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Abstract

Expected shortfall (ES), also known as superquantile or conditional value-at-risk, is an important measure in risk
analysis and stochastic optimisation and has applications beyond these fields. In finance, it refers to the
conditional expected return of an asset given that the return is below some quantile of its distribution. In
this paper, we consider a joint regression framework recently proposed to model the quantile and ES of a
response variable simultaneously, given a set of covariates. The current state-of-the-art approach to this
problem involves minimising a non-differentiable and non-convex joint loss function, which poses numerical
challenges and limits its applicability to large-scale data. Motivated by the idea of using Neyman-orthogonal
scores to reduce sensitivity to nuisance parameters, we propose a statistically robust and computationally
efficient two-step procedure for fitting joint quantile and ES regression models that can handle highly
skewed and heavy-tailed data. We establish explicit non-asymptotic bounds on estimation and Gaussian
approximation errors that lay the foundation for statistical inference, even with increasing covariate
dimensions. Finally, through numerical experiments and two data applications, we demonstrate that our
approach well balances robustness, statistical, and numerical efficiencies for expected shortfall regression.

Keywords: expected shortfall, heavy-tailed distribution, Huber loss, Neyman orthogonality, quantile regression

1 Introduction

Expected shortfall (ES), also known as superquantile or conditional value-at-risk (VaR), has been
recognised as an important risk measure with versatile applications in finance (Acerbi & Tasche,
2002; Rockafellar & Uryasev, 2002), management science (Ben-Tal & Teboulle, 1986; Du &
Escanciano, 2017), operations research (Rockafellar et al.;, 2014; Rockafellar & Uryasev,
2000), and clinical studies (He et al., 2010). For example, in finance, expected shortfall refers
to the expected return of an asset or investment portfolio conditional on the return being below
a lower quantile of its distribution, namely its VaR. In their Fundamental Review of the
Trading Book (Basel Committee, 2016, 2019), the Basel Committee on Banking Supervision con-
firmed the replacement of VaR with ES as the standard risk measure in banking and insurance.

Let Y be a real-valued random variable with finite first-order absolute moment, E|Y| < o0, and
let Fy be its camulative distribution function (CDF). For any a € (0, 1), the quantile and ES at level
a are defined as

QulY)=Fy'(@) =inf(y € R: Fy(y) 2 a} and ES,(Y)=E{Y]Y < Q.(Y)}, (1)

respectively. If Fy is continuous, the a-level ES is equivalently given by (see, e.g. Lemma 2.16 of
McNeil et al., 2015)

ES, () =

o

[y Qu(Y) du. (2)
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For instance, in socio-economics applications, Yis the income and ES,(Y) can be interpreted as the
average income for the sub-population whose income falls below the a-quantile of the entire popu-
lation. We refer the reader to Chapter 6 of Shapiro et al. (2014) and Rockafellar and Royset (2014)
for a thorough discussion of ES and its mathematical properties.

With the increasing focus on ES and its desired properties as a risk measure, it is natural to exam-
ine the impact of a p-dimensional explanatory vector X, on the tail behaviour of Y through ES.
One motivating example is the Job Training Partnership Act (JTPA), a large publicly funded train-
ing programme that provides training for adults with barriers to employment and out-of-school
youths. The goal is to examine whether the training programme improves future income for adults
with low-income earnings (Bloom et al., 1997), for which quantile regression (QR)-based ap-
proaches have been proposed (Abadie et al., 2002; Chernozhukov & Hansen, 2008). For example,
the 0.05-quantile of the post-programme income refers to the highest income earning of those who
have the 5% lowest income among the entire population, while the 0.05-ES concerns the average
income earning within this sub-population and therefore is more scientifically relevant in the JTPA
study.

Compared to the substantial body of literature on QR, extant works on ES estimation and in-
ference in the presence of covariates are scarce. We refer the reader to Scaillet (2004), Cai and
Wang (2008), Kato (2012), Linton and Xiao (2013), and Martins-Filho et al. (2018) for non-
parametric conditional ES estimation, and more recently to Dimitriadis and Bayer (2019),
Patton et al. (2019), and Barendse (2020) in the context of (semi-)parametric models. As sug-
gested in Patton et al. (2019), this is partly because regulatory interest in ES as a risk measure
is only recent, and also due to the fact that this measure is not elicitable (Gneiting, 2011). Let
P be a class of distributions on RY. We say that a statistical functional #: P — D with D C R?
(p > 1) is elicitable relative to the class P if there exists a loss function p:R? x R — R such
that 6(F) = argming.pEz-pp(Z, 0) for any F € P. Here, Ez.r means that the expectation is taken
with respect to the random variable Z that follows the distribution F. For example, the mean is
elicitable using the L-loss, and the median is elicitable using the L;-loss. Although the ES is not
elicitable on its own, it is jointly elicitable with the quantile using a class of strictly consistent
joint loss functions (Fissler & Ziegel, 2016). Based on this result, Dimitriadis and Bayer
(2019) and Patton et al. (2019) proposed a joint regression model for the conditional a-level
quantile and ES of Y, given the covariates X € R. In this work, we focus on (conditional) linear
joint quantile-ES models:

0.(YIX)=X"g* and ES,(Y|X)=X"6" (3)

Equivalently, we have e = Y — X'* and & = Y — XT6*, where the conditional a-quantile of & and
the conditional a-level expected shortfall of ¢, given X € R?, are zero. More generally, one may
allow the quantile and the ES models to depend on different covariate vectors X, and X,, respect-
ively. In this case, the conditional a-quantile and a-ES of ¢ and &, respectively, given
X= (X;, XeT)T, are assumed to be zero.

To jointly estimate #* and 6%, Dimitriadis and Bayer (2019) and Patton et al. (2019) considered
an M-estimator, defined as the global minimum of any member of a class of strictly consistent joint
loss functions over some compact set (Fissler & Ziegel, 2016). The joint loss function, which will
be specified in equation (5), is non-differentiable and non-convex. Dimitriadis and Bayer (2019)
employed the derivative-free Nelder-Mead algorithm to minimise the resulting non-convex
loss, which is a heuristic search method that may converge to non-stationary points. From a stat-
istical perspective, they further established consistency and asymptotic normality for the global
minima. However, from a computational perspective, finding the global minimum of a non-
convex function is generally intractable: approximating the global minimum of a k-times continu-
ously differentiable function f:R” — R to e-accuracy requires at least as many as (1/¢)”/*
evaluations (ignoring problem-dependent constants) of the function and its first k-derivatives
(Nemirovski & Yudin, 1983). The lack of differentiability makes this problem even more challen-
ging numerically. To mitigate the computational effort, Barendse (2020) proposed a two-step pro-
cedure by first estimating the quantile parameters via standard QR, followed by least squares
regression with generated response variables. Although computationally efficient, the ensuing
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estimator is sensitive to heavy-tailed error distributions due to the use of L,-loss for fitting possibly
highly skewed data in the second step; see Section 3.1 for a rigorous statement.

In this paper, we propose a new two-stage method for robust estimation and inference under a
joint quantile and expected shortfall regression model (3), with a particular focus on the latter.
Compared to existing approaches, our proposed method is robust against heavy-tailed errors
without compromising statistical efficiency under light-tailed distributions. Computationally,
our method can be implemented via fast and scalable gradient-based algorithms. The main contri-
butions of this work are summarised as follows:

¢ Our method builds upon a recent approach to joint quantile and expected shortfall regres-
sion via a two-step procedure (Barendse, 2020). However, a general non-asymptotic theory
for this approach has yet to be established. To fill this gap, we establish a finite-sample the-
oretical framework for the two-step ES estimator when the dimension of the model, p, in-
creases with the number of observations, n. Specifically, we provide explicit upper
bounds, as a function of (n, p), on the estimation error (under L,-risk) and (uniform)
Gaussian approximation errors; see Online Supplementary Section A. We also construct
asymptotically valid (entrywise) confidence intervals for the ES parameters. The main com-
putational effort of this two-step procedure is the QR fit in stage one. Therefore, we recom-
mend using the convolution-smoothed QR method (Fernandes et al., 2021), which can be
solved using fast first-order algorithms that are scalable to very large-scale problems (He
et al., 2023). Our non-asymptotic theory allows the dimension p to grow with the sample
size, which paves the way for analysing series/projection estimators under joint non-
parametric quantile-ES models (Belloni et al., 2019) and penalised estimators under high-
dimensional sparse models.

