Check for
Updates

An Agile Pathway Towards Carbon-aware Clouds

Pratyush Patel
pratyush@cs.washington.edu
University of Washington
USA

ABSTRACT

Climate change is a pressing threat to planetary well-being that
can be addressed only by rapid near-term actions across all sec-
tors. Yet, the cloud computing sector, with its increasingly large
carbon footprint, has initiated only modest efforts to reduce emis-
sions to date; its main approach today relies on cloud providers
sourcing renewable energy from a limited global pool of options.
We investigate how to accelerate cloud computing’s efforts. Our
approach tackles carbon reduction from a software standpoint by
gradually integrating carbon awareness into the cloud abstraction.
Specifically, we identify key bottlenecks to software-driven cloud
carbon reduction, including (1) the lack of visibility and disaggre-
gated control between cloud providers and users over infrastructure
and applications, (2) the immense overhead presently incurred by
application developers to implement carbon-aware application op-
timizations, and (3) the increasing complexity of carbon-aware
resource management due to renewable energy variability and
growing hardware heterogeneity. To overcome these barriers, we
propose an agile approach that federates the responsibility and tools
to achieve carbon awareness across different cloud stakeholders. As
a key first step, we advocate leveraging the role of application op-
erators in managing large-scale cloud deployments and integrating
carbon efficiency metrics into their cloud usage workflow. We dis-
cuss various techniques to help operators reduce carbon emissions,
such as carbon budgets, service-level visibility into emissions, and
configurable-yet-centralized resource management optimizations.

CCS CONCEPTS

« Computer systems organization — Cloud computing.

KEYWORDS
cloud computing, carbon reduction, sustainability

ACM Reference Format:
Pratyush Patel, Theo Gregersen, and Thomas Anderson. 2023. An Agile

Pathway Towards Carbon-aware Clouds. In 2nd Workshop on Sustainable
Computer Systems (HotCarbon °23), July 9, 2023, Boston, MA, USA. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3604930.3605722

1 OVERVIEW

Nearly 1% of today’s total global carbon emissions is attributable to
datacenters [4]. This fraction is growing rapidly due to the increased

Theo Gregersen
theoag@cs.washington.edu
University of Washington

USA

This work is licensed under a Creative Commons Attribution International 4.0 License.

HotCarbon 23, July 9, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0242-6/23/07.
https://doi.org/10.1145/3604930.3605722

Thomas Anderson
tom@cs.washington.edu
University of Washington
USA

demand for centralized computing, including recent advances in
compute-intensive large language models (LLMs) [15, 28]. Rapid
near-term actions are needed to reduce these emissions since car-
bon can otherwise accumulate and remain in the atmosphere for
hundreds of years [63, 88]. One such action involves compliance
with the Paris Agreement [64], which requires datacenters to reduce
their emissions by 45% between 2020 to 2030 [88]. Driven by such
political pressures, as well as social and market demands, several
cloud providers and large-scale cloud users have made commit-
ments to reduce their emissions and publish annual sustainability
reports detailing their progress [32, 34, 48, 57, 71].

To offset or reduce datacenter emissions, cloud providers invest
in renewable energy through long-term Power Purchase Agree-
ments (PPAs) and time-based Renewable Energy Certificates (RECs) [4,
32]; they also incentivize cloud users to run applications in regions
that primarily operate on renewables [31, 67]. These efforts help re-
duce the carbon intensity of the grid by funding sustainable energy
generation and redirecting user compute demand towards greener
energy sources. However, they incur three key limitations. First,
since growth in hyperscale cloud energy demand far outpaces the
rate of increase in renewable energy production [5, 6, 89], clouds
running on renewables may displace other electricity consumers
on the grid to carbon-intensive energy sources. Given the recent
growth in demand for LLMs [15, 28], it may not even be feasible to
source renewable energy for all datacenters in the near term. Sec-
ond, even if providers match 100% of their annual or hourly energy
demand with PPAs or RECs, clouds may still not be able to fully
operate on renewable energy due to the supply variability of major
renewable sources [19, 21, 92]. For example, solar and wind energy
supplies are highly sensitive to weather patterns and the time of the
day; consequently, their supply may not match the instantaneous
cloud energy demand. Finally, using renewable energy for cloud
operations does not address embodied carbon—the emissions from
hardware manufacturing and supply chains—which constitutes a
significant portion of the cloud carbon footprint [39, 61].

New approaches are needed to address these limitations, and we
posit that providers alone can make limited progress. In particular,
many carbon optimizations involve trade-offs that are opaque to
providers due to the black-box nature of cloud user applications
(e.g., deciding whether applications are delay tolerant to achieve
higher carbon efficiency [93], or identifying application quality-of-
service guarantees to perform efficient resource management [22]).
Further, given that users dictate the cloud workload, they should
also be given agency regarding their emissions.

Taking action to rapidly transition towards sustainable clouds
therefore requires empowering cloud users with mechanisms to re-
duce both their energy and carbon footprints. Unfortunately, doing
so is challenging because cloud users: (1) lack fine-grained visibility
into and control over operational emissions, (2) lack visibility into

https://doi.org/10.1145/3604930.3605722
https://doi.org/10.1145/3604930.3605722
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604930.3605722&domain=pdf&date_stamp=2023-08-02

HotCarbon ’23, July 9, 2023, Boston, MA, USA

datacenter hardware lifetimes and embodied emissions, (3) lack suit-
able development tooling and application deployment workflows
for carbon reduction, and (4) encounter significant complexity in
optimizing for carbon trade-offs due to renewable energy supply
variability and growing cloud hardware heterogeneity.

Prior work argues that cloud providers could address some of
these challenges by integrating a carbon API into the cloud ab-
straction to give users greater visibility and control over their emis-
sions [13, 81]. Although powerful, this approach is complex for both
providers and users because it requires carbon awareness to per-
colate throughout the application, platform, and hardware stacks.
Specifically, it puts much of the complexity burden on application
developers, who would need additional training and tooling to
rewrite large-scale applications to make them carbon efficient [37,
38, 59]; further, it requires continuous development efforts since
carbon trade-offs keep changing as technology evolves. Alas, de-
veloper time can already pose a bottleneck for business operations.
Rewriting applications may not even be a viable option for develop-
ers because many cloud users deploy large-scale microservices that
use complex components as black-box solutions [26, 87]. Thus, even
if cloud providers were willing to expose low-level infrastructure
details and a carbon API to users, this approach would likely take
significant time, effort, and care to deploy, time that the planet may
not have.

To address the urgency of reducing carbon emissions amid the
rapid evolution of clean datacenter technologies, we suggest an ag-
ile approach [2]. We advocate that the most pragmatic pathway
towards achieving carbon-aware clouds is one that works
within existing business practices while enabling swift and
progressive reduction of carbon emissions. Based on this phi-
losophy, we recommend three measures to transition towards a
carbon-aware cloud abstraction.

