49)

We rewrite (3.35) as

𝐮𝑛+1ℎ + 2𝛿𝑡
3

∇𝑠𝑝
𝑛+1
ℎ = 𝐮̃𝑛+1ℎ + 2𝛿𝑡

3
∇𝑠𝑝

𝑛
ℎ. (3.50)

Taking the 𝐿2 inner product of the above equation with itself and multiply the result with 3
2 , we derive

3
2
‖𝐮𝑛+1ℎ ‖

2 + 2𝛿𝑡2
3

‖∇𝑠𝑝
𝑛+1
ℎ ‖

2 + 2𝛿𝑡(𝐮𝑛+1ℎ ,∇𝑠𝑝
𝑛+1
ℎ )

= 3
2
‖𝐮̃𝑛+1ℎ ‖

2 + 2𝛿𝑡2
3

‖∇𝑠𝑝
𝑛
ℎ‖

2 + 2𝛿𝑡(𝐮̃𝑛+1ℎ ,∇𝑠𝑝
𝑛
ℎ).

(3.51)

From (3.37), we get 2𝛿𝑡(𝐮𝑛+1ℎ ,∇𝑠𝑝𝑛+1ℎ ) = 0, thus (3.51) can be rewritten as

2𝛿𝑡(𝐮̃𝑛+1ℎ ,∇𝑠𝑝
𝑛
ℎ) =

3
2
‖𝐮𝑛+1ℎ ‖

2 − 3
2
‖𝐮̃𝑛+1ℎ ‖

2 + 2𝛿𝑡2
3

‖∇𝑠𝑝
𝑛+1
ℎ ‖

2 − 2𝛿𝑡2
3

‖∇𝑠𝑝
𝑛
ℎ‖

2. (3.52)

e rewrite (3.35) as

𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ = −2𝛿𝑡
3

∇𝑠𝑝
𝑛+1
ℎ + 2𝛿𝑡

3
∇𝑠𝑝

𝑛
ℎ. (3.53)

By taking the 𝐿2 inner product of the above equation with 3𝐮𝑛+1ℎ , and using (3.37), we obtain

3(𝐮𝑛+1ℎ ,𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ) = 3(𝐮𝑛+1ℎ ,−2𝛿𝑡
3

∇𝑠𝑝
𝑛+1
ℎ + 2𝛿𝑡

3
∇𝑠𝑝

𝑛
ℎ) = 0. (3.54)

hen we get by (3.54)
3
2
‖𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ‖

2 = 3
2
‖𝐮𝑛+1ℎ ‖

2 + 3
2
‖𝐮̃𝑛+1ℎ ‖

2 − 3(𝐮𝑛+1ℎ , 𝐮̃𝑛+1ℎ )

= 3
2
‖𝐮𝑛+1ℎ ‖

2 + 3
2
‖𝐮̃𝑛+1ℎ ‖

2 + 3(𝐮𝑛+1ℎ ,𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ) − 3(𝐮𝑛+1ℎ ,𝐮𝑛+1ℎ )

= 3
2
‖𝐮̃𝑛+1ℎ ‖

2 − 3
2
‖𝐮𝑛+1ℎ ‖

2.

(3.55)

By combining (3.42), (3.46), (3.52), and (3.55), we get
1
2
(‖𝐮𝑛+1ℎ ‖

2 − ‖𝐮𝑛ℎ‖
2 + ‖2𝐮𝑛+1ℎ − 𝐮𝑛ℎ‖

2 − ‖2𝐮𝑛ℎ − 𝐮𝑛−1ℎ ‖

2 + ‖𝐮𝑛+1ℎ − 2𝐮𝑛ℎ + 𝐮𝑛−1ℎ ‖

2)

+ 3
2
‖𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ‖

2 + 2𝛿𝑡2
3

(‖∇𝑠𝑝
𝑛+1
ℎ ‖

2 − ‖∇𝑠𝑝
𝑛
ℎ‖

2) + 2𝜈𝛿𝑡‖∇𝑠𝐮̃𝑛+1ℎ ‖

2

+ 2𝛿𝑡𝑄𝑛+1((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃
𝑛+1
ℎ ) + 2𝛿𝑡𝑄𝑛+1(𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
ℎ ) = 0.