¢ The standard two-step estimator is a least squares estimator (LSE) with generated response
variables. As a result, it is sensitive to the tails of the distribution of Y. We propose a robust
ES regression method that applies adaptive Huber regression (Zhou et al., 2018) in the second
step to address this issue. The resulting estimator achieves sub-Gaussian deviation bounds
even when the (conditional) distribution of Y|X only has Pareto-like tails. To achieve a trade-
off between bias and robustness, we propose using a diverging robustification parameter
t=1(n, p) > 0. In practice, we choose this hyper-parameter using a data-driven mechanism
(L. Wang et al., 2021), guided by the non-asymptotic results presented in Section 4 and in-
spired by the censored equation approach introduced in Hahn et al. (1990). We have also de-
veloped efficient algorithms to compute standard and robust two-step ES estimators under
additional constraints. These constraints ensure that the fitted ES does not exceed the fitted
quantile at each observation. We refer the reader to the Online Supplementary Section D
for more details.

¢ We conduct thorough numerical comparisons between the two-step estimator and the pro-
posed robust variant with the joint M-estimator of Dimitriadis and Bayer (2019) on large syn-
thetic data sets generated from a location-scale model, with both light- and heavy-tailed error
distributions. To compute the joint M-estimator, we use the R package esreg, which is avail-
able at https:/cran.r-project.org/package=esreg. To implement the proposed robust two-step
procedure, we use a combination of R packages, quantreg or conquer and adaHuber.
Our results show that the proposed robust ES regression approach achieves satisfying statis-
tical performance, a higher degree of robustness against heavy-tailed error distributions, and
superior computational efficiency and stability. We also demonstrate the effectiveness of our
approach through numerical experiments and two real data examples.

In this work, the term ‘robustness’ specifically refers to the robustness against heavy-tailed distri-
butions, as revealed by non-asymptotic deviation analysis dating back to Catoni (2012). In Catoni
(2012)’s study of univariate mean estimation, it was found that while the sample mean has the op-
timal minimax mean squared error among all mean estimators, its deviation is worse for
non-Gaussian samples than for Gaussian ones. Moreover, the worst-case deviation is sub-optimal
when the sampling distribution has heavy tails. To be more specific, let X3, ..., X,, be independent
copies of X with mean x and variance o> > 0. Applying Chebyshev’s inequality to the empirical
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mean X, = (1/n) Y1, X; yields a polynomial-type deviation bound: |X,, — u| < ¢y/1/(nd) holds
with probability at least 1 — ¢ for any J € (0, 1). Furthermore, if X is sub-Gaussian, meaning
that Ee*X—# < ¢7#/2 for all 1 € R, then X, can be referred to as a sub-Gaussian estimator, as it
satisfies with probability 1 — ¢ that |X,, — u| < 6,/21og (2/5)/n. In order to obtain sub-Gaussian
deviations under a condition of bounded second moments, Fan et al. (2017) considered the
Huber mean estimator i, = argmingg Y~ £,(X; — 6), which is closely related to the method pro-
posed by Catoni (2012). Here £,(-) denotes the Huber loss; see definition (18). Theorem 5 in Fan
et al. (2017) establishes that for any v > g, 1, with t=v,/n/log(1/d) and ¢ € (0, 1) satisfies [, —
u| < 4vy/log(1/6)/n with probability at least 1 — 25 as long as # > 8log (1/d). While Fan et al.
(2017) does not explicitly state this, the divergence of t in this context is also intended to strike
a balance between bias and robustness. In comparison to (univariate) mean estimation, the prob-
lem of regression with growing dimensions and generated response variables present new technical
challenges and requires more nuanced analysis. Nevertheless, the underlying phenomenon is quite
similar.

1.1 Notation
For any two vectors u = (i1, ..., u;)  andv = (vy, ..., v;)" € R¥, we define their inner product as
u'v=(u,v)= Zf=1 ujvj. We use |-, (1<p<co) to denote the ¢,-norm in R*: llell, =

(Zfil lu;|?)? for p>1 and |u|, = max < |u;]. Let Sk =(u e RF: ll#|l, =1} be the unit
sphere in R* under £;-norm. Given a positive semi-definite matrix A € R®* and u € R¥, let
el 4 := [lAY?u],. Given an event/subset A, 1(A) or 14 denotes the zero-one indicator function
for A. For two real numbers @ and b, we write @ A b=min {a, b} and a v b = max{a, b}. For
two sequences {d,},s; and {b,},s; of non-negative numbers, we write a, < b, if a, < Cb, for
some constant C > 0 independent of , a,, > b, if b, S a,,and a, < b, if a, < b, and a, 2 b,,.

2 Preliminaries and background

2.1 The joint regression framework

Assume we observe a sequence of data vectors {(Y;, X;)}i,, where Y; € R is the response variable,
and X; € R? is a p-dimensional vector of explanatory variables (covariates). For some fixed prob-
ability level a € (0, 1), denote the conditional a-level quantile and ES of Y; given the covariates X;
as Q.(Y;|X;) and ES,(Y;|X;), respectively. For the latter, we adhere to the definition
ES.(Yi1X;) = B{Y;]Y; < Qu(Yi|Xi), Xi}.

We consider the joint regression framework introduced in Dimitriadis and Bayer (2019) for
modelling the conditional quantile and expected shortfall. For some probability level a € (0, 1),
assume that

Q.Y X)) =X]p*,  ES.(YiX)) =X]o, (4)

where f*, 0* € R? are the unknown true underlying parameters for quantile and ES, respectively.
Fissler and Ziegel (2016) explained that quantile and ES are jointly elicitable and proposed a class
of strictly consistent joint loss functions for quantile and ES estimation. Let G be an increasing
and integrable function, and let G, be a three times continuously differentiable function such
that both G, and its derivative G, = G, are strictly positive. The proposed joint loss function in
Fissler and Ziegel (2016) takes the form

(8, 6, Y, X) = {a— 1Y < XTHHG1(Y) = G1(XTB))

OB —(Y-X"HUY <X"B) t - G(X"0).
=:50(8,0;Y,X)

T S
+7G2(§ o) aXT ©)

This general form also includes the joint loss function proposed by Acerbi and Székely (2014) by
taking G1(x) = —(W/2)x? for some W € R and G, (x) = ax?/2.
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In the regression framework with a fixed number of covariates, Dimitriadis and Bayer (2019)
established the consistency and asymptotic normality of the M-estimator (BT, 9")", defined as

7 1Y
~ | € argmin— s(B, 0; Y, Xi), (6)
( 0 ﬁ§e® n ;

where ® C R? is the parameter space, assumed to be compact, convex, and has non-empty interior.
The main challenge of the aforementioned approach is that the objective function in equation (6) is
non-differentiable and non-convex for any feasible choice of the functions G; and G, (Fissler &
Ziegel, 2016). Note from definition (1) that the expected shortfall depends on the quantile, not vice
versa. The estimation and inference of " is thus the main challenge. It is, however, infeasible to
estimate a single regression model for ES through M-estimation, that is, by minimising some strict-
ly consistent loss function (Dimitriadis & Bayer, 2019).

In the joint regression framework, if the main goal is to estimate and forecast ES, then #* can be
naturally viewed as a nuisance parameter. Motivated by the idea of using Neyman-orthogonal
scores to reduce sensitivity with respect to nuisance parameters (Barendse, 2020;
Chernozhukov et al., 2018; Neyman, 1979) proposed a two-stage procedure that bypasses non-
convex optimisation problems. In the first stage, an estimate # of f* is obtained via standard
QR. The second step employs an orthogonal score with fitted thresholding quantiles to estimate
6*. The key observation is as follows. Define the function

WO(ﬁa 6; X) = [E{So(ﬁ, 9; Ya X)lX}
=aX'0-P(Y < X'AIX)E(Y]Y < X"B, X) + {P(Y < X"BIX) — a} X"B,

where s is given in equation (5). Under model (4), we have (8", 8*; X) = 0 almost surely over X.
Let Fy|x be the conditional distribution function of Y given X. Provided that Fyx is continuously
differentiable, taking the gradient with respect to 8 on both sides of the above equality yields

opwo (B, 05 X) = {pr((XT,b’) —a}X, foranyp,0eR’.
We hence refer to the following property:
Ipyo (B, 0 X)|_p =Frix(X'f*) = a}X =0 (8)

as Neyman orthogonality.

