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ARTICLE INFO ABSTRACT
Keywords: Estimating the causal effect of a treatment or exposure for a subpopulation is of great interest in
Quantile regression many biomedical and economical studies. Expected shortfall, also referred to as the super-

Instrumental variable

Expected shortfall

Data heterogeneity

Complier expected shortfall effects

quantile, is an attractive effect-size measure that can accommodate data heterogeneity and
aggregate local information of effect over a certain region of interest of the outcome distribution.
In this article, we propose the ComplieR Expected Shortfall Treatment Effect (CRESTE) model
under an instrumental variable framework to quantity the CRESTE for a binary endogenous
treatment variable. By utilizing the special characteristics of a binary instrumental variable and a
specific formulation of Neyman-orthogonalization, we propose a two-step estimation procedure,
which can be implemented by simply solving weighted least-squares regression and weighted
quantile regression with estimated weights. We develop the asymptotic properties for the pro-
posed estimator and use numerical simulations to confirm its validity and robust finite-sample
performance. An illustrative analysis of a National Job Training Partnership Act study is pre-
sented to show the practical utility of the proposed method.

1. Introduction

Given a scalar response and a set of covariates, it is often of interest to understand the effect of a treatment or an intervention on the
conditional distribution of the response. Compared to the popularly used least squares approach, quantile regression-based approach is
more appealing due to its ability to capture heterogeneous treatment effects, i.e., the treatment effect that may vary across different
regions of the conditional distribution of the response even after adjusting for the observed covariates (Koenker, 2005). Several ap-
proaches have been proposed to estimate quantile treatment effects (Abadie et al., 2002; Chernozhukov and Hansen, 2005, among
others). We refer the reader to Koenker (2017) for an extensive review of quantile regression and quantile treatment effects.

In many applications, however, the average treatment effect in one tail of the response distribution may be of great interest in
contrast to the effect at a specific quantile level (Acharya et al., 2017; Brownlees and Engle, 2016). For example, the average effect of
public sector-sponsored training programs on the low-income subpopulation may be particularly important for making policy de-
cisions (LalLonde, 1995). To this end, the expected shortfall, also known as the super-quantile or conditional value-at-risk, has proven
to be useful.

Various methods for estimating the expected shortfall were discussed in Taylor (2008a,b), Brazauskas et al. (2008), Cai and Wang
(2008), Chen (2008) and Rockafellar and Royset (2013). One can also integrate over conditional quantile regression estimates in the
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tail (Wang and Wang, 2016). More recently, several authors have considered expected shortfall of the response variable conditional on
a set of covariates under the regression setting (Barendse, 2020; Dimitriadis and Bayer, 2019; He et al., 2022). Specifically, Dimitriadis
and Bayer (2019) proposed joint quantile and expected shortfall regression models to estimate the expected shortfall regression co-
efficients with a loss function, referred to as the FZ-loss (Fissler and Ziegel, 2016). On the other hand, Barendse (2020) proposed a
two-stage estimation method based on Neyman-orthogonalization for estimating the expected shortfall regression coefficients.
Motivated by Barendse (2020), He et al. (2022) proposed the robust expected shortfall regression that is robust against heavy-tailed
random noise.

In this article, we are interested in estimating the treatment effect on the expected shortfall of the outcome distribution, adjusted for
a set of covariates, in observational studies. One motivating example is the National Job Training Partnership Act (JTPA) study, a large
publicly-funded training program, also considered in Abadie et al. (2002) in the context of estimating quantile treatment effect. The
main goal is to evaluate the effect of JTPA training on improving 30-months earnings for low-income individuals. However, as pointed
out by Abadie et al. (2002), the training status in the JTPA study is likely to be self-selected and is correlated with the potential
outcome of earnings. Using standard approaches for estimating expected shortfall effect without accounting for the selection bias
would lead to an invalid estimate of the expected shortfall treatment effect.

To address the above challenge, instead of estimating the overall expected shortfall treatment effect, we propose to estimate the
expected shortfall treatment effect for subjects who comply with the treatment protocol, referred to as compliers. The complier ex-
pected shortfall treatment effect (CRESTE) represents a local average effect on the tail of the distribution, rather than a specific quantile
level. Compared to the complier quantile treatment effect (CQTE) proposed in Abadie et al. (2002), CRESTE is a causal estimand that is
more suitable to characterize the behavior of the tail treatment effect. This is because, analogous to comparing the quantile and the
expected shortfall, CQTE, defined based on the quantile of the response distribution, fails to capture the tail behavior beyond the
quantile itself, while CRESTE characterizes the tail behavior by aggregating information from the entire tail region (Rockafellar and
Uryasev, 2002).

To the best of our knowledge, there is limited work on the estimation of CRESTE in the existing literature, except a concurrent work
by Chen and Yen (2021) who proposed to estimate the CRESTE based on the method for fitting expected shortfall regression in
Dimitriadis and Bayer (2019). The loss function used in Chen and Yen (2021) inherits the non-convexity of the loss function in
Dimitriadis and Bayer (2019) for which the global optimum solution is not guaranteed. Moreover, their proposed CRESTE estimate is
not locally robust to the complier quantile treatment effect estimate in the sense of robustness in Chernozhukov et al. (2022), and a
convergence rate O(n~'/2) for the CQTE estimate is required to ensure asymptotic normality for the CRESTE estimator.

In this manuscript, we derive a weighting scheme that can be incorporated into the two-step estimation procedure in Barendse
(2020) by utilizing the special characteristic of a binary instrumental variable to estimate CRESTE. The validity of the proposed
method relies only on the modeling of the complier subgroup and does not require the modeling of the other non-complier subgroups
or the instrumental variable distribution. The proposed two-stage estimation procedure involves fitting a weighted quantile regression
at the first stage, and fitting a weighted least squares model at the second stage. Of practical appeal is that both steps involve mini-
mizing convex objective functions for which global optimum are guaranteed, and can be implemented by existing software for fitting
quantile regression and the least squares regression. Moreover, the proposed method has the property of Neyman-orthogonalization
for the estimation of the expected shortfall effect. The implication is that the resulting estimator is locally robust to the estimate of
quantile, which allows flexible approaches to be used for modeling quantile regression in the first stage, such as nonparamaetric
quantile regression (De Gooijer and Zerom, 2003; He and Shi, 1994).

2. Preliminaries on expected shortfall regression and potential outcomes framework

In this section, we provide an overview of the expected shortfall regression and the potential outcomes framework that are essential
in the development of our proposed method.

2.1. Expected shortfall regression

The expected shortfall of a continuous random variable Z is the conditional expectation of Z, conditioned on Z falling below a given
quantile level of its distribution. Specifically, the expected shortfall of Z at level a € (0,1) is defined as

5.(2) = K22 < 0,2)) = [ 0.(2)u

where Q,(Z) = inf{z € R : Pr(Z < 2) > u} is the uth quantile of Z (Yamai and Yoshiba, 2002). Several authors have generalized the
expected shortfall to the regression setting to evaluate the association between a covariate of interest and the response, given a set of
nuisance covariates; see among others, He et al. (2010), Dimitriadis and Bayer (2019), Barendse (2020), He et al. (2022).

Let Y be the response variable and let X € R be the covariates. Moreover, let Q,(Y|X) and S,(Y|X) be the ath quantile and expected
shortfall of Y conditional on X, respectively. While the expected shortfall is not elicitable, i.e., there does not exist a loss function that is
minimized by the expected shortfall regression parameters (Gneiting, 2011), the quantile and the expected shortfall are jointly elic-
itable (Fissler and Ziegel, 2016). This motivates the following joint quantile and expected shortfall regression framework (Barendse,
2020; Dimitriadis, Bayer, 2019; Heet al., 2022):
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where B*(a) and y*(a) are the true underlying regression coefficients corresponding to the ath quantile and expected shortfall
regression, respectively. Under a two-step framework, Barendse (2020) proposed to first estimate §*(a) by fitting a quantile regression
model. Given a quantile regression estimator ﬁ((x), the expected shortfall regression coefficients y*(a) can then be estimated by solving
the following convex optimization problem:

n 2
i) = argmin > [ 0~ QuRIOMY, < QX)) + QX)) - X v(@)] @
Y(a)eR i=1
where I(-) is an indicator function and Q,(Y;|X;) = X/ B(a).

Compared to the method in Dimitriadis and Bayer (2019), the two-step framework has advantages in both computational and
statistical aspects. Theoretically, it is remarkable that (2) is Neyman-orthogonalized. Let || - | be the #>-norm. The implication of
Neyman-orthogonalization in Barendse (2020) is that the asymptotic distribution of the estimator for y*(a) can be established under a
weaker condition || E(a) — B*(a) ||=0p(n"/*#) (Barendse, 2020) than that of Dimitriadis and Bayer (2019), which requires || E(a) -
B*(a) | = Op(n~/2). We note that the Neyman-orthogonalization phenomenon has been observed in Belloni et al. (2014); Chernoz-
hukov et al. (2018, 2022) under different contexts.