(3.56)

y taking 𝜃ℎ = 2𝛿𝑡𝜔𝑛+1
ℎ in (3.29), we get

(3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1, 𝜔𝑛+1) − 2𝛿𝑡𝑄𝑛+1(𝐮∗𝜙∗ ,∇ 𝜔𝑛+1) + 2𝛿𝑡𝑀‖∇ 𝜔𝑛+1
‖

2 = 0. (3.57)
10
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By taking 𝜗ℎ = −(3𝜙𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ ) in (3.30), we derive

−
(

𝜔𝑛+1
ℎ , 3𝜙𝑛+1

ℎ − 4𝜙𝑛
ℎ + 𝜙𝑛−1

ℎ
)

= − 𝜆(∇𝑠𝜙
𝑛+1
ℎ , 3∇𝑠𝜙

𝑛+1
ℎ − 4∇𝑠𝜙

𝑛
ℎ + ∇𝑠𝜙

𝑛−1
ℎ )

− 𝜆𝑆
𝜀2

(𝜙𝑛+1
ℎ , 3𝜙𝑛+1

ℎ − 4𝜙𝑛
ℎ + 𝜙𝑛−1

ℎ )

− 𝜆𝑄𝑛+1(𝐻∗
ℎ𝑈

∗
ℎ , 3𝜙

𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ ).

(3.58)

y taking 𝜍ℎ = 4𝜆𝛿𝑡𝑈𝑛+1
ℎ in (3.31), we get

𝜆(|𝑈𝑛+1
ℎ |

2 − |𝑈𝑛
ℎ |

2 + |2𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ |
2 − |2𝑈𝑛

ℎ − 𝑈𝑛−1
ℎ |

2

+ |𝑈𝑛+1
ℎ − 2𝑈𝑛

ℎ + 𝑈𝑛−1
ℎ |

2) = 2𝜆𝛿𝑡𝑄𝑛+1(𝐻∗
ℎ𝜙

∗
ℎ𝑡, 𝑈

𝑛+1
ℎ ),

(3.59)

here (3.39) is used.
By multiplying (3.32) with 2𝛿𝑡𝑄𝑛+1 and using (3.39), we obtain

1
2
(|𝑄𝑛+1

|

2 − |𝑄𝑛
|

2 + |2𝑄𝑛+1 −𝑄𝑛
|

2 − |2𝑄𝑛 −𝑄𝑛−1
|

2 + |𝑄𝑛+1 − 2𝑄𝑛 +𝑄𝑛−1
|

2)

= −2𝛿𝑡𝑄𝑛+1(𝐮∗ℎ𝜙
∗
ℎ,∇𝑠𝜔

𝑛+1
ℎ ) + 2𝛿𝑡𝑄𝑛+1(𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
ℎ )

+ 𝜆𝑄𝑛+1(𝐻∗
ℎ𝑈

∗
ℎ , 3𝜙

𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ )

+ 2𝛿𝑡𝑄𝑛+1((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃
𝑛+1
ℎ ) − 2𝜆𝛿𝑡𝑄𝑛+1(𝐻∗

ℎ𝜙
∗
ℎ𝑡, 𝑈

𝑛+1
ℎ ).

(3.60)

We combine (3.57)–(3.60) to get the following

𝜆(∇𝑠𝜙
𝑛+1
ℎ , 3∇𝑠𝜙

𝑛+1
ℎ − 4∇𝑠𝜙

𝑛
ℎ + ∇𝑠𝜙

𝑛−1
ℎ ) + 𝜆𝑆

𝜀2
(𝜙𝑛+1

ℎ , 3𝜙𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ )

+ 𝜆(|𝑈𝑛+1
ℎ |

2 − |𝑈𝑛
ℎ |

2 + |2𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ |
2 − |2𝑈𝑛

ℎ − 𝑈𝑛−1
ℎ |

2 + |𝑈𝑛+1
ℎ − 2𝑈𝑛

ℎ + 𝑈𝑛−1
ℎ |

2)

+ 1
2
(|𝑄𝑛+1

|

2 − |𝑄𝑛
|

2 + |2𝑄𝑛+1 −𝑄𝑛
|

2 − |2𝑄𝑛 −𝑄𝑛−1
|

2 + |𝑄𝑛+1 − 2𝑄𝑛 +𝑄𝑛−1
|

2)

= −2𝛿𝑡𝑀‖∇𝑠𝜔
𝑛+1
ℎ ‖

2 + 2𝛿𝑡𝑄𝑛+1(𝜙∗
ℎ∇𝑠𝜔

∗
ℎ, 𝐮̃

𝑛+1
ℎ ) + 2𝛿𝑡𝑄𝑛+1((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃

𝑛+1
ℎ ).