2.2 Two-step ES estimation via Neyman-orthogonal score

We start with a detailed overview of the two-step approach proposed by Barendse (2020) using the
Neyman-orthogonal score (7) under the joint model (4). In Section 3.1, we will develop a non-
asymptotic (finite-sample) theory for the two-step ES estimator, 6, under the regime in which p
is allowed to increase with the sample size 7. We further develop asymptotic normality results
for individual coordinates, or more generally linear projections, of 6, in the increasing-dimension
regime ‘p?/n = o(1)’. Our non-asymptotic results and techniques pave the way for analysing high-
dimensional sparse quantile-ES models.
The first step involves computing the standard QR estimator of 5*:

~ L1
pe argmm—ZPa(Yi - X,-T,B), (%)
perr 55

where p,, (1) = {& — 1(# < 0)}u is the check function (Koenker & Bassett, 1978). The second step is
motivated by the orthogonal score s in equation (5). Specifically, let Z(ﬁ, 0)=(1/n) Y1, s2(B, 0)
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be the joint empirical loss with

si(B, 0):=so(f, 65 Yi, Xi) = aX[ 0= 1(Y: < X[B)Yi + {(1(Yi < X[ ) — a} X[ . (10)
Given,’g obtained from the first step, the ES estimator 0 of 6" is computed as

Oe argminZ(/ﬁ\, 0). (11)
0ER?

For any p fixed, the function 6 — Z(ﬁ, 0) is convex with gradient and Hessian given by
LB, 0) —Zﬁis-(ﬁ 0)X; and 2L(B, ) —Zfo‘lix-xT
0 b - n - i\P> i 0 b - n o (R

respectively. By the first-order condition, the ES regression estimator 6 satisfies the moment con-
dition d,L(B, ) = 0, and has a closed-form expression

n -1 n
=5+ (Z&-X,—T) %Z(Y,»—X?@xiﬂm <XP), (12)
i=1

=1

provided that X = (X4, ..., X,,)T € R™? is full-rank.

Remark 1 When p is large, we suggest using the convolution-smoothed QR (conquer)
estimator (Fernandes et al., 2021; He et al., 2023) in the first step, which
can be computed by fast and scalable gradient-based algorithms. Given a
smoothing parameter/bandwidth » > 0, the conquer estimator f;, minimises
the convolution-smoothed loss function g+ Y7, p,,(Yi— X[B) with
Pay(1t) = (pg * Kp) (1) = [T pa()Ky (v — u)dv, where Kj(u) := (1/h)K(u/h) for
some symmetric, non-negative kernel function K, and * is the convolution op-
erator. We refer to Fernandes et al. (2021) and He et al. (2023) for more de-
tails, including both asymptotic and finite-sample properties of 8, when p is
fixed and growing as well as the bandwidth selection.

Define p xp matrices % =E(XX") and Q= E(@?XXT) with w:=(Y - XTg)(Y < X'p*) +
aXT(B* — 0%) satisfying E(w|X) = 0 under model (4). Provided that p = p, satisfies p?/n — 0, we
will show in the Online Supplementary Theorem A.3 that 6; is asymptotically normal:

ay/n0-0;) d
(z7'oz),;

N(0,1) asn,p— co.

As a direct implication, an asymptotically valid entrywise confidence interval for 8* can be con-

o~ o~

structed as follows. Recall that (8, 6) is the joint quantile-ES regression estimators given in equa-
tions (9) and (11), respectively. Define the estimated ‘residuals’ as

5=Y,-X'B and @; =% A0+aX (B-0). (13)

We then use the sample analogue of ¥ and a plug-in estimator of Q, namely, T = S X X! /nand

Q= 3% @*X;X] /n. Consequently, we construct (approximate) 95% confidence interval for each
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coefficient as

[9,—%5( $1G51)12 7, +79;< 108" >”2], =1, ...p. (14)

3 Robust expected shortfall regression

3.1 Motivation

The two-step estimator@given in equation (12) is essentially an LSE with generated response var-
iables. While the two-step procedure is computationally efficient and enjoys nice asymptotic prop-
erties, due to the use of the least squares type loss, it is sensitive to outliers or heavy-tailed data that
is ubiquitous in various areas such as climate, insurance claims, and genomics data. In particular,
heavy-tailedness has become a well-known stylised fact of financial returns and stock-level pre-
dictor variables (Cont, 2001). Since the expected shortfall is a quantity that describes the tail be-
haviour of a distribution, it is important to construct an estimator that is robust to the power-law
or Pareto-like tails.

To motivate the need for a robust ES estimator, we start with the non-regression setting in which
X; = 1. The two-step ES estimator (12) can then be simplified as

1 < ~ —~ o~
=3 YA{Y; < 0+ Oull - F(Qu)/a), (15)
=1

where F is the empirical CDF of Y and Qa =F1(a) is the sample quantile. The estimator ES. (15)
coincides with the ES estimate (4) in Bassett et al. (2004), although the latter is motivated differ-
ently by the following property:

1
ES,(Y) = E(Y) - &rﬂneiél Epo(Y = f).

Since |F(Qa) — a| £ 1/n, up to higher order terms, ES.  equals (om) ™' Y1 YALY; < Qa} which, by
the consistency of sample quantiles, is first-order equivalent to the oracle ES estimator
ESY := (an)™' 3L, Yil{Y: < Qu(Y))

Since the truncated variable Y;1{Y; < OQ,(Y)} can be highly left-skewed with heavy tails, the cor-
responding empirical mean is sensitive to the (left) tails of the distribution of Y, and hence lacks
robustness against heavy-tailed data. Specifically, let Xy, ..., X,, be i.i.d. random variables with
mean p and variance ¢ > 0. When X; is sub-Gaussian (i.e. E(e‘X ) < &7/ for any 1 € R), it fol-
lows from the Chernoff bound (Chernoff, 1952) that

P[D_(n —ulz a2 1og(2/5)/n] <6, valid for anyée (0, 1). (16)

In other words, the sample mean X,, = (1/1) Y%, X; satisfies the sub-Gaussian deviation bound.
On the other hand, the following proposition provides a lower bound for the deviations of the em-
pirical mean (1/7) Y, Y{Y; < Q.(Y)} when the distribution of Y is the least favourable among
all heavy-tailed distributions with mean zero and variance 2.

Proposition 1  For any value of the standard deviation o> 0 and any probability level
0 € (0, e~1], there exists some distribution with mean zero and variance
o® such that for any a € (0, 1), the i.i.d. sample {Y,}; of size n drawn
from it satisfies

I8N T 1-es
P[;;Yiﬂ(YiSQG)_[E{YH(YSQQ)}S_O_\/é:n.ﬁ} >4, (17)
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as long as n > ed/a, where Q, = Q,(Y) is the ath quantile of Y.

Together, the upper and lower bounds (16) and (17) show that the worst case deviations of the
empirical mean are sub-optimal when the underlying distribution is heavy-tailed (as opposed to
having Gaussian-like thin tails). If Y follows a heavy-tailed distribution, such as the #- or Pareto
distributions, then the left-truncated variables Z;:= Y;1{ Y < Q,(Y)} have not only heavy but
also asymmetric tails. In this case, the empirical mean (o)™ Y7, Z can be a sub-optimal estima-
tor of ES,(Y).

3.2 Robust estimation and inference via adaptive Huber regression
To robustify the ES regression estimator (12) in the presence of skewed heavy-tailed observations,

we utilise the idea of adaptive Huber regression in Zhou et al. (2018). For some 7 > 0, the Huber
loss (Huber, 1973) takes the form

u?/2 if lu| <7,
ANE = 18
i EEY e

We propose a robust/Huberised ES regression estimator defined as

9 € argmin— ZE s,ﬂ, ) (19)

OeR?

where s,-(',é, 0) is as defined in equation (10), and 7 > 0 is a robustification parameter that should be
calibrated adaptively from data.
To see this, we consider the oracle Huber ES estimator defined as

00"‘ € argmin— ZZ si(B*, 0)) = argmin— ZE (Z; — aX]0), (20)

OeRP i=1 OeRP i=1

where Z; = (Y; = XT8)U(Y; < XT8*) + aXTf*. For any > 0, 6° is an M-estimator of its popula-
tion counterpart

07 = argmin E{¢,(Z; — aXiTH)}.
OeR?

