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Abstract
Expected shortfall (ES), also known as superquantile or conditional value-at-risk, is an important measure in risk 
analysis and stochastic optimisation and has applications beyond these fields. In finance, it refers to the 
conditional expected return of an asset given that the return is below some quantile of its distribution. In 
this paper, we consider a joint regression framework recently proposed to model the quantile and ES of a 
response variable simultaneously, given a set of covariates. The current state-of-the-art approach to this 
problem involves minimising a non-differentiable and non-convex joint loss function, which poses numerical 
challenges and limits its applicability to large-scale data. Motivated by the idea of using Neyman-orthogonal 
scores to reduce sensitivity to nuisance parameters, we propose a statistically robust and computationally 
efficient two-step procedure for fitting joint quantile and ES regression models that can handle highly 
skewed and heavy-tailed data. We establish explicit non-asymptotic bounds on estimation and Gaussian 
approximation errors that lay the foundation for statistical inference, even with increasing covariate 
dimensions. Finally, through numerical experiments and two data applications, we demonstrate that our 
approach well balances robustness, statistical, and numerical efficiencies for expected shortfall regression.
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1 Introduction
Expected shortfall (ES), also known as superquantile or conditional value-at-risk (VaR), has been 
recognised as an important risk measure with versatile applications in finance (Acerbi & Tasche, 
2002; Rockafellar & Uryasev, 2002), management science (Ben-Tal & Teboulle, 1986; Du & 
Escanciano, 2017), operations research (Rockafellar et al., 2014; Rockafellar & Uryasev, 
2000), and clinical studies (He et al., 2010). For example, in finance, expected shortfall refers 
to the expected return of an asset or investment portfolio conditional on the return being below 
a lower quantile of its distribution, namely its VaR. In their Fundamental Review of the 
Trading Book (Basel Committee, 2016, 2019), the Basel Committee on Banking Supervision con
firmed the replacement of VaR with ES as the standard risk measure in banking and insurance.

Let Y be a real-valued random variable with finite first-order absolute moment, E|Y| < ∞, and 
let FY be its cumulative distribution function (CDF). For any α ∈ (0, 1), the quantile and ES at level 
α are defined as

Qα(Y) = F−1
Y (α) = inf {y ∈ R : FY(y) ≥ α} and ESα(Y) = E{Y|Y ≤ Qα(Y)}, (1) 

respectively. If FY is continuous, the α-level ES is equivalently given by (see, e.g. Lemma 2.16 of 
McNeil et al., 2015)

ESα(Y) =
1
α

∫α0 Qu(Y) du. (2) 
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For instance, in socio-economics applications, Y is the income and ESα(Y) can be interpreted as the 
average income for the sub-population whose income falls below the α-quantile of the entire popu
lation. We refer the reader to Chapter 6 of Shapiro et al. (2014) and Rockafellar and Royset (2014)
for a thorough discussion of ES and its mathematical properties.

With the increasing focus on ES and its desired properties as a risk measure, it is natural to exam
ine the impact of a p-dimensional explanatory vector X, on the tail behaviour of Y through ES. 
One motivating example is the Job Training Partnership Act (JTPA), a large publicly funded train
ing programme that provides training for adults with barriers to employment and out-of-school 
youths. The goal is to examine whether the training programme improves future income for adults 
with low-income earnings (Bloom et al., 1997), for which quantile regression (QR)-based ap
proaches have been proposed (Abadie et al., 2002; Chernozhukov & Hansen, 2008). For example, 
the 0.05-quantile of the post-programme income refers to the highest income earning of those who 
have the 5% lowest income among the entire population, while the 0.05-ES concerns the average 
income earning within this sub-population and therefore is more scientifically relevant in the JTPA 
study.

Compared to the substantial body of literature on QR, extant works on ES estimation and in
ference in the presence of covariates are scarce. We refer the reader to  Scaillet (2004), Cai and 
Wang (2008), Kato (2012), Linton and Xiao (2013), and Martins-Filho et al. (2018) for non- 
parametric conditional ES estimation, and more recently to Dimitriadis and Bayer (2019), 
Patton et al. (2019), and Barendse (2020) in the context of (semi-)parametric models. As sug
gested in Patton et al. (2019), this is partly because regulatory interest in ES as a risk measure 
is only recent, and also due to the fact that this measure is not elicitable (Gneiting, 2011). Let 
P be a class of distributions on Rd. We say that a statistical functional θ : P → D with D ⊆ Rp 

(p ≥ 1) is elicitable relative to the class P if there exists a loss function ρ : Rd × Rp → R such 
that θ(F) = argminθ∈DEZ∼Fρ(Z, θ) for any F ∈ P. Here, EZ∼F means that the expectation is taken 
with respect to the random variable Z that follows the distribution F. For example, the mean is 
elicitable using the L2-loss, and the median is elicitable using the L1-loss. Although the ES is not 
elicitable on its own, it is jointly elicitable with the quantile using a class of strictly consistent 
joint loss functions (Fissler & Ziegel, 2016). Based on this result, Dimitriadis and Bayer 
(2019) and Patton et al. (2019) proposed a joint regression model for the conditional α-level 
quantile and ES of Y, given the covariates X ∈ Rp. In this work, we focus on (conditional) linear 
joint quantile-ES models:

Qα(Y|X) = XTβ∗ and ESα(Y|X) = XTθ∗. (3) 

Equivalently, we have ε = Y − XTβ∗ and ξ = Y − XTθ∗, where the conditional α-quantile of ε and 
the conditional α-level expected shortfall of ε, given X ∈ Rp, are zero. More generally, one may 
allow the quantile and the ES models to depend on different covariate vectors Xq and Xe, respect
ively. In this case, the conditional α-quantile and α-ES of ε and ξ, respectively, given 
X = (XT

q , XT
e )T, are assumed to be zero.

To jointly estimate β∗ and θ∗, Dimitriadis and Bayer (2019) and Patton et al. (2019) considered 
an M-estimator, defined as the global minimum of any member of a class of strictly consistent joint 
loss functions over some compact set (Fissler & Ziegel, 2016). The joint loss function, which will 
be specified in equation (5), is non-differentiable and non-convex. Dimitriadis and Bayer (2019)
employed the derivative-free Nelder–Mead algorithm to minimise the resulting non-convex 
loss, which is a heuristic search method that may converge to non-stationary points. From a stat
istical perspective, they further established consistency and asymptotic normality for the global 
minima. However, from a computational perspective, finding the global minimum of a non- 
convex function is generally intractable: approximating the global minimum of a k-times continu
ously differentiable function f : Rp → R to ϵ-accuracy requires at least as many as (1/ϵ) p/k 

evaluations (ignoring problem-dependent constants) of the function and its first k-derivatives 
(Nemirovski & Yudin, 1983). The lack of differentiability makes this problem even more challen
ging numerically. To mitigate the computational effort, Barendse (2020) proposed a two-step pro
cedure by first estimating the quantile parameters via standard QR, followed by least squares 
regression with generated response variables. Although computationally efficient, the ensuing 
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estimator is sensitive to heavy-tailed error distributions due to the use of L2-loss for fitting possibly 
highly skewed data in the second step; see Section 3.1 for a rigorous statement.

In this paper, we propose a new two-stage method for robust estimation and inference under a 
joint quantile and expected shortfall regression model (3), with a particular focus on the latter. 
Compared to existing approaches, our proposed method is robust against heavy-tailed errors 
without compromising statistical efficiency under light-tailed distributions. Computationally, 
our method can be implemented via fast and scalable gradient-based algorithms. The main contri
butions of this work are summarised as follows: 

• Our method builds upon a recent approach to joint quantile and expected shortfall regres
sion via a two-step procedure (Barendse, 2020). However, a general non-asymptotic theory 
for this approach has yet to be established. To fill this gap, we establish a finite-sample the
oretical framework for the two-step ES estimator when the dimension of the model, p, in
creases with the number of observations, n. Specifically, we provide explicit upper 
bounds, as a function of (n, p), on the estimation error (under L2-risk) and (uniform) 
Gaussian approximation errors; see Online Supplementary Section A. We also construct 
asymptotically valid (entrywise) confidence intervals for the ES parameters. The main com
putational effort of this two-step procedure is the QR fit in stage one. Therefore, we recom
mend using the convolution-smoothed QR method (Fernandes et al., 2021), which can be 
solved using fast first-order algorithms that are scalable to very large-scale problems (He 
et al., 2023). Our non-asymptotic theory allows the dimension p to grow with the sample 
size, which paves the way for analysing series/projection estimators under joint non- 
parametric quantile-ES models (Belloni et al., 2019) and penalised estimators under high- 
dimensional sparse models.

• The standard two-step estimator is a least squares estimator (LSE) with generated response 
variables. As a result, it is sensitive to the tails of the distribution of Y. We propose a robust 
ES regression method that applies adaptive Huber regression (Zhou et al., 2018) in the second 
step to address this issue. The resulting estimator achieves sub-Gaussian deviation bounds 
even when the (conditional) distribution of Y|X only has Pareto-like tails. To achieve a trade- 
off between bias and robustness, we propose using a diverging robustification parameter 
τ = τ(n, p) > 0. In practice, we choose this hyper-parameter using a data-driven mechanism 
(L. Wang et al., 2021), guided by the non-asymptotic results presented in Section 4 and in
spired by the censored equation approach introduced in Hahn et al. (1990). We have also de
veloped efficient algorithms to compute standard and robust two-step ES estimators under 
additional constraints. These constraints ensure that the fitted ES does not exceed the fitted 
quantile at each observation. We refer the reader to the Online Supplementary Section D
for more details.

• We conduct thorough numerical comparisons between the two-step estimator and the pro
posed robust variant with the joint M-estimator of Dimitriadis and Bayer (2019) on large syn
thetic data sets generated from a location-scale model, with both light- and heavy-tailed error 
distributions. To compute the joint M-estimator, we use the R package esreg, which is avail
able at https://cran.r-project.org/package=esreg. To implement the proposed robust two-step 
procedure, we use a combination of R packages, quantreg or conquer and adaHuber. 
Our results show that the proposed robust ES regression approach achieves satisfying statis
tical performance, a higher degree of robustness against heavy-tailed error distributions, and 
superior computational efficiency and stability. We also demonstrate the effectiveness of our 
approach through numerical experiments and two real data examples.

In this work, the term ‘robustness’ specifically refers to the robustness against heavy-tailed distri
butions, as revealed by non-asymptotic deviation analysis dating back to Catoni (2012). In Catoni 
(2012)’s study of univariate mean estimation, it was found that while the sample mean has the op
timal minimax mean squared error among all mean estimators, its deviation is worse for 
non-Gaussian samples than for Gaussian ones. Moreover, the worst-case deviation is sub-optimal 
when the sampling distribution has heavy tails. To be more specific, let X1, . . . , Xn be independent 
copies of X with mean μ and variance σ2 > 0. Applying Chebyshev’s inequality to the empirical 
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mean X̅n = (1/n)
􏽐n

i=1 Xi yields a polynomial-type deviation bound: |X̅n − μ| ≤ σ
��������
1/(nδ)

􏽰
holds 

with probability at least 1 − δ for any δ ∈ (0, 1). Furthermore, if X is sub-Gaussian, meaning 
that Eeλ(X−μ) ≤ eσ2λ2/2 for all λ ∈ R, then X̅n can be referred to as a sub-Gaussian estimator, as it 
satisfies with probability 1 − δ that |X̅n − μ| ≤ σ

���������������
2 log (2/δ)/n

􏽰
. In order to obtain sub-Gaussian 

deviations under a condition of bounded second moments, Fan et al. (2017) considered the 
Huber mean estimator 􏽢μτ = argminθ∈R

􏽐n
i=1 ℓτ(Xi − θ), which is closely related to the method pro

posed by Catoni (2012). Here ℓτ(·) denotes the Huber loss; see definition (18). Theorem 5 in Fan 
et al. (2017) establishes that for any v ≥ σ, 􏽢μτ with τ = v

�������������
n/ log (1/δ)

􏽰
and δ ∈ (0, 1) satisfies |􏽢μτ − 

μ| ≤ 4v
�������������
log (1/δ)/n

􏽰
with probability at least 1 − 2δ as long as n ≥ 8 log (1/δ). While Fan et al. 