(3.61)

or the first two terms of (3.61), by using (3.39), we have

𝜆(∇𝑠𝜙
𝑛+1
ℎ , 3∇𝑠𝜙

𝑛+1
ℎ − 4∇𝑠𝜙

𝑛
ℎ + ∇𝑠𝜙

𝑛−1
ℎ ) + 𝜆𝑆

𝜀2
(𝜙𝑛+1

ℎ , 3𝜙𝑛+1
ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ )

= 𝜆
2
(‖∇𝑠𝜙

𝑛+1
ℎ ‖

2 − ‖∇𝑠𝜙
𝑛
ℎ‖

2 + ‖2∇𝑠𝜙
𝑛+1
ℎ − ∇𝑠𝜙

𝑛
ℎ‖

2 − ‖2∇𝑠𝜙
𝑛
ℎ − ∇𝑠𝜙

𝑛−1
ℎ ‖

2)

+ 𝜆
2
‖∇𝑠𝜙

𝑛+1
ℎ − 2∇𝑠𝜙

𝑛
ℎ + ∇𝑠𝜙

𝑛−1
ℎ ‖

2

+ 𝜆𝑆
2𝜀2

(|𝜙𝑛+1
ℎ |

2 − |𝜙𝑛
ℎ|

2 + |2𝜙𝑛+1
ℎ − 𝜙𝑛

ℎ|
2 − |2𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ |

2)

+ 𝜆𝑆
2𝜀2

|𝜙𝑛+1
ℎ − 2𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ |

2.

(3.62)

By combining (3.56), (3.61) and (3.62), we obtain

1
2
(‖𝐮𝑛+1ℎ ‖

2 − ‖𝐮𝑛ℎ‖
2 + ‖2𝐮𝑛+1ℎ − 𝐮𝑛ℎ‖

2 − ‖2𝐮𝑛ℎ − 𝐮𝑛−1ℎ ‖

2)

+2𝛿𝑡2
3

(‖∇𝑠𝑝
𝑛+1
ℎ ‖

2 − ‖∇𝑠𝑝
𝑛
ℎ‖

2)

+𝜆
2
(‖∇𝑠𝜙

𝑛+1
ℎ ‖

2 − ‖∇𝑠𝜙
𝑛
ℎ‖

2 + ‖2∇𝑠𝜙
𝑛+1
ℎ − ∇𝑠𝜙

𝑛
ℎ‖

2 − ‖2∇𝑠𝜙
𝑛
ℎ − ∇𝑠𝜙

𝑛−1
ℎ ‖

2)

+ 𝜆𝑆
2𝜀2

(|𝜙𝑛+1
ℎ |

2 − |𝜙𝑛
ℎ|

2 + |2𝜙𝑛+1
ℎ − 𝜙𝑛

ℎ|
2 − |2𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ |

2)

+𝜆(|𝑈𝑛+1
ℎ |

2 − |𝑈𝑛
ℎ |

2 + |2𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ |
2 − |2𝑈𝑛

ℎ − 𝑈𝑛−1
ℎ |

2)

+1
2
(|𝑄𝑛+1

|

2 − |𝑄𝑛
|

2 + |2𝑄𝑛+1 −𝑄𝑛
|

2 − |2𝑄𝑛 −𝑄𝑛−1
|

2)

+
{1
2
‖𝐮𝑛+1ℎ − 2𝐮𝑛ℎ + 𝐮𝑛−1ℎ ‖

2 + 3
2
‖𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ‖

2

+𝜆|𝑈𝑛+1 − 2𝑈𝑛 + 𝑈𝑛−1
|

2 + 1
2
|𝑄𝑛+1 − 2𝑄𝑛 +𝑄𝑛−1

|

2

+ 𝜆
2
‖∇𝑠𝜙

𝑛+1
ℎ − 2∇𝑠𝜙

𝑛
ℎ + ∇𝑠𝜙

𝑛−1
ℎ ‖

2 + 𝜆𝑆
2𝜀2

|𝜙𝑛+1
ℎ − 2𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ |

2
}

= −2𝛿𝑡𝑀‖∇𝑠𝜔𝑛+1
ℎ ‖

2 − 2𝛿𝑡𝜈‖∇𝑠𝐮̃𝑛+1ℎ ‖

2.

