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ARTICLE INFO ABSTRACT

Keywords: This paper investigates the numerical approximation of a two-phase Hele-Shaw fluid flow
IGA-EIEQ system, which consists of a phase-field Cahn-Hilliard model coupled with the Darcy flow,
Fully-decoupled

confined on a complex curved surface. To avoid geometric errors caused by the surface ap-
proximation and additional approximation errors introduced by numerical methods, for spatial
discretization, we consider the recently developed strategy of subdivision-based isogeometric
analysis (IGA), where we can accurately represent complex surfaces of arbitrary topology due
to its high smoothness and hierarchical refinement properties. By incorporating multiple meth-
ods of temporal discretizations, including the Explicit-Invariant-Energy-Quadratization (EIEQ)
approach for linearizing nonlinear potentials, the Zero-Energy-Contribution (ZEC) method for
decoupling of nonlinear couplings, and the projection method for decoupling of linear couplings
between the fluid velocity and pressure, and the finite-element method based on IGA for spatial
discretizations, we arrive at a fully discrete scheme that possesses desirable properties such as
decoupling, linearity, second-order accuracy in time, and unconditional energy stability. At each
time step, only several elliptic equations with constant coefficients are needed to be solved. We
also present the rigorous proof of unconditional energy stability, accompanied by numerous
numerical examples to verify the stability and accuracy of the numerical scheme, such as the
Saffman-Taylor fingering instability occurring on various complex curved surfaces induced by
rotational forces.

Unconditional energy stability
Cahn-Hilliard
Darcy

1. Introduction

The Cahn-Hilliard equation, as one of the classic representative systems in the diffusive phase-field approach, has been
extensively used in the field of fluid dynamics to capture a variety of complex interfacial phenomena in multiphase flows [1-3].
Combining the Cahn-Hilliard equation with various flow regimes, e.g., coupling with the incompressible Navier-Stokes equations to
form the Cahn-Hilliard-Navier-Stokes system, can be used to simulate the dynamic phenomena of a liquid droplet [4], or the ascent
of a gas bubble under the force of gravity [5-7], etc. The so-called Cahn-Hilliard-Darcy system [8-10], which is a combination of the
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Cahn-Hilliard equations and the Darcy equations, where the coupling is typically realized by the surface tension and advection, has
been extensively utilized to simulate the dynamics of a two-phase incompressible fluid system that is confined within a Hele-Shaw
chamber, which refers to a setup consisting of two parallel plates with a narrow gap, filled an immiscible viscous fluid comprising
two phases. While it is worth noting that the vast majority of Hele-Shaw flow studies have mostly focused on the investigation
of two-dimensional flows between flat plates, in recent years, an increasing number of experimental and theoretical/numerical
works have been devoted to the study of pattern-forming phenomena in parallel nonplanar surfaces, such as spherical, cylindrical,
conical, toroidal, and saddle-shaped Hele-Shaw chambers [11-22], to comprehend how unstable viscous fingering (also known as
Saffman-Taylor instability) responds to changes in the geometrical properties of the nonplanar Hele-Shaw chambers, or how the
special geometrical features of the nonplanar Hele-Shaw chambers activate the fluid fingering instability, and so on. Moreover, the
numerical study of interfacial dynamics using two-phase viscous fluid flow models on complex surfaces to simulate the Saffman-
Taylor instability is not only of scientific importance, but also of wide practical engineering applications, such as the pressure
molding of molten metal and polymer materials [23], and the formation of coating defects during the drying of coating films [24],
etc. Hence, the goal of this article is to propose an efficient numerical algorithm to solve the Cahn-Hilliard-Darcy system, and then
simulate the fingering instability in a nonplanar Hele-Shaw cell, on the complex curved surfaces.

Designing efficient, fully discrete numerical algorithms for complex, nonlinearly coupled systems, such as the Cahn-Hilliard—
Darcy system, is by no means a simple task, particularly when the computational domain is a surface with complex topology and it
is expected to produce a scheme with simple implementation, high order accuracy, and unconditional energy stability. The first
primary numerical challenge encountered is spatial discretization, i.e., devising efficient and accurate methods for discretizing
complex surfaces. In this article, we discretize the curved space by adopting the subdivision-based isogeometric analysis (IGA)
method [25-32]. The concept of IGA is to incorporate geometric computer-aided design (CAD) modeling and finite element (FEM)
approximating using spline-type basis, e.g.B-splines and non-uniform rational B-splines (NURBS), which have been extensively
applied in CAD but rarely used in FEM analysis. The methodology of the IGA based on the B-spline basis function has the following
benefits throughout the geometric design and analysis workflow: first, it eliminates errors in finite element mesh generation due to
human intervention, and second, it accelerates the data exchange between design and analysis, which is essential for engineering
design optimization. Without interactively communicating with the CAD system, numerical accuracy can be easily improved while
maintaining geometric invariance of the computational region through its basic knot inserting and/or order elevating methods. In
addition, surface subdivision is a successful technology of generating smooth surfaces with arbitrary topological control meshes
using simple refinement schemes [33-36] and has B-spline refinement capabilities, so it can be a spontaneous fit for finite element
applications as a method with higher-order properties in engineering practice [27,28,37,38].

Time discretization is the second numerical difficulty because the Cahn-Hilliard-Darcy system suffers from high stiffness due
to its extensive coupling and nonlinear terms (including nonlinear double-well potential, surface tensions, and advection terms),
and so the key issue in developing a numerical scheme for time discretization is how to discretize these nonlinearly coupled terms
in order to achieve both energy stability and higher-order time accuracy. For the double-well potential, we recall that there are
numerous discretization approaches, such as the implicit derivative scheme [39], the quadrature scheme [40-42], the convex
splitting method [8,43-46], the linear stabilization method [47,48], the Invariant Energy Quadratization (IEQ) method [49-57]
and its various forms of the Scalar Auxiliary Variable (SAV) [58,59] method, etc. In this article, we adopt the explicit-IEQ method,
which is also a variant form of the IEQ method, and it has the advantage of easy implementation, energy stability, second-order
temporal accuracy, etc. For nonlinear terms such as surface tension and advection terms, it is well-known that a simple explicit or
implicit discretization of them rarely results in a second-order fully-decoupled linear scheme that satisfies energy stability, but at best
results in, for instance, a nonlinear scheme [60], a second-order linear but coupled scheme [8,61], or a decoupled scheme but only
first-order accurate in time [62,63]. To obtain a fully decoupled second-order scheme, we use the so-called Zero-Energy-Contribution
(ZEC) method [64-67], the main idea of which is to design a nonlocal type auxiliary variable and to construct a special form of
ODE, followed by a nonlocal splitting scheme to obtain the desired fully-decoupled computation of energy stability and second-order
accuracy in time.