(2017) does not explicitly state this, the divergence of τ in this context is also intended to strike 
a balance between bias and robustness. In comparison to (univariate) mean estimation, the prob
lem of regression with growing dimensions and generated response variables present new technical 
challenges and requires more nuanced analysis. Nevertheless, the underlying phenomenon is quite 
similar.

1.1 Notation
For any two vectors u = (u1, . . . , uk)T and v = (v1, . . . , vk)T ∈ Rk, we define their inner product as 
uTv = 〈u, v〉 =

􏽐k
j=1 ujvj. We use ‖ · ‖p (1 ≤ p ≤ ∞) to denote the ℓp-norm in Rk: ‖u‖p = 

(
􏽐k

i=1 |ui|
p)1/p for p ≥ 1 and ‖u‖∞ = max1≤i≤k |ui|. Let Sk−1 = {u ∈ Rk : ‖u‖2 = 1} be the unit 

sphere in Rk under ℓ2-norm. Given a positive semi-definite matrix A ∈ Rk×k and u ∈ Rk, let 
‖u‖A := ‖A1/2u‖2. Given an event/subset A, 1(A) or 1A denotes the zero-one indicator function 
for A. For two real numbers a and b, we write a ∧ b = min {a, b} and a ∨ b = max {a, b}. For 
two sequences {an}n≥1 and {bn}n≥1 of non-negative numbers, we write an ≲ bn if an ≤ Cbn for 
some constant C > 0 independent of n, an ≳ bn if bn ≲ an, and an ≍ bn if an ≲ bn and an ≳ bn.

2 Preliminaries and background
2.1 The joint regression framework
Assume we observe a sequence of data vectors {(Yi, Xi)}

n
i=1, where Yi ∈ R is the response variable, 

and Xi ∈ Rp is a p-dimensional vector of explanatory variables (covariates). For some fixed prob
ability level α ∈ (0, 1), denote the conditional α-level quantile and ES of Yi given the covariates Xi 

as Qα(Yi|Xi) and ESα(Yi|Xi), respectively. For the latter, we adhere to the definition 
ESα(Yi|Xi) = E{Yi|Yi ≤ Qα(Yi|Xi), Xi}.

We consider the joint regression framework introduced in Dimitriadis and Bayer (2019) for 
modelling the conditional quantile and expected shortfall. For some probability level α ∈ (0, 1), 
assume that

Qα(Yi|Xi) = XT
i β∗, ESα(Yi|Xi) = XT

i θ∗, (4) 

where β∗, θ∗ ∈ Rp are the unknown true underlying parameters for quantile and ES, respectively. 
Fissler and Ziegel (2016) explained that quantile and ES are jointly elicitable and proposed a class 
of strictly consistent joint loss functions for quantile and ES estimation. Let G1 be an increasing 
and integrable function, and let G2 be a three times continuously differentiable function such 
that both G2 and its derivative G2 = G′

2 are strictly positive. The proposed joint loss function in 
Fissler and Ziegel (2016) takes the form

s(β, θ; Y, X) = {α − 1(Y ≤ XTβ)}{G1(Y) − G1(XTβ)}

+
G2(XTθ)

α
αXT(θ − β) − (Y − XTβ)1(Y ≤ XTβ)
􏽼����������������������􏽻􏽺����������������������􏽽

=: s0(β,θ;Y,X)

⎧
⎪⎨

⎪⎩

⎫
⎪⎬

⎪⎭
− G2(XTθ).

(5) 

This general form also includes the joint loss function proposed by Acerbi and Székely (2014) by 
taking G1(x) = −(W/2)x2 for some W ∈ R and G2(x) = αx2/2.
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In the regression framework with a fixed number of covariates, Dimitriadis and Bayer (2019)
established the consistency and asymptotic normality of the M-estimator (􏽥βT, 􏽥θT)T, defined as

􏽥β
􏽥θ

􏼠 􏼡

∈ argmin
β,θ∈Θ

1
n

􏽘n

i=1

s(β, θ; Yi, Xi), (6) 

where Θ ⊆ Rp is the parameter space, assumed to be compact, convex, and has non-empty interior. 
The main challenge of the aforementioned approach is that the objective function in equation (6) is 
non-differentiable and non-convex for any feasible choice of the functions G1 and G2 (Fissler & 
Ziegel, 2016). Note from definition (1) that the expected shortfall depends on the quantile, not vice 
versa. The estimation and inference of θ∗ is thus the main challenge. It is, however, infeasible to 
estimate a single regression model for ES through M-estimation, that is, by minimising some strict
ly consistent loss function (Dimitriadis & Bayer, 2019).

In the joint regression framework, if the main goal is to estimate and forecast ES, then β∗ can be 
naturally viewed as a nuisance parameter. Motivated by the idea of using Neyman-orthogonal 
scores to reduce sensitivity with respect to nuisance parameters (Barendse, 2020; 
Chernozhukov et al., 2018; Neyman, 1979) proposed a two-stage procedure that bypasses non- 
convex optimisation problems. In the first stage, an estimate 􏽢β of β∗ is obtained via standard 
QR. The second step employs an orthogonal score with fitted thresholding quantiles to estimate 
θ∗. The key observation is as follows. Define the function

ψ0(β, θ; X) = E{s0(β, θ; Y, X)|X}

= αXTθ − P(Y ≤ XTβ|X)E(Y|Y ≤ XTβ, X) + P(Y ≤ XTβ|X) − α
􏼈 􏼉

XTβ,
(7) 

where s0 is given in equation (5). Under model (4), we have ψ0(β∗, θ∗; X) = 0 almost surely over X. 
Let FY|X be the conditional distribution function of Y given X. Provided that FY|X is continuously 
differentiable, taking the gradient with respect to β on both sides of the above equality yields

∂βψ0(β, θ; X) = {FY|X(XTβ) − α}X, for any β, θ ∈ Rp.

We hence refer to the following property:

∂βψ0(β, θ; X)
􏼌
􏼌
β=β∗ ={FY|X(XTβ∗) − α}X = 0 (8) 

as Neyman orthogonality.

2.2 Two-step ES estimation via Neyman-orthogonal score
We start with a detailed overview of the two-step approach proposed by Barendse (2020) using the 
Neyman-orthogonal score (7) under the joint model (4). In Section 3.1, we will develop a non- 
asymptotic (finite-sample) theory for the two-step ES estimator, 􏽢θ, under the regime in which p 
is allowed to increase with the sample size n. We further develop asymptotic normality results 
for individual coordinates, or more generally linear projections, of 􏽢θ, in the increasing-dimension 
regime ‘p2/n = o(1)’. Our non-asymptotic results and techniques pave the way for analysing high- 
dimensional sparse quantile-ES models.

The first step involves computing the standard QR estimator of β∗:

􏽢β ∈ argmin
β∈Rp

1
n

􏽘n

i=1

ρα(Yi − XT
i β), (9) 

where ρα(u) = {α − 1(u < 0)}u is the check function (Koenker & Bassett, 1978). The second step is 

motivated by the orthogonal score s0 in equation (5). Specifically, let 􏽢L(β, θ) = (1/n)
􏽐n

i=1 s2
i (β, θ) 
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be the joint empirical loss with

si(β, θ) := s0(β, θ; Yi, Xi) = αXT
i θ − 1(Yi ≤ XT

i β)Yi + {1(Yi ≤ XT
i β) − α}XT

i β. (10) 

Given 􏽢β obtained from the first step, the ES estimator 􏽢θ of θ∗ is computed as

􏽢θ ∈ argmin
θ∈Rp

􏽢L(􏽢β, θ). (11) 

For any β fixed, the function θ 7! 􏽢L(β, θ) is convex with gradient and Hessian given by

∂θ􏽢L(β, θ) =
2α
n

􏽘n

i=1

si(β, θ)Xi and ∂2
θ
􏽢L(β, θ) =

2α2

n

􏽘n

i=1

XiXT
i , 

respectively. By the first-order condition, the ES regression estimator 􏽢θ satisfies the moment con
dition ∂θ􏽢L(􏽢β, 􏽢θ) = 0, and has a closed-form expression

􏽢θ =􏽢β +
􏽘n

i=1

XiXT
i

􏼠 􏼡−1
1
α

􏽘n

i=1

(Yi − XT
i
􏽢β)Xi1(Yi ≤ XT

i
􏽢β), (12) 

provided that X = (X1, . . . , Xn)T ∈ Rn×p is full-rank.

Remark 1 When p is large, we suggest using the convolution-smoothed QR (conquer) 
estimator (Fernandes et al., 2021; He et al., 2023) in the first step, which 
can be computed by fast and scalable gradient-based algorithms. Given a 
smoothing parameter/bandwidth h > 0, the conquer estimator 􏽢βh minimises 
the convolution-smoothed loss function β 7!

􏽐n
i=1 ρα,h(Yi − XT

i β) with 
ρα,h(u) = (ρα ∗ Kh)(u) = ∫∞−∞ ρα(u)Kh(v − u)dv, where Kh(u) := (1/h)K(u/h) for 
some symmetric, non-negative kernel function K, and * is the convolution op
erator. We refer to Fernandes et al. (2021) and He et al. (2023) for more de
tails, including both asymptotic and finite-sample properties of 􏽢βh when p is 
fixed and growing as well as the bandwidth selection.

Define p × p matrices Σ = E(XXT) and Ω = E(ω2XXT) with ω := (Y − XTβ∗)1(Y ≤ XTβ∗) + 
αXT(β∗ − θ∗) satisfying E(ω|X) = 0 under model (4). Provided that p = pn satisfies p2/n → 0, we 
will show in the Online Supplementary Theorem A.3 that 􏽢θj is asymptotically normal:

α
��
n

√
(􏽢θj − θ∗

j )
��������������

(Σ−1ΩΣ−1) jj

􏽱
d
→ N (0, 1) as n, p → ∞.

As a direct implication, an asymptotically valid entrywise confidence interval for θ∗ can be con
structed as follows. Recall that (􏽢β, 􏽢θ) is the joint quantile-ES regression estimators given in equa
tions (9) and (11), respectively. Define the estimated ‘residuals’ as

􏽢εi = Yi − XT
i
􏽢β and 􏽢ωi =􏽢εi ∧ 0 + αXT

i (􏽢β −􏽢θ). (13) 

We then use the sample analogue of Σ and a plug-in estimator of Ω, namely, 􏽢Σ =
􏽐n

i=1 XiXT
i /n and 

􏽢Ω =
􏽐n

i=1 􏽢ω2
i XiXT

i /n. Consequently, we construct (approximate) 95% confidence interval for each 
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coefficient as

􏽢θj −
1.96
α

��
n

√ (􏽢Σ−1􏽢Ω􏽢Σ−1)1/2
jj , 􏽢θj +

1.96
α

��
n

√ (􏽢Σ−1􏽢Ω􏽢Σ−1)1/2
jj

􏼔 􏼕

, j = 1, . . . , p. (14) 

3 Robust expected shortfall regression
3.1 Motivation
The two-step estimator 􏽢θ given in equation (12) is essentially an LSE with generated response var
iables. While the two-step procedure is computationally efficient and enjoys nice asymptotic prop
erties, due to the use of the least squares type loss, it is sensitive to outliers or heavy-tailed data that 
is ubiquitous in various areas such as climate, insurance claims, and genomics data. In particular, 
heavy-tailedness has become a well-known stylised fact of financial returns and stock-level pre
dictor variables (Cont, 2001). Since the expected shortfall is a quantity that describes the tail be
haviour of a distribution, it is important to construct an estimator that is robust to the power-law 
or Pareto-like tails.