(3.63)

Finally, we obtain the desired result (3.40) after ignoring positive terms in { } in (3.63). □
11
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3.2.4. Decoupled type implementation
In this section, we introduce our decoupling computational steps by using a splitting technique for treating the systems

3.28)–(3.32).
Step 1: we use 𝑄𝑛+1 to split 𝐮̃𝑛+1ℎ into the linear combination form that reads as

𝐮̃𝑛+1ℎ = 𝐮̃𝑛+11ℎ +𝑄𝑛+1𝐮̃𝑛+12ℎ . (3.64)

y applying the linear form given in (3.64), we can split the scheme (3.28) as follows:
(

3𝐮̃𝑛+11ℎ
2𝛿𝑡

, 𝝃ℎ

)

+ 𝜈(∇𝑠𝐮̃𝑛+11ℎ ,∇𝑠𝝃ℎ) =

(

4𝐮𝑛ℎ − 𝐮𝑛−1ℎ
2𝛿𝑡

, 𝝃ℎ

)

− (∇𝑠𝑝
𝑛
ℎ, 𝝃ℎ), (3.65)

(

3𝐮̃𝑛+12ℎ
2𝛿𝑡

, 𝝃ℎ

)

+ 𝜈(∇𝑠𝐮̃𝑛+12ℎ ,∇𝑠𝝃ℎ) = −((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝝃ℎ) − (𝜙∗
ℎ∇𝑠𝜔

∗
ℎ, 𝝃ℎ). (3.66)

ence, during this step, 𝐮̃𝑛+1𝑖ℎ (𝑖 = 1, 2) can be computed from (3.65)–(3.66).
Step 2: we use 𝑄𝑛+1 to split 𝜙𝑛+1

ℎ , 𝜔𝑛+1
ℎ and 𝑈𝑛+1

ℎ into the linear combination forms that read as

⎧

⎪

⎨

⎪

⎩

𝜙𝑛+1
ℎ = 𝜙𝑛+1

1ℎ +𝑄𝑛+1𝜙𝑛+1
2ℎ ,

𝜔𝑛+1
ℎ = 𝜔𝑛+1

1ℎ +𝑄𝑛+1𝜔𝑛+1
2ℎ ,

𝑈𝑛+1
ℎ = 𝑈𝑛+1

1ℎ +𝑄𝑛+1𝑈𝑛+1
2ℎ .

(3.67)

y applying the linear form given in (3.67), we can split the scheme (3.29)–(3.31) as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

3𝜙𝑛+1
1ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ

2𝛿𝑡
, 𝜃ℎ

)

= −𝑀(∇𝑠𝜔
𝑛+1
1ℎ ,∇𝑠𝜃ℎ),

(

𝜔𝑛+1
1ℎ , 𝜗ℎ

)

= 𝜆(∇𝑠𝜙
𝑛+1
1ℎ ,∇𝑠𝜗ℎ) +

𝜆𝑆
𝜀2

(𝜙𝑛+1
1ℎ , 𝜗ℎ),

(3.68)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

3𝜙𝑛+1
2ℎ

2𝛿𝑡
, 𝜃ℎ

)

= −𝑀(∇𝑠𝜔
𝑛+1
2ℎ ,∇𝑠𝜃ℎ) + (𝐮∗ℎ𝜙

∗
ℎ,∇𝑠𝜃ℎ),

(

𝜔𝑛+1
2ℎ , 𝜗ℎ

)