By combining the aforementioned methods and techniques for spatial and temporal discretizations with the second-order
projection scheme for the incompressible Navier—Stokes equations, we arrive at an effective numerical strategy to solve the Cahn—
Hilliard-Darcy system on the complex curved space, which maintains unconditional energy stability and linearity. It is also very
effective to solve, as only a few decoupled elliptic equations with constant coefficients need to be solved at each time step.
In addition, we rigorously demonstrate the scheme’s unconditional energy stability and solvability. Various attractive numerical
examples, such as the Saffman-Taylor fingering instability on various complex curved surfaces caused by rotation, are simulated
to verify the robustness and exactness of our scheme. In addition, the proposed fully discrete scheme provides a framework for a
geometrically precise decoupling scheme to solve various flow-coupled phase-field systems on complex surfaces.

The remainder of this paper is structured as follows. In Section 2, we present the Cahn-Hilliard-Darcy system confined in the
Hele-Shaw cell on complex curved surfaces and deduce its dissipation law. In Section 3, we describe the fully discrete time—space
scheme that integrates the subdivision-based IGA method for spatial discretization with the temporal marching techniques EIEQ,
ZEC, and projection methods. We also provide rigorous proof of the unconditional stability of energy and the solvability of each
time step. In Section 4, we simulate some numerical implementations to demonstrate the scheme’s accuracy and efficiency. Section 5
provides some concluding remarks.

2. Governing system

In this section, we present the Cahn-Hilliard—Darcy phase-field model for a two-phase Hele-Shaw flow system on a closed complex
surface.
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2.1. Preliminaries

Some basic notation for surfaces is given here. Consider the interest domain is a surface, we need to proceed the parameterization
on the surface. For a sufficiently smooth and orientable surface S := {x(u',u?) € R : (u',u®) € @ c R?}, with the help of its
parameterization (u',u?), we denote the following derivative formula

xo= X oo O
WS e T S b

We have the coefficients of the first fundamental form on a surface, 8ap = (X2, X,0), @, f=1,2, and the important surface normal

a,f=1,2. 2.1)

X, 1 XX,2
n= 4+~ (2.2)
[Ix,1 X x,2l

We need the denotation [g*/] = [g‘,,ﬁ]*1 and g = det[g,,] before introducing the classical differential geometric operators.

2.1.1. Tangential gradient operator
On the function space C'(S), for any f € C!(S), the tangential gradient operator V is defined as

Vof =X, %21, 217 €R. (2.3)
For a vector-valued function f = [f}, ..., f,]T € C1(S), the gradient V, is defined as

Vo =[V,f1,.... YV, fi]l € R¥K

2.1.2. Divergence operator
On the smooth vector field v € [C'(S)]%, the divergence operator div, is defined as

) 1 o o "
divy(v) = ﬁ [ﬁ, ﬁ] [\/g[g ﬁ][Xul,Xuz]TV] . 2.4

2.1.3. Laplace—Beltrami operator
For any f € C%(S), the Laplace-Beltrami operator (LBO) 4, is defined as

A f = divy(V,f). (2.5)

2.1.4. Sobolev space on surface
For a given constant k and a function f € C®(S), we denote V*f the kth order covariant derivative of function f, with the
convention VOf = f. Let

C(S) = {f €C®(S) : /|vff|2dx < oo for j =0,...,k},

and S be a compact surface with at least kth order smoothness Sobolev space H*(S), which is the completion of C,(S) in the sense
of norm

. 12
1 ks = <2 / |vff|2dx> . @.6)
=07

For any functions &, p € H'(S), two classical inner products on the surface S are described as
&, p) = /.fp dx, and (V,V,p) = /Vsﬁ - Vip dx.
s s
2.2. Cahn-Hilliard-Darcy system

On a smooth and orientable surface S, we introduce ¢(x,?) as a phase-field variable to mark the volume proportion of the two
incompatible fluid parts in their mixture, i.e.,

-1 fluid component 1,

P(x,1) = . 2.7)
1 fluid component 2,

where a slight smooth layer with the transition span O(¢) is adopted to link the two distinct regions of ¢(x, 1).
The total free energy is postulated as
1
E(¢) = / AFIVspI + Fgdx, (2.8)
s

which involves Ginzburg-Landau type double-well functional F(¢) = #(dﬂ —1)? and the gradient potential |V,¢|?. The gradient
entropy is indicative of the hydrophilic nature of interactions, reflecting a propensity for mixing. Conversely, the nonlinear
double-well potential characterizes hydrophobic interactions, signifying a tendency towards separation.
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The fluid motion is hypothesized to conform to the mechanical principles observed in porous media, and adhere to the generalized
Fick’s law, which states that the mass flux is directly proportional to the gradient of chemical potential. The phase-field Cahn-Hilliard
equation, linked with Darcy’s flow (referred to as Cahn-Hilliard—Darcy model), can be expressed based on the free energy functional
(2.8), as follows (see also in [8-10,65]),

¢+ V- (up) = MAo, (2.9)
o= M-4;¢+ f(9), (2.10)
T, +au+Vp+ Vo =0, (2.11)
Vyru=0, (2.12)

where M is the mobility, u is the seepage velocity, p is the pressure,  is the chemical potential, ¢V w is the surface tension term,
V, - (u¢) is the advection, 7 is a positive parameter, « denotes the dimensionless hydraulic conductivity, and p is the pressure. In the
phase-field equation (2.9)—(2.10), the variational gradient flow approach in the H~! space is used. The Darcy equation (2.11)-(2.12),
includes the consideration of the temporal derivative of the seepage velocity u for incompressible flows occurring within a porous
media (see also [8,68,69]).