R1: Federate Responsibility for Carbon Efficiency into Ex-
isting Organizational Workflows. First, large-scale cloud users
should leverage their existing organizational structure to integrate
carbon efficiency into their current workflow. Rather than putting
the entire burden of carbon awareness/reduction on developers,
we argue that application operators are well positioned to monitor
and navigate the complex trade-offs between cost, performance,
reliability, and carbon at deployment time while ensuring that
business-critical application objectives are met. Meanwhile, cloud
providers are better suited to implement carbon-aware resource
management measures and expose them to application operators
given their better visibility into their own infrastructure and ser-
vices. Furthermore, to meet carbon reduction targets, cloud users
should implement a top-down carbon budget for the organization
that is allocated to applications by project managers and enforced
by operations teams: carbon budgets provide clear carbon goals to
all stakeholders and align well with climate policy [64].

R2: Provide Actionable Visibility into Emissions. Second, to
make more carbon-efficient decisions, cloud providers should em-
power application operators with coarse-grained visibility into the
carbon footprints of their deployments; different providers should
further collaborate to standardize reported metrics and accounting
methodologies. Doing so casts carbon as an optimization metric

Patel, et al.

that application operators can balance alongside traditional appli-
cation objectives. It also helps operators define best practices for
project managers to choose between cloud platforms and for appli-
cation developers to select carbon-efficient services when they build
or optimize software. For example, operators could help pinpoint
which application services are "carbon hotspots" for developers
to optimize; they could also help create an emissions ranking be-
tween different application service alternatives to guide developer
decisions. Over time, as carbon optimizations become more nu-
anced, providers can improve the accuracy and granularity of their
reported carbon metrics.

R3: Centralize Configurable Carbon Optimization Mecha-
nisms. Finally, to simplify and enable progressive carbon reduction
across users, cloud providers should centralize carbon optimization
implementations as much as possible and offer them as configurable
knobs to application operators. Operators could then reason about
and expose application characteristics, possibly in real time, so the
cloud provider could better schedule resources. These knobs would
initially be coarse grained: for example, the main knob available
today controls whether applications are run in a region powered by
green energy if network latency from that region is acceptable [31].
As provider implementations mature, they can expose finer-grained
knobs to operators (and eventually to developers) who would incre-
mentally reduce emissions by making applications partially or fully
carbon aware. For example, “green VMs” could become alternatives
to spot VMs that are spun-up to run delay-tolerant workloads only
when renewable energy is available [69, 93].

2 CARBON AWARENESS CHALLENGES

We now elaborate on the challenges that motivate the agile reduc-
tion of cloud carbon emissions.

2.1 Visibility into Carbon Emissions

Providing visibility into emissions can motivate and guide user
actions [4, 9, 29]. However, carbon fundamentally differs from tra-
ditional application metrics like performance, availability, or cor-
rectness [10]. Cloud users can independently monitor and validate
traditional metrics, which are typically exposed by the application
itself. In contrast, carbon metrics, such as energy usage and emis-
sions, must be externalized by the cloud provider. Addressing this
requirement raises the following challenges due to the multi-tenant
nature of the cloud.

C1: Operational Emissions Accounting. Visibility into opera-
tional carbon emissions requires user-level energy measurements;
however, taking these measurements in a fine-grained manner is not
possible with today’s hardware interfaces. Most modern servers are
equipped with full-node power monitoring through IPMI [45]. At
the component level, energy can be monitored for CPU sockets and
DRAM using the RAPL interface [44] and for GPUs using vendor-
provided tools [8, 62]. However, most other server components, e.g.,
disks, NICs, and fans, typically do not expose energy measurement
interfaces, making it difficult to get fine-grained visibility into user
emissions. Furthermore, exposing raw energy counters directly
to cloud users raises safety concerns since they are susceptible to
side-channel attacks [52]. Even if there were safe energy measure-
ment interfaces, it is difficult to map server- or component-level

An Agile Pathway Towards Carbon-aware Clouds

HotCarbon °23, July 9, 2023, Boston, MA, USA

Our Proposal

Challenge Today’s Cloud ‘ Ecovisor R1: Federated Responsibility ~ R2: Actionable Visibility =~ R3: Centralized Management
C1: Operational carbon accounting () ([[] ()
C2: Embodied carbon accounting () [] O
C3: Trust issues (D) ()
C4: Application complexity () O
C5: Developer tooling © ©
C6: Renewable energy variability © [J () [
C7: Hardware heterogeneity © [J

Table 1: The extent to which different proposals address carbon-awareness challenges. Mostly addresses (@). Partially addresses ©).

power measurements to consistent user-level emissions on shared,
multi-tenant servers [10]. For example, since modern servers are
not energy proportional [12], the same virtual machine (VM) run-
ning on an otherwise idle machine uses more energy than if it were
colocated with other VMs, which the user has no control over.

C2: Embodied Emissions Accounting. Embodied carbon ac-
counting is even more challenging since it incurs multi-tenancy
in both space and time. Not all providers expose embodied emis-
sions to users today [79], and those that do expose it only coarsely
via post-hoc reports [54, 58]; in fact, cloud users can effectively
hide their Scope 3 emissions, reporting on which is not required
under existing standards [61, 68]. Since server lifetimes are not
known in advance, it is unclear how to effectively account for and
expose embodied emissions to cloud users. Current proposals ac-
count for embodied emissions based on electricity use prorated over
anticipated hardware lifetimes [23, 38], factoring in the fraction
of compute reserved [38, 85], or based on normalized cloud usage
cost [54]. However, these accounting approaches fail to incentivize
efforts to extend server lifetimes or use older hardware, which can
help to reduce emissions [14, 18, 86].

C3: Trust Issues. The validity of cloud emissions metrics relies
entirely on the provider’s trustworthiness. Since providers can
use cloud carbon efficiency as a competitive advantage to attract
environmentally-conscious users [17], it is important to ensure that
their emissions reporting is standardized and comparable. However,
today’s carbon footprint reports from cloud providers often lack
details about accounting methodology, are unverified, and/or are
subject to change [23, 58]. Furthermore, each provider uses their
own carbon reporting methodology which makes it difficult for
users to correctly choose carbon-efficient cloud platforms. To in-
crease credibility and standardize a carbon reporting framework,
providers should share their methodology with the community and
cross-validate it with third-party stakeholders, which can facilitate
greater carbon reduction through competition [82]. Currently, such
transparency is not widespread.

2.2 Carbon-aware Software Development

Carbon-aware software optimization typically leverages trade-offs
being built into the application; for example, since 4G networks are
more carbon intensive than WiFi, websites serving mobile networks
could be designed to operate in a low carbon mode [43]. However,
such optimizations are difficult to implement in large-scale cloud
applications due to application complexity and developer tooling,
which we now explore.