To motivate the need for a robust ES estimator, we start with the non-regression setting in which 
Xi ≡ 1. The two-step ES estimator (12) can then be simplified as

􏽣ESα =
1

αn

􏽘n

i=1

Yi1{Yi ≤ 􏽢Qα} + 􏽢Qα{1 − 􏽢F(􏽢Qα)/α}, (15) 

where 􏽢F is the empirical CDF of Y and 􏽢Qα = 􏽢F−1(α) is the sample quantile. The estimator 􏽣ESα (15) 
coincides with the ES estimate (4) in Bassett et al. (2004), although the latter is motivated differ
ently by the following property:

ESα(Y) = E(Y) −
1
α

min
β∈R

Eρα(Y − β).

Since |􏽢F(􏽢Qα) − α| ≤ 1/n, up to higher order terms, 􏽣ESα equals (αn)−1 􏽐n
i=1 Yi1{Yi ≤ 􏽢Qα} which, by 

the consistency of sample quantiles, is first-order equivalent to the ‘oracle’ ES estimator 
􏽤ESora

α := (αn)−1 􏽐n
i=1 Yi1{Yi ≤ Qα(Y)}.

Since the truncated variable Yi1{Yi ≤ Qα(Y)} can be highly left-skewed with heavy tails, the cor
responding empirical mean is sensitive to the (left) tails of the distribution of Y, and hence lacks 
robustness against heavy-tailed data. Specifically, let X1, . . . , Xn be i.i.d. random variables with 
mean μ and variance σ2 > 0. When Xi is sub-Gaussian (i.e. E(eλXi ) ≤ eλ2σ2/2 for any λ ∈ R), it fol
lows from the Chernoff bound (Chernoff, 1952) that

P |X̅n − μ| ≥ σ
���������������
2 log (2/δ)/n

􏽰􏽮 􏽯
≤ δ, valid for any δ ∈ (0, 1). (16) 

In other words, the sample mean X̅n = (1/n)
􏽐n

i=1 Xi satisfies the sub-Gaussian deviation bound. 
On the other hand, the following proposition provides a lower bound for the deviations of the em
pirical mean (1/n)

􏽐n
i=1 Yi1{Yi ≤ Qα(Y)} when the distribution of Y is the least favourable among 

all heavy-tailed distributions with mean zero and variance σ2.

Proposition 1 For any value of the standard deviation σ > 0 and any probability level 
δ ∈ (0, e−1], there exists some distribution with mean zero and variance 
σ2 such that for any α ∈ (0, 1), the i.i.d. sample {Yi}

n
i=1 of size n drawn 

from it satisfies

P
1
n

􏽘n

i=1

Yi1(Yi ≤ Qα) − E{Y1(Y ≤ Qα)} ≤ −σ
���
1
δn

􏽲

·
1 − eδ

���
2e

√

􏼢 􏼣

≥ δ, (17) 
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as long as n ≥ eδ/α, where Qα = Qα(Y) is the αth quantile of Y.

Together, the upper and lower bounds (16) and (17) show that the worst case deviations of the 
empirical mean are sub-optimal when the underlying distribution is heavy-tailed (as opposed to 
having Gaussian-like thin tails). If Y follows a heavy-tailed distribution, such as the t- or Pareto 
distributions, then the left-truncated variables Zi := Yi1{Yi ≤ Qα(Y)} have not only heavy but 
also asymmetric tails. In this case, the empirical mean (αn)−1 􏽐n

i=1 Zi can be a sub-optimal estima
tor of ESα(Y).

3.2 Robust estimation and inference via adaptive Huber regression
To robustify the ES regression estimator (12) in the presence of skewed heavy-tailed observations, 
we utilise the idea of adaptive Huber regression in Zhou et al. (2018). For some τ > 0, the Huber 
loss (Huber, 1973) takes the form

ℓτ(u) =
u2/2 if |u| ≤ τ,
τ|u| − τ2/2 if |u| > τ.

􏼨

(18) 

We propose a robust/Huberised ES regression estimator defined as

􏽢θτ ∈ argmin
θ∈Rp

1
n

􏽘n

i=1

ℓτ(si(􏽢β, θ)), (19) 

where si(􏽢β, θ) is as defined in equation (10), and τ > 0 is a robustification parameter that should be 
calibrated adaptively from data.

To see this, we consider the oracle Huber ES estimator defined as

􏽢θora
τ ∈ argmin

θ∈Rp

1
n

􏽘n

i=1

ℓτ(si(β∗, θ)) = argmin
θ∈Rp

1
n

􏽘n

i=1

ℓτ(Zi − αXT
i θ), (20) 

where Zi = (Yi − XT
i β∗)1(Yi ≤ XT

i β∗) + αXT
i β∗. For any τ > 0, 􏽢θora

τ is an M-estimator of its popula
tion counterpart

θ∗
τ = argmin

θ∈Rp
E{ℓτ(Zi − αXT

i θ)}.

Let ψτ(t) = ℓ′
τ(t) = sign(t) min (|t|, τ) be the derivative of the Huber loss. By the convexity of the 

Huber loss, θ∗
τ must satisfy the first-order condition E{ψτ(Zi − αXT

i θ∗
τ )Xi} = 0. On the other 

hand, define the ES deviations ωi = Zi − αXT
i θ∗, satisfying E(ωi|Xi) = 0 and E(ωi) = 0. Since 

the conditional distribution of ωi given Xi is asymmetric, in general we have 
E{ψτ(Zi − αXT

i θ∗)Xi} = E{ψτ(ωi)Xi} ≠ 0, which in turn implies that θ∗
τ ≠ θ∗. We thus refer to their 

difference under the ℓ2-norm, ‖θ∗
τ − θ∗‖2, as the robustification bias. Proposition 2 provides an 

upper bound for the robustification bias, which depends on τ and some moment parameters. In 
particular, τ needs to diverge for the robustification bias to diminish.

Proposition 2 Assume that ε := Y − XTβ∗ satisfies varX(ε ∧ 0) ≤ σ2 almost surely for some 
constant σ > 0, and that κ4 = supu∈Sp−1 E〈u, Σ−1/2X〉4 < ∞, where Σ = 
E(XXT) is positive definite. Then, for any τ ≥ 2κ1/4

4 σ, we have 
‖θ∗

τ − θ∗‖Σ ≤ 2σ2/(ατ).

In Section 4, we investigate the finite-sample properties of the robust ES estimator 􏽢θτ obtained 
via equations (9) and (19): our results include a deviation inequality for ‖􏽢θτ − θ∗‖Σ (Theorem 1), 
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the Bahadur representation (Theorem 2), and a Berry–Esseen bound for linear projections of 􏽢θτ 

and 􏽢θora
τ (Theorem 3). With a properly chosen τ that is of order τ ≍ σ

�����
n/p

√
, we will show that 

α‖􏽢θτ − θ∗‖Σ ≲ σ
�����
p/n

√
with high probability. Moreover, for any deterministic vector a ∈ Rp, the 

standardised statistic α
��
n

√
〈a, 􏽢θτ − θ∗〉/ϱa converges in distribution to N (0, 1), where ϱ2

a = 
aTΣ−1ΩΣ−1a and ω = (Y − XTβ∗)1(Y ≤ XTβ∗) + αXT(β∗ − θ∗). Our theoretical analysis reveals 
two attractive properties of the adaptive Huberised ES estimator 􏽢θτ: (i) the non-asymptotic 
deviation upper bounds for 􏽢θτ are much smaller in order than those for 􏽢θ at any given confidence 

level and (ii) the asymptotic relative efficiency of 􏽢θτ to 􏽢θ is one. Moreover, Theorem 3 shows that 
the two-step robust estimator (with estimated conditional quantiles) is asymptotically equivalent 
to the oracle Huberised estimator (20) (assuming β∗ were known). This further justifies the useful
ness of the Neyman-orthogonal score, which makes the QR estimation error first-order negligible.

Consistent estimators of Σ and Ω = E(ω2XXT) are useful for statistical inference. Given the pair 
of quantile-ES regression estimators (􏽢β, 􏽢θτ), with a slight abuse of notation we use 􏽢εi and 􏽢ωi to de
note the fitted QR and ES residuals as in equation (13) except with 􏽢θ replaced by 􏽢θτ. As discussed in 
Section 2.2, a naive estimate of Ω is 􏽢Ω = (1/n)

􏽐n
i=1 􏽢w2

i XiXT
i . In the presence of heavy-tailed errors 

εi, even the ‘oracle’ estimate 􏽥Ω = (1/n)
􏽐n

i=1 w2
i XiXT

i performs poorly and tends to overestimate. 
Motivated by Huber regression, we further propose a simple truncated estimator of Ω given by

􏽢Ωγ =
1
n

􏽘n

i=1

ψ2
γ (􏽢ωi)XiXT

i =
1
n

􏽘n

i=1

min {|􏽢ωi|, γ}2XiXT
i , (21) 

where γ = γ(n, p) > 0 is a second robustification parameter. Consequently, we construct approxi
mate 95% robust confidence intervals for θ∗

j ’s as

􏽢θτ,j −
1.96
α

��
n

√ (􏽢Σ−1􏽢Ωγ􏽢Σ−1)1/2
jj , 􏽢θτ,j +

1.96
α

��
n

√ (􏽢Σ−1􏽢Ωγ􏽢Σ−1)1/2
jj

􏼔 􏼕

, j = 1, . . . , p. (22) 

The convergence rate of 􏽢Ωγ with a suitably chosen γ will be discussed in Section 4.
As previously discussed, the robustification parameter τ plays a crucial role in achieving a balance 

between bias and robustness against heavy-tailed error distributions. This balance is necessary be
cause of the asymmetric nature of the ES residual ω = ε ∧ 0 + αXT(β∗ − θ∗) with ε = Y − XTβ∗. 
Assuming that the (conditional) variance of ε− = ε ∧ 0 is bounded, i.e. varX(ε−) ≤ σ2 (almost surely) 
for some σ > 0, Theorem 1 suggests that to achieve a tight deviation bound at the 1 − δ confidence 
level for any given δ ∈ (0, 1), the robustification parameter τ = τ(n, p) should be of order 

σ
�����������������

n/(p + log δ−1)
􏽱

. In practice, the scale of σ is typically unknown. A useful heuristic is to substitute 

it with the sample standard deviation of the negative QR residuals {􏽢εi,− = min (Yi − XT
i
􏽢β, 0)}n

i=1, 

which we denote by 􏽢σ. Here, 􏽢β refers to the first-stage QR estimator. Using 􏽢τ =􏽢σ
�����������������

n/(p + log δ−1)
􏽱

as a data-driven proxy for τ, the resulting estimator is also location and scale equivariant.
In the following, we present a refined data-driven approach for selecting τ that consistently out

performs the previously mentioned rule of thumb in the numerical experiments conducted in 
Section 6. This approach is adapted from the method proposed in L. Wang et al. (2021) and draws 
inspiration from the censored equation approach originally introduced by Hahn et al. (1990) as a 
proof technique for deriving robust weak convergence theory for self-normalised sums. Note that 

for each τ > 0, the Huber ES estimator 􏽢θτ can be defined equivalently as the solution to the estimat
ing equation 