The Cahn-Hilliard-Darcy system (2.9)—(2.12) adheres to the principle of energy dissipation, which may be obtained by the
following procedure. By taking the L? inner product of (2.9) with —w, and using integration by parts, we get

- (@ @) = M|[V0|* - (uh, V,0). (2.13)
By multiplying the L? inner product (2.10) with ¢,, and using integration by parts, we obtain

(@, ) = AV lI* + A/ (@), b)) (2.14)
By taking the L? inner products of (2.11) with u, and using the integration by parts and (2.12), we get

z(u,u) + a(u,u) + (pV o,u) = 0. (2.15)
By combining the obtained three equations, we get the subsequent principle of energy dissipation as

L E@.w) = -M|V, 0l - allul <0, (2.16)
where

E(u.¢)= / (1P + 419,01+ F@)) dx. 2.17)

Note that when deriving the energy law (2.16), the two inner product terms involving the surface tension and advection are
canceled, as

(Vs - (ug), ) + (¢V 0,u) = 0. (2.18)

This property is the so-called “zero-energy-contribution” property and can be used to construct the fully-decoupled scheme
as [65-67].

3. Fully-discrete numerical scheme on the surface

In this section, we present the methodology for constructing a spatiotemporally fully-discrete scheme for the Cahn-Hilliard-Darcy
system (2.9)—(2.12). To discretize the spatial domain, the subdivision-based IGA framework is employed by us (See [56,57]). For the
temporal discretization, we utilize EIEQ method in combination with the ZEC method and the projection method for time marching.
The rigorous proof of unconditional energy stability is presented, along with a comprehensive explanation of the methodology for
implementing the decoupled type computation.

3.1. Subdivision-based IGA method for the spatial discretization

The framework of IGA merges geometric representation and finite element analysis by using spline-type basis functions, where we
use the same set of shape functions for geometric CAD modeling and finite element analysis. In practical applications, traditional
finite element shape functions used for finite element analysis are not universal enough for complex geometric CAD modeling.
The idea of IGA provides us with a promise that a unified representation can facilitate different geometric modeling and analysis
tools currently available. The subdivision surface is a successful geometric modeling method in computer graphics and computer-
aided design. Subdivision uses B-spline curves to generate smooth surface reprocessing through continuous refinement on control
mesh patches with the tensor product method, or, in other words, the relationship between two proportions and the average. The
reprocessing ability of B-spline curves enables the shape functions on the coarse mesh to be represented as a linear combination of
shape functions on finer meshes. As an optimism, subdivision surfaces provide an ideal isogeometric description idea for geometric
CAD modeling and numerical analysis.
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8 B8 §

(a)

Fig. 3.1. (a): Mask of a regular control point with six adjacent control points, and (b): Mask of an irregular point with adjacent control points unequal to six,

where the weight coefficient a = 1 —np, g = i 2 - (% + % cos ZTT >_] and n is its valence. (c): Mask of an edge.

3.1.1. Loop subdivision

The quadric box spline curves are defined on a translation-invariant 3D mesh, i.e., the control mesh is composed only of triangular
patches, and each control vertex is surrounded by six adjacent triangular patches. Loop subdivision scheme (c.f. [34]) extends the
quartic box splines to meshes with any topological structure. As opposed to the topological structure of quartic box-splines, In
the rule of Loop subdivision, the number of control triangular patches surrounding each control vertex could be arbitrary, and the
generating refiner surfaces have the property of at least C! continuity. In each refinement step, the triangular control mesh is refined
by quartering its control patch, and the positions of each control vertex are recalculated as a weighted average of the positions of
its neighboring control points. The weight coefficients are represented in the elements of subdivision masks. In Fig. 3.1(a) and
(b), masks for control vertices are used to recalculate the coordinates of existing control vertices on the coarse control mesh (see
Fig. 3.1(a) and (b)). A mask for an edge is applied to compute the coordinates of control points created on the edge in the process
of each quartering (see Fig. 3.1(c)). It should be noted that the weight coefficients are only related to the connected way of the
mesh and not to the real coordinates of control points.

The position and curvature at arbitrary position and other related quantities are needed to be computed. In the procedure of
Loop subdivision, box-splines are used to represent patches with twelve regular control points, which is

12
x@!,u?) =Y B! uh)xf. (3.1)
i=1

The parameters (u',u?, 1 —u' —u?) are the barycentric coordinates of the unit parametric triangle, x{‘ are denoted as the corresponding
two-ring neighboring control points for the interest triangle (See Fig. 3.2(a)), and B; is the quartic box-splines basis functions
(cf. [35]). Any patch with irregular control points whose valence is unequal to six can also be parameterized with a box spline. In
the procedure of Loop subdivision (see Fig. 3.2(b) and (c)), only regular points are generated through the original coarse triangular
mesh divided by quartered separating, therefore we can see that all newly generated control points has valence of six. Obviously,
it will create increasingly regular patches in the procedure of repeated Loop subdivision. The number of irregular control points
of the mesh is not changed, therefore their influence region converges to the limit of zero. On the basis of this observation, a fast
parameterization method for the Loop subdivision surface is proposed (cf. [35]), which agrees with the rule of box-spline regular
patches.

3.1.2. Loop subdivision finite element
In this subsection, we introduce the smoothness and convergence properties for Loop subdivision surfaces. For each control point
of the mesh, we only consider its one-ring adjacent control points. Denote an assembly matrix

X0 = (Xg> X|» X9, ..ns Xn)Ta (3.2)

where the matrix X° is (n+ 1) x 3, n is the number of adjacent edges of the control vertex x,,, and the superscript 0 is the subdivision
level. We can compute the matrix X* at the kth subdivision level by use of

Xk = §¥X9, (3.3)

which means that the initial vector of coordinates X° is updated by k times multiplication of the subdivision matrix S. The fast
algorithm about the subdivision matrix S* can be referred to as [35], where it depends only on the valence of the control point and
is unrelated to the control point coordinates.