The weaker condition on the quantile estimate allows flexible approaches such as the nonparametric quantile regression to be used.
Computationally, the two-stage method involves fitting a weighted quantile regression and a weighed least squares regression that can
be readily solved via existing software. Compared to the approach in Dimitriadis and Bayer (2019) that involves solving a non-convex
optimization problem for which global optimum is not guaranteed, we found that the two-stage method has a more stable numerical
performance.

2.2. The potential outcomes framework

In this section, we provide a brief overview of the potential outcomes framework for evaluating complier treatment effects. In
addition, we review the use of instrumental variable for estimating the complier quantile treatment effect (Abadie et al., 2002).

Let D and V be indicators of a binary exposure and a binary instrumental variable, respectively. Define D, as the potential treatment
selection given V = v. Moreover, let Y, Y, and Y,4 be the observed outcome, the potential outcome given D = d, and the potential
outcome given D = d and V = v, respectively. We note that in practice, D,, Yy, and Y,4 are not observed.

Under the above binary exposure and instrumental variable setting, subjects can be classified into four latent subgroups: compliers
(D1 > Dy), always takers (D1 = Doy = 1), never takers (D; = Dy = 0), and defiers (D1 < Do) (Angrist et al., 1996). Let X be an
[-dimensional vector of covariates with one as the first component, without loss of generality. We start with some assumptions on the
instrumental variable V.

Assumption 1. The instrumental variable V satisfies the following conditions:
(A1) Independence of IV: (Yoo, Yo1, Y10, Y11,D0,D1) LLV|X;
(A2) Exclusion of IV: P(Yy4 = Yo4/X) =1 ford = 0,1;

(A3) First stage: 0 < P(V =1|X) < 1 and P(D; = 1|X) > P(Dy = 1|X);
(A4) Monotonicity: P(D; > Dg|X) = 1.

The potential outcomes framework and Assumption 1 are commonly used in the context of estimating complier treatment effect
(Abadie, 2003; Abadie et al., 2002; Ogburn et al., 2015). Assumption (A1) assumes that the instrumental variable, V, mimics a random
assignment, conditional on X. Assumption (A2) requires that V affects the potential outcomes only through its effects on the treatment
D. Assumption (A3) guarantees that D and V are correlated, conditional on X, and that each subject can have V=0or V =1 with a
non-zero probability conditional on X. Assumption (A4) excludes the existence of defiers. For more details on the use of instrumental
variable in the context of treatment effect estimation, we refer the reader to Huber and Wiithrich (2019).

3. The proposed method
3.1. Complier expected shortfall treatment effect and model assumptions

Recall from Section 2.2 that D is an indicator of a binary exposure and Yj is the potential outcome given D = d. Under the potential
outcomes framework, the complier quantile and expected shortfall at level @ € (0,1) can be formally defined as

Q4(Y4|X, D, >Dy) = inf{y € R: Pr(Y; < y|X,D, > D) > a}
and

1
Sa(Ya|X, Dy > Dy) = E{Y4|X, D) > Dy, Y; < Qu(Y4|X,D1 >Dy)} :5/« 0.(Y4|X, Dy > Dy)du, 3)
0
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respectively.
One popular causal estimand is the complier quantile treatment effect, which is commonly used to estimate the local causal effect
for compliers (Abadie et al., 2002). Specifically, the complier quantile treatment effect at ath quantile is defined as

CQTE(G) = Qa(Yl ‘X,D] >D0) — Qa(Y0|X,D1 >D0) (4)

The complier quantile treatment effect represents the difference between the compliers’ ath quantile of the potential outcomes Y; and
that of Y. Parallel to (4), we define the complier expected shortfall treatment effect as

CRESTE(G) = Sa(Yl |X7D1 >D0) — Sa(Y()‘X,Dl >D0)7 5)

that is, the difference between compliers’ ath expected shortfall of the potential outcomes Y; and that of Yy, given covariates X. Under
(3)-(5), CRESTE can be rewritten as

CRESTE(q) = é /a CQTE (u)du. (6)

0

In other words, CRESTE provides an average effect in the lower-tail of the distribution, rather than at a specific quantile level.
Similarly, if the wupper tail of the distribution is of interest we can replace S,(Y4/X,D;>Dy) with

S4(Y4|X,D1 > Do) = (1 —a) " [} Qu(YalX, D1 > Do)du in (5).

Remark 1. The quantity CRESTE(q) is equivalent to the expected shortfall treatment effect for the treated population (D = 1) in the
case of one-sided compliance, where subjects with V = 0 have no access to treatment, i.e., Pr(Dy = 0|X) = 1. This is shown formally in
Proposition 2 in the Appendix. In practice, one-sided compliance occurs in many scientific studies. For example, in an observational
study comparing a new drug versus placebo where the instrumental variable is chosen as whether treatment starts after the FDA
approval date of the new drug, the one-sided compliance means that patients treated before the FDA approval of the new drug have no
access to it.

To estimate the complier expected shortfall treatment effect CRESTE(a), we assume the following models:

0.(Y4|X,Dy > Do) =dpj(a)+Xpy(a), d=0,1,

7
S«(Y4|X,Dy > Dy) =dyj(a)+ Xyy(a), d=0,1. @

Under (7), f7 (@) and yj (a) can be interpreted as the complier ath quantile and expected shortfall treatment effect, respectively. That is,

ﬂT((l) :QII(Y1|X7D1 >D0)_Q(1(YU|X7D1 >D0)7
vi(@) =8.(Y11X,Dy > Dy) — Sa(Yo|X, Dy > Dy).

Moreover, By (a) and vy (@) quantify the effects of covariates X on the conditional complier ath quantile and expected shortfall of the
potential outcome Yy given X, respectively.

Model (7) involves the unobserved potential outcome Y,. To provide a convenient venue to estimate f; (a) and y; (a), we show in
Proposition 1 in Appendix A that (7) is equivalent to

Q.(Y|D,X,D\ > Dy) = Df;(a) + XPy(a),

8
S«(Y|D,X,D, > Dy) = Dyi(a)+ Xvx(a), ®

where Y =D x Y1 + (1 — D) x Yo, Qu(Y|D,X,D1 > Do) =inf{y: Pr(Y <y|D,X,D; > Do) > a}, and S4(Y|D,X,D; > Do) =a! [ Qu(Y|D,
X,D; > Dg)du. Under the reformulation in (8), the parameter of interests f; (@) and y; (a) now depend only on the conditional quantile
and expected shortfall of Y rather than the potential outcome Y.

Remark 2. Aswill be elaborated in Section 4, the linearity assumption for the conditional quantile function in (7) can be relaxed. For
instance, one can replace the linear quantile model in (7) with the nonparametric quantile regression function with sufficient
smoothness. The linearity assumption for conditional expected shortfall function in (7) is adopted to balance model complexity and
statistical interpretation.

3.2. Estimation procedure

LetZ = (D,XN)", p = {41 (a), Py (a)}T, andy = {n; (a),y}(a)}T, where we suppress the dependency on «a for notational conve-
nience. Let {Y1, V1, ZlT}T, e { Y, Vi, 2} }T be n independent and identically distributed realizations of {Y,V,Z"}". Recall that $* and
¥" are the true underlying values of B and v, respectively. Note that §* = argmingE{I(D; > Do)p,(Y — Z'B)}, where p,(u)
= u{a—I(u < 0)} is the quantile loss function. In addition, let g,(Z,b1,b2) =Z by — L (Y—ZTb2)[(Y < ZTb;) — Zb; and g,:(b1,b2) =
Z/ by — 1(Y; — Z]b2)I(Y; < Z[by) — Z] bo. To estimate y*, one key observation is that under (8), we have
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E{I(D1>Dy)Zgu(Z,¥",$")} =0, where P* = argmingE{I(D; >Do)p,(Y —Z'p)}. )

However, y* and B* can not be directly estimated via (9) since D; and D, are not observed simultaneously. Let «,(Y,Z)
= Pr(D; > Dy|Y, Z) be the conditional probability of the complier group, conditional on Y and Z. By the law of iterated expectation, (9)
is equivalent to

E{K‘,(Y,Z)Zga(z, Y*ﬁX)} =0, where B* = argmin[,[E{Kv(Y, Z)pa(Yszﬁ)} 10

Equation (10) suggests a simple weighting scheme for estimating p* and y*. Let D;; and D;y be the potential treatment selection for the
ith sample given V; = 1 and V; = 0, respectively. Let k,; = Pr(Dyy > Djo|Y;, Z;) be the conditional probability of the ith sample. Then, an
estimating equation for y* is given by

ZK‘,,,-Ziga,,-(y, ﬁ) =0, where ﬁ = argmin, ZKV_,-/){I(YI- 7Z[T[i). an
i1 i

i=1
In practice, k,; is unknown and needs to be estimated. By Proposition 3 in the Appendix, we have

. D{l—w(r,2)} (1-D(Y,Z)
(Y, Z)=1— E T wm (12)

where v(Y,Z) = Pr(V =1]Y,Z) and z(X) = Pr(V = 1|X). Note that «,(Y,Z) is identical to x,(U) in Lemma 3.2 of Abadie et al. (2002).
Thus, it suffices to estimate z(X) and v(Y,Z). One widely used approach to model the conditional distribution of V is the logistic
regression, which may suffer from model misspecification. We instead use an alternative non-parametric approach for modeling V
given Y, D, and X (Wei et al., 2021).