C4: Application Complexity. Large-scale user applications are
likely to have the most significant impact on cloud carbon emissions.
Such applications are complex and can be on the scale of millions
of lines of code, meaning that developers typically have at most a
partial understanding of the system. Cloud users manage this com-
plexity by building hundreds or thousands of microservices across
several different development teams [41, 87]; these microservices
often rely on legacy code, external services, or libraries that must
be treated as black boxes by developers [30]. Consequently, it is dif-
ficult, if not impossible, for developers to modify every application
component to become carbon efficient in the near term.

C5: Lack of Developer Tooling. Even developers who want to
write carbon-aware code today have little cloud-based tooling sup-
port available to do so. Developers cannot easily interpret or opti-
mize the carbon efficiency of their cloud applications beyond ad-
hering to high-level software design guidelines [37, 38, 59]; instead,
they must rely on cloud providers to share energy and emissions
metrics [56, 78]. Third-party tools like Scaphandre [42] and Cloud
Carbon Footprint [85] offer some insight into carbon emissions, but
they are still in early stages, use coarse-grained estimations, and
cannot be easily integrated with large-scale user applications.

To examine how these issues might manifest, we review insights
from the field of security and privacy. Specifically, many developers
seeking to integrate privacy protections into the development cy-
cle perceive them to contradict system requirements, have trouble
verifying the correctness of their work, and/or lack knowledge on
relevant practices [72]. The disconnect between modern develop-
ment workflow and methodology adds further difficulty [50]. As
a result, organizations trying to implement privacy engineering
tend to face some developer resistance [40, 73]. The perceived use-
fulness and complexity of an approach particularly influence its
adoption [73], with additional system overhead [80] and a lack of
supportive tooling also having an impact. Viewing carbon efficiency
as a non-functional requirement akin to privacy suggests that its
integration will likely face similar development challenges.

2.3 Carbon-aware Resource Management

Carbon must be optimized alongside existing business-critical appli-
cation objectives, i.e., cost, performance, availability, security, and
more [60]. Yet, even with visibility into emissions, cloud users find
it complex to develop mechanisms to reduce them. Furthermore,
each user must develop their own carbon efficiency mechanisms
which leads to redundant resource management optimizations. We
discuss the two main sources of complexity below.

HotCarbon ’23, July 9, 2023, Boston, MA, USA

C6: Renewable Energy Variability. Since many major renewable
energy sources today are relatively nascent and depend on the en-
vironment (i.e., solar and wind), there is considerable variability
in the carbon intensity of the energy supply [19, 90, 92]. However,
such variability does not imply variability in cloud energy usage.
At a datacenter scale, the average difference between minimum and
maximum energy demand is roughly 4%, a relatively small delta
compared to changes in renewable energy supply [3]. To improve
carbon efficiency, cloud stakeholders must therefore match sup-
ply variability to workloads that can adapt accordingly. Deciding
how to schedule different applications to gain the highest marginal
utility from variable renewable energy supply poses a challenging
optimization problem [3, 69, 93], especially because it requires han-
dling different timescales (e.g., solar supply varies with day/night
cycles, but workload changes may occur within seconds). Geogra-
phy requires consideration too; for instance, due to energy supply
variability, it may be more carbon efficient to schedule workloads in
a non-local region (e.g., by chasing the sun), as long as the transfer
overheads are acceptable.

C7: Hardware Heterogeneity. Heterogeneity in the cloud mani-
fests in several different dimensions spanning compute, memory,
networks, and storage. For example, compute heterogeneity mani-
fests across compute generations due to server lifetime extensions
(e.g., older vs. newer CPUs) [86]; across compute types to achieve
different performance and energy efficiency trade-offs (e.g., CPUs
vs. GPUs vs. FPGAs; Intel vs. ARM vs. AMD CPUs) [20, 66, 77];
and across servers of the same type due to new failure mechanisms
such as fail in place, where servers start to differ at a component
level over time (e.g., CPUs with and without cache failures) [53].
Importantly, each compute backend offers different, yet often com-
plementary, carbon trade-offs, and these trade-offs may change
over time. For example, old CPUs past their standard lifetimes may
be considered carbon efficient if their embodied emissions are al-
ready accounted for, but they may perform slower, use more energy,
and be less reliable than newer counterparts [14, 83, 86]. Similarly,
FPGAs, typically much more energy efficient than CPUs, spin up
slower in response to bursty workloads, requiring substantial idle
capacity to be provisioned to meet latency SLOs [66]. Increase in
domain-specific architectures further complicates compute hetero-
geneity, with ASICs such as TPUs [49, 67] offering much better
operational efficiency with the trade-off of a narrow case for al-
location and potentially higher embodied carbon costs. Similar
trade-offs also apply to other hardware technologies given recent
advancements in memory disaggregation, flash storage, smartNICs,
and optical networking. Deciding how best to schedule computa-
tion on increasingly heterogeneous resources to minimize carbon
emissions while meeting other application objectives is another
challenging and multi-dimensional optimization problem.

2.4 Summary

Importantly, the aforementioned challenges are rapidly evolving.
Since carbon-aware software development changes will take time
to design and implement, we believe that transparent carbon-aware
resource management that leverages the role of application opera-
tors is a more likely near-term path to reduce carbon. Meanwhile,
as developers gradually make applications more carbon aware,

Patel, et al.

these resource management optimizations will in turn be impacted.
Hence, from a cloud user standpoint, we seek to facilitate an agile
transition towards carbon efficiency by integrating it into their
cloud usage workflow [2].

Our proposal for a carbon-aware cloud abstraction adopts this
reasoning to address the challenges in an agile manner [2]. Table 1
summarizes the extent to which it does so, with comparisons to
today’s cloud and related work (Ecovisor [81]). Current cloud ap-
proaches address operational carbon accounting (C1) and embodied
carbon accounting (C2) at a coarse level with post-hoc reports [23,
54, 58]; mechanisms such as audits provide limited support to ad-
dress trust issues (C3) [1, 58]; and hourly RECs partially and in-
directly handle renewable energy variability (C6) [32]. Ecovisor
provides fine-grained emissions visibility for operational carbon
accounting (C1) and renewable energy variability (C6). Both to-
day’s cloud and Ecovisor do not address application complexity
(C4), developer tooling (C5), and hardware heterogeneity (C7). The
following sections detail how implementing our proposal to fed-
erate carbon awareness across the organization addresses these
challenges more comprehensively.

3 VIEWING CARBON AS AN OPERATIONS
CONCERN

Large-scale cloud user organizations typically consist of managers,
developers, and operators who collaborate to deploy applications
with specific Service Level Objectives (SLOs) [16, 60]. Each role
has different responsibilities and specializations: managers allo-
cate budgets, coordinate between teams, and chart out application
SLOs; developers focus primarily on implementing application func-
tionality, optimizations, and ensuring correctness; and operators
address deployment, monitoring, and reconfiguration to ensure
that applications meet their SLOs!.