Let y,(¢) = £.(¢) = sign(¢) min (|¢], 7) be the derivative of the Huber loss. By the convexity of the
Huber loss, ¢ must satisfy the first-order condition E{y,(Z; — aX!6*)X;}=0. On the other
hand, define the ES deviations w; = Z; — aX] 6", satisfying E(w;|X;)=0 and E(w;)=0. Since
the conditional distribution of ®; given X; is asymmetric, in general we have
Ey,(Z; — aX]0*)X;} = E{y,(w;)X;} # 0, which in turn implies that 6* # 6*. We thus refer to their
difference under the £,-norm, |67 — 6%||,, as the robustification bias. Proposition 2 provides an
upper bound for the robustification bias, which depends on r and some moment parameters. In
particular, 7 needs to diverge for the robustification bias to diminish.

Proposition2  Assume thate:=Y — X' " satisfies varx(s A 0) < 6 almost surely for some
constant >0, and that x4 =sup, g1 E(u, X~ 12Xy < 00, where T =
E(XXT) is positive definite. Then, for any 73> 21c4/ 40, we have
16F — 6%|ls, < 257 /(o).

In Section 4, we investigate the finite-sample properties of the robust ES estimator 9, obtained
via equations (9) and (19): our results include a deviation inequality for |6, — 6*||s (Theorem 1),
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the Bahadur representation (Theorem 2), and a Berry—Esseen bound for linear projections of 0,
and /0\?"‘ (Theorem 3). With a properly chosen t that is of order t < 6/n/p, we will show that
a6, - 0*|s < o/p/n with high probability. Moreover, for any deterministic vector a € R”, the
standardised statistic a+/n{(a, 0, — 0*)/o, converges in distribution to N(0, 1), where o2 =
a's7105 ' and 0 = (Y - X"A(Y < XT8*) + aXT(8* — 6°). Our theoretical analysis reveals
two attractive properties of the adaptive Huberised ES estimator 0,: (i) the non-asymptotic
deviation upper bounds for 0, are much smaller in order than those for 6 at any given confidence

level and (ii) the asymptotic relative efficiency of 0, to O is one. Moreover, Theorem 3 shows that
the two-step robust estimator (with estimated conditional quantiles) is asymptotically equivalent
to the oracle Huberised estimator (20) (assuming #* were known). This further justifies the useful-
ness of the Neyman-orthogonal score, which makes the QR estimation error first-order negligible.

Consistent estimators of = and Q = E(w?XXT) are useful for statistical inference. Given the pair

of quantile-ES regression estimators (E, 5,), with a slight abuse of notation we usez; and @; to de-
note the fitted QR and ES residuals as in equation (13) except Withgreplaced bygf. As discussed in

Section 2.2, a naive estimate of Q is Q = (1/m) 3", w?X,;X]. In the presence of heavy-tailed errors

&, even the ‘oracle’ estimate Q= (1/1) Y| w?X; X} performs poorly and tends to overestimate.
Motivated by Huber regression, we further propose a simple truncated estimator of Q given by

~ 1 . T I o~ v T
9y=;;w§(w,->xixi =;;mm{|wi|,y} XiXJ, (21)

where y = y(n, p) > 0 is a second robustification parameter. Consequently, we construct approxi-
mate 95 % robust confidence intervals for 6’s as

[A 1.96 o 12 o112 =1, ...,p. (22)

O ——=E"'QE) /%,

1.96 S1A S )1/2 .
(xﬁ i 5 ]

a 1 -1
Ht,,-+—(2 QyZ ji

a/n

The convergence rate of ﬁy with a suitably chosen y will be discussed in Section 4.

As previously discussed, the robustification parameter 7 plays a crucial role in achieving a balance
between bias and robustness against heavy-tailed error distributions. This balance is necessary be-
cause of the asymmetric nature of the ES residual o =& A 0+ aX'(f* — 6*) with e=Y — X"
Assuming that the (conditional) variance of e_ = ¢ A 0 is bounded, i.e. varx(e_) < @ (almost surely)
for some & > 0, Theorem 1 suggests that to achieve a tight deviation bound at the 1 —  confidence
level for any given J € (0, 1), the robustification parameter 7=1(n, p) should be of order

5\/n/(p +log67). In practice, the scale of 7 is typically unknown. A useful heuristic is to substitute

n
i=1>

which we denote by G. Here, B refers to the first-stage QR estimator. Using T=3,/7/(p + logd™")

as a data-driven proxy for 1, the resulting estimator is also location and scale equivariant.

In the following, we present a refined data-driven approach for selecting t that consistently out-
performs the previously mentioned rule of thumb in the numerical experiments conducted in
Section 6. This approach is adapted from the method proposed in L. Wang et al. (2021) and draws
inspiration from the censored equation approach originally introduced by Hahn et al. (1990) as a
proof technique for deriving robust weak convergence theory for self-normalised sums. Note that

it with the sample standard deviation of the negative QR residuals {g;_ = min (Y; — le"’ 0)}

for each > 0, the Huber ES estimator 6, can be defined equivalently as the solution to the estimat-
ing equation Y, v, (Z; — aX 0)X; =0,0 € R, where Z; =%+ aX}Tb’\ are the generated response
variables, and # denotes the initial QR estimator. Since the optimal choice of 7 is proportional to
the noise scale, we propose to estimate §* and the unknown noise scale simultaneously by solving
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the following system of equations for (6, s) € R? x (0, o0):

1 Z: —aXTo
= _— X,'= 5
g1(0,s) nE Wk( S > 0

ZV’Z( i — aX] 9) o,

where k = k(n, p) = /n/(p + logn). Since the Huber loss is convex, the first (vector) equation in
with s fixed can be solved using either the iteratively reweighted least squares algorithm or the
Broyden-Fletcher-Goldfarb-Shanno algorithm. For the second equation with 6 fixed, it can be
shown that the function s — g,(0, s) is non-increasing, as demonstrated by its derivative

% Z = aXT {|Z - aXT9| <sk} <

Proposition 3 in L. Wang et al. (2021) further guarantees that the equation g, (6, s) = 0 with 6 fixed
has a unique solution, provided that ) -, = aXT0|>0) > n/k* =p + logn. Based on these
observations, we propose the following alternatmg algorithm, which begins at iteration 0 with

an initial estimate #° =6, the two-step LSE given in equation (11), or equivalently equation
(12). At each iteration =1, 2, ..., the procedure involves two steps:

(i) Compute the ES ‘residuals’ ! = Zi- aX] ¢! using the previous estimate ¢!, Let s* be the
solution to the equation (1/#) Y i, (lw/s| A k)?=1,s>0.
(ii) Compute the updated estimate ¢ € argmingcge Y oy Z,z(z — aX10), where ¢ = s'k.

Given a prespecified tolerance € > 0 (e.g. € = 1073), the algorithm will terminate at the ¢th iteration
if max {||g1(¢, s')|2, |g2(¢, ')} < €, or if the maximum number of iterations is reached. Our nu-
merical experiments in Section 6 show that this algorithm generally achieves convergence after
only a small number of iterations. Intuitively, we attribute the algorithm’s fast convergence to
the observation that 6, changes gradually as t varies. This graduate change cause the residuals
to behave similarly over a range of z values. We refer the reader to the Online Supplementary
Section B for a detailed elaboration on the motivations behind our proposed data-driven method.

4 Statistical theory

This section presents non-asymptotic high probability bounds for the error 10, — 6*||, of the
Huberised two-step ES estimator 0,, as defined in equation (19). Additionally, we establish a non-
asymptotic Bahadur representation for 0,, which is a crucial step towards obtaining a Berry—
Esseen-type bound for Gaussian approximation. Throughout this section, we write X =
(X15 -vns x,,)T € R? with x; = 1. Without loss of generality, we assume that the random predictors
X2, ..., Xp have zero means, that is, 4;=E(x;)=0 for j=2 , p. This makes the later
sub-Gaussian assumption more reasonable; see Condition 2 below. Otherwise, we set
Z=(1,z, ..., zp)T =(1,x2 =y, ..., %p — )T With this notation, the joint model (4) becomes
0.(Y|2) ﬁo +Z, , 2B and ES,(Y|Z) = 0* + Y0, 67, where f{ =u"B* and 6] =u"6" with
u=(1 1 .., ,up) . The sub-Gaussian assumption can then be imposed on Z, and our analysis
naturally applies to {(Y;, Z;)},.