􏽐n
i=1 ψτ(􏽢Zi − αXT

i θ)Xi = 0, θ ∈ Rd, where 􏽢Zi =􏽢εi,− + αXT
i
􏽢β are the generated response 

variables, and 􏽢β denotes the initial QR estimator. Since the optimal choice of τ is proportional to 
the noise scale, we propose to estimate θ∗ and the unknown noise scale simultaneously by solving 
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the following system of equations for (θ, s) ∈ Rp × (0, ∞):

g1(θ, s) :=
1
n

􏽘n

i=1

ψk

􏽢Zi − αXT
i θ

s

􏼠 􏼡

Xi = 0,

g2(θ, s) :=
1
n

􏽘n

i=1

ψ2
k

􏽢Zi − αXT
i θ

s

􏼠 􏼡

− 1 = 0, 

where k = k(n, p) =
���������������
n/(p + log n)

􏽰
. Since the Huber loss is convex, the first (vector) equation in θ 

with s fixed can be solved using either the iteratively reweighted least squares algorithm or the 
Broyden–Fletcher–Goldfarb–Shanno algorithm. For the second equation with θ fixed, it can be 
shown that the function s 7! g2(θ, s) is non-increasing, as demonstrated by its derivative

∂
∂s

g2(θ, s) = −
2

ns3

􏽘n

i=1

(􏽢Zi − αXT
i θ)21{|􏽢Zi − αXT

i θ| ≤ sk} ≤ 0.

Proposition 3 in L. Wang et al. (2021) further guarantees that the equation g2(θ, s) = 0 with θ fixed 

has a unique solution, provided that 
􏽐n

i=1 1(|􏽢Zi − αXT
i θ| > 0) > n/k2 = p + log n. Based on these 

observations, we propose the following alternating algorithm, which begins at iteration 0 with 
an initial estimate θ0 =􏽢θ, the two-step LSE given in equation (11), or equivalently equation 
(12). At each iteration t = 1, 2, . . ., the procedure involves two steps: 

(i) Compute the ES ‘residuals’ ωt
i = 􏽢Zi − αXT

i θt−1 using the previous estimate θt−1. Let st be the 
solution to the equation (1/n)

􏽐n
i=1 (|ωt

i/s| ∧ k)2 = 1, s > 0.

(ii) Compute the updated estimate θt ∈ argminθ∈Rp

􏽐n
i=1 ℓτt (􏽢Zi − αXT

i θ), where τt = stk.

Given a prespecified tolerance ϵ > 0 (e.g. ϵ = 10−5), the algorithm will terminate at the tth iteration 
if max {‖g1(θt, st)‖2, |g2(θt, st)|} ≤ ϵ, or if the maximum number of iterations is reached. Our nu
merical experiments in Section 6 show that this algorithm generally achieves convergence after 
only a small number of iterations. Intuitively, we attribute the algorithm’s fast convergence to 
the observation that 􏽢θτ changes gradually as τ varies. This graduate change cause the residuals 
to behave similarly over a range of τ values. We refer the reader to the Online Supplementary 
Section B for a detailed elaboration on the motivations behind our proposed data-driven method.

4 Statistical theory

This section presents non-asymptotic high probability bounds for the error ‖􏽢θτ − θ∗‖2 of the 
Huberised two-step ES estimator 􏽢θτ, as defined in equation (19). Additionally, we establish a non- 

asymptotic Bahadur representation for 􏽢θτ, which is a crucial step towards obtaining a Berry– 
Esseen-type bound for Gaussian approximation. Throughout this section, we write X = 
(x1, . . . , xp)T ∈ Rp with x1 ≡ 1. Without loss of generality, we assume that the random predictors 
x2, . . . , xp have zero means, that is, μj = E(xj) = 0 for j = 2, . . . , p. This makes the later 
sub-Gaussian assumption more reasonable; see Condition 2 below. Otherwise, we set 
Z = (1, z2, . . . , zp)T = (1, x2 − μ2, . . . , xp − μp)T. With this notation, the joint model (4) becomes 

Qα(Y|Z) = β†

0 +
􏽐p

j=2 zjβ∗
j and ESα(Y|Z) = θ†

0 +
􏽐p

j=2 zjθ∗
j , where β†

1 = μTβ∗ and θ†

1 = μTθ∗ with 

μ = (1, μ2, . . . , μp)T. The sub-Gaussian assumption can then be imposed on Z, and our analysis 
naturally applies to {(Yi, Zi)}

n
i=1.

In the context of a joint (linear) quantile and ES regression model, we initiate by establishing 
a high probability bound, explicitly dependent on n and p, for the QR estimator 􏽢β (9). To this 
end, we impose the following conditions on the covariates and the conditional distribution of 
Y given X.
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Condition 1 The conditional density function of ε := Y − XTβ∗ given X, denoted by fε|X, 
exists and is continuous on its support. Moreover, there exist constants 
f , l0 > 0 such that fε|X(0) ≥ f and |fε|X(t) − fε|X(0)| ≤ l0|t| for all t ∈ R almost 
surely (over X).

Condition 2 The random covariate vector X ∈ Rp is sub-Gaussian, that is, there exists 
some (dimension-free) constant υ1 ≥ 1 such that P(|uTW| ≥ υ1t) ≤ 2e−t2/2 

for all t ≥ 0 and u ∈ Sp−1, where W = Σ−1/2X and Σ = E(XXT) is positive 
definite. Let κl = supu∈Sp−1 E|uTW|l for l ≥ 1.

Condition 1 imposes regularity conditions on the random error distributions, accommodating 
heteroskedastic error distributions and not requiring the existence of any moment. Condition 2 is 
used to guarantee that population and empirical quantities (e.g. the objective or gradient function 
or the gradient function) are uniformly close to each other in a compact region. It can be replaced 
by a boundedness assumption, which will lead to similar results. For example, X = (x1, . . . , xp)T is 
compactly supported with either ‖X‖∞ ≤ CX or ‖Σ−1/2X‖2 ≤ BX, where CX is an absolute con
stant and BX is usually proportional to 

��
p

√
.

Proposition 3 Under Conditions 1 and 2, the QR estimator 􏽢β given in equation (9) 
satisfies, for any t ≥ 0, that ‖􏽢β − β∗‖Σ ≤ C1 f −1 ����������

(p + t)/n
􏽰

holds with prob
ability at least 1 − e−t as long as n ≥ C2l20 f −4(p + t), where C1, C2 > 0 are 
constants depending only on υ1.

While QR has been extensively studied since the seminal work of Koenker and Bassett (1978), 
there remains a paucity of literature that addresses its finite-sample properties, particularly in 
terms of high probability bounds. Proposition 3 revisits Theorem 2.1 originally presented in 
Pan and Zhou (2021). For the sake of completeness, we provide a self-contained and simplified 
proof in the Online Supplementary Section G.9. Shifting our focus to ES regression, which involves 
conditional expectations, we additionally impose the following moment condition on the random 
error ε.

Condition 3 The conditional CDF Fε|X of ε given X is continuously differentiable and sat
isfies |Fε|X(t) − Fε|X(0)| ≤ f |t| for all t ∈ R. Moreover, the negative part of ε, 
denoted by ε− = ε ∧ 0, satisfies varX(ε−) ≤ σ2 almost surely (over X), where 
varX denotes the conditional variance given X.

Condition 3 asserts that the conditional variance of the negative part of the QR residual ε = Y − 
XTβ∗ is bounded. In our theoretical analysis, we assume σ to be a constant for convenience. 
More generally, one can assume a form of ε = σ(X)η, where σ : Rp → (0, ∞) is a positive function 
on Rp (not necessarily bounded), and η is independent of X satisfying var(η1(η ≤ 0)) ≤ σ2. In this 
case, an additional moment assumption on σ(X), such as boundedness E{σ(X)4}, would suffice.

Our next result establishes high probability bounds for the estimation error of ES regression, 
conditioning on the event that 􏽢β falls within a local neighbourhood of β∗.

Theorem 1 Assume Conditions 2 and 3 hold. For any t > 0, let r0 > 0 be such that r0 ≲ σ 
and f r2

0 ≲ σ
����������
(p + t)/n

􏽰
. Then, the two-step robust α-ES (0 < α ≤ 1/2) estima

tor 􏽢θτ with τ = c0σ
����������
n/(p + t)

􏽰
(for any c0 ≥ 1) satisfies that, with probability at 

least 1 − 3e−t conditioned on the event {‖􏽢β − β∗‖Σ ≤ r0},

α‖􏽢θτ − θ∗‖Σ ≤ C1σ
������
p + t

n

􏽲

+ C2

������
p + t

n

􏽲

r0 + f r2
0

􏼠 􏼡

(23) 

provided that the sample size obeys n ≥ C3(p + t), where C1 > 0 is a constant 
depending on (υ1, c0) and C2, C3 > 0 depend only on υ1.
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For any δ ∈ (0, 1), the robust estimator 􏽢θτ with τ ≍ σ
�������������������
n/(p + log (1/δ))

􏽰
satisfies with probability 

at least 1 − δ conditioned on {‖􏽢β − β∗‖Σ ≤ r0} that

α‖􏽢θτ − θ∗‖Σ ≲ σ
���������������
p + log (1/δ)

n

􏽲

+
���������������
p + log (1/δ)

n

􏽲

r0 + f r2
0.

The above bound is proportional to log (1/δ), in contrast to the bound for the two-step LSE, which 
is proportional to 1/δ, as demonstrated in the Online Supplementary Theorem A.1 in Section A. 
This observation suggests that the Huberised estimator is much more robust to heavy tails from a 
non-asymptotic perspective, compared to the two-step LSE. Specifically, in cases where the error 
variables only have finite variance, the worst-case deviations of 􏽢θ are considerably larger than 
those of 􏽢θτ.

Remark 2 (Bias-robustness trade-off). The choice of τ stated in Theorem 1 is a reflection 
of the bias-robustness trade-off. As discussed in Section 3.2, the robust estima
tor 􏽢θτ can be viewed as an M-estimator of θ∗

τ = argminθE{ℓτ(Zi − αXT
i θ)}, which 

differs from the true ES regression coefficient θ∗ due to the asymmetry of ES 
‘residuals’ ωi = Zi − αXT

i θ∗. Consider the decomposition

‖􏽢θτ − θ∗‖Σ ≤ ‖􏽢θτ − θ∗
τ ‖Σ􏽼�����􏽻􏽺�����􏽽

robustification bias

+ ‖θ∗
τ − θ∗‖Σ􏽼�����􏽻􏽺�����􏽽

robust estimation error

.

As long as τ ≳ σ under Condition 3, Proposition 2 ensures that 

α‖􏽢θτ − θ∗
τ ‖Σ ≤ 2σ2/τ. Examining the proof of Theorem 1, we see that

α‖􏽢θτ − θ∗‖Σ ≲ σ
������
p + t

n

􏽲

+ τ
p + t

n
+

σ2

τ
+ r0

������
p + t

n

􏽲

+
σ
τ

􏼠 􏼡

+ r2
0 

with high probability conditioned on the event {‖􏽢β − β∗‖Σ ≤ r0}. We therefore 
select τ ≍ σ

����������
n/(p + t)

􏽰
in order to minimise the upper bound as a function of τ.