To help application operators meet deployment objectives, cloud
providers dedicate their own operations teams, such as Customer
Reliability Engineers [70], to perform in-depth service monitoring
and provide debugging and configuration guidance. Cloud oper-
ators may further communicate with cloud infrastructure teams
about user needs to motivate new features and improvements to
their underlying platforms.

Because application operators and cloud operators constitute
a narrow-waist interface between cloud users and providers, we
argue that they are best suited to introduce carbon awareness in
the cloud (R1). Viewing carbon awareness as an operators-first
responsibility integrates well into the typical cloud user workflow.
For example, project managers could negotiate with operators to
procure cloud resources while staying under carbon budgets; de-
velopers could build carbon-efficient optimizations by discussing
design choices with operators since they have more insight into
runtime application behavior; and application and cloud operators
could provide each other greater visibility into carbon metrics and
application characteristics to collaboratively make carbon-efficient
resource management decisions.

!In some teams, the same individual might serve as both developer and operator. We
discuss the roles separately for clarity.

An Agile Pathway Towards Carbon-aware Clouds

3.1 Carbon Budgets

To meet specific carbon reduction targets, we propose that orga-
nizations define and adhere to an internal carbon budget over a
specific time horizon (e.g., annual). Project managers should plan
deliverables in accordance to this budget, while operations teams
help monitor and enforce the budget. Carbon budgets are similar
to financial budgets: a single quota is defined for an entire orga-
nization and subdivided for individual projects and/or teams over
specific durations.

We believe that implementing well-defined carbon budgets would
offer three key benefits. First, they would provide a clear vocab-
ulary and common objective for cloud organizations, teams, and
individuals. Second, they would keep carbon goals orthogonal to
traditional SLOs, like performance and availability, which are typi-
cally defined based on business needs [16]. Third, they would align
well with the carbon budgets commonly used in climate policy and
hence provide a clear tracker for carbon reduction progress [63],
e.g., relative to Paris Agreement requirements for the Information
and Communication Technology (ICT) industry to reduce their
overall emissions by 45% between 2020-2030 [88].

Note that carbon budgets are complementary to carbon fees
that organizations like Microsoft internally impose on their teams:
carbon fees serve as a "tax" that helps fund sustainability initiatives
based on carbon emissions [94], whereas carbon budgets provide
an organizational target/incentive for individual groups to make
decisions about how to reduce their carbon emissions. Carbon
budgets also differ from SLOs because they impact neither end-
user experience nor correctness [16]. We encourage the research
community to commit to studying the perception and effectiveness
of carbon budgets in cloud organizations; over time, this would
help refine and improve the budgeting process.

4 TAKING ACTION TO MAKE EMISSIONS
MORE VISIBLE

Large-scale cloud users deploy thousands of microservices to man-
age their application needs [41, 87], meaning that there is substantial
complexity even in identifying and optimizing the most carbon-
intensive services. We therefore propose that cloud providers give
application operators service-level visibility into carbon emissions
and integrate emissions data into their typical cloud usage interfaces
(e.g., monitoring dashboards [35, 36, 74] and container registries [24,
55, 76]). Doing so would help operators rapidly and easily develop
techniques to monitor and reduce service emissions at scale (R2).

4.1 Service-level Carbon Metrics

Providers should expose real-time, service-level emissions metrics
to operators to drive runtime carbon optimizations. For cloud-native
microservices, such metrics can be integrated into the operator
workflow by monitoring emissions in a black-box manner via side-
car proxies [25, 27] and displaying them using standard observ-
ability dashboards [35, 51, 74, 84]. For VM deployments, providers
could expose emissions via a separate remote procedure call (RPC)
or a hypervisor-mediated cloud APL

Dynamic service-level visibility into emissions would help for
many reasons. First, it would let operators track whether their de-
ployed services could meet their carbon budgets, even with constant

HotCarbon °23, July 9, 2023, Boston, MA, USA

development churn. Second, since emissions are exposed in a black-
box manner through sidecars and service meshes, it would help
operators implement carbon-aware resource optimizations without
necessarily involving developers. Finally, it would help operators
identify "carbon hotspots" on which to focus resource management
(and optionally, development) efforts to reduce carbon emissions,
making remediation efforts more effective and efficient.

Exposing accurate carbon metrics is challenging, as discussed
in § 2.1. However, since carbon is a non-functional requirement, we
maintain that accurate metrics are less necessary than approximate
ones at present to help operators reduce emissions. Over time, as
carbon optimization becomes more nuanced, providers could imple-
ment more accurate and safer carbon monitoring. Below, we discuss
initial strategies to measure and export service-level emissions.

Operational Emissions. We propose two methods to track op-
erational emissions: measurement based and model based. Under
the measurement-based approach, server power measurements (via
IPMI [45] or RAPL [44]) would be aggregated across coarse-grained
time intervals and prorated according to component-level utiliza-
tions. For the model-based approach, performance counters for
different services would be translated into energy measurements
via a pretrained model [10]. In both cases, energy values would
then be translated into carbon intensities using grid or datacenter-
level carbon APIs [19, 81, 92]. These approaches incur different
trade-offs. The measurement-based approach is likely to be more
accurate, but energy counters may not be available on all machi-
nes/components. The model-based approach does not depend on
hardware energy counters, but it may be less accurate and not scale
well to cloud-scale server heterogeneity. Further research is needed
to determine whether either poses a practical security risk due to
side channels [52].

Embodied Emissions. We propose amortizing the embodied car-
bon of servers over their expected lifetimes by following the de-
preciation model from financial accounting; that is, a server in its
first year of use should incur higher embodied carbon per unit
time than in its fourth year. Beyond the expected lifetimes, servers
should incur no embodied carbon cost [83]. The same strategy
could also be applied at the component level, since different server
components have different expected lifetimes [53]. Our approach
incentivizes the use of older hardware, thereby promoting hardware
reuse. We note that older hardware might have a higher failure
probability [53], implying a trade-off between carbon efficiency
and reliability under our approach. Additional study is needed to
investigate this trade-off and expose its implications to cloud users.

Trust Issues. Navigating trust is complex. We believe that a combi-
nation of legal regulations, audits, and public opinion will motivate
cloud provider accountability. Third-party audits are already com-
mon for verifying sustainability practices; the same could be applied
to verifying emissions measurements after making the methodol-
ogy public [1, 54]. The research community could contribute a
verification or attestation mechanism [33] so that users need not
trust providers to report valid emissions metrics. If trust lapses,
users could consider repatriating to private clouds for greater visi-
bility and control over carbon reduction. While this might be cost
effective for some cloud users today [91], it is unlikely to be a

HotCarbon ’23, July 9, 2023, Boston, MA, USA

carbon-efficient decision overall since it does not benefit from at-
scale optimizations [17].