Briefly, letv4(Y, X) = Pr(V=1|Y,X,D = d) and let ¥(Y;,Z;) =I(D; = 0)vo(Y;,X;) +I(D; = 1)v1(Y3,X;). Denote 7 (u) and .7, (u) as
two kernel functions that satisfy Conditions (C7)-(C8) in Section 4 with bandwidths o7 and o2, respectively. When all components of X
are continuous, we propose to estimate z(x) and v4(y,x) via

L Ay, (X — XV - S0 =d) 7 nxT) = (Y X]) i
=7 and V,(y,x) = 2

S e ) LD = d) 7 { ) — (1X) )

13)

respectively. Subsequently, we estimate v(Y;,Z;) via ¥(Y;, Z;) = I(D; = 1)v1(Y3, X;) + I(D; = 0)Vo(Y;, X;). Thus, a non-parametric
estimator of «,; is then given by

D{1-9(¥,2)} (1-D)¥(Y,Z)

S R 19 #(X)

(14)

Note that «,; is a value between zero and one since it is the conditional probability of the complier group for the ith sample. We
enforce such constraints on x,; by performing truncation around zero and one, i.e.,

K.; = min{max (K, , 1n), Cun} (15)

where ¢;, and ¢, , are two sequences of positive constants that approach to zero and one, respectively, as the sample size n increases.
Replacing «,; with the non-parametric estimator x,; in (11), an estimator for y* can then be obtained by solving the estimating equation

Z’Evvil,g{l,i(y, B) =0, where B = argmin, Z’E‘,:,-pll(Y,- 7Zl-Tﬂ), 16)
i1 i

i=1

which amounts to solving a weighted ordinary least squares problem.
The proposed estimation procedure for estimating the complier expected shortfall treatment effect is summarized as follows:

Step 1: Calculate 7(X;) and V(Y;,Z;) with bandwidths 6; and o, selected via cross-validation, and obtain ,; fori = 1,...,n.
Step 2: Calculate the quantile regression estimator B = argminﬂZ?zl%V,ipﬂ(Yi —Z'p).

Step 3: Plug k,; and ZITB into (16), and obtain ¥ by solving (16).

Details for performing statistical inference on y* are deferred to Section 4.

Remark 3. The series-based non-parametric estimator used in Abadie et al. (2002) is another non-paramteric approach for esti-
mating ;. By using similar regularity conditions and techniques to those in Abadie et al. (2002), we can show that the asymptotic
results in Section 4 remain valid with the series-based estimator of «, ;. Generally, which nonparametric estimator one uses to estimate
ky; does not have a strong impact on the estimation of CRESTE as long as the tuning parameters are chosen appropriately and the
dimension of X is moderate.

Remark 4. In practice, the bandwidth parameters ¢; and o5 can be selected using cross-validation. Let 7,(X) be an estimator of z(X)
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obtained from the training dataset with bandwidth 6. We can then select o, , as the value of ¢ that minimizes Y oq; setlVi — 7o (Xi)|-
The bandwidth o2, can be selected similarly.

Remark 5. For discrete covariates in X, 7(X;) and v(Y;, Z;) can be estimated by first stratifying the dataset into multiple cells based on
the discrete covariates in X. For each cell, non-parametric estimates of z(X;) and v(Y;,Z;) can be constructed by using only the
continuous covariates in X and Y using (13), since the discrete covariates take the same value within each cell. When all of the
covariates X are discrete, non-parametric estimates for z(X;) in each cell reduce to empricial estimates of E(V) in each cell. Non-
parametric estimates for v(Y;, Z;) in each cell can be obtained by only using the continuous variables in Y in its corresponding cell.

4. Asymptotic properties

In this section, we establish consistency and weak convergence of the proposed estimators B and 7 at the ath level quantile and
expected shortfall, for any given a € (0,1). Let f(-|Z, D; > Do) be the density function of Y conditional on Z and D; > Dy. For notational
convenience, we write v =v(Y,Z), v; =v(Y;,Z;), 7 = n(X), and 7; = n(X;). Besides, let X, be a subvector of continuous covariates in X.
We start with some regularity conditions.

(C1) The data (Y;,D;, X, Vi) are independent and identically distributed fori =1,2,...,n.

(C2) (a) Each discrete component of X takes on finitely many values; (b) conditional on D, D; > Dy, and the discrete components of X,
(Y,X,) has a support as a closed subset of the product of compact intervals and has a density at least third order continuously
differentiable and bounded away from zero and infinity; (c) $* € % and y* € .2, where .7 and .22 are compact subsets in R"*!.

(C3) E{I(Dy > Dy)ZZ"} is of full rank.

(C4) For all Z, there exists some ¢y > 0, such that f(Z$*|Z,D; > Dg) > co.

(C5) (a) For some ¢ > 0, x,(Y,Z) > ¢ almost surely; (b) For some 0 < ¢; < ¢3 < 1, ¢; < #(X) < c2 almost surely.

(C6) The sequences ¢;, > 0 and ¢, < 1 satisfy ¢;, = o(n"1/2) and 1 — ¢,n = o(n"1/2).

(C7) (a) There is a positive integer A, such that .7 j;l (u) and Z’Z (u) are differentiable of order A and the derivatives of order A are
Lipschitz in a bounded support. .7 (x) and .7, (u) have bounded support; (b) 7, (u) =1 for k = 1,2; (c) for some positive

integers s; and s, [ .7, (u)[®]_yu]du = O forallj < s, wherek =1,2, and ©/_,u stands for executing j times Kronecker product
on u.

(C8) There exists a constant p such that: (a) v(-) and z(-) are at least pth order continuous differentiable; (b) p > s,k = 1,2; and (c)

et

—> 0.
(logn)®

2
no;? -0 and

Condition (C2) implies the boundedness of X and Z, and the positiveness and boundedness of the density of Y or X. Conditions (C3)
and (C4) are imposed to ensure the identifiablilty of p* and y*; similar conditions have been used in Barendse (2020). By Condition
(C5), ,(Y,Z) and #(X) are bounded away from zero and one almost surely. Condition (C6) implies that truncating &, by ¢;, and ¢y
would only lead to a negligible impact on the asymptotic results with ¢;, and ¢, , approaching zero and one, respectively. Conditions
(C7)—(C8) are similar to the regularity conditions in Newey (1994) for kernel estimators. By Condition (C8), we require that v(-) and
#(-) to be smooth, and that the bandwidths satisfy oy, = o(n~Y/2) A (logn)/*Pn-1/2+2)) for k = 1,2. Gompared to existing regularity
conditions in the context of estimating CQTE (Abadie et al., 2002), the proposed CRESTE estimator only additionally requires the full
rank condition in (C4) to ensure the identifiability of y*. In practice, Condition (C3) is satisfied in many studies.

Given the regularity conditions, we now establish the theoretical properties of the proposed estimators B and ¥ in Theorems 1-3.

Let my(Y,Z,a) = Z{a —I(Y < Z'$")} and let Hy (X,a) = [E[ml(Y,Z,a){“;—ZD)V - fﬁ—*))}p(] In addition, let

@(a) :ml(Y,Z,a){l —D(l%_ﬂw—g} +H (X, a){V—n(X)}.

The following theorem establishes the asymptotic normality of B.
Theorem 1 (Consistency and asymptotic distribution of. E) Under Conditions (C1)-(C8), we have
n'2(B—B) =N (0,07 Q")
where Q) = E{®(a)®(a)" } and J; = E{I(D; > Do)f(Z"p*|Z,D1 > Dy)ZZ'}.  Next, we establish consistency and asymptotic normality

for ¥ obtained from solving (16). Let mo(Y,Z,a) = Zg,(Z,v*,p*) and let Hy(X,a) = [E[mz(Y,Z,a){w - D(l"")}|X]. In addition, let

72 (17”)2

-

Y(a) = mz(Y7Z,a){1 - M - @} + H>(X,a){V — z(X)}. Theorems 2 and 3 establish the consistency and asymptotic normality

of ¥, respectively.