Remark 3 (A uniform bound over τ). Recall from Proposition 3 that with probability 
at least 1 − n−1, ‖􏽢β − β∗‖Σ ≲ f −1 ���������������

(p + log n)/n
􏽰

as long as n ≳ p + log n. 
Complementing the proof of Theorem 1 with a discretisation argument, we 
can obtain a more general result that holds for a range of τ values. 
Specifically, let τ ≥ τ > 0 be such that σ ≲ τ ≤ τ ≲ σ

���������������
n/(p + log n)

􏽰
. Then, with 

probability at least 1 − Cn−1 for some absolute constant C ≥ 1,

sup
τ∈[τ,τ]

α‖􏽢θτ − θ∗‖Σ ≲ σ
�����������
p + log n

n

􏽲

+
σ2

τ
+ max {f , 1/τ}

p + log n

f 2n
, (24) 

as long as n ≳ p + log n. The proof of the uniform upper bound in equation 
(24) is provided in the Online Supplementary Section G.9. As ensured by 
this uniform bound, a data-driven choice of τ within the aforementioned range 
can be used.

If, in addition to Condition 3, some higher order moment of ε− is bounded, 
namely, EX{|ε− − EX(ε−)|k} ≤ αk almost surely (over X) for some k > 2, the se
cond term on the right-hand side of equation (24) will become αkτ1−k. In order 
to attain tight (finite-sample) concentration bounds, the robustification par
ameter τ = τ(n, p) should not exceed 

���������������
n/(p + log n)

􏽰
in magnitude. 

Conversely, τ should demonstrate sufficiently rapid growth in order for the 
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bias term, controlled by σ2τ−1 or αkτ1−k (in case higher order moments of ε− 
are bounded), to decay at a comparable rate to the stochastic error. 

Unlike the two-step LSE 􏽢θ, the robust counterpart 􏽢θτ does not possess a closed-form expression. 
As a pivotal step in deriving Gaussian approximation results, the following theorem furnishes a 
non-asymptotic Bahadur representation for 􏽢θτ, complete with explicit error bounds depending 
on (n, p) and the first-stage QR estimation error.

Theorem 2 Assume the same conditions as in Theorem 1. For any t > 0, the α-ES estima
tor 􏽢θτ with τ ≍ σ

����������
n/(p + t)

􏽰
satisfies that, with probability at least 1 − 6e−t 

conditioned on {‖􏽢β − β∗‖Σ ≤ r0},

αΣ1/2(􏽢θτ − θ∗) −
1
n

􏽘n

i=1

ψτ(ωi)Σ−1/2Xi

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

≲ σ
p + t

n
+ f r2

0 + r0

������������
p log n + t

n

􏽲

(25) 

as long as n ≳ p + t, where ωi = εi ∧ 0 + αXT
i (β∗ − θ∗).

Lastly, we present the following Gaussian approximation result that bounds the Kolmogorov 
distance between the distribution of the standardised statistic α

��
n

√
aT(􏽢θτ − θ∗)/ϱa and the standard 

normal distribution, uniformly over all deterministic vectors a ∈ Rp, where ϱ2
a = aTΣ−1ΩΣ−1a. A 

similar conclusion applies to the oracle robust estimate 􏽢θora
τ (20). The following theorem shows 

that the two-step robust estimator obtained via equations (9) and (19) is asymptotically equivalent 
to the oracle Huberised estimator (20), assuming β∗ is known.

Theorem 3 In addition to Conditions 1–3, assume that there exist constants σ, α3 > 0 such 
that

varX(ε−) ≥ σ2 and EX |ε− − EX(ε−)|3
􏼈 􏼉

≤ α3 almost surely over X. (26) 

Then, the robust α-level (α ∈ (0, 1/2]) ES estimator 􏽢θτ with τ ≍ 
σ

���������������
n/(p + log n)

􏽰
satisfies

sup
a∈Rp,t∈R

P α
��
n

√
〈a, 􏽢θτ − θ∗〉/ϱa ≤ t

􏼐 􏼑
− Φ(t)

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

≲
α3

σ3

�����������
p + log n

n

􏽲

+ (f/ f 2 ∨ α1/3
3 )

p
������
log n

􏽰
+ ��

p
√

log n
σ

��
n

√ .

(27) 

Moreover, the oracle Huberised ES estimator 􏽢θora
τ (20) with the same τ satisfies

sup
a∈Rp,t∈R

P α
��
n

√
〈a, 􏽢θora

τ − θ∗〉/ϱa ≤ t
􏼐 􏼑

− Φ(t)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 ≲

α3

σ3

�����������
p + log n

n

􏽲

. (28) 

The above Gaussian approximation result lays the theoretical foundation for the statistical in
ference problems of testing the linear hypothesis H0 : aTθ∗ = c0 vs. H1 : aTθ∗ ≠ c0 and constructing 
confidence intervals for aTθ∗, where a ∈ Rp and c0 ∈ R are predetermined. Given the joint quantile 

and ES regression estimates (􏽢β, 􏽢θτ), let 􏽢Ωγ be the truncated estimator of Ω = E(ω2XXT) defined in 
equation (21) with γ = γ(n, p) > 0 denoting a second robustification parameter. Then, we consider 

the robust test statistic Ta = α
��
n

√
(aT􏽢θτ − c0)/􏽢ϱa,γ for testing H0 : aTθ∗ = c0, and the (approximate) 

100(1 − c)% confidence interval aT􏽢θτ ± zc/2􏽢ϱa,γ/(α
��
n

√
) for aTθ∗, where 􏽢ϱ2

a,γ := aT􏽢Σ−1􏽢Ωγ􏽢Σ−1a is a ro

bust variance estimator and zc/2 is the upper (c/2)-percentile of N (0, 1). The consistency of 􏽢ϱ2
a,γ 

with a properly chosen γ is investigated in the Online Supplementary Section C.
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5 Non-parametric expected shortfall regression
In this section, we consider non-parametric models for joint quantile and expected shortfall regres
sion. For a predetermined quantile level α ∈ (0, 1), the goal is to estimate the unknown (condition
al) quantile and expected shortfall functions f ∗

q (x) = Qα(Y|X = x) and f ∗
e (x) = ESα(Y|X = x), with 

an emphasis on the latter. By equation (1), f ∗
q and f ∗

e can be identified as

f ∗
q = argmin

fq

Eρα(Y − fq(X)) and f ∗
e = argmin

fe

E{Y − fe(X)}21{Y≤f ∗
q (X)}.

Motivated by the two-step procedure developed under joint linear models, in the following we 
propose a non-parametric ES estimator using the series regression method (Andrews, 1991; 
Eubank & Spiegelman, 1990; Newey, 1997). Such a non-parametric estimate is carried out by re
gressing the dependent variable on an asymptotically growing number of approximating functions 
of the covariates, and therefore is closely related to the estimator define in equation (11) under the 
so-called many regressors model (Belloni et al., 2019), that is, the dimension p = pn is allowed to 
grow with n. The idea of series estimation is to first approximate f ∗

q and f ∗
e by their ‘projections’ on 

the linear spans of m1 and m2 series/basis functions, respectively, and then fit the coefficients using 
the observed data. Specifically, we approximate functions f ∗

q and f ∗
e by linear forms U(x)Tβ and 

V(x)Tθ, where

U(x) = (u1(x), . . . , um1 (x))T and V(x) = (v1(x), . . . , vm2 (x))T 

are two vectors of series approximating functions of dimensions m1 and m2. Here both m1 and m2 

may increase with n. We thus define the vectors of quantile and ES series approximation coeffi
cients as

β∗ ∈ argmin
β∈Rm1

Eρα(Y − U(X)Tβ) and θ∗ ∈ argmin
θ∈Rm2

E{Y − V(X)Tθ}21{Y≤f ∗
q (X)}. (29) 

Given independent observations (Yi, Xi), 1 ≤ i ≤ n from (Y, X) ∈ R × X with X denoting a com
pact subset of Rp, we write Ui = U(Xi) ∈ Rm1 and Vi = Vi(Xi) ∈ Rm2 . Extending the two-step ap
proach described in Section 2.2, we first define the (conditional) quantile series estimator of 
f ∗
q (x) = Qα(Y|X = x) (Belloni et al., 2019):

􏽢fq(x) = U(x)T􏽢β, x ∈ X , where 􏽢β =􏽢βm1
∈ argmin

β∈Rm1

1
n

􏽘n

i=1

ρα(Yi − UT
i β). (30) 

With generated response variables 􏽢Zi = α􏽢fq(Xi) + {Yi −􏽢fq(Xi)}1{Yi≤f̂q(Xi)}
, the second-stage ES series 

estimator is given by

􏽢fe(x) = V(x)T􏽢θ, x ∈ X , where 􏽢θ =􏽢θm2 ∈ argmin
θ∈Rm2

1
n

􏽘n

i=1

(􏽢Zi − αVT
i θ)2. (31) 

Commonly used series functions with good approximation properties include B-splines, polyno
mials, Fourier series and compactly supported wavelets. We refer to Newey (1997) and Chen 
(2007) for a detailed description of these series functions. In the context of QR, Chen (2007) es
tablished the consistency and rate of convergence at a single quantile index. More recently, Belloni 
et al. (2019) developed a large sample theory for the quantile series coefficient process, including 
convergence rate and uniform strong approximations. The choice of the parameter m1, also 
known as the order of the series estimator, is crucial for establishing the balance between bias 
and variance.
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Note that the quantile series estimator 􏽢fq in equation (30) has been well studied by Belloni et al. 
(2019). Because the number of regressors increases with the sample size, conventional central limit 
theorems are no longer applicable to capture the joint asymptotic normality of the regression co
efficients. The growing dimensionality is the primary source of technical complications. Our the
oretical analysis under the joint linear model (4), which leads to novel non-asymptotic high 
probability bounds, can be used as a starting point for studying the two-step non-parametric ES 
series estimator 􏽢fe defined in equation (31). Of particular interest is to develop a uniform inference 
procedure for the conditional ES function f ∗

e and its theory. That is, at a given confidence level 
1 − γ, we aim to construct a pair of functional estimates [􏽢f L

e , 􏽢f U
e ] from {(Yi, Xi)}

n
i=1 such that

P 􏽢f L
e (x) ≤ f ∗

e (x) ≤ 􏽢fU
e (x) for all x ∈ X

􏽮 􏽯
→ 1 − γ, as n → ∞.

Since a significant amount of additional work is still needed, including explicit characterisations of 
the ES series approximation error and the impact of first-stage non-parametric QR estimation er

ror, we leave a rigorous theoretical investigation of 􏽢fe to future work. Although we have only fo
cussed on series methods, there are other non-parametric techniques that offer superior empirical 
and theoretical performance. Among those, deep neural networks have stood out as a promising 
tool for non-parametric estimation, from least squares, logistic to QR (Farrell et al., 2021; 
Schmidt-Hieber, 2020; Shen et al., 2021). It is practically useful to construct deep learning imple
mentations of two-step estimators and statistically important to deliver valid inferences on finite- 
dimensional parameters following first-step estimation (of both quantile and ES functions) using 
deep learning. A detailed investigation of these problems is beyond the present scope but of future 
interest.

6 Numerical studies and real data examples
6.1 Monte Carlo experiments
In this section, we assess the numerical performance of the proposed method for fitting expected 
shortfall regression. For its R implementation, we first obtain a QR estimate via the quantreg 
library, and in step two use the adaHuber library to solve (19) with the robustification parameter 
selected adaptively as described in Section 3.2.