In the context of a joint (hnear) quantile and ES regression model, we initiate by establishing
a high probabﬂlty bound, explicitly dependent on # and p, for the QR estimator S (9). To this

end, we impose the followmg conditions on the covariates and the conditional distribution of
Y given X.
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Condition 1  The conditional density function of ¢:= Y — X'* given X, denoted by f;x,
exists and is continuous on its support. Moreover, there exist constants
f> lo > O such that f,x(0) > f and |fox(t) — fox(0)| < lp|t| for all # € R almost
surely (over X). N

Condition 2 The random covariate vector X € R? is sub-Gaussian, that is, there exists
some (dimension-free) constant vy > 1 such that P([uT W| > v12) < 2¢/2
for all £ > 0 and u € SP~!, where W=3""2X and £ = E(XXT") is positive
definite. Let &) = sup,, o1 Elu" W/ for [ > 1.

Condition 1 imposes regularity conditions on the random error distributions, accommodating
heteroskedastic error distributions and not requiring the existence of any moment. Condition 2 is
used to guarantee that population and empirical quantities (e.g. the objective or gradient function
or the gradient function) are uniformly close to each other in a compact region. It can be replaced
by a boundedness assumption, which will lead to similar results. For example, X = (x1, ..., xp)T is
compactly supported with either || X||, < Cx or |Z~/2X], < Bx, where Cx is an absolute con-
stant and By is usually proportional to ./p.

Proposition 3  Under Conditions 1 and 2, the QR estimator E given in equation (9)
satisfies, for any ¢ > 0, that ||,E— Blls < C11_1,/ (p + t)/n holds with prob-
ability at least 1 — ¢~ as long as n > Czléf_4(p +t), where Cq, C; > 0 are
constants depending only on vy.

While QR has been extensively studied since the seminal work of Koenker and Bassett (1978),
there remains a paucity of literature that addresses its finite-sample properties, particularly in
terms of high probability bounds. Proposition 3 revisits Theorem 2.1 originally presented in
Pan and Zhou (2021). For the sake of completeness, we provide a self-contained and simplified
proof in the Online Supplementary Section G.9. Shifting our focus to ES regression, which involves
conditional expectations, we additionally impose the following moment condition on the random
error &.

Condition3  The conditional CDF F,x of £ given X is continuously differentiable and sat-
isfies |F,x(2) — F;x(0)| < f1¢| for all ¢ € R. Moreover, the negative part of ¢,
denoted by e_ =& A 0, satisfies varx(s_) < &> almost surely (over X), where
vary denotes the conditional variance given X.

Condition 3 asserts that the conditional variance of the negative part of the QR residuale =Y —
XTg* is bounded. In our theoretical analysis, we assume @ to be a constant for convenience.
More generally, one can assume a form of ¢ = o(X)#, where 6: R’ — (0, oo) is a positive function
on R? (not necessarily bounded), and 7 is independent of X satisfying var(y1(y < 0)) < 2. In this
case, an additional moment assumption on o(X), such as boundedness E{o(X)*}, would suffice.

Our next result establishes high probability bounds for the estimation error of ES regression,
conditioning on the event that f falls within a local neighbourhood of g*.

Theorem 1  Assume Conditions 2 and 3 hold. For any ¢ > 0, let 7o > 0 be such that ) $&
and fr5 < 3/(p + t)/n. Then, the two-step robust a-ES (0 < a < 1/2) estima-
tor 0, with 7 = cooy/n/(p + t) (for any ¢ > 1) satisfies that, with probability at

least 1 — 3¢~ conditioned on the event {||f — 8*|lx < 70},

allf.— " < C16‘/p:t+C2<‘/p:tro+]_(7’%> (23)

provided that the sample size obeys n > C;(p + t), where C; > 0 is a constant
depending on (v1, ¢g) and C;, C3 > 0 depend only on v.
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Foranyd € (0, 1), the robustgstimator@ with t < a/n/(p + log (1/9)) satisfies with probability
at least 1 — § conditioned on {||f — f*|lx < 7o} that

56¢p+40gu/&_ka+Jogu/a
n n

V) 7,2
allb; — 6" |s 1o + f75.

The above bound is proportional to log (1/6), in contrast to the bound for the two-step LSE, which
is proportional to 1/, as demonstrated in the Online Supplementary Theorem A.1 in Section A.
This observation suggests that the Huberised estimator is much more robust to heavy tails from a
non-asymptotic perspective, compared to the two-step LSE. Specifically, in cases where the error

variables only have finite variance, the worst-case deviations of 8 are considerably larger than
those of 6,.

Remark 2 (Bias-robustness trade-off). The choice of 1 stated in Theorem 1 is a reflection
of the bias-robustness trade-off. As discussed in Section 3.2, the robust estima-
tor 6, can be viewed as an M-estimator of # = argmin,E{¢,(Z; — aX[0)}, which
differs from the true ES regression coefficient §* due to the asymmetry of ES
‘residuals’ w; = Z; — X} ¢*. Consider the decomposition

10 =" x < N6 =6ls + 16, =5
—— ———

robustification bias  robust estimation error

As long as t2& under Condition 3, Proposition 2 ensures that
all/ﬁ\f — ||z < 2% /7. Examining the proof of Theorem 1, we see that

~ +1 +t 7 +t ©
= 1y 57 /P_HP_+_HO< /P_+f) o
n n T n T

with high probability conditioned on the event {||Z’— Blls < ro}. We therefore
select 7 < @,/n/(p + t) in order to minimise the upper bound as a function of 7.

Remark 3 (A uniform bound over t). Recall from Proposition 3 that with probability

at least 1—n"1, |Iﬁ—ﬁ*|lz S flx/ (p+logn)/n as long as n 2 p +logn.
Complementing the proof of Theorem 1 with a discretisation argument, we
can obtain a more general result that holds for a range of z values.

Specifically, let 7 > 7> 0 be such that 7 <z <7 < 5/n/(p + logn). Then, with
probability at least 1 — Cn~! for some absolute constant C > 1,

swm@—ﬁhsaw+?”+f+meJmP;¥w, 24)
L n

€[z,7]

as long as n > p + logn. The proof of the uniform upper bound in equation
(24) is provided in the Online Supplementary Section G.9. As ensured by
this uniform bound, a data-driven choice of t within the aforementioned range
can be used.

If, in addition to Condition 3, some higher order moment of ¢_ is bounded,
namely, Ex{|e — Ex(e_)*} < a; almost surely (over X) for some k > 2, the se-
cond term on the right-hand side of equation (24) will become o, 7' ~*. In order
to attain tight (finite-sample) concentration bounds, the robustification par-

ameter t=71(n,p) should not exceed /n/(p+logn) in magnitude.

Conversely, 7 should demonstrate sufficiently rapid growth in order for the
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bias term, controlled by 32z~ or a,z'~* (in case higher order moments of &_

are bounded), to decay at a comparable rate to the stochastic error.

Unlike the two-step LSE 8, the robust counterpart@, does not possess a closed-form expression.
As a pivotal step in deriving Gaussian approximation results, the following theorem furnishes a
non-asymptotic Bahadur representation for #,, complete with explicit error bounds depending
on (n, p) and the first-stage QR estimation error.

Theorem 2 Assume the same conditions as in Theorem 1. For any ¢ > 0, the o-ES estima-

tor 0, with < a/n/(p + t) satisfies that, with probability at least 1 — 6¢™*

conditioned on {IIE—ﬂ*IIZ <70},
i.,.f,% + 70 /M (25)
n n

as long as n > p +t, where w; =¢; A 0 + a X} (8* — 6).

aZl/z Z v, ()22 X;

2

Lastly, we present the following Gaussian approximation result that bounds the Kolmogorov
distance between the distribution of the standardised statistic ay/72a” 6, - o)/ Qa and the standard
normal distribution, uniformly over all deterministic vectors a € R” where o2 =427 1037 1a. A
similar conclusion apphes to the oracle robust estimate Hora (20). The following theorem shows
that the two-step robust estimator obtained via equations ( 9) and (19) is asymptotically equivalent
to the oracle Huberised estimator (20), assuming A is known.