4.2 Carbon Knowledge Repository

Since carbon benchmarks are not yet common, operators in large-
scale organizations would also benefit from static visibility into the
energy usage of common services like key-value stores or machine
learning models. Specifically, we propose that services expose their
expected energy usage under standardized configurations via a
shared carbon knowledge repository. Doing so would enable appli-
cation operators and developers deploying new services to make
informed initial choices about which service alternatives may be
preferable. For instance, developers using machine learning serving
frameworks would benefit from knowing the energy efficiencies of
different models alongside their accuracy and performance.

We envision that such carbon knowledge repositories would be a
collaborative effort across different cloud users and integrated into
cloud-native container registries, image repositories, or machine
learning model zoos [24, 55, 76, 95]. For uniformity, we expect that
each carbon repository would be standardized with fixed bench-
marks and hardware configurations, appropriate to the service type;
deciding upon a set of standard configurations remains an open
problem that could be guided by collaboratively-developed open-
source benchmarks. Alternatively, cloud users could also create
an internal repository of carbon emissions for their own service
deployments in case of sensitive data/configurations. For willing
users, request-level energy usage could be pulled directly through
the metrics measurement interfaces described in § 4.1.

5 CENTRALIZING CARBON REDUCTION

Finally, to simplify operator efforts for cloud-managed services, we
propose that providers centralize carbon-aware resource manage-
ment mechanisms and expose configurable knobs to operators (R3).
Optimizing cloud-managed services using black-box approaches
quickly runs into limitations since many carbon optimizations in-
volve multidimensional trade-offs beyond provider purview. For
example, older hardware may run services slower and less reliably
but offer higher carbon efficiency [83]; carbon-aware scheduling
may delay workloads so they run during low carbon intensity time
periods [69, 93]. To communicate these trade-offs, operators should
be able tweak static or dynamic knobs that cloud providers can
rely upon to make better carbon-aware optimizations. Centralizing
optimizations particularly benefits agility by eliminating redundant
optimization efforts across different services and across operators.

5.1 Static Optimizations

Operators should be able to communicate known static trade-offs
to providers upon service creation or deployment. To implement
static hints, providers could simply require operators to pass an
appropriate flag when deploying cloud-managed microservices. For
example, operators could indicate that a service is delay tolerant, let-
ting providers schedule it when renewable energy is available [93].
Alternatively, providers could create new cloud platform offerings
like "green VMs" which could be carbon-aware alternatives to spot
VMs or harvest VMs that are spun up only when the carbon inten-
sity of energy is low [7, 75]. Although carbon-aware scheduling

Patel, et al.

already exists for internal workloads in some clouds today [69], we
note that building such static optimizations into cloud-managed
services enables users to benefit, as well.

5.2 Dynamic Eco Modes

Inspired by eco mode dials in modern cars [47], we propose that
operators be able to dynamically specify simple hints to help the
cloud platform improve carbon efficiency. For example, operators
could signal that a service has latency slack, letting providers run
it at lower clock frequencies (reducing operational emissions) or
on older CPUs (reducing embodied emissions). Developers can
further utilize eco modes to implement carbon-efficient application
functionality, such as by using different eco modes to serve machine
learning models that offer different accuracy, performance, and
efficiency trade-offs for the same application task.

To enable eco mode settings in the cloud, providers must imple-
ment a communication interface between the application service
and the cloud platform. As a first step, most existing cloud monitor-
ing systems allow specification of custom metrics, and this interface
could be extended to communicate eco modes. In the future, cloud
providers could expose a dedicated eco mode interface to operators.

Each eco mode could capture different carbon trade-offs, and
multiple modes could be combined for greater carbon reduction.
For example, a delay-tolerant eco mode might use renewable-aware
scheduling or lower compute clock frequencies [65]. A reliability-
tolerant eco mode might schedule applications on older hardware
generations to reduce carbon emissions [83, 86]. A balanced eco
mode could schedule latency-sensitive applications interchange-
ably on heterogeneous compute workers to strike a middle ground
between their spin-up latency, cost, and energy efficiency [11, 66].

5.3 User Incentives

To help operators make informed decisions about available static
optimizations and eco mode trade-offs, providers could monitor
historical user workloads, use simple simulators/predictors to de-
termine potential carbon savings, and display savings on operator
dashboards. For example, if shown that adding new FPGA imple-
mentations to existing CPU services could dramatically reduce
carbon emissions while only slightly increasing costs [66], oper-
ators might be better positioned to make such recommendations
within their enterprises based on their carbon and financial budgets.
To motivate operators to enable carbon-reduction optimizations,
providers could also introduce economic incentives by leveraging
lowered operational costs due to reduced energy and power con-
sumption. Prior work on market-mechanism-based power capping
is a good starting point for future inquiry in this direction [46].

ACKNOWLEDGMENTS

We thank Sandy Kaplan for detailed feedback on our writing. We
thank Esha Choukse, Tapan Chugh, Siddharth Gupta, Katie Lim,
Bobbie Manne, Ashlie Martinez, Pulkit Misra, Bichlien Nguyen,
Kushal Patel, and Akshitha Sriraman for insightful discussions that
helped shape our perspective on sustainable clouds. This work is
supported by NSF CNS-2104548, VMware, and Cisco Systems.

An Agile Pathway Towards Carbon-aware Clouds

REFERENCES

(1]

(2]

[11]

[12]

[13]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

3Degrees. 2022. Google Cloud Services Carbon Footprint Methodology Review.
Retrieved May 20, 2023 from https://services.google.com/fh/files/misc/3degree
s_cloud_services_review_statement_final.pdf.

Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. 2017.
Agile Software Development Methods: Review and Analysis. arXiv preprint
arXiv:1709.08439.

Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta,
Manoj Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon
Explorer: A Holistic Framework for Designing Carbon Aware Datacenters.
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

International Energy Agency. 2022. Data Centres and Data Transmissions
Networks. Retrieved May 20, 2023 from https://www.iea.org/reports/data-cent
res-and-data- transmission-networks.

International Energy Agency. 2022. Global Data Centre Energy Demand by
Data Centre Type. Retrieved May 21, 2023 from https://www.iea.org/data-and-
statistics/charts/global-data-centre-energy-demand-by-data-centre-type.
International Energy Agency. 2022. Renewable Electricity. Retrieved May 21,
2023 from https://www.iea.org/reports/renewables- 2022/renewable- electricity

Pradeep Ambati, [fiigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus
Fontoura, and Ricardo Bianchini. 2020. Providing SLOs for Resource-Harvesting
VMs in Cloud Platforms. USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

AMD. ROCm Open Software Platform for GPU Compute. Retrieved May 20,
2023 from https://www.amd.com/en/graphics/servers-solutions-rocm.

Nina Amenta and Angela Sanguinetti. 2020. Adding Carbon to the Equation in
Online Flight Search. UC Davis: National Center for Sustainable Transportation.
Vaastav Anand, Zhiqiang Xie, Matheus Stolet, Roberta De Viti, Thomas David-
son, Reyhaneh Karimipour, Safya Alzayat, and Jonathan Mace. 2022. The Odd
One Out: Energy is not like Other Metrics. Workshop on Sustainable Computer
Systems (HotCarbon).

Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene
Zhang. 2022. Treehouse: A Case For Carbon-Aware Datacenter Software. Work-
shop on Sustainable Computer Systems (HotCarbon).

Luiz André Barroso, Urs Holzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture.

Bashir, Noman and Guo, Tian and Hajiesmaili, Mohammad and Irwin, David
and Shenoy, Prashant and Sitaraman, Ramesh and Souza, Abel and Wierman,
Adam. 2021. Enabling Sustainable Clouds: The Case for Virtualizing the Energy
System. ACM Symposium on Cloud Computing (SoCC).

Rabih Bashroush, Nour Rteil, Rich Kenny, and Astrid Wynne. 2020. Optimizing
Server Refresh Cycles: The Case for Circular Economy with an Aging Moore’s
Law. IEEE Transactions on Sustainable Computing.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big? ACM Conference on Fairness, Accountability, and Transparency
(FAccT).

Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site
Reliability Engineering: How Google Runs Production Systems. O’Reilly Media,
Inc.

Daniel Bizo. 2019. The Carbon Reduction Opportunity of Moving to Amazon
Web Services.

Rani Borkar. 2022. Learn How Microsoft Circular Centers are Scaling Cloud
Supply Chain Sustainability. Retrieved May 20, 2023 from https://azure.micros
oft.com/en-us/blog/learn-how-microsoft-circular-centers-are-scaling-cloud
-supply-chain-sustainability/.

California ISO. Retrieved May 20, 2023 from https://www.caiso.com/.

Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A Cloud-scale
Acceleration Architecture. International Symposium on Microarchitecture (MI-
CRO).

Jacques De Chalendar. 2019. Why ‘100% Renewable Energy’ Pledges are Not
Enough. Retrieved May 20, 2023 from https://www.ft.com/content/d75f49d0-1
03f-11ea-a225-db2f231cfeae.

Shuang Chen, Christina Delimitrou, and José F Martinez. 2019. PARTIES: QoS-
aware Resource Partitioning for Multiple Interactive Services. International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

Google Cloud. Carbon Footprint Reporting Methodology. Retrieved May 20,
2023 from https://cloud.google.com/carbon-footprint/docs/methodology.

[47]

(48]

[49]

HotCarbon 23, July 9, 2023, Boston, MA, USA

Docker. Docker Hub Container Image Library. Retrieved May 20, 2023 from
https://hub.docker.com/.

NGINX Docs. Sidecar Proxy Injection. Retrieved May 20, 2023 from https://doc
s.nginx.com/nginx-service-mesh/guides/inject-sidecar-proxy/.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices:
Yesterday, Today, and Tomorrow. Present and Ulterior Software Engineering.
Envoy Proxy. Retrieved May 20, 2023 from https://www.envoyproxy.io/.
International Institute for Strategic Studies. 2023. Large Language Models: Fast
Proliferation and Budding International Competition. Strategic Comments.
Jon Froehlich, Leah Findlater, and James Landay. 2010. The Design of Eco-
feedback Technology. SIGCHI Conference on Human Factors in Computing
Systems (CHI).

Andrei Furda, Colin Fidge, Olaf Zimmermann, Wayne Kelly, and Alistair Bar-
ros. 2017. Migrating Enterprise Legacy Source Code to Microservices: On
Multitenancy, Statefulness, and Data Consistency. IEEE Software.

Steren Giannini. 2021. Helping You Pick the Greenest Region for Your Google
Cloud Resources. Retrieved May 20, 2023 from https://cloud.google.com/blog/t
opics/sustainability/pick-the-google-cloud- region- with- the-lowest-co2.
Google. 2018. Moving Toward 24x7 Carbon-Free Energy at Google Data Centers:
Progress and Insights.

Google. 2022. Remote Attestation of Disaggregated Machines. Retrieved May 20,
2023 from https://cloud.google.com/docs/security/remote-attestation.
Google. Sustainability Reports. Retrieved May 20, 2023 from https://sustainabil
ity.google/reports/.

Google Cloud. Operations Suite. Retrieved May 20, 2023 from https://cloud.go
ogle.com/products/operations.

Grafana: The Open Observability Platform. Retrieved May 20, 2023 from https:
//grafana.com/.

Green Software Foundation. Retrieved May 20, 2023 from https://greensoftwa
re.foundation/.

Green Software Foundation. 2023. Software Carbon Intensity (SCI) Specifica-
tion. Retrieved May 20, 2023 from https://github.com/Green-Software-Founda
tion/sci.

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-
Yeon Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing Carbon: The
Elusive Environmental Footprint of Computing. IEEE International Symposium
on High-Performance Computer Architecture (HPCA).

Irit Hadar, Tomer Hasson, Oshrat Ayalon, Eran Toch, Michael Birnhack, Sofia
Sherman, and Arod Balissa. 2018. Privacy by Designers: Software Developers’
Privacy Mindset. Empirical Software Engineering.

Harris, Chandler. Microservices vs. Monolithic Architecture. Retrieved May 20,
2023 from https://www.atlassian.com/microservices/microservices-architectur
e/microservices-vs-monolith.

hubblo-org. Scaphandre. Retrieved May 20, 2023 from https://github.com/hubb
lo-org/scaphandre.

Asim Hussain. 2020. Carbon-Aware vs. Carbon-Efficient Applications. Re-
trieved May 20, 2023 from https://devblogs.microsoft.com/sustainable- s
oftware/carbon-aware-vs-carbon-efficient-applications/.

Intel. 2023. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Intel, Hewlett Packard, NEC, and Dell. 2013. Intelligent Platform Management
Interface Specification.

Mohammad A Islam, Xiaoqi Ren, Shaolei Ren, Adam Wierman, and Xiaorui
Wang. 2016. A Market Approach for Handling Power Emergencies in Multi-
tenant Data Center. IEEE International Symposium on High Performance Com-
puter Architecture (HPCA).

Yavor Ivanov, Rosen Ivanov, Georgi Kadikyanov, Gergana Staneva, and Igor
Danilov. 2019. A Study of the Fuel Consumption of Hybrid Car Toyota Yaris.
Transport Problems.

Joppa, Lucas. 2021. Made to Measure: Sustainability Commitment Progress and
Updates. Retrieved May 20, 2023 from https://blogs.microsoft.com/blog/2021/0
7/14/made-to- measure- sustainability-commitment-progress-and-updates/.
Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas
B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David
Patterson. 2021. Ten Lessons from Three Generations Shaped Google’s TPUv4i.
International Symposium on Computer Architecture (ISCA).