= 𝜆(∇𝑠𝜙
𝑛+1
2ℎ ,∇𝑠𝜗ℎ) +

𝜆𝑆
𝜀2

(𝜙𝑛+1
2ℎ , 𝜗ℎ) + 𝜆(𝐻∗

ℎ𝑈
∗
ℎ , 𝜗ℎ),

(3.69)

(

3𝑈𝑛+1
1ℎ

2𝛿𝑡
, 𝜍ℎ

)

=

(

4𝑈𝑛
ℎ − 𝑈𝑛−1

ℎ
2𝛿𝑡

, 𝜍ℎ

)

, (3.70)

(

3𝑈𝑛+1
2ℎ

2𝛿𝑡
, 𝜍ℎ

)

= 1
2
(

𝐻∗
ℎ𝜙

∗
ℎ𝑡, 𝜍ℎ

)

. (3.71)

ence, during this step, 𝜙𝑛+1
𝑖ℎ , 𝜔𝑛+1

𝑖ℎ , 𝑈𝑛+1
𝑖ℎ (𝑖 = 1, 2) can be computed from (3.68)–(3.71).

Step 3: By applying the values 𝜙𝑛+1
𝑖ℎ , 𝜔𝑛+1

𝑖ℎ , 𝑈𝑛+1
𝑖ℎ and 𝐮̃𝑛+1𝑖ℎ with 𝑖 = 1, 2, obtained from (3.65)–(3.71), we update 𝑄𝑛+1 in (3.32)

through
( 3
2𝛿𝑡

− 𝛾2
)

𝑄𝑛+1 = 1
2𝛿𝑡

(4𝑄𝑛 −𝑄𝑛−1) + 𝛾1, (3.72)

here 𝛾1 and 𝛾2 are

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛾1 = −(𝐮∗ℎ𝜙
∗
ℎ,∇𝑠𝜔

𝑛+1
1ℎ ) + (𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
1ℎ ) + ((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃

𝑛+1
1ℎ )

+ 𝜆(𝐻∗
ℎ𝑈

∗
ℎ ,

3𝜙𝑛+1
1ℎ − 4𝜙𝑛

ℎ + 𝜙𝑛−1
ℎ

2𝛿𝑡
) − 𝜆(𝐻∗

ℎ𝜙
∗
ℎ𝑡, 𝑈

𝑛+1
1ℎ ),

𝛾2 = −(𝐮∗ℎ𝜙
∗
ℎ,∇𝑠𝜔

𝑛+1
2ℎ ) + (𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
2ℎ ) + ((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃

𝑛+1
2ℎ )

+ 𝜆(𝐻∗
ℎ𝑈

∗
ℎ ,

3𝜙𝑛+1
2ℎ

2𝛿𝑡
) − 𝜆(𝐻∗

ℎ𝜙
∗
ℎ𝑡, 𝑈

𝑛+1
2ℎ ).

(3.73)

We need to prove the solvability of (3.72) by showing 3
2𝛿𝑡 − 𝛾2 ≠ 0. First, by taking 𝜃ℎ = 𝜔𝑛+1

2ℎ and 𝜗ℎ = − 3
2𝛿𝑡𝜙

𝑛+1
2ℎ in (3.69), we

get

𝑀 ‖

‖

‖

∇𝑠𝜔
𝑛+1
2ℎ

‖

‖

‖

2
+ 3𝜆

2𝛿𝑡
‖

‖

‖

∇𝑠𝜙
𝑛+1
2ℎ

‖

‖

‖

2
+ 3𝜆𝑆

2𝜀2𝛿𝑡
‖

‖

‖

𝜙𝑛+1
2ℎ

‖

‖

‖

2
= (𝐮∗ℎ𝜙

∗
ℎ,∇𝑠𝜔

𝑛+1
2ℎ ) − 𝜆(𝐻∗

ℎ𝑈
∗
ℎ ,

3𝜙𝑛+1
2ℎ

2𝛿𝑡
). (3.74)

hen we choose 𝜍ℎ = 𝜆𝑈𝑛+1
2ℎ in (3.71) to achieve

3𝜆 ‖

‖𝑈𝑛+1‖
‖

2
= 𝜆(𝐻∗𝜙∗ , 𝑈𝑛+1). (3.75)
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𝛿𝑡 ‖ 2ℎ
‖

ℎ ℎ𝑡 2ℎ



Computer Methods in Applied Mechanics and Engineering 424 (2024) 116901Q. Pan et al.

s
d
d
s
t

4

T

T

W
5

Fig. 4.1. Convergence rate of the CH-NS system on the sphere 0.