Theorem 3  Inaddition to Conditions 1-3, assume that there exist constants @, a3 > 0 such
that

varx(e_) > o> and [Ex{lg_ - [EX(a_)|3} < a3 almost surely over X. (26)

Then, the robust a-level (a€(0,1/2]) ES estimator 9, with 7=

g/ n/(p + logn) satisfies

sup P(aﬁ<a, 0. - 0")/o, < t) - (D(t)’
acR? teR
(27)
p+logn 1/3 py/logn+ /plogn
% [PEIBM (52 gy D108 2+ JPlog ™,
o an

Moreover, the oracle Huberised ES estimator 62 (20) with the same 7 satisfies

~ 1
P (aia, 0~ /0, <1) - ot 5 53 B ag)

The above Gaussian approximation result lays the theoretical foundation for the statistical in-
ference problems of testing the linear hypothesis Hy : 46" = ¢y vs. Hy :a' 6" # ¢o and constructing
confidence intervals for a'6*, where a € R? and ¢y € R are predetermined. Given the joint quantile
and ES regression estimates (E, 5,), let ﬁy be the truncated estimator of Q = E(w?XXT) defined in
equation (21) with y = y(n, p) > 0 denoting a second robustification parameter. Then, we consider

sup
acR? teR

the robust test statistic T, = oc\/ﬁ(aré’\r —¢p) /’Q\w for testing Hy : @' 6" = co, and the (approximate)
100(1 — ¢)% confidence interval a'o, + 220,/ (a/n) for a'0*, where 'g\fw = an_lﬁ;fl_la is a ro-
bust variance estimator and z/; is the upper (c/2)-percentile of A'(0, 1). The consistency of @i},
with a properly chosen y is investigated in the Online Supplementary Section C.
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5 Non-parametric expected shortfall regression

In this section, we consider non-parametric models for joint quantile and expected shortfall regres-
sion. For a predetermined quantile level a € (0, 1), the goal is to estimate the unknown (condition-
al) quantile and expected shortfall functions f;(x) = Q,(Y|X =x) and f}(x) = ES,(Y|X = x), with
an emphasis on the latter. By equation (1), f; and £, can be identified as

fr =argmin Ep, (Y - f;(X)) and f; =argmin E{Y — fo(X)}*1{y<f:(x))-

q e

Motivated by the two-step procedure developed under joint linear models, in the following we
propose a non-parametric ES estimator using the series regression method (Andrews, 1991;
Eubank & Spiegelman, 1990; Newey, 1997). Such a non-parametric estimate is carried out by re-
gressing the dependent variable on an asymptotically growing number of approximating functions
of the covariates, and therefore is closely related to the estimator define in equation (11) under the
so-called many regressors model (Belloni et al., 2019), that is, the dimension p = p,, is allowed to
grow with 7. The idea of series estimation is to first approximate f; and f;’ by their ‘projections’ on
the linear spans of 721 and m; series/basis functions, respectively, and then fit the coefficients using

the observed data. Specifically, we approximate functions f; and f; by linear forms U(x)'g and
V(x)'6, where

U(x) = (u1(x), -t (x))T and  V(x) = (w1(x), ...y Uy (%)) T

are two vectors of series approximating functions of dimensions 721 and m2,. Here both 721 and m,
may increase with 7. We thus define the vectors of quantile and ES series approximation coeffi-
cients as

p* € argminEp,(Y - U(X)"'B) and 6" € argmin E{Y — V(X)" 011 y<f:(x))- (29)
PER™ HeR™2

Given independent observations (Y;, X;), 1 <i < n from (Y, X) € R x X with X denoting a com-
pact subset of R?, we write U; = U(X;) € R™ and V; = V;(X;) € R™. Extending the two-step ap-
proach described in Section 2.2, we first define the (conditional) quantile series estimator of
f5(x) = Qu(Y|X = x) (Belloni et al., 2019):

fx)=Ux)"B, xeX, wheref=8, € argmin%i p(Y; = UTR). (30)
=1

pER™

With generated response variables Z = aE(Xi) +{Y; —Z](X,-)}ﬂ

estimator is given by

st (X0) the second-stage ES series

~ - 1~
folx) = V(x)Tg, x€ X, wheref=6,, € argmingz (Z; — aViTQ)z. (31)
OeR™2 i=1

Commonly used series functions with good approximation properties include B-splines, polyno-
mials, Fourier series and compactly supported wavelets. We refer to Newey (1997) and Chen
(2007) for a detailed description of these series functions. In the context of QR, Chen (2007) es-
tablished the consistency and rate of convergence at a single quantile index. More recently, Belloni
et al. (2019) developed a large sample theory for the quantile series coefficient process, including
convergence rate and uniform strong approximations. The choice of the parameter m, also
known as the order of the series estimator, is crucial for establishing the balance between bias
and variance.
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Note that the quantile series estimator f, in equation (30) has been well studied by Belloni et al.
(2019). Because the number of regressors increases with the sample size, conventional central limit
theorems are no longer applicable to capture the joint asymptotic normality of the regression co-
efficients. The growing dimensionality is the primary source of technical complications. Our the-
oretical analysis under the joint linear model (4), which leads to novel non-asymptotic high
probability bounds, can be used as a starting point for studying the two-step non-parametric ES
series estimator f, defined in equation (31). Of particular interest is to develop a uniform inference
procedure for the conditional ES function £ and its theory. That is, at a given confidence level
1 -y, we aim to construct a pair of functional estimates [fL, U] from {(Y;, X;)}, such that

[P’{?L(x) < (x) S?U(x) for all x € X] —1-y, asn— co.

e e e

Since a significant amount of additional work is still needed, including explicit characterisations of
the ES series approximation error and the impact of first-stage non-parametric QR estimation er-

ror, we leave a rigorous theoretical investigation of f, to future work. Although we have only fo-
cussed on series methods, there are other non-parametric techniques that offer superior empirical
and theoretical performance. Among those, deep neural networks have stood out as a promising
tool for non-parametric estimation, from least squares, logistic to QR (Farrell et al., 2021;
Schmidt-Hieber, 2020; Shen et al., 2021). It is practically useful to construct deep learning imple-
mentations of two-step estimators and statistically important to deliver valid inferences on finite-
dimensional parameters following first-step estimation (of both quantile and ES functions) using
deep learning. A detailed investigation of these problems is beyond the present scope but of future
interest.

6 Numerical studies and real data examples

6.1 Monte Carlo experiments

In this section, we assess the numerical performance of the proposed method for fitting expected
shortfall regression. For its R implementation, we first obtain a QR estimate via the quantreg
library, and in step two use the adaHuber library to solve (19) with the robustification parameter
selected adaptively as described in Section 3.2.

We compare the proposed two-step adaptive Huber ES estimator (2S-2AH) to several competi-
tors: (i) the joint regression estimate (joint) via FZ loss minimisation, implemented via the R li-
brary esreg with the default option; (ii) the two-step LSE (12) (25-1LsS); and (iii) the oracle
two-step ‘estimator’ (2S-oracle). Recall that the two-step procedure first obtains a QR estima-
tor/ﬂ\via either standard (Koenker & Bassett, 1978) or smoothed QR regression (He et al., 2023),
and subsequently computes the ES estimator based on fitted quantile thresholds {X}E};’zl. The or-
acle method refers to the two-step ES estimate based on the true quantile thresholds {X5*}™,.

In our simulation studies, we first generate y*=(yj, ..., y;j)T and #* =5, ..., n;)T
independently, ~where ys are independent Rademacher random variables and
17 ~iid. 0.5 - Bernoulli(1/2). Data are then generated from the heteroscedastic model

Y =Xy + Xyt - e, (32)

where X; = (X1, ..., X,-p)T with Xjj ~;;4. Unif(0, 1.5), and the random noise ¢; follows one of the
following two distributions: (i) standard normal distribution and (ii) z-distribution with v > 2 de-
grees of freedom (¢,). Given y* and 5*, the true quantile and expected shortfall regression coeffi-
cients are f* =y* + Q,(¢) - #* and 6" =y* + ES,(¢) - n*, where Q,(¢) and ES,(¢) are the a-level
quantile and expected shortfall of &, respectively.