Blagovesta Kostova, Seda F. Giirses, and Carmela Troncoso. 2020. Privacy
Engineering Meets Software Engineering. On the Challenges of Engineering
Privacy ByDesign. ArXiv, abs/2007.08613.

Linkerd. Retrieved May 20, 2023 from https://linkerd.io/.

Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Eas-
don, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based
Power Side-channel Attacks on x86. IEEE Symposium on Security and Privacy
(S&P).

Jialun Lyu, Daniel S. Berger, Marisa You, Celine Irvene, Mark Jung, Tyler
Narmore, Jacob Shapiro, Luke Marshall, Savyasachi Samal, Ioannis Manousakis,

https://services.google.com/fh/files/misc/3degrees_cloud_services_review_statement_final.pdf
https://services.google.com/fh/files/misc/3degrees_cloud_services_review_statement_final.pdf
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/data-and-statistics/charts/global-data-centre-energy-demand-by-data-centre-type
https://www.iea.org/data-and-statistics/charts/global-data-centre-energy-demand-by-data-centre-type
https://www.iea.org/reports/renewables-2022/renewable-electricity
https://www.iea.org/reports/renewables-2022/renewable-electricity
https://www.amd.com/en/graphics/servers-solutions-rocm
https://azure.microsoft.com/en-us/blog/learn-how-microsoft-circular-centers-are-scaling-cloud-supply-chain-sustainability/
https://azure.microsoft.com/en-us/blog/learn-how-microsoft-circular-centers-are-scaling-cloud-supply-chain-sustainability/
https://azure.microsoft.com/en-us/blog/learn-how-microsoft-circular-centers-are-scaling-cloud-supply-chain-sustainability/
https://www.caiso.com/
https://www.ft.com/content/d75f49d0-103f-11ea-a225-db2f231cfeae
https://www.ft.com/content/d75f49d0-103f-11ea-a225-db2f231cfeae
https://cloud.google.com/carbon-footprint/docs/methodology
https://hub.docker.com/
https://docs.nginx.com/nginx-service-mesh/guides/inject-sidecar-proxy/
https://docs.nginx.com/nginx-service-mesh/guides/inject-sidecar-proxy/
https://www.envoyproxy.io/
https://cloud.google.com/blog/topics/sustainability/pick-the-google-cloud-region-with-the-lowest-co2
https://cloud.google.com/blog/topics/sustainability/pick-the-google-cloud-region-with-the-lowest-co2
https://cloud.google.com/docs/security/remote-attestation
https://sustainability.google/reports/
https://sustainability.google/reports/
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://grafana.com/
https://grafana.com/
https://greensoftware.foundation/
https://greensoftware.foundation/
https://github.com/Green-Software-Foundation/sci
https://github.com/Green-Software-Foundation/sci
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://github.com/hubblo-org/scaphandre
https://github.com/hubblo-org/scaphandre
https://devblogs.microsoft.com/sustainable-software/carbon-aware-vs-carbon-efficient-applications/
https://devblogs.microsoft.com/sustainable-software/carbon-aware-vs-carbon-efficient-applications/
https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://linkerd.io/

HotCarbon 23, July 9, 2023, Boston, MA, USA

[54]

[55]

[59]
[60]
[61]
[62]
[63]
[64]

[65]

[66]

[67]

[70]

[71]

[72]

[73]

[74]
[75]
[76]

[77]

[78]

[79]

[80]

[81]

Ashish Raniwala, Ricardo Bianchini, and Bianca Schroeder. 2023. Hyrax: Fail-in-
Place Operation in Cloud Platforms. USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

Microsoft. 2021. A New Approach for Scope 3 Emissions Transparency. Re-
trieved May 20, 2023 from https://go.microsoft.com/fwlink/p/?linkid=2161861.
Microsoft. Azure Container Registry. Retrieved May 20, 2023 from https://azur
e.microsoft.com/en-us/products/container-registry/.

Microsoft. Emissions Impact Dashboard. Retrieved May 20, 2023 from https:
//www.microsoft.com/en-us/sustainability/emissions-impact-dashboard.
Microsoft. 2022. Environmental Sustainability Report. Retrieved May 20, 2023
from https://aka.ms/SustainabilityReport2022.

Microsoft. 2023. Microsoft Cloud for Sustainability API Calculation Methodol-
ogy. Retrieved May 20, 2023 from https://learn.microsoft.com/en-us/industry
/sustainability/api-calculation-method.

Microsoft. The Principles of Sustainable Software Engineering. Retrieved
May 20, 2023 from https://aka.ms/sse/learn.

Jeffrey Mogul and John Wilkes. 2019. Nines are Not Enough: Meaningful
Metrics for Clouds. Workshop on Hot Topics in Operating Systems (HotOS).
David Mytton. 2020. Hiding Greenhouse Gas Emissions in the Cloud. Nature
Climate Change.

NVIDIA. System Management Interface. Retrieved May 20, 2023 from https://d
eveloper.nvidia.com/nvidia-system-management-interface.
Intergovernmental Panel on Climate Change. 2022. Sixth Assessment Report.
Retrieved May 20, 2023 from https://www.ipcc.ch/assessment-report/ar6/.
United Nations Framework Convention on Climate Change. 2015. Adoption of
the Paris Agreement. FCCC/CP/2015/L.9/Rev.1.

Pratyush Patel, Zibo Gong, Syeda Rizvi, Esha Choukse, Pulkit Misra, Thomas
Anderson, and Akshitha Sriraman. 2023. Towards Improved Power Manage-
ment in Cloud GPUs. IEEE Computer Architecture Letters.

Pratyush Patel, Katie Lim, Kushal Jhunjhunwalla, Ashlie Martinez, Max De-
moulin, Jacob Nelson, Irene Zhang, and Thomas Anderson. 2023. Hybrid Com-
puting for Interactive Datacenter Applications. arXiv preprint arXiv:2304.04488.
David Patterson, Joseph Gonzalez, Urs Hoélzle, Quoc Le, Chen Liang, Lluis-
Miquel Munguia, Daniel Rothchild, David R So, Maud Texier, and Jeff Dean.
2022. The Carbon Footprint of Machine Learning Training Will Plateau, Then
Shrink. Computer.

Greenhouse Gas Protocol. 2015. A Corporate Accounting and Reporting Stan-
dard. Retrieved May 20, 2023 from https://ghgprotocol.org/corporate-standard.
Ana Radovanovi¢, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre
Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care,
Saurav Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and Walfredo
Cirne. 2022. Carbon-aware Computing for Datacenters. IEEE Transactions on
Power Systems.

Dave Rensin. 2016. Introducing Google Customer Reliability Engineering (CRE).
Retrieved May 20, 2023 from https://cloud.google.com/blog/products/devops-s
re/introducing-a-new-era- of - customer-support-google-customer-reliability
-engineering.

Salesforce. 2023. Stakeholder Impact Report. Retrieved May 20, 2023 from
https://stakeholderimpactreport.salesforce.com/.