Finally, we choose 𝜉ℎ = 𝐮̃𝑛+12ℎ in (3.66) to achieve

3
2𝛿𝑡

‖

‖

‖

𝐮̃𝑛+12ℎ
‖

‖

‖

2
+ 𝜈 ‖‖

‖

∇𝑠𝐮̃𝑛+12ℎ
‖

‖

‖

2
= −((𝐮∗ℎ ⋅ ∇𝑠)𝐮∗ℎ, 𝐮̃

𝑛+1
2ℎ ) − (𝜙∗

ℎ∇𝑠𝜔
∗
ℎ, 𝐮̃

𝑛+1
2ℎ ). (3.76)

Thus, we deduce −𝛾2 ≥ 0 by combining (3.74), (3.75) and (3.76), which implies (3.72) is always solvable.
Step 4: 𝐮𝑛+1ℎ and 𝑝𝑛+1ℎ can be computed by use of (3.34) and (3.35).

4. Numerical examples

In this section, we demonstrate the effectiveness of the numerical scheme (3.28)–(3.35) developed through a series of numerical
imulations. We validate its energy stability and convergence properties. The simulations cover scenarios including spinodal
ecomposition and droplet dripping dynamics on a complex curved surface, driven by gravitational forces. We perform the spatial
iscretization by use of the surface subdivision method in Section 3.1. A robust GMRES iterative solver is applied to solve the final
ystems derived from the variational format because these systems are highly sparse, where a small enough tolerance is set to obtain
he proper convergence.

.1. Convergence test

The considered surface is defined as a sphere with a radius of 1, as follows:

0 = {(𝑥, 𝑦, 𝑧) ∶
√

𝑥2 + 𝑦2 + 𝑧2 = 1}. (4.1)

he initial conditions are given as
{

𝜙0 = cos(𝑥) cos(𝑦) cos(𝑧), 𝑝0 = sin(𝑥) sin(𝑦) sin(𝑧),

𝐮0 = (cos(𝑥) sin(𝑦) cos(𝑧), sin(𝑥) cos(𝑦) cos(𝑧), −cos(𝑥) sin(𝑦) sin(𝑧))𝑇 .
(4.2)

he model parameters are set as

𝑀 = 1e−3, 𝜆 = 4e−4, 𝑆 = 4, 𝐵 = 1e5, 𝜈 = 1, 𝜀 = 1.2e−3. (4.3)

e generate four refined meshes by Loop subdivision, where the total numbers of patches/vertices for these surface models are
12∕258, 2048∕1026, 8192∕4098, 32768∕16386 respectively. We denote them as ℎ𝑖 , where ℎ𝑖 represents the surface mesh size at the
𝑖th refinement level for 𝑖 = 0, 1, 2, 3, and ℎ0 = 0.2543, ℎ1 = 0.1189, ℎ2 = 0.0622, ℎ3 = 0.0326. The subdivision-based IGA method has
been shown to be second-order accurate in our previous work [24], hence we set the time step sizes as 𝛿𝑡𝑖 = 𝐶ℎ𝑖 with 𝐶 ∈ (0, 1).
Since the exact solutions of this equation system are unavailable, we may set the solutions using a significantly small mesh size
and consider them as reference solutions for computing numerical errors. For all unknown variables 𝜙,𝐮 and 𝑝, we plot their 𝐿2

numerical errors at the time 𝑡 = 2.56e−1 in Fig. 4.1, where the two variables 𝜙 and 𝐮 have the second-order convergence rate and
13

the variable 𝑝 has the first-order convergence rate. These results align well with the theoretically anticipated convergence rate.
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Fig. 4.2. Spinodal decomposition for the surface model 1, where (a) 𝜙̄0 = 0.0, and (b) 𝜙̄0 = 0.3.

4.2. Spinodal decomposition

This simulation focuses on the investigation of the dynamical modeling of the spinodal decomposition, which can show the
effectiveness of our developed scheme. We set the initial state as a uniformly perturbed binary mixture within a certain range. The
system goes through a transition from a homogeneous state to a stable situation with two distinct phases, driven by the essential
growth of concentration fluctuations.