We first set the dimension p = 20 and sample size 7 = [S0p/a], where the quantile level a takes
values in {0.05, 0.1, 0.2}. Simulation results on the relative ¢;-error |6 — 6*||,/||6|,, averaged
over 200 replications, are reported in Tables 1 and 2 under the A(0, 1) and #, 5 noise model, re-
spectively. All four methods have very similar performance across different quantile levels in the
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Table 1. Mean relative ¢,-error H@— G*|1,/116* ||, (and standard error), averaged over 200 replications, when
g ~NI(0, 1), p=20, n=[50p/a], and a ={0.05, 0.1, 0.2}

N(0, 1) noise
Method a=0.05 a=0.1 a=0.2
2S-AH 0.130 (0.003) 0.150 (0.003) 0.171 (0.004)
2S-LS 0.130 (0.003) 0.150 (0.003) 0.171 (0.004)
joint 0.130 (0.003) 0.151 (0.003) 0.177 (0.004)
25-oracle 0.129 (0.003) 0.149 (0.003) 0.171 (0.004)

normal model, while in the presence of heavy-tailed errors, the proposed robust method achieves
consistently more favourable performance. This demonstrates that the use of adaptive Huber re-
gression (in stage two) gains robustness against heavy-tailed errors without compromising statis-
tical efficiency when the error distribution is light-tailed.

In a more extreme setting where a = 0.01, Figure 1 shows the boxplots of squared £,-errors for
three ES estimates (2S-LS, 2S-AH, and joint) under the normal and #; models. Although the
2S-LS estimator is easy-to-compute, it is more sensitive to heavy-tailedness than the joint estima-
tor obtained via FZ loss minimisation. We further compare the proposed method with the joint
regression approach in terms of computational efficiency. The computational time in seconds
averaged over 50 independent replications, for the two methods with growing (7, p) subject ton =
[50p/a] (a € {0.05, 0.1, 0.2}) are reported in Figure 2. These numerical results show evidence that
our R implementation of the robust two-step method can be faster than the esreg library for the
joint regression approach by several orders of magnitude.

To shed some light on the drastic difference in numerical efficiency between the two methods,
note that the joint regression approach (Dimitriadis & Bayer, 2019) relies on the Nelder-Mead
simplex method, which is sensitive to the starting values and not guaranteed to converge to a local
minimum. The convergence of the Nelder—-Mead method is already very slow for large-scale prob-
lems because it is a direct search method based on function comparison. And due to its sensitivity
to starting values, Dimitriadis and Bayer (2019) proposed to re-optimise the model (several times)
with the perturbed parameter estimates as new starting values. This explains, to some extent, the
fast increase in the runtime of esreg as both z and p grow. The function in quantreg that fits
linear QR is coded in fortran, and thusis very fast in larger problems. The computation of adap-
tive Huber regression is based on the Barzilai-Borwein gradient descent method (Barzilai &
Borwein, 1988), implemented via RcppArmadillo in adaHuber.

Next, we construct entrywise (approximate) 95% confidence intervals (Cls) for the expected
shortfall regression parameter 6*. The CI for the two-step estimator is based on equation (14)
(non-robust) and equation (22) (robust), and we use the default option in the esreg package
to implement Dimitriadis and Bayer (2019)’s method. To evaluate the accuracy and reliability
of the Cls, we compute the empirical coverage probability and interval width based on 500 inde-
pendent replications, then averaged over the p slope coefficients. Results for p =20 and n =
[50p/a] (o € {0.05, 0.1, 0.2}) are reported in Tables 3 and 4.

Once again, all three methods perform similarly under normal errors, while the robust approach
gives the narrowest ClIs while maintaining the desired coverage level under #, 5 errors. Together,
the results in Tables 2 and 4 demonstrate the robustness of the proposed method, as indicated
by the theoretical investigations in Section 4.

6.2 Data application I: health disparity

Iron deficiency is one of the most common nutritional deficiency worldwide and is one of the lead-
ing cause of anaemia (Camaschella, 2015). Being able to detect iron deficiency is essential in med-
ical care for patients with inflammation, infection, or chronic disease. It is also important in
preventive care since iron deficiency tends to present signs of a more serious illness such as gastro-
intestinal malignancy (Rockey & Cello, 1993). One measure of iron deficiency that has proven to
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Table 2. Mean relative ¢,-error ||§— 6*|1,/116 ||, (and standard error), averaged over 200 replications, when ¢ ~ ty 5,
p=20, n=[50p/a] and a ={0.05, 0.1, 0.2}

t, 5 noise
Method a=0.05 a=0.1 a=02
2S-AH 0.484 (0.008) 0.470 (0.009) 0.429 (0.008)
25-1S 0.612 (0.013) 0.606 (0.016) 0.532 (0.013)
joint 0.581 (0.012) 0.567 (0.014) 0.511 (0.013)
2S-oracle 0.612 (0.013) 0.607 (0.016) 0.532 (0.013)

be useful is the soluble transferrin receptor (STRP), a carrier protein for transferrin (Mast et al.,
1998). A high value of sTRP indicates iron deficiency.

The scientific goal here is to assess whether there is any disparity in sTRP levels among four dif-
ferent ethnic groups: Asian, Black, Mexican American, and White. To this end, we analyse a data
set obtained from the National Health and Nutrition Examination Survey from 2017 to 2020 (pre-
covid). In this data set, the response variable sSTRP was measured for female participants who
range in age from 20 to 49 years. The covariates of interest are three dummy variables that cor-
respond to Asian, Mexican American, and Black, using White as the baseline. We adjust for demo-
graphic variables such as age, education level, and healthy diet throughout our analysis. For
simplicity, we remove all participants with missing values on the covariates and the final data
set consists of 7 =1,689 observations and p = 7 covariates.

As an exploratory analysis, in Figure 3 we plot the quantile curves of sSTRP measurements at
levels from 50% to 99% for each of the four different ethnic groups. In this data set, the sTRP
values range from 1.24 to 35.1 mg/L. We note that the normal range for females is between 1.9
and 4.4 mg/L (Kratovil et al., 2007), and values that are much higher than 4.4 mg/L indicate severe
iron deficiency. We see from Figure 3 that the majority of the population have sTRP levels within
the normal range. However, there are large disparities between Black and the other three ethnic
groups, reflected in higher quantiles of the marginal distributions of sTRP.

To quantify the statistical significance of the aforementioned disparity, we fit robust expected
shortfall regression at a = 0.75 (upper tail), with the robustification parameter tuned by the pro-
cedure described in Section 3.2. This is equivalent to fitting the proposed 2S-AH method at level
1 — o (see Section 3) after flipping the signs of both the response and the covariates. We also im-
plement the standard QR at level a.

Table S reports the estimated coefficients and the associated 95% confidence intervals for the
three indicator covariates on the ethnic groups Asian, Mexican American, and Black, using
White as a baseline. We see that both the quantile and robust expected shortfall regression
methods are able to detect a health disparity between Black and White. Specifically, the esti-
mated robust ES regression coefficient and 95% CI (in the parenthesis) is 3.03 (1.88, 4.19)
vs. its QR counterparts’ 0.86 (0.37, 1.35). With the use of QR (at level 0.75), we do not observe
a statistically significant health disparity between Asian and White. In contrast, 2S-AH detects
health disparity between Asian and White with an estimated coefficient 2.34 (0.59, 4.09). We
also see that the QR detects health disparity between Mexican American and White, but the
effect size is close to zero. In summary, ES regression complements QR, and can be more effect-
ive, as a tool to detect health disparity especially when it only occurs in the tail of the conditional
distribution.