Awanthika Senarath and Nalin A. G. Arachchilage. 2018. Why Developers
Cannot Embed Privacy into Software Systems? An Empirical Investigation.
International Conference on Evaluation and Assessment in Software Engineering
(EASE).

Awanthika Senarath, Marthie Grobler, and Nalin Asanka Gamagedara Arachchi-
lage. 2019. Will They Use It or Not? Investigating Software Developers’ In-
tention to Follow Privacy Engineering Methodologies. ACM Transactions on
Privacy and Security (TOPS).

Amazon Web Services. Amazon CloudWatch. Retrieved May 20, 2023 from
https://aws.amazon.com/cloudwatch/.

Amazon Web Services. Amazon EC2 Spot Instances. Retrieved May 20, 2023
from https://aws.amazon.com/ec2/spot/.

Amazon Web Services. Amazon Elastic Container Registry (ECR). Retrieved
May 20, 2023 from https://aws.amazon.com/ecr/.

Amazon Web Services. AWS Graviton Processor: Enabling the Best Price Per-
formance in Amazon EC2. Retrieved May 20, 2023 from https://aws.amazon.co
m/ec2/graviton/.

Amazon Web Services. Customer Carbon Footprint Tool. Retrieved May 20,
2023 from https://aws.amazon.com/aws-cost-management/aws-customer-car
bon-footprint-tool/.

Amazon Web Services. 2023. Understanding Your Carbon Emission Estimations.
Retrieved May 20, 2023 from https://docs.aws.amazon.com/awsaccountbilling
/latest/aboutv2/ccft-estimation.html.

Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay
Chidambaram. 2020. Understanding and Benchmarking the Impact of GDPR
on Database Systems. Proceedings of the VLDB Endowment.

Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David
Irwin, and Prashant Shenoy. 2023. Ecovisor: A Virtual Energy System for

(87]

(8]

(89]

[90]

[91]

[94]

[95]

Patel, et al.

Carbon-efficient Applications. International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

Ton Stoica and Scott Shenker. 2021. From Cloud Computing to Sky Computing.
Workshop on Hot Topics in Operating Systems (HotOS).

Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto. 2023. Junk-
yard Computing: Repurposing Discarded Smartphones to Minimize Carbon.
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

The Istio Service Mesh. Retrieved May 20, 2023 from https://istio.io/.
Thoughtworks. Cloud Carbon Footprint. Retrieved May 20, 2023 from https:
//www.cloudcarbonfootprint.org/.

Amanda Tomlinson and George Porter. 2022. Something Old, Something New:
Extending the Life of CPUs in Datacenters. Workshop on Sustainable Computer
Systems (HotCarbon).

Uber. 2020. Introducing Domain-Oriented Microservice Architecture. Retrieved
May 20, 2023 from https://www.uber.com/blog/microservice-architecture/.
International Telecommunication Union. 2020. Greenhouse Gas Emissions
Trajectories for the Information and Communication Technology Sector Com-
patible with the UNFCCC Paris Agreement. ITU-T L.1470.

International Telecommunication Union and World Benchmarking Alliance.
2022. Greening Digital Companies: Monitoring Emissions and Climate Com-
mitments.

US Energy Information Administration. Open Data. Retrieved May 20, 2023
from https://www.eia.gov/opendata/index.php.

Sarah Wang and Martin Casado. 2021. The Cost of Cloud, a Trillion Dollar
Paradox. Retrieved May 20, 2023 from https://a16z.com/2021/05/27/cost-of-clo
ud-paradox-market-cap-cloud-lifecycle-scale- growth-repatriation- optimiza
tion/.

WattTime. Retrieved May 20, 2023 from https://www.watttime.org/.

Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lau-
ritz Thamsen. 2021. Let’s Wait Awhile: How Temporal Workload Shifting Can
Reduce Carbon Emissions in the Cloud. International Middleware Conference
(Middleware).

Elizabeth Willmott. 2022. How Microsoft Is Using An Internal Carbon Fee to
Reach its Carbon Negative Goal. Retrieved May 20, 2023 from https://www.mi
crosoft.com/en-us/industry/blog/sustainability/2022/03/24/how-microsoft-i
s-using-an-internal-carbon-fee-to-reach-its-carbon-negative-goal/.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art Natural
Language Processing. Conference on Empirical Methods in Natural Language
Processing (EMNLP): System Demonstrations.

https://go.microsoft.com/fwlink/p/?linkid=2161861
https://azure.microsoft.com/en-us/products/container-registry/
https://azure.microsoft.com/en-us/products/container-registry/
https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard
https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard
https://aka.ms/SustainabilityReport2022
https://learn.microsoft.com/en-us/industry/sustainability/api-calculation-method
https://learn.microsoft.com/en-us/industry/sustainability/api-calculation-method
https://aka.ms/sse/learn
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.ipcc.ch/assessment-report/ar6/
https://ghgprotocol.org/corporate-standard
https://cloud.google.com/blog/products/devops-sre/introducing-a-new-era-of-customer-support-google-customer-reliability-engineering
https://cloud.google.com/blog/products/devops-sre/introducing-a-new-era-of-customer-support-google-customer-reliability-engineering
https://cloud.google.com/blog/products/devops-sre/introducing-a-new-era-of-customer-support-google-customer-reliability-engineering
https://stakeholderimpactreport.salesforce.com/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool/
https://aws.amazon.com/aws-cost-management/aws-customer-carbon-footprint-tool/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ccft-estimation.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ccft-estimation.html
https://istio.io/
https://www.cloudcarbonfootprint.org/
https://www.cloudcarbonfootprint.org/
https://www.uber.com/blog/microservice-architecture/
https://www.eia.gov/opendata/index.php
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://www.watttime.org/
https://www.microsoft.com/en-us/industry/blog/sustainability/2022/03/24/how-microsoft-is-using-an-internal-carbon-fee-to-reach-its-carbon-negative-goal/
https://www.microsoft.com/en-us/industry/blog/sustainability/2022/03/24/how-microsoft-is-using-an-internal-carbon-fee-to-reach-its-carbon-negative-goal/
https://www.microsoft.com/en-us/industry/blog/sustainability/2022/03/24/how-microsoft-is-using-an-internal-carbon-fee-to-reach-its-carbon-negative-goal/

	Abstract
	1 Overview
	2 Carbon Awareness Challenges
	2.1 Visibility into Carbon Emissions
	2.2 Carbon-aware Software Development
	2.3 Carbon-aware Resource Management
	2.4 Summary

	3 Viewing Carbon as an Operations Concern
	3.1 Carbon Budgets

	4 Taking Action to Make Emissions More Visible
	4.1 Service-level Carbon Metrics
	4.2 Carbon Knowledge Repository

	5 Centralizing Carbon Reduction
	5.1 Static Optimizations
	5.2 Dynamic Eco Modes
	5.3 User Incentives

	Acknowledgments