The interest domain is a closed sphere that reads as

1 = {(𝑥, 𝑦, 𝑧) ∶
√

𝑥2 + 𝑦2 + 𝑧2 = 1}. (4.4)

The total numbers of patches/vertices for the surface model is 131 072/65 538, and the span of the vertex valence is 4 to 6. The
nitial conditions are given by

𝜙0 = 𝜙̄0 + 0.01rand(𝑥, 𝑦, 𝑧), 𝐮0 = 𝟎, 𝑝0 = 0, (4.5)

here the term rand(𝑥, 𝑦, 𝑧) is the random number in [−1, 1] with zero mean. The model parameters are set as

𝑀 = 1e−2, 𝜆 = 4e−4, 𝑆 = 4, 𝐵 = 1e5, 𝜈 = 1, 𝜀 = 2e−2, 𝛿𝑡 = 1e−2. (4.6)

In Fig. 4.2, two simulation results corresponding to initial values of 𝜙̄0 = 0.0 and 𝜙̄0 = 0.3 are presented, respectively. We
plot snapshots of 𝜙 on the spherical surface over a period of time. Two final stable states correspond to a banded and a circular
equilibrium state, respectively. Additionally, in Fig. 4.3, we plot the total free energy functionals over time for the two performed
simulations, where we choose three different time steps 𝛿𝑡 = 0.0025, 0.005, 0.01 to test the energy decay situation. All of the evolving
curves of the total energy monotonically decrease over time which confirm the unconditional stability of our method.

4.3. Drop dripping driven by gravitational force

In this simulation, we study the drop-dripping dynamics under the gravitational force on the complex surfaces. To mimic the
gravitational force, we use the Boussinesq approximation by augmenting the fluid momentum equation (2.9) with an extra force
hat reads as (cf. [44,54])

𝐮𝑡 + (𝐮 ⋅ ∇𝑠)𝐮 − 𝜈𝐮 + ∇𝑠𝑝 + 𝜙∇𝑠𝜔 = 𝜙(𝜌1 − 𝜌2)𝐠, 𝐠 = (0, 0, 𝑔), (4.7)

here we assign 𝑔 as a gravity constant, 𝜌1 and 𝜌2 are the density of the heavier drop and lighter medium, respectively. Note that
14

he Boussinesq approximation is effective only for small density differences. When dealing with a large ratio in density variance
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Fig. 4.3. Time evolution of the total free energy on the spherical surface 1 with (a) 𝜙̄0 = 0.0 and (b) 𝜙̄0 = 0.3, where the chosen three time steps
𝛿𝑡 = 0.0025, 0.005, 0.01 corresponding to the blue, green and red curves, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4.4. The dynamic behaviors of the dripping drop under the gravitational force, where (a) circular drop and (b) elliptical drop. Snapshots of 𝜙 are plotted
at 𝑡 = 0, 1.5, 2.7, and 4.65, respectively.

between two phases, a different model must be employed, and the corresponding algorithms need to be redesigned due to the
presence of distinct nonlinear terms, see [41,55].

We simulate the droplet’s dripping behavior under the influence of gravity on the complex surface domain of the human head.
15

e denote it as 2, which is embedded in 𝛺 = (−0.346, 0.346)×(−0.497, 0.497)×(−0.495, 0.495). The total numbers of patches/vertices
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Fig. 4.5. The dripping dynamics of a droplet on the splayed surface under the gravitational force. Snapshots of the variable 𝜙 are taken at 𝑡 =
0, 0.4, 0.6, 0.8, 1, 1.4, 4 and 8, respectively.

for the surface model is 268 686/134 345, and the span of the vertex valence is 4 to 12. Two droplets, one initially circular and the
other elliptical, are simulated to investigate how the dripping process evolves.