Theorem 2 (Consistency of. ¥) Under Conditions (C1)—(C8), we have

¥ =7l-,0.



B. Wei et al. Journal of Econometrics 238 (2024) 105572

where || - || is the £ norm.

Theorem 3 (Asymptotic distribution of. ¥) Under Conditions (C1)-(C3) and (C5)~(C8), if || B — B*||=0p(n"/*), we have
n2(F =97 )=aN(0,0,'QuT; "),

where Q, = E{¥(a)¥(a)'} and J, = E{I(D, > Dy)ZZ'}. Theorem 3 requires only || § — p* ||=0,(n"/*) to establish asymptotic
normality of ¥: this is in contrast to the faster rate || B—p |=0p(n~1/2) needed in Chen and Yen (2021) to obtain similar results. The
weaker convergence requirement for B allows us to replace the linear quantile model in (7) with other flexible approaches, such as the
nonparametric quantile regression method (De Gooijer and Zerom, 2003; He and Shi, 1994), without affecting the asymptotic dis-
tribution of ¥. In addition, Chen and Yen (2021) required O,(n~'/2) as the convergence rate for 7(X) to establish the asymptotic
distribution of y. Typically, the above convergence rate can only be satisfied when a parametric estimator is used to estimate z(X). We
instead adopt a non-parametric estimator of z(X) with convergence rate 0,(n"'/4) to establish the asymptotic distribution of ¥. The
non-parametric estimate of z(X) does not require parametric modeling, and thus prevents the bias induced from model
misspecifications.

Remark 6. From Theorem 3, we have n'/2(§ — y*)—4N(0,J5'Q2J5"). In principle, the sample-based variance estimator can be used
to estimate J, and Q,. However, Q, includes evaluating the conditional expectation given X, H,(X,«); this quantity is challenging to
estimate when X is continuous. We instead propose to perform statistical inference on y* using the bootstrap method. In particular, to

Table 1

Comparisons among estimators of f;(a) and y;(a) from the proposed two-stage method, oracle method and naive methods in the simulation
experiment with n € {500,3000} and « = {0.1,0.2,...,0.5}. Bias, Emp var, Boot var and Cov 95 stand for average bias of the estimated coefficients,
empirical variance, average variance estimates, coverage probabilities of the 95% confidence intervals.

a n Oracle method Proposed method Naive method
Pi(a) n(a) Pi(a) n(a) pi(a) n(a)
0.1 500 Bias — 0.006 0.023 —0.036 —0.047 - 0.197 —0.208
Emp var 0.123 0.262 0.124 0.247 0.080 0.161
Boot var 0.143 0.244 0.140 0.230 0.088 0.156
Cov 95 0.955 0.931 0.948 0.931 0.892 0.896
3000 Bias 0.000 —0.003 - 0.015 —0.018 —0.195 — 0.200
Emp var 0.022 0.047 0.021 0.043 0.013 0.029
Boot var 0.022 0.043 0.022 0.042 0.014 0.027
Cov 95 0.938 0.945 0.946 0.931 0.624 0.756
0.2 500 Bias 0.001 — 0.022 — 0.039 — 0.069 —0.201 —0.210
Emp var 0.052 0.118 0.056 0.117 0.029 0.071
Boot var 0.062 0.120 0.063 0.116 0.033 0.073
Cov 95 0.961 0.943 0.946 0.935 0.789 0.874
3000 Bias 0.002 — 0.002 — 0.011 — 0.014 — 0.196 - 0.197
Emp var 0.009 0.019 0.009 0.021 0.005 0.012
Boot var 0.010 0.021 0.010 0.020 0.005 0.013
Cov 95 0.954 0.954 0.947 0.939 0.242 0.574
0.3 500 Bias 0.001 0.001 —0.011 —0.023 —0.207 —0.202
Emp var 0.033 0.080 0.034 0.080 0.014 0.046
Boot var 0.038 0.079 0.039 0.077 0.016 0.046
Cov 95 0.955 0.943 0.968 0.943 0.625 0.824
3000 Bias 0.001 0.002 —0.015 —0.014 —0.202 —0.198
Emp var 0.005 0.012 0.006 0.014 0.002 0.008
Boot var 0.006 0.013 0.006 0.013 0.002 0.008
Cov 95 0.965 0.965 0.938 0.937 0.026 0.376
0.4 500 Bias — 0.005 —0.008 —0.021 —0.028 —0.211 —0.207
Emp var 0.023 0.055 0.022 0.053 0.009 0.032
Boot var 0.025 0.055 0.025 0.054 0.009 0.031
Cov 95 0.944 0.938 0.955 0.948 0.396 0.766
3000 Bias —0.007 —0.008 —0.012 —0.007 —0.208 —0.207
Emp var 0.003 0.009 0.004 0.009 0.001 0.005
Boot var 0.004 0.009 0.004 0.009 0.002 0.005
Cov 95 0.958 0.960 0.951 0.951 0.000 0.160
0.5 500 Bias 0.007 0.005 — 0.034 —0.031 — 0.204 —0.195
Emp var 0.015 0.045 0.014 0.039 0.005 0.024
Boot var 0.017 0.041 0.017 0.041 0.006 0.022
Cov 95 0.952 0.935 0.952 0.953 0.263 0.723
3000 Bias 0.001 — 0.004 —0.018 —0.017 — 0.209 — 0.206
Emp var 0.003 0.007 0.003 0.007 0.001 0.004
Boot var 0.003 0.007 0.003 0.007 0.001 0.004
Cov 95 0.949 0.943 0.937 0.940 0.000 0.077
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estimate the asymptotic variance of ¥, we resample n data points with replacement, and obtain an estimator for y* by applying the
proposed estimation method described in Section 3.2 to the resampled dataset. Let {¥, }le be the estimates obtained by repeating the
aforementioned bootstrap method for B number of times. The variance of ¥ can then be approximated by the empirical variance of

e }5:1. A formal justification for the presented nonparametric bootstrap inference procedure is provided in Appendix C.
5. Numerical studies

We assess the finite-sample performance of the proposed method via extensive numerical studies. We compare the proposed
method to several approaches: (i) the naive method by directly applying the two-stage method to the entire dataset (Barendse, 2020);
(ii) the oracle (but practically infeasible) method that applies the two-stage method to the latent complier subgroup that is unknown in
practice; and (iii) the joint regression method for estimating complier expected shortfall effect by Chen and Yen (2021). Our proposed
method involves estimating the conditional probability of complier group conditional on Y; and Z;, i.e., x,;. We compute the
non-parametric estimator ¥,; (15) using the second order Epanechnikov kernel with ¢;,, = 10/n and ¢,, = 1 — 10/n. The bandwidths
for estimating 7 (X;) and V(Y;, Z;) are selected from {0.1,0.2, ...,0.9} based on cross-validation with the criterion described in Remark
4. We use the bootstrap approach to estimate the standard errors for all of the estimators with B = 1000 number of bootstrapped
samples. To assess the performance across different methods, we compute the average bias of the estimated coefficients, average
variance estimates and the empirical variances, and coverage probabilities of the 95% confidence interval estimates.

We first generate the latent compliance group memberships from a multinomial distribution such that Pr(Compliers) = 2/3 and
Pr(Always takers) = Pr(Never takers) = 1/6. We then generate two independent covariates X; ~ Unif(0,1) and X5 ~ Bernoulli(0.5).
Given X = (X,X;)", the instrumental variable V is generated from a Bernoulli distribution with probability

~exp(0.1X: + X7 + X, X, + €)
T 1+exp(0.1X + X} + XX, +e)

7(X,e€)

where ¢ ~ N(0,0.5%) controls the deviation of z(X) from a logistic regression model. The treatment variable D can then be determined
based on V and the latent compliance subgroup membership via the following equation

V, Compliers,
D= 1, Always takers,
0, Never takers.