We can achieve a limit surface when the subdivision level k — oo, and the explicit position for every control point, which is
described in the following Lemma 3.1. The limit surface of Loop subdivision arrive at C? everywhere except at the extraordinary
points where it is C!.
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(a) (b)

Fig. 3.2. (a): A regular Loop subdivision surface patch which can be computable using its adjacent 12 control vertices. (b): An irregular Loop subdivision surface
patch which cannot directly be computable, and the point denoted as hollow circle is irregular. (c): Quartering this patch can get four sub-patches, where we
mark three computable sub-patches as 1, 2 and 4, and one uncomputable sub-patch as 3. This uncomputable one should be further quartered to obtain more
and more computable sub-patches.

Lemma 3.1. Consider a control point xg of valence n on the mesh Q¥, and x;‘ ,j =1,...,n, be its 1-ring neighbor control points. All these
points converge to a single position
n

1
%o =(1—nDxk +1 Y xk, 1= —— | 3.4
%= (1 —nhxk + j;xj TT3ED (3.4)
as the subdivision time k — oo (see [34] for the proof).

We consider the Loop subdivision surface, to be more precise, the subdivision shape functions equivalent to quartic box splines,
for the discretization scheme for the weak form of the problem. Hence, it is imperative to utilize smooth, or more technically
H?-conforming, shape functions to achieve a conforming finite element discretization. On the limit surface evaluated using (3.4),
the parametric coordinates like at Gaussian quadrature points refer to the unit parametric triangle on the control patch, therefore
we need establish a mapping from the unit parametric triangle to the control surface patch where we perform the actual evaluation,
see also [56,57] .

3.2. Fully discrete scheme

3.2.1. Reformulation
First, based on the linearization approach of the IEQ approach [49-51,55-57], we define a local-type auxiliary variable U as

W@=ﬁﬂ@—£ﬁ”ﬂ, (3.5)

where the two positive constants  and B are specified as follows. The negative term —%qﬁ can be always bounded from below
for any 7, because of the existence of the fourth-order polynomial F(¢), when we apply a positive constant B here so as to make
the sum of all terms in the square root is always positive.

Using the new variable U, one can reformulate the Cahn-Hilliard-Darcy equations as follows:

¢+ V- (up) = MAw, (3.6)
® = i(-Ap+ L+ HU), 3.7)
&
1
U =5H¢, (3.8)
tu, +au+Vp+ ¢V, =0, (3.9)
V, u=0, (3.10)

where the new term H(¢) is given as
@) - %o

JF@ - Lo+ B

Second, based on the ZEC property of the surface tension and advection term, we introduce another nonlocal auxiliary variable
QO(1), and design its associated ODE system, that reads as

{Q, =(V, - (ug), w) + (pV 0, w) + A(HU, ;) — A(H ;. U),

H(¢) = (3.11)

(3.12)
Ol = 1.
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Obviously, from (2.18), we get O, = 0. Using the initial condition Q|,_, = 1, we get the exact solution of (3.12) is Q(t) = 1.
Therefore, with the help of the new variables U and Q, we rewrite the system (2.9)-(2.12) into the following equivalent form

¢+ 0V, - (up) = MA o, (3.13)
w= A=A+ E%¢+QHU), (3.14)
U, = %QH@, (3.15)
u,+au+Vp+0¢pV,w =0, (3.16)
v, u=0, (3.17)
0, = (V, - (u), ) + (V. u) + AHU. ¢,) — A(H,.U). (3.18)

The initial conditions read as

Pli=o = bo» @li=g = A=A + f(Po))s Pli=o = Po> ;=0 = g,

Olig = 1. U@) = \/F(¢) = 55} + B.

Remark 3.1. In contrast to the original system (2.9)-(2.12), the new system of Egs. (3.13)-(3.18) incorporates a multiplication
factor of Q for the surface tension term ¢V w and the advection term V| - (u¢). The system consisting of Egs. (3.13)—(3.18) remains
unaltered due to the fact that the function Q(r) is constantly equal to 1. Furthermore, by integrating (3.15) with respect to time ¢
and incorporating the initial conditions (3.19), it is straightforward to obtain Eq. (2.10).

(3.19)

Remark 3.2. The above scheme differs significantly from our previous work in [70], where we used a combination of SAV and ZEC
methods to discretize the system and consider only temporal semi-discretization without considering the spatial discretization. In the
current numerical scheme constructed above, we use the EIEQ with the ZEC method for the temporal discretization and consider the
spatial discretization on the complex surface. The above-developed fully-discrete scheme not only ensures all desired time marching
properties—fully-decoupled, second-order temporal accuracy, linear, and unconditional energy stability—but also operates on complex
manifolds of arbitrary shape and topology, a significant difference from the temporal semi-discrete scheme detailed in [70]. For
complex manifolds of arbitrary shape and topology, the difficulty of parameterizing differential geometric operators on manifolds is
encountered since there is no explicit expression for the surfaces. Although only the necessary operators are listed in Section 2.1, the
fact that a large number of differential geometric operators on manifolds is very complex may even form a systematic research area.
In addition, if the classical finite element method is used for the spatial discretization of manifolds, it will result in large geometric
errors, which can be avoided by the IGA method used in this paper. Therefore, integrating the spatial discretization functionality
provided by the IGA framework with multiple temporal discretization methods, and ultimately forming a unified and comprehensive
full discretization framework, is the focus of this study.

The new transformed system (3.13)—(3.18) also retains the law of energy dissipation, which is described as the following theorem.