We compare the proposed two-step adaptive Huber ES estimator (2S-AH) to several competi
tors: (i) the joint regression estimate (joint) via FZ loss minimisation, implemented via the R li
brary esreg with the default option; (ii) the two-step LSE (12) (2S-LS); and (iii) the oracle 
two-step ‘estimator’ (2S-oracle). Recall that the two-step procedure first obtains a QR estima
tor 􏽢β via either standard (Koenker & Bassett, 1978) or smoothed QR regression (He et al., 2023), 

and subsequently computes the ES estimator based on fitted quantile thresholds {XT
i
􏽢β}n

i=1. The or
acle method refers to the two-step ES estimate based on the true quantile thresholds {XT

i β∗}n
i=1.

In our simulation studies, we first generate γ∗ = (γ∗
1, . . . , γ∗

p)T and η∗ = (η∗
1, . . . , η∗

p)T 

independently, where γ∗
j s are independent Rademacher random variables and 

η∗
j ∼i.i.d. 0.5 · Bernoulli(1/2). Data are then generated from the heteroscedastic model

Yi = XT
i γ∗ + XT

i η∗ · εi, (32) 

where Xi = (Xi1, . . . , Xip)T with Xij ∼i.i.d. Unif(0, 1.5), and the random noise εi follows one of the 
following two distributions: (i) standard normal distribution and (ii) t-distribution with ν > 2 de
grees of freedom (tν). Given γ∗ and η∗, the true quantile and expected shortfall regression coeffi
cients are β∗ = γ∗ + Qα(ε) · η∗ and θ∗ = γ∗ + ESα(ε) · η∗, where Qα(ε) and ESα(ε) are the α-level 
quantile and expected shortfall of ε, respectively.

We first set the dimension p = 20 and sample size n = ⌈50p/α⌉, where the quantile level α takes 
values in {0.05, 0.1, 0.2}. Simulation results on the relative ℓ2-error ‖􏽢θ − θ∗‖2/‖θ∗‖2, averaged 
over 200 replications, are reported in Tables 1 and 2 under the N (0, 1) and t2.5 noise model, re
spectively. All four methods have very similar performance across different quantile levels in the 
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normal model, while in the presence of heavy-tailed errors, the proposed robust method achieves 
consistently more favourable performance. This demonstrates that the use of adaptive Huber re
gression (in stage two) gains robustness against heavy-tailed errors without compromising statis
tical efficiency when the error distribution is light-tailed.

In a more extreme setting where α = 0.01, Figure 1 shows the boxplots of squared ℓ2-errors for 
three ES estimates (2S-LS, 2S-AH, and joint) under the normal and t3 models. Although the 
2S-LS estimator is easy-to-compute, it is more sensitive to heavy-tailedness than the joint estima
tor obtained via FZ loss minimisation. We further compare the proposed method with the joint 
regression approach in terms of computational efficiency. The computational time in seconds 
averaged over 50 independent replications, for the two methods with growing (n, p) subject to n = 
⌈50p/α⌉ (α ∈ {0.05, 0.1, 0.2}) are reported in Figure 2. These numerical results show evidence that 
our R implementation of the robust two-step method can be faster than the esreg library for the 
joint regression approach by several orders of magnitude.

To shed some light on the drastic difference in numerical efficiency between the two methods, 
note that the joint regression approach (Dimitriadis & Bayer, 2019) relies on the Nelder–Mead 
simplex method, which is sensitive to the starting values and not guaranteed to converge to a local 
minimum. The convergence of the Nelder–Mead method is already very slow for large-scale prob
lems because it is a direct search method based on function comparison. And due to its sensitivity 
to starting values, Dimitriadis and Bayer (2019) proposed to re-optimise the model (several times) 
with the perturbed parameter estimates as new starting values. This explains, to some extent, the 
fast increase in the runtime of esreg as both n and p grow. The function in quantreg that fits 
linear QR is coded in fortran, and thus is very fast in larger problems. The computation of adap
tive Huber regression is based on the Barzilai-Borwein gradient descent method (Barzilai & 
Borwein, 1988), implemented via RcppArmadillo in adaHuber.

Next, we construct entrywise (approximate) 95% confidence intervals (CIs) for the expected 
shortfall regression parameter θ∗. The CI for the two-step estimator is based on equation (14) 
(non-robust) and equation (22) (robust), and we use the default option in the esreg package 
to implement Dimitriadis and Bayer (2019)’s method. To evaluate the accuracy and reliability 
of the CIs, we compute the empirical coverage probability and interval width based on 500 inde
pendent replications, then averaged over the p slope coefficients. Results for p = 20 and n = 
⌈50p/α⌉ (α ∈ {0.05, 0.1, 0.2}) are reported in Tables 3 and 4.

Once again, all three methods perform similarly under normal errors, while the robust approach 
gives the narrowest CIs while maintaining the desired coverage level under t2.5 errors. Together, 
the results in Tables 2 and 4 demonstrate the robustness of the proposed method, as indicated 
by the theoretical investigations in Section 4.

6.2 Data application I: health disparity
Iron deficiency is one of the most common nutritional deficiency worldwide and is one of the lead
ing cause of anaemia (Camaschella, 2015). Being able to detect iron deficiency is essential in med
ical care for patients with inflammation, infection, or chronic disease. It is also important in 
preventive care since iron deficiency tends to present signs of a more serious illness such as gastro
intestinal malignancy (Rockey & Cello, 1993). One measure of iron deficiency that has proven to 

Table 1. Mean relative ℓ2-error ‖􏽢θ − θ∗‖2/‖θ∗‖2 (and standard error), averaged over 200 replications, when 
εi ∼ N (0, 1), p = 20, n = ⌈50p/α⌉, and α = {0.05, 0.1, 0.2}

N (0, 1) noise

Method α = 0.05 α = 0.1 α = 0.2

2S-AH 0.130 (0.003) 0.150 (0.003) 0.171 (0.004)

2S-LS 0.130 (0.003) 0.150 (0.003) 0.171 (0.004)

joint 0.130 (0.003) 0.151 (0.003) 0.177 (0.004)

2S-oracle 0.129 (0.003) 0.149 (0.003) 0.171 (0.004)
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be useful is the soluble transferrin receptor (sTRP), a carrier protein for transferrin (Mast et al., 
1998). A high value of sTRP indicates iron deficiency.

The scientific goal here is to assess whether there is any disparity in sTRP levels among four dif
ferent ethnic groups: Asian, Black, Mexican American, and White. To this end, we analyse a data 
set obtained from the National Health and Nutrition Examination Survey from 2017 to 2020 (pre- 
covid). In this data set, the response variable sTRP was measured for female participants who 
range in age from 20 to 49 years. The covariates of interest are three dummy variables that cor
respond to Asian, Mexican American, and Black, using White as the baseline. We adjust for demo
graphic variables such as age, education level, and healthy diet throughout our analysis. For 
simplicity, we remove all participants with missing values on the covariates and the final data 
set consists of n = 1,689 observations and p = 7 covariates.

As an exploratory analysis, in Figure 3 we plot the quantile curves of sTRP measurements at 
levels from 50% to 99% for each of the four different ethnic groups. In this data set, the sTRP 
values range from 1.24 to 35.1 mg/L. We note that the normal range for females is between 1.9 
and 4.4 mg/L (Kratovil et al., 2007), and values that are much higher than 4.4 mg/L indicate severe 
iron deficiency. We see from Figure 3 that the majority of the population have sTRP levels within 
the normal range. However, there are large disparities between Black and the other three ethnic 
groups, reflected in higher quantiles of the marginal distributions of sTRP.

To quantify the statistical significance of the aforementioned disparity, we fit robust expected 
shortfall regression at α = 0.75 (upper tail), with the robustification parameter tuned by the pro
cedure described in Section 3.2. This is equivalent to fitting the proposed 2S-AH method at level 
1 − α (see Section 3) after flipping the signs of both the response and the covariates. We also im
plement the standard QR at level α.

Table 5 reports the estimated coefficients and the associated 95% confidence intervals for the 
three indicator covariates on the ethnic groups Asian, Mexican American, and Black, using 
White as a baseline. We see that both the quantile and robust expected shortfall regression 
methods are able to detect a health disparity between Black and White. Specifically, the esti
mated robust ES regression coefficient and 95% CI (in the parenthesis) is 3.03 (1.88, 4.19) 
vs. its QR counterparts’ 0.86 (0.37, 1.35). With the use of QR (at level 0.75), we do not observe 
a statistically significant health disparity between Asian and White. In contrast, 2S-AH detects 
health disparity between Asian and White with an estimated coefficient 2.34 (0.59, 4.09). We 
also see that the QR detects health disparity between Mexican American and White, but the 
effect size is close to zero. In summary, ES regression complements QR, and can be more effect
ive, as a tool to detect health disparity especially when it only occurs in the tail of the conditional 
distribution.

6.3 Data application II: JTPA
We consider the JTPA study, a publicly funded training programme that provides training for 
adults with the goal of improving their earnings. Specifically, we focus on the Title II sub- 
programme of the JPTA study that is mainly offered to adults with barriers to employment and 
out-of-school youths. This data set was previously analysed in Bloom et al. (1997). It consists 
of 30 months of accumulated earnings for 6,102 females and 5,102 males, with 16 covariates 

Table 2. Mean relative ℓ2-error ‖􏽢θ − θ∗‖2/‖θ∗‖2 (and standard error), averaged over 200 replications, when εi ∼ t2.5, 
p = 20, n = ⌈50p/α⌉ and α = {0.05, 0.1, 0.2}

t2.5 noise

Method α = 0.05 α = 0.1 α = 0.2

2S-AH 0.484 (0.008) 0.470 (0.009) 0.429 (0.008)

2S-LS 0.612 (0.013) 0.606 (0.016) 0.532 (0.013)

joint 0.581 (0.012) 0.567 (0.014) 0.511 (0.013)

2S-oracle 0.612 (0.013) 0.607 (0.016) 0.532 (0.013)
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that are related to the demographics of the individuals such as age, race, and the indicator variable 
that indicates whether the individual received JPTA training. After removing individuals with zero 
income, there are 4,576 males and 5,296 females. Our goal is to assess the effect of JPTA training 
on participants’ earnings with an emphasis on the low-income population that is employed, for 
both male and female sub-groups.

Figure 1. Boxplots of squared total ℓ2-errors (including the intercept when its true value is 2), based on 500 
replications, for three ES regression estimators (2S-LS, 2S-AH, and joint) at quantile level α = 0.01. The mean 
squared errors of these three estimators are 0.1219, 0.0983, and 0.1119 in the normal model, and 1.7401, 0.8017, 
and 1.2542 in the t3 model.