With D, V, and the latent compliance memberships, the response Y for compliers and non-compliers are generated from the

Table 2

Results for the two stage method and the joint regression method under four different combinations of (G (-),Gz(+)), denoted as Joint 1-4, with n =
3000 and @ = {0.1,0.2,...,0.5}. Bias, Emp var, Boot var, Boot SD, and Cov 95 stand for average bias of the estimated coefficients, empirical variance,
average variance estimates, average standard error estimates, and coverage probabilities of the 95% confidence intervals.

a Two-stage method Joint regression method
Joint 1 Joint 2 Joint 3 Joint 4
0.1 Bias —0.018 — 0.004 —0.025 —0.029 — 0.008
Emp var 0.043 0.046 0.199 0.198 0.045
Boot var 0.042 0.047 0.048 0.046 0.045
Cov 95 0.931 0.940 0.936 0.932 0.932
Boot SD 0.204 0.215 0.217 0.213 0.211
0.2 Bias —0.014 —0.036 —0.098 —0.099 —0.038
Emp var 0.021 0.157 0.958 0.961 0.159
Boot var 0.020 0.061 0.030 0.030 0.061
Cov 95 0.939 0.942 0.932 0.932 0.940
Boot SD 0.142 0.162 0.154 0.153 0.161
0.3 Bias —0.014 - 0.010 —0.120 —0.120 —0.011
Emp var 0.014 0.014 1.374 1.374 0.014
Boot var 0.013 0.020 0.022 0.022 0.020
Cov 95 0.937 0.939 0.929 0.928 0.938
Boot SD 0.114 0.120 0.125 0.123 0.120
0.4 Bias —0.007 —0.031 —0.178 —0.178 —0.032
Emp var 0.009 0.168 3.196 3.196 0.169
Boot var 0.009 0.158 0.016 0.016 0.158
Cov 95 0.951 0.949 0.936 0.935 0.949
Boot SD 0.097 0.126 0.107 0.107 0.125
0.5 Bias —0.017 —0.091 —0.342 —0.343 — 0.092
Emp var 0.007 0.415 4.466 4.466 0.418
Boot var 0.007 0.290 0.019 0.019 0.290
Cov 95 0.940 0.937 0.910 0.910 0.935
Boot SD 0.085 0.151 0.101 0.100 0.151
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following model:

v — logz — 0.2X; — 0.3X, + 0.5 x exp(0.37) x D, Compliers,
T —0.1X; — 0.2X, + 0.2D + €, Otherwise,

where 7 ~ Unif(0,1) and e, ~ N(0,0.52). We note that the data generating mechanism satisfies Assumptions (A1)-(A4).

Results with n = {500, 3000} for @« = {0.1,0.2,0.3,0.4,0.5}, averaged across 1000 replications, are presented in Table 1. We see
that the performance of the proposed method is close to that of the oracle method, i.e, the estimated parameters of interest are close to
their corresponding true underlying values. Moreover, the empirical coverage probabilities of 95% confidence intervals are close to the
nominal level, and the bootstrap-based variance estimates agree well with the empirical variances. In contrast, the naive method
produces substantially biased estimators and suffers from under-coverage. The numerical results confirm that ignoring treatment
endogeneity can lead to biased estimation and inference. We see that as we increase the sample size to n = 3000, the bias of the
proposed method further diminishes.

Next, we compare the numerical performance between the proposed two-stage method and the joint regression method in Chen and
Yen (2021) with different choices of specification functions G;(-) and Ga(-). Specifically, we consider four combinations of (G;(-),
Ga(+)), where Gy (z) = z or 0, and G»(2) = exp(z) or log{1 + exp(2)}. The initial values for the joint regression method are generated
from the normal distribution with mean equal to the estimator obtained from the proposed two-stage method and standard deviation
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Fig. 1. The error of estimated complier expected shortfall treatment effect, 71 (@) — y; (@), based on random initial values with sample size n = 3000.
From left to right, each column represents 7; (a) from the proposed two-stage method and joint regression method with different specifications of
(G1(+), G2(+)), which are denoted as Joint 1-4. From top to bottom, each row represents 7; (@) calculated at « = {0.1,...,0.5}.



B. Wei et al. Journal of Econometrics 238 (2024) 105572

equal to one. The non-parametric estimated conditional probability of complier group described above, k,, are adopted in both
methods. In each setting, we generate 1000 simulated data sets and choose B = 1000 as the number of bootstrapped samples.

Results with n = 3000 for @ = {0.1,0.2,0.3,0.4,0.5} are presented in Table 2. Histograms of 71(a) — yj(a) across the 1000
simulated data sets are also shown in Fig. 1. We found from Table 2 and Fig. 1, that the proposed two-stage method and joint regression
method have two main differences in their numerical performance: (1) the distributions of 1000 estimators from the proposed two-
stage method across all a levels are well approximated to a normal distribution, while the distributions of 1000 estimators from
the joint regression method are not well approximated by a normal distribution for some « levels; (2) the estimated coefficients from
the proposed two-stage method are close to the true underlying value, while the estimates from the joint regression method are not
close to the true underlying values for some « levels. One potential reason for the differences is that the joint regression estimators are
obtained from solving a non-convex loss function for which global minimum is not guaranteed. Thus, the estimators may be sensitive to
the choice of initial values.

In short, our numerical results suggest that without taking into account compliers can lead to substantial biased estimation and
inference. Compared to the joint regression approach, our proposed two-stage method has a more robust and stable numerical per-
formance. Moreover, the proposed method can be implemented efficiently compared to that of the joint regression approach in Chen
and Yen (2021).

6. An application to the JTPA dataset

Job Training Partnership Act (JTPA) is a large publicly-funded training program that began in year 1983. Title II of JTPA, the
largest component of JTPA, provides training for economically disadvantaged adults. In this study, applicants were randomized for
JTPA trainings in the application process, but did not compel those offered services to participate in training. We consider a dataset
from Title II of the JTPA study that includes 6102 adult women and 5102 adult men who applied for JTPA between years 1987 and
1989. The objective is to quantify the effect of JTPA training for the low-income groups. This dataset has also been considered in
Abadie et al. (2002) in estimating complier quantile treatment effect of JTPA training on the 30-months earnings.

In this dataset, the response variable is the 30-months earnings, and the observed covariates include race of applicants, whether
participants graduated from high-school, including general educational diploma (GED) holders, marital status, age, aid for families
with dependent children (AFDC) receipt (for women), whether worked at least 12 weeks in the 12 months preceding random
assignment, the original recommended service strategy (classroom training, on-the-job training (OJT)/job search assistance (JSA), and
others), and whether the data are from the second follow-up survey. The summary statistics of the covariates for adult women and men
are shown in Table 3. From Table 3, we see that only around 60% percent of participants who are offered the JTPA services actually
receive the JTPA training. Besides, the percentage of participants with high school degree in the trainee group is higher than that of the

Table 3
Descriptive statistics of variables for participants in JTPA dataset, overall and stratified by the JTPA training status for men and women.
Gender Variable Entire Sample (N = Assignment Treatment
5102) Training (N = Non-training (N = Trainee (N = Non-trainee (N =
3339) 1703) 2136) 2966)

Men Training 0.42 0.62 0.01 - -
High School or GED 0.69 0.60 0.69 0.71 0.68
Age 3291 32.85 33.04 32.76 33.02
Married 0.35 0.36 0.34 0.37 0.34
Black 0.25 0.25 0.25 0.26 0.25
Hispanic 0.10 0.10 0.09 0.10 0.09
Worked less than 13 weeks 0.40 0.40 0.40 0.40 0.40
Data from the second follow-up  0.29 0.30 0.28 0.30 0.29
survey
classroom training 0.20 0.21 0.19 0.26 0.16
OJT/JSA 0.50 0.50 0.50 0.46 0.53

Gender Variable Entire Sample (N = Assignment Treatment

6102) Training (N = Non-training (N = Trainee (N = Non-trainee (N =
4088) 2014) 2722) 3380)

Women  Training 0.45 0.67 0.02 - -
High School or GED 0.72 0.73 0.70 0.75 0.70
Age 33.33 33.33 33.35 33.11 33.52
Married 0.22 0.22 0.21 0.22 0.21
Black 0.26 0.27 0.26 0.26 0.27
Hispanic 0.12 0.12 0.12 0.12 0.11
Worked less than 13 weeks 0.52 0.52 0.52 0.51 0.53
Data from the second follow-up  0.26 0.26 0.25 0.26 0.25
survey
classroom training 0.38 0.38 0.39 0.45 0.33
OJT/JSA 0.37 0.37 0.38 0.32 0.42
AFDC 0.31 0.30 0.31 0.32 0.30
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non-trainee group. These imbalances suggest the existence of some unmeasured confounders that affect both the JTPA training status
and potential earnings. Without considering these confounders, the standard method may fail to provide a valid estimate of the effect
of JTPA training among low-income subpopulation.

We first estimate the complier proportions for men and women group, p., by

D1 =Vi) (1 =DV

Pe = 1-— 7 n
Zi:l(l - Vi) Zi:lv"

Specifically, the estimated complier proportions for men and women are 0.61 and 0.64, respectively. We apply the proposed CRESTE
method to estimate the effect of JTPA training for low-income adult men and women separately, using the offer of JTPA service as the
instrumental variable. As discussed in Abadie et al. (2002), the validity of using JTPA service as an instrumental variable is guaranteed
by the fact that the training offer is randomly assigned. For both of the analyses, we adjust for the following covariates: dummy
variables for black and Hispanic applicants, an indicator variable for high-school graduates (including GED holders), an indicator for
married applicants, 5 age-group indicator variables (22-25, 26-29, 30-35, 36-44, 45-54), an indicator for AFDC receipt (for women),
an indicator variable recording whether the applicant worked at least 12 weeks in the 12 months preceding random assignment,
dummy variables for the original recommended service strategy (classroom, OJT/JSA, other), and an indicator for whether earnings
data are from the second follow-up survey.