6.3 Data application Il: JTPA

We consider the JTPA study, a publicly funded training programme that provides training for
adults with the goal of improving their earnings. Specifically, we focus on the Title II sub-
programme of the JPTA study that is mainly offered to adults with barriers to employment and
out-of-school youths. This data set was previously analysed in Bloom et al. (1997). It consists
of 30 months of accumulated earnings for 6,102 females and 5,102 males, with 16 covariates
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Figure 1. Boxplots of squared total £,-errors (including the intercept when its true value is 2), based on 500

replications, for three ES regression estimators (2S-LS, 2S-AH, and joint) at quantile level a=0.01. The mean
squared errors of these three estimators are 0.1219, 0.0983, and 0.1119 in the normal model, and 1.7401, 0.8017,
and 1.2542 in the t3 model.
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Figure 2. Average elapsed time (in seconds) over 50 replications for the proposed method implemented by a

combination of quantreg and adaHuber and the joint regression approach implemented by esreg under N(0, 1)
and t, 5 error models when a € {0.05, 0.1, 0.2}. The sample size is set to be n=[50p/a]. The solid and dashed lines
correspond to the proposed method and the joint regression approach, respectively.

that are related to the demographics of the individuals such as age, race, and the indicator variable
that indicates whether the individual received JPTA training. After removing individuals with zero
income, there are 4,576 males and 5,296 females. Our goal is to assess the effect of JPTA training
on participants’ earnings with an emphasis on the low-income population that is employed, for
both male and female sub-groups.
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Table 3. Empirical coverage probability and mean width (based on 500 replications) of 95% confidence intervals
averaged over p = 20 variables when n=[50p/a],  ={0.05, 0.1, 0.2}, and &; ~ N(0, 1)

N0, 1) @=0.05 a=0.1 =02

Method Coverage Width Coverage Width Coverage Width
2S-RH 0.950 0.595 0.949 0.660 0.948 0.744
joint 0.946 0.584 0.944 0.651 0.942 0.740
25-1LS 0.950 0.595 0.949 0.661 0.948 0.745

Table 4. Empirical coverage probability and mean width (based on 500 replications) of 95% confidence intervals
averaged over p = 20 variables when n= [50p/a], « ={0.05, 0.1, 0.2}, and ¢; ~ to.5

ts a=0.05 a=0.1 a=0.2
Method Coverage Width Coverage Width Coverage Width
2S-AH 0.947 3.633 0.946 2.790 0.948 2.243
joint 0.959 5.771 0.959 3.571 0.954 2.872
2S-LS 0.952 4.521 0.950 3.397 0.953 2.687
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Figure 3. The soluble transferrin receptor levels (mg/L) vs. quantile levels (ranging from 0.5 to 0.99) for the female
population in four different ethnic groups: Asian, Black, Mexican American, and White. The orange horizontal dashed
line indicates the upper bound of the normal range (1.9-4.4 mg/L) for transferrin receptors among females.

To this end, we fit an expected shortfall regression model using the proposed robust method
with a ={0.05, 0.1, 0.2}. The robustification parameter 7 is selected automatically via the proced-
ure described in Section 3.2. Specifically, we regress the 30-month accumulated earnings on the
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Table 5. The estimated regression coefficients (and 95% confidence intervals) for three dummy variables: Asian,
Black, and Mexican American, using White as a baseline

Asian Black Mexican American
QR 0.31 (-=0.02, 0.64) 0.86 (0.37, 1.35) -0.22 (-0.42,-0.01)
ES regression (2S-AH) 2.34 (0.59, 4.09) 3.03 (1.88, 4.19) 0.13 (=0.76, 1.03)

Note. Results of the upper-tail robust ES regression method 25-AH and standard QR at quantile level a=0.75 are
reported.

JPTA training to assess the effect of JPTA training on low-income individuals, adjusting for
whether individuals completed high school, race, Hispanic/non-Hispanic, marital status, working
less than 13 weeks in the past year, and age. We report the estimated regression coefficient for the
binary variable JPTA training and its associated 95% confidence intervals. The results are sum-
marised in Table 6.

From Table 6, we see that 95% confidence intervals for the robust method do not contain zero
foralla € {0.05, 0.1, 0.2}. This indicates that the JPTA training is statistically effective to improve
earnings for the low-income population. Specifically, for the male sub-population, the estimated
ES-effects of JPTA training are 283, 552, and 1,093 dollars at levels 0.05, 0.1, and 0.2, respective-
ly. To further assess whether the estimated effects are scientifically meaningful, we compute the
average 30-month accumulated earnings below the quantile levels 0.05, 0.1, and 0.2 for the
male sub-group, which are 214, 566, and 1,496, respectively. We find that the JPTA training dou-
bles the average income for individuals with income below the quantile levels 0.05 and 0.1, and
becomes less effective for individuals with higher income. Similar findings are also observed for
the female sub-group.

7 Conclusion and discussions

This paper considers expected shortfall regression under a joint quantile and ES model recently
proposed in Dimitriadis and Bayer (2019) and Patton et al. (2019). The existing approach is
based on a joint M-estimator, defined as the global minimum of any member of a class of strictly
consistent joint loss functions (Fissler & Ziegel, 2016) over some compact set. Since the loss
function is non-differentiable and non-convex, the computation of such a joint M-estimator
is intrinsically difficult especially when the dimensionality is large. To circumvent the aforemen-
tioned challenge, Barendse (2020) proposed a two-step procedure for estimating the joint quan-
tile and ES model based on Neyman orthogonalisation: the first step involves fitting the QR,
and the second step employs the Neyman-orthogonal scores to estimate the ES parameters.
Due to the use of L,-loss in the second step, the resulting estimator is sensitive to heavy-tailed
error distributions.

To address the robustness and computation concerns simultaneously, we propose a robust two-
step method that applies adaptive Huber regression (Zhou et al., 2018) in the second step. The key
is the use of a diverging robustification parameter for bias-robustness trade-off, tuned by a con-
venient data-driven mechanism. The proposed method can be efficiently implemented by a com-
bination of R packages quantreg/conquer and adaHuber. The Python code that implements
both our proposed methods and the existing non-convex optimisation-based methods
(Dimitriadis & Bayer, 2019; Peng & Wang, 2022) is now publicly available at https:/github.
com/WenxinZhou/conquer. We establish a finite-sample theoretical framework for this two-step
method, including deviation bound, Bahadur representation and (uniform) Gaussian approxima-
tions, in which the dimension of the model, p, may depend on and increase with the sample size, 7.
Robust confidence intervals/sets are also constructed. Numerical experiments further demonstrate
that the proposed robust ES regression approach achieves satisfying statistical performance, high
degree of robustness (against heavy-tailed data) and superior computational efficiency and stabil-
ity. Through two data applications on health disparity and the JTPA study, we illustrate that ES
regression complements QR as a useful tool to explore heterogeneous covariate effects on the aver-
age tail behaviour of the outcome.
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Table 6. The estimated regression coefficient of the binary predictor JPTA training (and its 95% confidence interval)
for the proposed robust method and the standard QR at quantile level a € {0.05, 0.1, 0.2}

Male sub-group a=0.05 a=0.1 a=02

QR 465 (255, 675) 882 (603, 1,161) 2031 (1,431, 2,603)
ES regression (2S-AH) 283 (149, 418) 552 (333, 771) 1,093 (641, 1,546)
Female sub-group a=0.05 a=0.1 a=0.2

QR 202 (76, 328) 480 (307, 653) 1,086 (719, 1,452)
ES regression (2S-AH) 123 (41, 205) 300 (146, 453) 672 (385, 958)

Note. Results are rounded to the closest integer.

Although we restrict attention to (joint) linear models in this work, our non-asymptotic theory
and the underpinning techniques pave the way for analysing (i) series/projection estimators under
joint non-parametric quantile-ES models and (ii) penalised estimators under high-dimensional
sparse quantile-ES models. We leave these extensions in future research. One limitation in our
data analysis for the JTPA study is that we do not account for potential selection bias.
Specifically, as pointed out by Abadie et al. (2002), out of all subjects that were assigned to par-
ticipate in the training programme, only approximately 60% of them (compliers) actually commit-
ted to the training programme. These individuals may simply have higher motivation in improving
their earnings, and thus, the training status is likely positively correlated with potential income
earnings. Generalising the proposed method to estimate the complier expected shortfall treatment
effect, using an instrumental variable approach previously considered in Abadie et al. (2002), is
another direction for future research.

The ES regression methods considered in this paper are suited for a fixed quantile level
a € (0, 1), independent of the sample size. For extreme quantiles satisfying a =a,, — 0 or 1 as
n — oo, both the FZ loss minimisation method (see equations (5) and (6)) and two-step procedures
perform poorly because observations become scarce at that level, i.e. an is not large enough. In
fact, if dimension p is fixed, Online Supplementary Theorem A.1 and Theorem 1 imply that the
two-step ES regression estimates, robust, and non-robust, are consistent if 021 — o0 as 7 — 0.
In the case where o272 = O(1), these methods are no longer useful and one may need to resort to
extreme value theory (de Haan & Ferreira, 2006; H. ]J. Wang et al., 2012), which provides the stat-
istical tools for a feasible extrapolation into the tail of the variable of interest. A more detailed dis-
cussion on modelling the extremes is deferred to the Online Supplementary Section E.
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