Theorem 3.1. The transformed equivalent system (3.13)—(3.18) holds the law of the energy dissipation as

d ~

EE(QX u,0.U) = -M||V,0|” - a|lu]* <0, (3.20)
where

. A A 1 1
E(¢.u.0.U) =/ <§|u|2 + 51V, + LIl + AU - w) dx+ |0 - 5. (3.21)
s 2¢e 2 2

Proof. By taking the L? inner product of (3.13) with w, and using the integration by parts, we get

(@, @) = =M||V,0l* - Q(V, - (ug), ). (3.22)
By taking the L? inner product of (3.14) with —¢, in L? space, and using the integration by parts, we get

—(w,¢) = -AVp, Vi) — g(qﬁ, @) — A0(HU, ¢,). (3.23)
By taking the L? inner product of (3.15) with 2AU, we obtain

FENUIP = 20(H . U). (3.24)
By taking the L? inner product of (3.16) with u, and using integration by parts and applying (3.17), we obtain

7w u) +allul® = ~Q(¢V,w, w). (3.25)
By multiplying (3.18) with Q, we obtain

% (%lle) =0(V; - (ug), w) + Q(dV,w,u) + AQHU, ¢,) — AQ(H ¢, U). (3.26)
After taking the combination of (3.22)—(3.26), we obtain the law of the energy dissipation (3.21). []
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3.2.2. Numerical scheme

Now, we are ready to design the fully discrete scheme for solving the transformed system (3.13)—(3.18). We denote the time step
size as 6t > 0 and 1" = nét for 0 < n < N = [T /6t]. Take the test functions 0, 9,,, ¢4, &, {, € H*(S,), which is our subdivision-based
IGA finite element space described in Section 3.1.

Suppose ¢, o, Ui, O', &}, ul fori=n, n—1and n > 1 are known, we compute ¢;*', wi*', U, Q"+, @i*!, uwi*! by the
following second-order difference formula (BDF2):

3¢n+1 _4¢n + ¢n—1
(%,eh - Q"™ WL, V,0,) = —M(V,0/*1,V,6)), (3.27)
A
(@1,8,) = AV I+, V,8,) + E—Z((p;’jl, 9p)+ AQT HIU?,9,), (3.28)
3uptt —4up + Ut 1
(%,q = 50" (H; 4,61 (3.29)
30 — 4u” 4wt
T <%,5h> +a(@ &) + (V0. &) + 0 (@] V05, 8,) =0, (3.30)
3n+l_4 n o4 n—1 o
0T 20140 23 e . —(u; b}, Vit + (¢ Viof W5 (3.31)
3¢n+1 _4¢n + ¢n71
+AH, Uy, ——— ) = i(H,; 67, Ui,
and
3 N
(Vs = P Vi) = =7 5= (V- WL ¢, (3.32)
_ 26t
witl =gt - 3—T(Vsp;”+1 - V), (3.33)
where

b =20, -4 o =20~ = 20—,

5¢Z _ 8¢7,_1 + 3¢Z—2 (334)

Ur=U@)), Hf=H@), ¢, = 261

Remark 3.3. In the above-designed algorithm, a straightforward discretization approach has been utilized. Specifically, the linear
component is treated implicitly, while the nonlinear component, which involves the nonlocal variable Q, is handled through a
combination of explicit and implicit methods. This means that, in addition to the implicit treatment of Q, all other components are
processed explicitly. The decoupling method for the above scheme, which appears apparently to be of the coupled type, has to take
full advantage of the nonlocal character of the Q variable. Next, we will prove the energy stability of the proposed scheme, followed
by the implementation details for decoupling.

Remark 3.4. Concerning the incompressible fluid dynamical system, we employ a projection-based method. Such an algorithm
can decouple the pressure calculation from that of the velocity field. It is demonstrated that the velocity field and the pressure can
achieve second-order and first-order accuracy in time, respectively, where rigorous error estimates were given in [71]. The reason
for the loss of first-order accuracy of pressure is that an artificial homogeneous Neumann boundary condition is imposed on the
pressure [72].

The intermediate velocity field is i}, and the final velocity field is uj, which can be shown to satisfy the divergence-free condition

in a discrete sense, i.e., by taking the L? inner product of (3.33) with Vg, g, € O,, we obtain
- 25t
W Vg, = (=Y, w5t qy) - 3—T(VS(PZ+1 = Py) Viap). (3.35)
Hence, from (3.32), we derive
W,V g,) = 0. (3.36)

3.2.3. Energy stability
We show the unconditional energy stability of the discrete scheme (3.27)-(3.33) in the following theorem. We will use the
following two identities repeatedly:
2(a—b,a) = |a|> = |b]* + |a - b|?, (3.37)
2Ba—4b+c)a=lal®> = |b]* + |2a=b|> = |2b—c|* + |a = 2b + c|*. (3.38)

Theorem 3.2. The scheme (3.27)—(3.33) is unconditionally energy stable, i.e., satisfies the following discrete energy dissipation law:

— -
E™ —E" n+1

7 < -M|IV,ofH P = alluft ) <0, (3.39)



Q. Pan et al. Computer Methods in Applied Mechanics and Engineering 420 (2024) 116709

where, for an integer k > 0, the discrete energy E* is defined as
A _ An 2 1.2
EC = SUVIP + 12V, = Vb I + S5 (851 + 1245 = 571
2 2
+A(UME + 120% - U1 + 1<|Qk|2 +120% - 01

T 1
S EANI + 1205 w17+ 22 1y g - s - L

Proof. By taking 6, = 26tw*' in (3.27), we get

Gt —4gh + @it ) = 2610wl V@) + 26t M ||V 0|12 = 0.
By taking 9, = -3¢+ — 4¢" + ¢"~!) in (3.28), we derive

— (3¢5t —Agn + ) =— A(V I3V B — AV gt + Vi)

(¢n+l ¢n+l 4‘¢Z +¢;l,_1)
- AQ"+'(H;;U;;, 3GpT — Al +

By taking ¢;, = 4A§tU}"’+l in (3.29), we get

AU - o+ purt - o - 2oy - ot

+ U =207 + UPY) = 24600 (g7, UMY,

where (3.38) is used.
By multiplying (3.31) with 26:Q™*! and using (3.38), we obtain

1 2 2 1.2 1.2
o™i - 10" + 120" = 0" = 120" - Q" !|" + |Q"™! = 20" + Q")
= -261Q" (uy ¢y, Vi) + 261Q" (@ V @ W)
1 I 1 —1
+AQNHFUE 3¢ — Agh + ¢
- 2A5tQ™ (H}; ¢, U,
We combine (3.41)-(3.44) to get the following