We perform our analysis for adult men and women separately at @ = 0.25 and 0.5, which are the groups of men or women whose
30-months earnings are below the first quartile and the median of the 30-months earnings (after adjusting for the covariates),
respectively. We apply the proposed method and the as-treated method, which refers to applying the two-stage method of Barendse
(2020) to the entire dataset. We use the same variables as those of Abadie et al. (2002) to estimate «, ;, where r is estimated by the
empirical estimator of E(V). We use 30-month earnings to estimate v for adult men, and 30-month earnings and the classroom training
indicator to estimate v for women. We adopt the fourth-order Epanechnikov kernel in V;, and the bandwidth is selected via
cross-validation. In our analysis, the selected bandwidths are 5200 and 7800 for adult men and women, respectively.

Table 4 presents the estimated CQTE and CRESTE (with standard errors computed via the bootstrap) of the effect of JTPA services
on earnings for both men and women subgroups. From Table 4, we see that the proposed method concludes that JTPA training does not
have a statistically significant effect on improving earnings for low-income men. In contrast, the as-treated method overestimates the
effect of JTPA training on earnings and the conclusion obtained from the as-treated method can be misleading. From the discussion in
Abadie et al. (2002), the difference between these two methods may be due to self-selection or an effort by program operators to
exclude men with low earnings potentials from JTPA training. In contrast, both results from the as-treated analysis and the proposed
method show that the JTPA service has significant effect on improving earnings for low-income adult women, even though over-
estimation of the effects from the as-treated analysis remain visible. Quantitatively we note that for adult women in the lower half of
their earnings (after adjusted for the covariates), the average JTPA training effect is about $1086, much lower than the median effect of
$1760. It is notable that CQTE and CRESTE at the 0.25 quantile level do not differ much for women, which indicates that we do not
have a significant spread toward lower values of the response below the first quartile for women. The difference between CQTE and
CRESTE at a = 0.25 is greater for men than that of women, which suggests a greater lower tail spread for the effects of JTPA training in
terms of the 30-month earnings for men than for women.

7. Discussion

We consider estimating the CRESTE, i.e., the expected shortfall treatment effect for the compliers, in observational studies.
Different from the quantile treatment effect, the expected shortfall treatment effect measures the aggregate quantile treatment effect
over the lower (or upper) tail of the conditional distribution for the response variable. Moreover, the average treatment effect can be
treated as a special case of the expected shortfall treatment effect with a = 1.

We propose a two-stage method to estimate CRESTE by utilizing the special characteristic of a binary instrumental variable. The
proposed two-stage estimation procedure involves solving a weighted quantile regression to obtain the thresholding quantile at the
first stage, and solving a weighted least squares problem to estimate the expected shortfall parameter at the second stage. The method

Table 4
The estimated coefficients (Est) and the corresponding estimated standard error (Boot SD) of JTPA trainings from the proposed CRESTE method and
the as-treated method in JTPA dataset at « = 0.25 and 0.5.

Gender a CRESTE As-treated
hi(a) n(a) pi(a) r(a)
Men 0.25 Est 755 383 2510 1502
SD 588 408 397 211
0.5 Est 1663 921 4420 2984
SD 986 617 673 358
Women 0.25 Est 657 633 1013 792
SD 222 187 177 129
0.5 Est 1760 1086 2707 1633
SD 606 323 427 221

11



B. Wei et al. Journal of Econometrics 238 (2024) 105572

can be readily implemented using existing software such as the R package quantreg or conquer (Man et al., 2022) for solving a
weighted quantile regression, and the 1m function in base R for solving the weighted least squares problem. Compared to the approach
in Chen and Yen (2021) that requires solving a non-convex loss function, we demonstrate in numerical studies that the proposed
two-stage method has a more stable solution and is computationally efficient. Theoretically, the estimated CRESTE from the proposed
two-stage method is locally robust to the estimates of quantiles at the first stage due to Neyman-orthogonalization in the relevant
expected shortfall score function.
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Appendix A. Propositions

Proposition 1. Under Assumptions (A1) and (A2), Models (7) and (8) are equivalent.
Proof. Given the fact that Y =D x Y; + (1 — D) x Yy, we have

0.(Y|D =1,X,D, > D,) =inf{y:Pr(Y <y|D=1,X,D, >Dy) > a}

=inf{y: Pr(Y; <y|D=1,X,D; > Dy) > a}

Since V = D for the compliers, we have inf{y : Pr(Y; <y|D = 1,X,D; > Do) > a} = inf{y: Pr(Y7 <y|V =1,X,D; > Do) > a}. Under
Assumptions (A1) and (A2), we have

inf{y : Pr(Y; <y|V=1,X,D, >Dy) >a} =inf{y:Pr(Y; <y|X,D; > D) > a}

= 0.(Y1|X,D, > Dy).

Similarly, we have Q,(Y|D = 0,X,D; > Do) = Q,(Yo|X,D1 > Dy).
The aforementioned equations imply that Q,(Y|D = d,X,D; > Do) = Qu(Y4|X,D1 > Do) for d = {0,1}. Similarly, we have

1 "
S.(Y|D =d,X,D, > Dy) i&/ 0.(Y|D =d,X,D, > Dy)du
0

1/

:7/ 0.(Y4|X,D, > Dy)du
aJo

iS{),(YdLX,Dl >D0)

Thus, Model (7) and Model (8) are equivalent.[]

Proposition 2. Under Assumptions (A1) and (A2), in the one-sided compliance case where subjects with V = 0 have no access to the
treatment (i.e., Pr(Dy = 0|X) = 1), y1(a) = Se(Y1]X,D = 1) — Su(Yo|X,D = 1).

Proof. From the proof of Proposition (1), we have S,(Y|D = d,X,D; > Do) = S,(Y4|X,D1 > Dy). Thus,

yl(a) iS(;((Yl‘X,D] >D0)7Sa(Y0|X,D] >D0)
= S,(Y|D = 1,X,D, > Dy) — S4(Y|D = 0,X,D; > Dy).

Note that Pr(Dg = 0|X) = 1 implies that subjects with D = 1 must belong to the complier group. Given the factthatY =D x Y; + (1 —
D) x Yy, we have

0.(Y|D=1,X,D, >Dy) =inf{y:Pr(¥, <y|D=1X,D, >Dy)>a}
=inf{y: Pr(Y, <y|D=1,X)>a}
=0.,"|X,D=1).

Moreover,

Q.(Y|D =0,X,D, > D) =inf{y:Pr(Yy <y|D=0,X,D; > Do) > a}
=inf{y:Pr(Yo <y|V=0,X,D,=1) >a}
=inf{y:Pr(Yo <y|V=1,X,D,=1) >a}
=inf{y:Pr(Yo <y|D=1,X)>a}

= 0.(YoX,D = 1),

where the second equality follows from the one-sided compliance constraint, Pr(Dy = 0|X) = 1, and the third equality is ensured by
Assumption (Al). Assumption (A1) along with Pr(Dy = 0|X) = 1 further imply the fourth equality.
For d = {0,1}, we have

12
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1
(YD =1,X) :a/ﬂQu(Y,,\D:LX)du
0

= é/od 0.(Y|D =d,X,D, > Dy)du

= S,(Y|D =d,X,D, > D).
Thus, y; (@) = S,(Y1|X,D1 > Do) — Sq(Yo|X,D: > Dy) is equivalent to S,(Y1|X,D = 1) — S,(Yo|X,D = 1).[J
Proposition 3. Let ,(Y,Z) = Pr(D; > Dy|Y,Z). Under Assumptions (A1)-(A4), we have

D{1 —v(Y,Z)} (1 -D)(Y,Z)
1—z(X) z(x)

(Y.Z)=1-

where v(Y,Z) = Pr(V=1|Y,Z) and z(X) = Pr(V = 1|X).
Proof. Note that D(1 — V) only differs from zero when D = 1 and V = 0. By the monotonicity assumption, Dy = 1 implies D; = 1.
Then

E{D(1-V)|Y,Z} =Pr{D(1-V)=1|Y,Z} =Pr(D; =Dy =1,V =0|Y,Z)
=Pr(D, =Dy = 1|Y,Z)Pr(V = 0|D; =Dy = 1,Y;,X)
=Pr(D, =Dy = 1|Y,Z)Pr(V = 0|X),

where the last equality follows from Assumptions (A1) and (A4), i.e., V is independent of (D1, Do, Y1, Yo) conditional on X. Similarly,
we can show that E{(1 — D)V|Y,Z} = Pr(D; = Dy = 0|Y,Z)Pr(V = 1|X). Therefore,
D{1 —v(Y,Z)} B (1 —D)v(Y,Z)

1—z(X) n(X)

D(1-V)  (1-D)V
- [E{l TPr(V=0X) Pr(V=1X) .z}

=1 —Pr(D1 =Dy = 1|Y7Z) —Pr(D| =Dy = 0|Y7Z)
=Pr(D, > Dy|Y,Z),

1-—

where the last equality follows from the monotonicity assumption.[]

Appendix B. Proof of Theorems 1-3

We start with some lemmas that will be helpful in proving Theorems 1-3. The proofs of the Lemmas are deferred to Appendix D.