Figure 2. Average elapsed time (in seconds) over 50 replications for the proposed method implemented by a 
combination of quantreg and adaHuber and the joint regression approach implemented by esreg under N (0, 1) 
and t2.5 error models when α ∈ {0.05, 0.1, 0.2}. The sample size is set to be n = ⌈50p/α⌉. The solid and dashed lines 
correspond to the proposed method and the joint regression approach, respectively.
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To this end, we fit an expected shortfall regression model using the proposed robust method 
with α = {0.05, 0.1, 0.2}. The robustification parameter τ is selected automatically via the proced
ure described in Section 3.2. Specifically, we regress the 30-month accumulated earnings on the 

Table 3. Empirical coverage probability and mean width (based on 500 replications) of 95% confidence intervals 
averaged over p = 20 variables when n = ⌈50p/α⌉, α = {0.05, 0.1, 0.2}, and εi ∼ N (0, 1)

N (0, 1) α = 0.05 α = 0.1 α = 0.2

Method Coverage Width Coverage Width Coverage Width

2S-AH 0.950 0.595 0.949 0.660 0.948 0.744

joint 0.946 0.584 0.944 0.651 0.942 0.740

2S-LS 0.950 0.595 0.949 0.661 0.948 0.745

Table 4. Empirical coverage probability and mean width (based on 500 replications) of 95% confidence intervals 
averaged over p = 20 variables when n = ⌈50p/α⌉, α = {0.05, 0.1, 0.2}, and εi ∼ t2.5

t2.5 α = 0.05 α = 0.1 α = 0.2

Method Coverage Width Coverage Width Coverage Width

2S-AH 0.947 3.633 0.946 2.790 0.948 2.243

joint 0.959 5.771 0.959 3.571 0.954 2.872

2S-LS 0.952 4.521 0.950 3.397 0.953 2.687

Figure 3. The soluble transferrin receptor levels (mg/L) vs. quantile levels (ranging from 0.5 to 0.99) for the female 
population in four different ethnic groups: Asian, Black, Mexican American, and White. The orange horizontal dashed 
line indicates the upper bound of the normal range (1.9–4.4 mg/L) for transferrin receptors among females.
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JPTA training to assess the effect of JPTA training on low-income individuals, adjusting for 
whether individuals completed high school, race, Hispanic/non-Hispanic, marital status, working 
less than 13 weeks in the past year, and age. We report the estimated regression coefficient for the 
binary variable JPTA training and its associated 95% confidence intervals. The results are sum
marised in Table 6.

From Table 6, we see that 95% confidence intervals for the robust method do not contain zero 
for all α ∈ {0.05, 0.1, 0.2}. This indicates that the JPTA training is statistically effective to improve 
earnings for the low-income population. Specifically, for the male sub-population, the estimated 
ES-effects of JPTA training are 283, 552, and 1,093 dollars at levels 0.05, 0.1, and 0.2, respective
ly. To further assess whether the estimated effects are scientifically meaningful, we compute the 
average 30-month accumulated earnings below the quantile levels 0.05, 0.1, and 0.2 for the 
male sub-group, which are 214, 566, and 1,496, respectively. We find that the JPTA training dou
bles the average income for individuals with income below the quantile levels 0.05 and 0.1, and 
becomes less effective for individuals with higher income. Similar findings are also observed for 
the female sub-group.

7 Conclusion and discussions
This paper considers expected shortfall regression under a joint quantile and ES model recently 
proposed in Dimitriadis and Bayer (2019) and Patton et al. (2019). The existing approach is 
based on a joint M-estimator, defined as the global minimum of any member of a class of strictly 
consistent joint loss functions (Fissler & Ziegel, 2016) over some compact set. Since the loss 
function is non-differentiable and non-convex, the computation of such a joint M-estimator 
is intrinsically difficult especially when the dimensionality is large. To circumvent the aforemen
tioned challenge, Barendse (2020) proposed a two-step procedure for estimating the joint quan
tile and ES model based on Neyman orthogonalisation: the first step involves fitting the QR, 
and the second step employs the Neyman-orthogonal scores to estimate the ES parameters. 
Due to the use of L2-loss in the second step, the resulting estimator is sensitive to heavy-tailed 
error distributions.

To address the robustness and computation concerns simultaneously, we propose a robust two- 
step method that applies adaptive Huber regression (Zhou et al., 2018) in the second step. The key 
is the use of a diverging robustification parameter for bias-robustness trade-off, tuned by a con
venient data-driven mechanism. The proposed method can be efficiently implemented by a com
bination of R packages quantreg/conquer and adaHuber. The Python code that implements 
both our proposed methods and the existing non-convex optimisation-based methods 
(Dimitriadis & Bayer, 2019; Peng & Wang, 2022) is now publicly available at https://github. 
com/WenxinZhou/conquer. We establish a finite-sample theoretical framework for this two-step 
method, including deviation bound, Bahadur representation and (uniform) Gaussian approxima
tions, in which the dimension of the model, p, may depend on and increase with the sample size, n. 
Robust confidence intervals/sets are also constructed. Numerical experiments further demonstrate 
that the proposed robust ES regression approach achieves satisfying statistical performance, high 
degree of robustness (against heavy-tailed data) and superior computational efficiency and stabil
ity. Through two data applications on health disparity and the JTPA study, we illustrate that ES 
regression complements QR as a useful tool to explore heterogeneous covariate effects on the aver
age tail behaviour of the outcome.

Table 5. The estimated regression coefficients (and 95% confidence intervals) for three dummy variables: Asian, 
Black, and Mexican American, using White as a baseline

Asian Black Mexican American

QR 0.31 (−0.02, 0.64) 0.86 (0.37, 1.35) −0.22 (−0.42, -0.01)

ES regression (2S-AH) 2.34 (0.59, 4.09) 3.03 (1.88, 4.19) 0.13 (−0.76, 1.03)

Note. Results of the upper-tail robust ES regression method 2S-AH and standard QR at quantile level α = 0.75 are 
reported.
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Although we restrict attention to (joint) linear models in this work, our non-asymptotic theory 
and the underpinning techniques pave the way for analysing (i) series/projection estimators under 
joint non-parametric quantile-ES models and (ii) penalised estimators under high-dimensional 
sparse quantile-ES models. We leave these extensions in future research. One limitation in our 
data analysis for the JTPA study is that we do not account for potential selection bias. 
Specifically, as pointed out by Abadie et al. (2002), out of all subjects that were assigned to par
ticipate in the training programme, only approximately 60% of them (compliers) actually commit
ted to the training programme. These individuals may simply have higher motivation in improving 
their earnings, and thus, the training status is likely positively correlated with potential income 
earnings. Generalising the proposed method to estimate the complier expected shortfall treatment 
effect, using an instrumental variable approach previously considered in Abadie et al. (2002), is 
another direction for future research.

The ES regression methods considered in this paper are suited for a fixed quantile level 
α ∈ (0, 1), independent of the sample size. For extreme quantiles satisfying α = αn → 0 or 1 as 
n → ∞, both the FZ loss minimisation method (see equations (5) and (6)) and two-step procedures 
perform poorly because observations become scarce at that level, i.e. αn is not large enough. In 
fact, if dimension p is fixed, Online Supplementary Theorem A.1 and Theorem 1 imply that the 
two-step ES regression estimates, robust, and non-robust, are consistent if α2

nn → ∞ as n → ∞. 
In the case where α2

nn = O(1), these methods are no longer useful and one may need to resort to 
extreme value theory (de Haan & Ferreira, 2006; H. J. Wang et al., 2012), which provides the stat
istical tools for a feasible extrapolation into the tail of the variable of interest. A more detailed dis
cussion on modelling the extremes is deferred to the Online Supplementary Section E.
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Data availability
The two data sets used in Sections 6.2 and 6.3 are publicly available at https://www.cdc.gov/ 
nchs/nhanes/index.htm and https://economics.mit.edu/people/faculty/josh-angrist/angrist-data- 
archive, respectively.

Table 6. The estimated regression coefficient of the binary predictor JPTA training (and its 95% confidence interval) 
for the proposed robust method and the standard QR at quantile level α ∈ {0.05, 0.1, 0.2}

Male sub-group α = 0.05 α = 0.1 α = 0.2

QR 465 (255, 675) 882 (603, 1,161) 2031 (1,431, 2,603)

ES regression (2S-AH) 283 (149, 418) 552 (333, 771) 1,093 (641, 1,546)

Female sub-group α = 0.05 α = 0.1 α = 0.2

QR 202 (76, 328) 480 (307, 653) 1,086 (719, 1,452)

ES regression (2S-AH) 123 (41, 205) 300 (146, 453) 672 (385, 958)

Note. Results are rounded to the closest integer.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4                                                   1243
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1223/7198207 by U
niversity of M

ichigan Business School Library user on 07 M
ay 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad063#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad063#supplementary-data
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
https://economics.mit.edu/people/faculty/josh-angrist/angrist-data-archive
https://economics.mit.edu/people/faculty/josh-angrist/angrist-data-archive


Supplementary material
Supplementary material is available online at Journal of the Royal Statistical Society: Series B.

References
Abadie A., Angrist J., & Imbens G. (2002). Instrumental variables estimates of the effect of subsidized training on 

the quantiles of trainee earnings. Econometrica, 70(1), 91–117. https://doi.org/10.1111/1468-0262.00270
Acerbi C., & Székely B. (2014). Back-testing expected shortfall. Risk, 27(11), 76–81.
Acerbi C., & Tasche D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 

1487–1503. https://doi.org/10.1016/S0378-4266(02)00283-2
Andrews D. W. K. (1991). Asymptotic normality of series estimators for nonparametric and semiparametric re

gression models. Econometrica, 59(2), 307–345. https://doi.org/10.2307/2938259
Barendse S. (2020). Efficiently weighted estimation of tail and interquantile expectations. Preprint. https://doi. 

org/10.2139/ssrn.2937665
Barzilai J., & Borwein J. M. (1988). Two-point step size gradient methods. IMA Journal of Numerical Analysis, 

8(1), 141–148. https://doi.org/10.1093/imanum/8.1.141
Basel Committee. (2016). Minimum capital requirements for market risk (Technical Report). Bank for 

International Settlements. https://www.bis.org/bcbs/publ/d352.pdf.
Basel Committee. (2019). Minimum capital requirements for market risk (Technical Report). Bank for 

International Settlements. https://www.bis.org/bcbs/publ/d457.pdf.
Bassett G., Koenker R., & Kordas G. (2004). Pessimistic portfolio allocation and Choquet expected utility. 

Journal of Financial Econometrics, 2(4), 477–492. https://doi.org/10.1093/jjfinec/nbh023
Belloni A., Chernozhukov V., Chetverikov D., & Fernández-Val I. (2019). Conditional quantile processes based 

on series or many regressors. Journal of Econometrics, 213(1), 4–29. https://doi.org/10.1016/j.jeconom.2019. 
04.003

Ben-Tal A., & Teboulle M. (1986). Expected utility, penalty functions, and duality in stochastic nonlinear pro
gramming. Management Science, 32(11), 1445–1466. https://doi.org/10.1287/mnsc.32.11.1445

Bloom H., Orr L., Bell S., Cave G., Doolittle F., Lin W., & Bos J. (1997). The benefits and costs of JTPA Title II-A 
programs: Key findings from the national job training partnership act study. The Journal of Human 
Resources, 32(3), 549–576. https://doi.org/10.2307/146183

Cai Z., & Wang X. (2008). Nonparametric estimation of conditional VaR and expected shortfall. Journal of 
Econometrics, 147(1), 120–130. https://doi.org/10.1016/j.jeconom.2008.09.005

Camaschella C. (2015). Iron-deficiency anemia. New England Journal of Medicine, 372(19), 1832–1843. https:// 
doi.org/10.1056/NEJMra1401038

Catoni O. (2012). Challenging the empirical mean and empirical variance: A deviation study. Annales de l’Institut 
Henri Poincaré Probabilités et Statistiques, 48(4), 1148–1185. https://doi.org/10.1214/11-AIHP454

Chen X. (2007). Chapter 76 large sample sieve estimation of semi-nonparametric models. Handbook of 
Econometrics, 6, 5549-5632. https://doi.org/10.1016/S1573-4412(07)06076-X

Chernoff H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. 
The Annals of Mathematical Statistics, 23(4), 493–507. https://doi.org/10.1214/aoms/1177729330

Chernozhukov V., Chetverikov D., Demirer M., Duflo E., Hansen C., Newey W., & Robins J. (2018). Double/ 
debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1), 
C1–C68. https://doi.org/10.1111/ectj.12097