/‘l(V ¢n+1 3V ¢n+1 —4V ¢h+v ¢n—l)+ (¢n+1 3¢n+1 4¢Z+¢Z—l)

2 2
+ AU - (o +|2U;;+1-U;| - Uy - Ut =20+ U

#3007 <10 + 120" - @' - 120" - 0"+ 10" 20" + 0"'T))

= —25tM ||V, 0 n+] ”2 + 25,Qn+1(¢h s ;1, ~n+1)
By taking the inner product of (3.30) with Zétﬁ"“ in the L? space, we get
TGt — 4l L art) + 2ast ||t + 260(V pl L w0
+ 2610 (P} V ), W) = 0
We rewrite (3.33) as

~n+l n+l _ @ n+1 n
W —w = Vi), = py)-

Taking the L? inner product of the above equality with u’;l with k =n+1,n,n— 1, we derive

n+1 uZ+l,ll"+l) — @(V (pn+1 n+1) —

(u, - ppu

and
(3u;Ll+1 _ 4un + u"_l,ﬁ2+l _ n+l)

,,125t

+1 +1 —
= (Gu," —4u} +uy e V(R —pp)) =0,

where (3.36) is used.
By using (3.48), (3.38) and (3.49), we deduce
G —4u) +up )
=c@Gupt = 3upth @t + 2 Bup! - 4u) +upt gt
=rGuyt! = 3upt @t +uth + cGupt! — dug +up L ugth

T 12 2 1 2 —192 1 —172
=5 (a1 = TG 1+ 12037 = wil® = 120 — w17 + ™ = 20 + w5

+3¢||u"+1||2 3zt

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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We rewrite (3.33) as

uZ+]+%6IVSpZ+1 ut +3£5tVSph (3.51)

Taking the L? inner product of the above equation with itself and multiply the result with 37’, we derive

2612
261(@), V) = || - ||ll"+l 1%+ i VIR - IIVSIJ,,II2 (3.52)
We rewrite (3.33) as
- 2 2
it — @t = —3—T5tVspZ+l + §(s:vsp';l. (3.53)

By taking the L? inner product of the above equation with 3“Z+]’ using (3.36) and (3.37), we obtain

3t N I 37
gllui’fl —wt? = jllu}i+1 % - 7||u2+1 [1%. (3.54)
Then by integrating (3.46), (3.50), (3.52) and (3.54), we get
T — —
E(Iluﬁ’f1 1% =l 1 + 120+ — w12 = f120) — w12+ ot = 2u) + w712
3 -
+ §||u2+l _ un+l ”2
+2a8t|[ 02 + 25:Q"+' (¢hvsw,;, ) =0

25t
S UV I = IV (3.55)

By combining (3.45) and (3.55), and using (3.38), we obtain
U991 = 1.1 + 129,67 =V 41 = 12V, ~ V.67 1)
;TZ(W,’,“I — 1o+ 29! — ¢Z|2 - 24 - ¢271|2)
+/1(|U;:+1 |2 _ |U,':|2 + |2U,','+1 _ Uh"|2 U - U"I"l |2)

L0 P <107 + o - 0P - 0" - 0P
5 g = 12 + 1203 — w1 — (1205 — w5~ )

2612 141 ”2 (3.56)

+—(I|Vgp,, IV, 2517

2

A 1 12, A 1 —1
+ { EIIV@T =2V g + V@l lIT + %7 Iyt =28, + ¢4
n+l1 n n—1,2 1 n+1 n n—12
+AU™ —2u" + U +§|Q -20"+ 0"

T 1 -2, 37 1 _ antl 2
Sl = 2w w4 S - }

= =26t M ||V, ||? - 261a]|0H |2,

Finally, we obtain the desired result (3.39) after dropping some positive terms of (3.56). []

3.2.4. Decoupling implementation using the nonlocal splitting method
In this section, we introduce a nonlocal splitting method for obtaining the decoupling implementation process of the proposed
scheme (3.27)—(3.31).
Step 1: Since Q"*! is a nonlocal variable, we use it to split the local variables qb;‘[“, ‘”ZH and U ZH into the linear combination
forms, that read as
+1 +1 +1 pn+l
Pl = gt ol gt
wz—#l — wn+1 Qn+l g;l’ (3.57)
n+l _ +1 n+1yrn+l
U U "+ 0 U2h .

By applying the hnear form given in (3.57), we can split the scheme (3.27)—(3.29) as follows:

¢n+l _4¢n +¢n71
<—””,0h =—M(V, 0", V.0,),

1h >
26t (3.58)

(@F1,8,) = AV itV &h)+ 1@,

10
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¢n+1
( 551 ,0,,) =MV, V0,) + (W} ¢}, V0,),

(3.59)
(5F1,8,) = AVt V9, + —(¢2+1 9) + AH U9,
3Un+l 4u" — Un—l
1h h h
s =\ ——% ) 3.60
< 261 g") < 261 (3.60)
3Un+l
2h 1
< 251 »§h> =35 (HZ¢Z,7€h) . (3.61)
Hence, in this step, one compute (3.58)—(3.61) to obtain q.’);'“, ' I,UI"Jrl fori=1,2.
Step 2: we use Q"*! to split @ i@"*! into the linear combination form that reads as
ﬁrH-l — un+1 QrH-l n+1 (3 62)
h 1h Un :
By applying the linear form given in (3.62), we can split the scheme (3.30) as follows,
3ﬁn+l qu” — un—l
1h n” Ya
T ( 251 N > + Ot(llr'Jrl &=r (2—51"§h> - (Vspz,fh)’ (3.63)
ﬁn+l
T <2—§’;5 > +a(@;)!, &) = (@) V), &). (3.64)

Hence, in this step, one compute (3.63)—(3.64) to obtain @ ~"+' fori=1,2.
Step 3: By applying the values qﬁl’.’“, f’;l Ul';:f1 and ﬁ"“ with i = 1,2, obtained from (3.57)—(3.64), we update Q"*! in (3.31)
through