Lemma 1. Under Conditions (C1)—(C8), we have

71/ZZKHZga1 Y ﬁ _nil/zz\ll +0p

where ¥i(a) = m3 (¥, Zi, o) {1 240 DU o o (X, @) {Vi ~(X,)}, with m2(Y;,Z;,@) = Zigui(y' B') and Ho(Xi,a) = E[ms(¥;.Z,
(1-D)v;  Di(1-w)
(1){ 2 (1*771’)2}

Lemma 2. Under Conditions (C1)—(C8), we have

SR Zdam 1(v<Z] )} = fl/zzq> )+ 0,1

i=1

Xi] )

where ®;(a) = my (i, Zi, ) {1 ~4¥0 (B0 4 By (X, a) (Vi ~#(X)}. Here mi(Y;,Zi,a) = Zi{a ~1(Y; < Z] §)} and Hi(Xi, @) =

Elma (¥, 2, o) {052 — B .

B1. Proof of Theorem 1

Proof. This proof of Theorem 1 is adapted from the proof of Theorem 3.1 in Abadie et al. (2002), which we detail here for
completeness. Let L (§,x) = > 1 1 Li(§, «) with

(&, k) = kv i{pa (e —n'PZ]E) —p, (e},

13
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where ¢; = Y; — Z] §" and p,(u) = uf{a — I(u < 0)}. Similarly, let L,(§,%) = >, L(§, %) with §(&,X) = Ki{pe(e — n7Y2Z[E) — p, (&)}
The function L,(,%) is a convex function with respect to ¢ and a minimizer takes the form ¢, = n'/ Z(E — B*). Besides,

ali(gv K) —

o —n’l/ZZ,-K,._,»{a—I(e,» —n’l/ZZiTI; < O)}7

almost surely. Denote [(,x) = x,{p,(e —n"1/2Z7¢) — p,(¢)}, where ¢ = Y — ZTp*. By Condition (C4) and Weierstrass domination, we
have

%\?0 = —n"V2EZi,{a—I(e < 0)}] =0,

and

OE{l(¢,x)

e }|§ o = —n"E{f(Z"B"|Z,D, > Do)ZZ" |D, > Dy}Pr(D, > Dy)

=n"'"E{I(D, > Do)f(Z"$*|Z,D, > Dy)ZZ"}
=n'J,.

From Conditions (C3) and (C4), J; is nonsingular. By a Taylor’s expansion, we have

E{L,(6,0)} = 38718 + 0, (1) ®.1)
To prove Theorem 1, we first show
L(6R) = L6 0} —n 2 S Rl ela—1(er < 0)} +0,(1). 3.2)
i=1
Note that

LER) = ELE0) + L&) - HL G
= E{L,(¢,x)} *‘/ZZK,, Te{a —1(e; < 0)}
+ L@y Rz gl I <0) - E(L G 0)

For notational convenience, let U,(Zi,«, &) = Li(L, k) +n Y2k, ;2] t{a —I(e; < 0)} and let Uy(Z;, X, §) = L(§, %)+ n V%%, 2] t{a —
I(e; < 0)}. Then,

L,,(C,’E) = [E{L*l (gvk)} + [L*l (C;ki) - [E{LH(CK)}]
=L x)}—n'? Y Rz tla—I(e; <0)}

i=1
+ z U, (Z:,7,8) — Z U(Z:,x,€)
+ ; U,(Z:,x,8) — E{U,(Z:,x, )}
The last equation holds because E[k,;Zi{a — I(¢; < 0)}] = 0.
Let f.z(-) and F,z(-) be the conditional density function and cumulative distribution function of e given Z, respectively. Since ¢ = Y
—Z"p* and
lpaler=n""PZE) — (es—n"'PZ]){a—1(e: < O)}| < I(|ei| < |n7'PZTE]) - |71 P2]Y],

we have

14
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E[n- |p(ei —n "' ?Z]E) — (e; —n'PZ[E){a — I(e; < 0)}]]
< Ell(ei] < In"2]g)) - In'PZ] ]

12T e\ _ | —1/2T
B [E{Fe\zun 28]~ Fa =1 2]8) ®.3)
n
=2E[f2(0)[2]¢["] < o0.
Then,
SV 270~ V(2.0
< Ros =kl - {pa (e = 7' Z]8) = (e — 2] ) fa — 1(e; < 0)}}| (B.4)
i=1

< suAp\E,_,,‘ — Kl,_,»\% Zn |/)a(e,- — n‘l/2ZiTé_',) — (ei — n']/ZZiT(‘;) {a—1I(e; < O)}|
i i1

Besides, from Conditions (C7) and (C8), Lemma B.3 of Newey (1994) implies sup;|[V; —v| = 0,(n"/*) and sup;|7; — | = 0,(n"1/4).
Then by Condition (C5), we have sup;|%,; — &,;| = 0,(n"/*). From Condition (C6), we can obtain

sup Kyi — K‘,7,-| =o0, (n"/“). (B.5)

Coupled with Eq. (B.3) and sup;[K,; — kv;| = 0,(n"/*), Eq. (B.4) implies that

I UL(Z:,%,6) — Ua(Zi,%,8)] =0,(1). (B.6)
i=1

Besides,

i=1

[E|:<’ZIUn(Zi7K7€) — H{U.(Z;,x, §)]’>2:| < é[E{Un(ZnK:C)Z}

(B.7)
< E{1(lal < In™"72] 8] - 2]}

-0,

where the first inequality follows from the cancellation of cross-product terms. Based on Egs. (B.6) and (B.7), we have
L,(&R) = E{L,(&,x)} —n ' KZ] tla—I(e < 0)} +0,(1).
i=1
Next, we will show &, = n'/2(B — p*)—4N(0,J;'@,J;). From Egs. (B.1) and (B.2), for a given ¢,

LR = ELER}—n Y 72 a1 <0)) +o,(1)

i=1

- %gmg a2 i:a,[zjg{a —I(e; < 0)} + 0, (1).

i=1

Since L, (&, %) +n~1/2 Z?:lEV_iZiT ¢{a—I(e; < 0)} is convex in & From Pollard’s convexity lemma (Pollard, 1991), for any compact subset
7 cRM, we have

sup|L, (&%) +n"/? iailfé{a—l(ei <0)} —%CTJIQ = 0p(1). (B.8)
¢e7 i—1

Letn, =J7n V231 %, Zi{a — I(e; < 0)}. Note that

1 1 X 1
&= E=m) ==Y Rz a1 < 0} +5m, e
i=1

From Eq. (B.8), for any compact subset t7CIR”1, we have
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SUp L (€ 7) = 5(6 ) (€= m) + guidim, = 0,(1)
Finally, by an application of Lemma 3 in Buchinsky and Hahn (1998), we have {, =0, + 0,(1). From Lemma 2, we have
n2(B— ) =N (0,J7'Q1J)
as desired.[]

B2. Proof of Theorem 2

Proof. From Theorem 1, we have || f — * |[=p0. By the definition of y*, E{I(D; > D¢)Zg,(Z,y*,$")} =0.Foranyb € . andb # y*, we
have

E{I(Dy > Do)Zg.(Z,b,$")} — E{I(D1 > Do)Zga(Z,¥", )}

[E{I(Dl > DO)Z(ZTb fé(y —-Z'BN(YL<Z'B) — ZTB*>

—-I1(D, > DU)Z(ZT g —é(y —-Z'BN(YLZT) — ZT[}*>]
= E{I(D, > Dy)ZZ"}(b —v").

Thus, E{I(D; > Do)Z8,(Z,b, ")} = E{I(D1 > Do)28,(Z,y*,p*)} = 0 if and only if E{I(D; > Do)ZZ" }(b — ¥*) = 0. By Condition (C3), i.
e., E{I(D; > Dg)ZZ"} is of full rank, we have E{I(D1 > Do)Zg,(Z,b,p*)} = 0 if and only if b = y*. Thus, y* is the unique solution of
E{I(D1 > Do)Zg.(Z,b,$")} = 0.