Chernozhukov V., & Hansen C. (2008). Instrumental variable quantile regression: A robust inference approach. 
Journal of Econometrics, 142(1), 379–398. https://doi.org/10.1016/j.jeconom.2007.06.005

Cont R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 
1(2), 223–236. https://doi.org/10.1080/713665670

de Haan L., & Ferreira A. (2006). Extreme value theory: An introduction. Springer-Verlag.
Dimitriadis T., & Bayer S. (2019). A joint quantile and expected shortfall regression framework. Electronic 

Journal of Statistics, 13(1), 1823–1871. https://doi.org/10.1214/19-EJS1560
Du Z., & Escanciano J. C. (2017). Backtesting expected shortfall: Accounting for tail risk. Management Science, 

63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342
Eubank R. L., & Spiegelman C. H. (1990). Testing the goodness of fit of a linear model via nonparametric regres

sion techniques. Journal of the American Statistical Association, 85(410), 387–392. https://doi.org/10.1080/ 
01621459.1990.10476211

Fan J., Li Q., & Wang Y. (2017). Estimation of high dimensional mean regression in the absence of symmetry and 
light tail assumptions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(1), 
247–265. https://doi.org/10.1111/rssb.12166

Farrell M. H., Liang T., & Misra S. (2021). Deep neural networks for estimation and inference. Econometrica, 
89(1), 181–213. https://doi.org/10.3982/ECTA16901

1244                                                                                                                                                      He et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1223/7198207 by U
niversity of M

ichigan Business School Library user on 07 M
ay 2024

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad063#supplementary-data
https://doi.org/10.1111/1468-0262.00270
https://doi.org/10.1016/S0378-4266(02)00283-2
https://doi.org/10.2307/2938259
https://doi.org/10.2139/ssrn.2937665
https://doi.org/10.2139/ssrn.2937665
https://doi.org/10.1093/imanum/8.1.141
https://www.bis.org/bcbs/publ/d352.pdf
https://www.bis.org/bcbs/publ/d457.pdf
https://doi.org/10.1093/jjfinec/nbh023
https://doi.org/10.1016/j.jeconom.2019.04.003
https://doi.org/10.1016/j.jeconom.2019.04.003
https://doi.org/10.1287/mnsc.32.11.1445
https://doi.org/10.2307/146183
https://doi.org/10.1016/j.jeconom.2008.09.005
https://doi.org/10.1056/NEJMra1401038
https://doi.org/10.1056/NEJMra1401038
https://doi.org/10.1214/11-AIHP454
https://doi.org/10.1016/S1573-4412(07)06076-X
https://doi.org/10.1214/aoms/1177729330
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1016/j.jeconom.2007.06.005
https://doi.org/10.1080/713665670
https://doi.org/10.1214/19-EJS1560
https://doi.org/10.1287/mnsc.2015.2342
https://doi.org/10.1080/01621459.1990.10476211
https://doi.org/10.1080/01621459.1990.10476211
https://doi.org/10.1111/rssb.12166
https://doi.org/10.3982/ECTA16901


Fernandes M., Guerre E., & Horta E. (2021). Smoothing quantile regressions. Journal of Business & Economic 
Statistics, 39(1), 338–357. https://doi.org/10.1080/07350015.2019.1660177

Fissler T., & Ziegel J. F. (2016). Higher order elicitability and Osband’s principle. The Annals of Statistics, 44(4), 
1680–1707. https://doi.org/10.1214/16-AOS1439

Gneiting T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 
106(494), 746–762. https://doi.org/10.1198/jasa.2011.r10138

Hahn M. G., Kuelbs J., & Weiner D. C. (1990). The asymptotic joint distribution of self-normalized censored 
sums and sums of squares. The Annals of Probability, 18(3), 1284–1341. https://doi.org/10.1214/aop/ 
1176990747

He X., Hsu Y.-H., & Hu M. (2010). Detection of treatment effects by covariate-adjusted expected shortfall. The 
Annals of Applied Statistics, 4(4), 2114–2125. https://doi.org/10.1214/10-AOAS347

He X., Pan X., Tan K. M., & Zhou W.-X. (2023). Smoothed quantile regression with large-scale inference. 
Journal of Econometrics, 232(2), 367–388. https://doi.org/10.1016/j.jeconom.2021.07.010

Huber P. J. (1973). Robust estimation: Asymptotics, conjectures and Monte Carlo. The Annals of Statistics, 1(5), 
799–821. https://doi.org/10.1214/aos/1176342503

Kato K. (2012). Weighted Nadaraya–Watson estimation of conditional expected shortfall. Journal of Financial 
Econometrics, 10(2), 265–291. https://doi.org/10.1093/jjfinec/nbs002

Koenker R., & Bassett G. (1978). Regression quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/ 
1913643

Kratovil T., DeBerardinis J., Gallagher N., Luban N., Soldin S., & Wong E. (2007). Age specific reference inter
vals for soluble transferrin receptor (sTfR). Clinica Chimica Acta, 380(1-2), 222–224. https://doi.org/10. 
1016/j.cca.2007.02.012

Linton O., & Xiao Z. (2013). Estimation and inference about the expected shortfall for time series with infinite 
variance. Econometric Theory, 29(4), 771–807. https://doi.org/10.1017/S0266466612000692

Martins-Filho C., Yao F., & Torero M. (2018). Nonparametric estimation of conditional value-at-risk and ex
pected shortfall based on extreme value theory. Econometric Theory, 34(1), 23–67. https://doi.org/10. 
1017/S0266466616000517

Mast A., Blinder M., Gronowski A., Chumley C., & Scott M. (1998). Clinical utility of the soluble transferrin 
receptor and comparison with serum ferritin in several populations. Clinical Chemistry, 44(1), 45–51. 
https://doi.org/10.1093/clinchem/44.1.45

McNeil A. J., Frey R., & Embrechts P. (2015). Quantitative risk management: Concepts, techniques and tools 
(2nd ed.). Princeton University Press.

Nemirovski A., & Yudin D. (1983). Problem complexity and method efficiency in optimization. Wiley.
Newey W. (1997). Convergence rates and asymptotic normality for series estimators. Journal of Econometrics, 

79(1), 147–168. https://doi.org/10.1016/S0304-4076(97)00011-0
Neyman J. (1979). C(α) tests and their use. Sankhya, 41(1/2), 1–21. http://www.jstor.org/stable/25050174
Pan X., & Zhou W.-X. (2021). Multiplier bootstrap for quantile regression: Non-asymptotic theory under ran

dom design. Information and Inference: A Journal of the IMA, 10(3), 813–861. https://doi.org/10.1093/ 
imaiai/iaaa006

Patton A. J., Ziegel J. F., & Chen R. (2019). Dynamic semiparametric models for expected shortfall (and 
value-at-risk). Journal of Econometrics, 211(2), 388–413. https://doi.org/10.1016/j.jeconom.2018.10.008

Peng X., & Wang H. J. (2022). ‘Inference for joint quantile and expected shortfall regression’, arXiv, 
arXiv:2208.10586, preprint: not peer reviewed.

Rockafellar R. T., & Royset J. O. (2014). Superquantiles and their applications to risk, random variables, 
and regression.  INFORMS TutORials in Operations Research, null(null), 151–167. https://doi.org/10. 
1287/educ.2013.0111

Rockafellar R. T., Royset J. O., & Miranda S. I. (2014). Superquantile regression with applications to buffered 
reliability, uncertainty quantification, and conditional value-at-risk. European Journal of Operational 
Research, 234(1), 140–154. https://doi.org/10.1016/j.ejor.2013.10.046

Rockafellar R. T., & Uryasev S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 
21–41. http://doi.org/10.21314/JOR.2000.038

Rockafellar R. T., & Uryasev S. (2002). Conditional value-at-risk for general loss distributions. Journal of 
Banking & Finance, 26(7), 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6

Rockey D., & Cello J. (1993). Evaluation of the gastrointestinal tract in patients with iron-deficiency anemia. 
New England Journal of Medicine, 329(23), 1691–1695. https://doi.org/10.1056/NEJM199312023292303

Scaillet O. (2004). Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical 
Finance, 14(1), 115–129. https://doi.org/10.1111/j.0960-1627.2004.00184.x

Schmidt-Hieber J. (2020). Nonparametric regression using deep neural networks with ReLU activation function. 
The Annals of Statistics, 48(4), 1875–1897. https://doi.org/10.1214/19-AOS1875

Shapiro A., Dentcheva D., & Ruszczynski A. (2014). Lectures on stochastic programming: Modeling and theory 
(2nd ed.). SIAM.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4                                                   1245
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1223/7198207 by U
niversity of M

ichigan Business School Library user on 07 M
ay 2024

https://doi.org/10.1080/07350015.2019.1660177
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1214/aop/1176990747
https://doi.org/10.1214/aop/1176990747
https://doi.org/10.1214/10-AOAS347
https://doi.org/10.1016/j.jeconom.2021.07.010
https://doi.org/10.1214/aos/1176342503
https://doi.org/10.1093/jjfinec/nbs002
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1016/j.cca.2007.02.012
https://doi.org/10.1016/j.cca.2007.02.012
https://doi.org/10.1017/S0266466612000692
https://doi.org/10.1017/S0266466616000517
https://doi.org/10.1017/S0266466616000517
https://doi.org/10.1093/clinchem/44.1.45
https://doi.org/10.1016/S0304-4076(97)00011-0
http://www.jstor.org/stable/25050174
https://doi.org/10.1093/imaiai/iaaa006
https://doi.org/10.1093/imaiai/iaaa006
https://doi.org/10.1016/j.jeconom.2018.10.008
https://doi.org/10.1287/educ.2013.0111
https://doi.org/10.1287/educ.2013.0111
https://doi.org/10.1016/j.ejor.2013.10.046
http://doi.org/10.21314/JOR.2000.038
https://doi.org/10.1016/S0378-4266(02)00271-6
https://doi.org/10.1056/NEJM199312023292303
https://doi.org/10.1111/j.0960-1627.2004.00184.x
https://doi.org/10.1214/19-AOS1875


Shen G., Jiao Y., Lin Y., Horowitz J. L., & Huang J. (2021). ‘Deep quantile regression: Mitigating the curse of 
dimensionality through composition’, arXiv, arXiv:2107.04907, preprint: not peer reviewed.

Wang H. J., Li D., & He X. (2012). Estimation of high conditional quantiles for heavy-tailed distributions. 
Journal of the American Statistical Association, 107(500), 1453–1464. https://doi.org/10.1080/01621459. 
2012.716382

Wang L., Zheng C., Zhou W., & Zhou W.-X. (2021). A new principle for tuning-free Huber regression. Statistica 
Sinica, 31(4), 2153–2177. https://doi.org/10.5705/ss.202019.0045

Zhou W.-X., Bose K., Fan J., & Liu H. (2018). A new perspective on robust M-estimation: Finite sample theory 
and applications to dependence-adjusted multiple testing. The Annals of Statistics, 46(5), 1904–1931. https:// 
doi.org/10.1214/17-AOS1606

1246                                                                                                                                                      He et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/4/1223/7198207 by U
niversity of M

ichigan Business School Library user on 07 M
ay 2024

https://doi.org/10.1080/01621459.2012.716382
https://doi.org/10.1080/01621459.2012.716382
https://doi.org/10.5705/ss.202019.0045
https://doi.org/10.1214/17-AOS1606
https://doi.org/10.1214/17-AOS1606

	Robust estimation and inference for expected shortfall regression with many regressors
	Acknowledgments
	Conflict of interest
	References