_ n+l _ 1 n _ on—1
(55 -n)@™ = 5560 -0 H+r. (3.65)

where y, and y, are given as
7 = =0, V@) + (@) V05, 0
+1 1
3 — A + -

+ MH; U, — ) = i(H; 4, U, (3.66)
72 = ~@4 Viohh + @]V, 8 |
n+1
+ AU ) — 45, U

Note that we must establish the solvability of (3.65) by demonstrating that 2%; — 1, # 0, as follows. First, by taking 6, = ! and

21
9, = —Eqb”“ in (3.59), we get

+1
2 3in nh
n+l n+1 n+1 — (u* n+ly L (367)
M ”v ( 25: H P ” + 5o | H (W0 V,0) = AH; Uy =20,
Then we choose ¢, = AU;’; L'in (3.61) to achieve
| Uz ” = ACH; ), Uy, (3.68)
Finally we choose ¢, = ”g“ in (3.64) to achieve
37 ~n+l ~n+1
(5 + o |ug; H = ¢,V 0L, W), (3.69)

Thus, we deduce —y, > 0 by combining (3.67), (3.68) and (3.69), which implies (3.65) is always solvable. Hence, in this step, we
obtain Q™! and then update ¢/*', !+, U"*! and &' according to their nonlocal splitting form.

Step 4: We can update u”+1 and p"+] by use of (3.32)—(3.33).

Hence, the computing cost of the aforementioned four steps at each time step actually include solving several elliptic equations
and one Poisson equation, which, thanks to their constant coefficients and full decoupling, are easily solved in practice.

Remark 3.5. In this study, we exclusively focus on conducting a stability analysis for the proposed scheme. It is worth noting
the extensive research available on error estimates for the Cahn-Hilliard-Darcy system within regular regions (refer to [73-76]).
However, to the best of the authors’ knowledge, there is currently no existing relevant work on error estimates specifically related
to the numerical scheme of the Cahn-Hilliard-Darcy system on manifolds. Addressing this gap will be a focus of our future research
directions.

11
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Fig. 4.1. Convergence rates of the numerical scheme on the sphere S, where E denotes the energy functional (3.21) of the transformed system.

4. Numerical examples

In this section, we implement some numerical simulations to test the energy stability, and verify the convergence rates and ef-
fectiveness of our developed numerical scheme (3.27)—(3.33), where various benchmark phenomena of the spinodal decompositions
and the Saffman-Taylor fingering stability induced by the rotation force are carried out. A robust GMRES iterative solver is applied
to solve the final systems generated from the variational format because these systems are highly sparse, where a small enough
tolerance is set to obtain the proper convergence.

4.1. Convergence test

In the first numerical test, we verify the convergence rates for our proposed numerical scheme, where the computed domain is
set as a spherical surface with radius 1,

Sp={(x,y,2) : Vx2+)y2+z2=1}. “4.1)

The initial conditions are set as

(;bo = cos(x) cos(y) cos(z), po = sin(x) sin(y) sin(z), 4.2
= (cos(x) sin(y) cos(z), sin(x)cos(y)cos(z), — cos(x) sin(y) sin(z))” . '
The model parameters are set as
M =1e-3, A=4e—4, n=4, B=1e5, =1, a =3000, € = 1.2e-3. (4.3)

We use four sets of refined meshes (Sh’,i =1,...,4) generated by Loop subdivision, where #; denote the ith level surface mesh
size, with h; = 0.2543, h, = 0.1189, h; = 0.0622, h, = 0.0326. Since the subdivision-based IGA method has been proved to be second-
order accurate in [25], we set the time step sizes to 6¢; = Ch; where C is the given constant with C € (0, 1). Note that the exact
solutions are unknown, therefore the approximate solutions obtained by employing a sufficiently fine mesh size are assumed to be
the exact solutions in order to observe numerical errors. In Fig. 4.1, we plot the L? errors at the time ¢ = 2.56e—1 for all unknown
variables ¢, u, and p. The second order convergence rate for ¢ and u, and the first order convergence rate for p can be observed,
which are in good agreement with the theoretical expected rate.

4.2. Spinodal decomposition

In this example, we perform the numerical simulations of phase separation (spinodal decomposition) on a sphere using the
developed scheme, which is a standard numerical test of the Cahn-Hilliard related system in which the initial conditions are generally
set to be uniformly perturbed within a some scope of binary mixtures. The system can change from a homogeneous situation to a
stable dissociation of the two phases as a result of an intrinsic increase in concentration fluctuations.

The surface domain S, is set as a closed sphere with radius 2, which reads as

Sy ={(x,y,2) : Vx2+y2+z2=2}. 4.4

12



Q. Pan et al. Computer Methods in Applied Mechanics and Engineering 420 (2024) 116709

a) Snapshots of ¢ with ¢o = 0.0 at the time ¢t = 20, 200, 600, 1000.

(b) Snapshots of ¢ with ¢o = 0.3 at the time ¢ = 20, 200, 600, 1000.

Fig. 4.2. Spinodal decomposition examples, where snapshots of ¢ are plotted at various times on the surface model S,, with (a) ¢, = 0.0, and (b) ¢, = 0.3.

Energy

0 2(;0 400 6(‘)0 560 1000 1200 1400 0 200 460 600 860 1 0‘00 12‘00 1400
Time T Time T
(a) Energy evolution with ¢o = 0. (b) Energy evolution with ¢y = 0.3.

Fig. 4.3. Time evolution of the total free energy for the surface model S, with the initial conditions (4.5), where (a) ¢, = 0.0 and (b) ¢, = 0.3.

It is discretized with 131072 Loop subdivision limit subdivision patches by use of 65538 control vertices, and the span of the vertex
valence is 4 to 6. We set the initial conditions as

¢° = ¢y +0.0lrand(x, y,z), u’ =0, p°=0, (4.5)
where the term rand(x, y, z) is the random number in [—-1, 1] with zero mean. The model parameters are set as
M=1le-2, A=4e-3, n=4, B=1e5,
(4.6)
=1, a=3200, e =2e¢ -2, 6t =1e—-2.