The initial conditions for these two drops are set as follows:

𝜙0 = tanh(
𝑟0 −

√

2.4 ∗ (𝑥 − 0.084)2 + 2.4 ∗ (𝑦 + 0.497)2 + 2.4 ∗ (𝑧 − 0.143)2

𝜀
), (4.8)

nd

𝜙0 = tanh(
𝑟0 −

√

6 ∗ (𝑥 − 0.084)2 + (𝑦 + 0.497)2 + (𝑧 − 0.143)2

𝜀
), (4.9)

here 𝑟0 = 0.14, and 𝐮𝟎 = 𝟎, 𝑝0 = 0. The model parameters are set as
{

𝑀 = 1e−4, 𝜆 = 4e−5, 𝑆 = 4, 𝐵 = 1e5, 𝜈 = 1,

𝜀 = 8e−3, 𝜌1 = 1.0, 𝜌2 = 1.5, 𝑔 = 100, 𝛿𝑡 = 2e−3.
(4.10)

n Fig. 4.4(a) and (b), we plot snapshots of the variable 𝜙 for two initially differently shaped droplets at different times. It can be
een that the initially circular droplet essentially descends as a cohesive whole, whereas the initially elliptical droplet forms a more
longated filament. This observation suggests that the initial shape of the droplet can indeed have a notable impact on the dynamics
f its dripping process on the surface.

We denote another surface as 3, which is a splayed surface, and embedded in 𝛺 = (−0.61, 0.61) × (−1.27, 1.27) × (−0.26, 0.26).
he total numbers of patches/vertices for the surface model is 98 304/49 150, and the span of the vertex valence is 4 to 8.

We set two initial conditions for this model, one of which reads as:

𝜙 = tanh(
0.82 −

√

(𝑥 − 0.255)2 + (𝑦 − 1.097)2 + (𝑧 − 0.842)2
), 𝐮0 = 𝟎, 𝑝0 = 0, (4.11)
16
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Fig. 4.6. The dripping dynamics of a droplet on the splayed surface under the gravitational force. Snapshots of the variable 𝜙 are taken at 𝑡 = 0, 0.4, 0.8, 1,
.6, 2, 5, and 9, respectively.

nd the other reads as:

𝜙0 = tanh(
1.0 −

√

(𝑥 − 0.0)2 + (𝑦 − 1.12)2 + (𝑧 − 0.85)2

𝜀
), 𝐮0 = 𝟎, 𝑝0 = 0. (4.12)

he model parameters are set as
{

𝑀 = 1.1𝑒 − 3, 𝜆 = 2𝑒 − 4, 𝑆 = 4, 𝐵 = 1𝑒5, 𝜈 = 0.1,

𝜀 = 1.8𝑒 − 2, 𝜌1 = 1.0, 𝜌2 = 1.5, 𝑔 = 100, 𝛿𝑡 = 2𝑒 − 3.
(4.13)

In Figs. 4.5 and 4.6, snapshots of 𝜙 at different times are plotted. For these two scenarios, we observe distinct droplet dripping
ynamics influenced by both the geometric shape of the surface and the initial position of the droplet. In the first scenario, at the
nitial moment, the droplet is positioned to the upper right of the surface of the first ring. In contrast, in the second case, the droplet
tarts right in the middle of the first ring. For the first case, the droplet consistently descends along the right side, while in the second
ase, it falls along both sides of the ring. During the descent in both cases, the center portion of the droplet undergoes significant
longation, forming a long filament. However, in the second case, the droplet falling along both sides is pinched off into two parts
y gravity. Upon reaching the second ring, the two separated parts rejoin and accumulate at the bottom of the surface, resulting in
final fluid interface appearing perfectly horizontal in both cases.

. Conclusions

In this work, we solve the hydrodynamically coupled Cahn–Hilliard phase-field model for a two-phase fluid flow system on com-
lex curved surfaces. We conduct the spatial discretization using the IGA methodology, specifically employing the Loop subdivision
echnique. This technique possesses high smoothness and hierarchical refinement properties, enabling accurate representation of
omplex surfaces with arbitrary topologies. We integrate the EIEQ method, the ZEC method, and the projection method to discretize
17
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the time evolution of the system. This combination results in a full discretization with desired properties, including geometric
accuracy in the domain of interest, linearity, second-order time accuracy, full decoupling, and unconditional energy stability. We
also provide strict proof for the unconditional energy stability and present several examples of two-phase fluid flow dynamics on
complex surface models.
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