In Fig. 4.2, two simulations are shown with the initial values ¢, = 0.0 and ¢, = 0.3, respectively, where the profiles of ¢ at different
times are plotted. It can be observed the first simulation shown in Fig. 4.2(a) presents the banded phase, and the second simulation
shown in Fig. 4.2(b) gives the circular phase state. We also plot the temporal evolution of the total free energy functionals of these
two examples in Fig. 4.3, where the monotonic decaying energy curves verify that the proposed scheme is unconditionally stable.

13
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Fig. 4.4. Snapshots of the profiles ¢ on the spherical surface model S, at various times + = 0, 0.3, 0.6, 0.9, 1.2, 1.5, 2.1, 3, 3.9, 5.1, 6, 7.5 respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. Saffman-Taylor fingering instability on curved surfaces

In this example, we simulate the viscous finger-pattern instability, i.e., the Saffman-Taylor instability, which is the signature
problem of the interfacial instability exhibited by a two-phase Darcy fluid system in a Hele-Shaw cell. There are typically two
methods to achieve viscous fingering, one is to use a less viscous fluid to displace another more viscous fluid between narrowly
spaced plates, and the other is to introduce the rotational forces into the system, which is adopted here. At the initial state, a
droplet is placed in a rotating Hele-Shaw cell, and under the centrifugal force of the rotating motion, the interface of the droplet
develops a vivid rotating finger-like structure, transitioning from a droplet-like structure to filamentous arms with extended arms,
or a membrane-like skeleton structure with nearly constant fingertip width [77-81].

To impose a rotational force, we replace the momentum equation (2.11) with the following form:

a -; $) (w?

ty,+au+Vp+dpVo=g r —2w(e, X)), 4.7)

where a rotational force is added on the right hand side, and e, is the outward normal direction at the surface, ¢ and @ are two
pre-assigned positive constants, and r is a given vector.
We carry out two simulations on two surfaces, the first of which is a spherical domain with the radius 1, that reads as

S, ={(y2) X2+ +22 =1} (4.8)

It is discretized with 2097 152 Loop subdivision limit subdivision patches by use of 1048578 control vertices, and the span of the
vertex valence is 4 to 6. The initial conditions are set as

—VxX2+ 2+ (z-1)? 0

o = tanh(22 )% u=0, p°=0, (4.9)
&
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Fig. 4.5. Comparison of fingering patterns obtained for four different surface tension parameters, where A = 5e—3,1.5e—3,5e—4,5e—5 are plotted from left to
right, with each plot showing the contours of ¢ at r =4.2.

where ry = 1 +0.0lrand(x) and rand(x) is the random number in the range of [0, 1]. The model parameters are set as

(4.10)

M =1le-3, A=5e-5, n=4, B=1e5 v=1, a =3000,
e=7e-3, 6t=3e-3, g=9, w=9, r=(x,y,z—1).

In Fig. 4.4, we show the snapshots of the variable ¢ at various times, where red-blue color map is used. We can see that over
time, the originally smooth interface produces tiny tentacles that slowly grow and elongate, forming the typical viscous fingering
pattern. To detect the effect of different model parameters on the obtained fingering pattern, in Fig. 4.5, we vary the surface tension
parameter A with 4 = 5e—3, 1.5e—3, Se—4, 5e—>5 for comparison of the differences in the fingering patterns obtained. When the surface
tension parameter A is large, the number of finger generated is small and the shape is thick. When the parameter 4 is small, the
number of finger becomes more and more, and the shape becomes thin and long, consistent to other experimental/numerical results
performed on the flat surface [77,78,81].

We conduct a second simulation with a similar rotation in another, but with the computational region switched to the more
complex surface of a human head, that reads as

S3 ={(x,5,2) : x €[-0.346,0.346], y € [-0.497,0.495], z € [-0.495,0.495]}. (4.11)

It is discretized with 1074744 Loop subdivision limit subdivision patches by use of 537374 control vertices, and the span of the

vertex valence is 4 to 12. We set the initial conditions as

0 — V(x — 0.084)2 + (y + 0.497)2 + (z — 0.143)2
£

I 0 0
o = tanh( )y, w=0, p°=0, (4.12)

where ry = 0.5 + 0.01rand(x) and rand(x) is the random number in the range of [0, 1]. The model parameters are set as

(4.13)

M =12e-3, A=2e-5, n=4, B=1e5 v=1, a =3600,
e=3e-3, 6t=1.6e-3, g=12, w =12, r = (x —0.084, y + 0.497,z — 0.143).

In Fig. 4.6, snapshots of the variable ¢ at various times are shown. For clarity, we show two different views for each 3D head at
any given time. Similar to the previous simulation, tiny fingers initially appear on the interface and then slowly grow longer and
denser across the entire surface of the head, forming viscous fingering patterns densely spread across the computed curved head
surface.

5. Conclusions

In this paper, we study a highly nonlinear and coupled system, namely, the Cahn-Hilliard—Darcy phase-field model for two-phase
flow in the Hele-Shaw cell, on a complex curved surface. We establish a novel numerical approach within the IGA framework that
integrates subdivision surface technology with a number of efficient time marching methods, including explicit-IEQ linearization
and ZEC decoupling. Subdivision technology can bring high smoothness and hierarchic refineability, precisely representing the
convoluted surface with arbitrary topology. Effective time marching and decoupling methods enable us to discretize nonlinear
terms without introducing additional nonlinear iterations and any form of coupling computation in a simple and straightforward
manner. The optimal combination of time marching and space discretization permits the development of numerical methods with
all of the desired properties: geometric exactness of the domains of interest, linearity, second-time accuracy in time, decoupling,
and unconditional energy stability. We rigorously demonstrate the unconditional energy stability and provide numerous numerical
examples of complex surface models, in which the accuracy, stability, and some benchmarking fingering pattern examples produce
a captivating visual effect that numerically validates the robustness of our established numerical method.
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=0.0 (b) t =0.32
) t = 0.64 (d) t=1.12

=1.6 )t=224

(h) t =

) b= 12772
Fig. 4.6. Snapshots of the profiles ¢ on the head surface model S; at various times ¢ = 0,0.32,0.64,1.12, 1.6,2.24,2.72,3.2 respectively. For each time snapshot,
we show two different view perspectives.
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