Next, we will show that n' 31 1 %,:Zig,:(b, ﬁ) uniformly converges to E{x,Zg,(Z,b,$")} for b € . and B given that I [ Bl =
0p(1). By adding and subtracting terms, it can be shown that

n! ZEL’,[Ziga.[(b’ ﬁ)
i=1

= [E{KVZg(l(Z:b7 B*)} + }’l71 Z K\’,iZiga,i(b7 ﬁ*) - [E{K\’Zga(zy bv ﬁ*)} (B.g)

i=1
n

+n! (Ev,i - Kv.[)Ziga,i(b7 B) +n! Z Kv,iZ[{ga,i (b, ﬁ) — 8ai(b, ﬁ*)}
i-1 i=1
Let In(b) = n' YL kviZigei(b, B*) — E{xZ8a(Z,b,B")}, Wa(b) = n' 1L, (R — kvi)Zi - 8ui(D, B): and IL,(b) = n 'YL ki Zi{gui(b,
B) — .:(b, p")}. To prove that n Y KviZi - 8ai(b, PB) uniformly converges to F{x,Zg,(Z,b,p")} for b € .2, it is sufficient to prove
suppe 5| 1n(B) [| = 0p(1), supye 4|l a(d) || = 0,(1), and sup, || Mha(B) || = 0,(1).
Firstly, by the boundedness b € .2, Y; and Z;, || I,(b) ||—,0 pointwisely by weak law of large numbers. Since .% is a compact space,
we have || I,(b) || uniformly converge to 0 for b € .. Besides, from the compactness of Z; and Y;, Eq. (B.5) implies that sup,. || II.(b) ||

= 0p(n~Y/*). To prove sup,. || () || = 0,(1), by the fact that [I(Y < u)(Y — u) — [(Y <v)(Y — )| < |v— ul, we have

|ga(Z,b, B\) - gll(vav ﬂ*)‘

LB S22 -2 P <2 ) -2

1 i . . ~ . .
S Sl =Z)Y <Z'F) — (Y =Z'B)I(Y <Z'B)| +[2'p ~Z'B]
1 ~
< <&+ 1) 1Z'8" —Z"B|.
By the assumption that || Z || is bounded, there exist a constant C, such that sup,|Z"p* — Z"B| < C ||p — "||. Therefore,

sup [6,(2:0.8) ~ 22,09 < (3 +1) 1 B9 8.10)

Zber

By | P - p*||=0,(1) from Theorem 1, we have

sup|| IIL, (B) || < sup|i,|sup||Zi| sup |gu(Z,b,B) — gu(Z,5,B")]
bez i i Zbexn

(B.11)

IN

1 =
supl fsuplz €5 1) 1B =B = o,(0).
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Therefore, we have n*lzizl?v_izjga_i(b, ﬁ) uniformly converges to E{x,Zg,(Z,b,*)} for b € 2. By the definition of ¥ and y*, we
have
0= n' Z%v.iziga.i(:{\v ﬁ)
i=1

= ErZg(Z,7,B")} — EH{xZga(Z, 7", 8")} + 0,(1)
= E{&ZZTY7 —7") +o0,(1).

From Condition (C3), we have || ¥ — v*|| = 0,(1).0J

B3. Proof of Theorem 3

Proof. In the first step, we will show that | 7 — y*||=0,(n"/*) given that || p — p*|| = 0,(n"1/*). To prove it, we firstly show that sup, ||
n At %iZ{ 8.i(b,B) — E{xvZ8u(Z,b,p*)} || = 0p(n"1/*). From Eq. (B.9), we have

n! Xn:’fv.,lfga,,-(b, B) — E{x,Z24(Z,b,B")} = L,(b) + I, (b) + IIL, (B),

i=1

where I,(b), II,(b) and III,(b) are defined in the proof of Theorem 2. Thus, we only need to show that sup,. ;|| I,(b) || = 0,(n"1/4),
suppes || a(B) || = op(n~1/4), and sup,. || HI,(b) | = 0,(n"1/*). In the proof of Theorem 2, we have shown that sup,c || I, (3) || =
op(n’l/“). From Egs. (B.10) and (B.11) in the proof of Theorem 2, we have

sup|| T, () || < suplx, ;[sup||Zil|sup|ga(Z,b, B) — 84(Z, b, $")]
be7 i i be 7

1 (B.12)
< sl fsupl2)| C(+1) 15 =B

Given that || § — B*|| = 0,(n"1/4), we have sup,.,

W, (B) || = 0p(n1/4).
It remains to show that sup,. || I.(b) || = 0,(n"'/*). To prove it, we firstly show that {x,Zg.(Z,b, ") : b € #} is a Donsker class.

Given the boundedness of Z and «,, and the compactness of .%, || k,Zg,(Z,b, ") || is uniformly bounded on .. Moreover, for bb e 7,
given the boundedness of Z, there exist constant C;, such that

| k,Z8u(Z,b,B") — x,Z84(2.5,8)|=I<.2Z7 (b~ B) | <C1[| b5 |.
Hence, x,Zg,(Z,b,$") is a type IV (type 4) function defined in Andrews (1994) with p = 2 and satisfies Ossiander’s L, entropy condition
in Andrews (1994), which implies that {x,Zg,(Z,b,p") : b € #} is a Donsker class. Thus, from the law of iterated logarithm for
empirical process on Vapnik-Cervonenkis (VG class (Alexander and Talagrand, 1989), we have

SUPpes || o1 kviZigai(b, B°) —E{xvZ8.(Z,b,$")} |= O(n}/(loglogn)) almost surely, which implies that sup,c || In(b) || = 0p(n/4).
Coupled with Eq. (B.9), we have

sup || n'/* 7! Z?V,,Z:ga:,‘(b, B) — E{x,Zg4(Z,b, [3‘)}:| l= 0,(1). (B.13)
bez pary
Since 11"} %,.iZig.i(¥. B) = 0 and E{x,Zg,(Z,y",p)} = 0, we have
0= n7] Z”zv.iziga,i(?v B\)
i=1

= H{rxZg(Z,4,P")} — E{xZgua(Z, 7", B")} +

! Z?v.flfga,,-(?, B) — E{xZg.(Z.7. ﬁ*)}:|

i=1

= HxZZ'}7-71)+

! Z?('lv.iz;rga.i(?y ﬁ) — E{x,Zg.(Z,7, ﬁ‘)}}
i1

From Condition (C3) and Eq. (B.13), we have || ¥ — v = op(n~1/4).
Next step, we will prove that

n'PE,ZZT) (¥ —y") = —n ' Z;v.iziga,i("!*7 B°) +0,(1).

i=1

Note that
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0= n71/2 Z‘k/\v,iziga,i(?7 ﬁ)
i=1

= n'2 ZEv,iL&x,i(Yﬂ B)
i=1

+n71/2 Z(’E\@i - Kv.i)Zi{ga,[(/’Y\: B\) - 8{1,5(7*7 ﬁ*)}

+n1/2[E[KVZ{g(1(Z= ?7 ﬁ) - ga(Z% 7*7 ﬁ*)}]
+Gn(/y\> E) - Gn(y*% ﬁ*) (B.14)

= 'Y RiZigai(r',B)
i=1

+n71/2 Z(E\f,i - Kv.i)Zi{ga,[(/’Y\7 B\) - gu,[(y*ﬁ ﬁ*)}

i=1

+n'PEZ{ga(Z, 7", B) — gu(Z,¥",B7)}]
+n'PE(k,ZZT)(F ")

+Gn(?7 ﬁ) - G"(Y*, ﬁ*)7
where G, (b] ,bz) = Tlil/ZZ;[:lKV‘iZigayi (b] ,bz) — Tll/z[E{KVZga (Z,bl ,bz)}.

Let r7n.,1 = nil/zzlil (ﬁk'v,i - Kv,i)Zi{ga,i(?vﬁ) - gﬂ.i(Y*vﬁ*)}, T n2 = nl/z[E[KvZ{ga(ZsY*vﬁ) - ga(ZsY*vﬁ*)}L and ~7n,3 = Gn(?ﬁ) -
Gn(Y*,B"). In the following, we will show that || .7 ;||=0,(1) for i = {1,2,3}.
We start with showing || .71/ = 0,(1). Note that

n

H =7n.1H: H n'/? Z(%u‘ - KL’,[)Z[{gll,[(?7E) - gu.[(y*s 6) +ga,i(Y*7 E) - ga.,i(Y*, ﬁ*)}H

< | a2 Z(;w' - Kv,i)Zi{ga,i(?v ﬁ) —8ai(Y", 6)}” (B.15)
a2 (R — k) Zi{ (. B) — 2ai (0 B -
i=1

Moreover, we have

12 Z(?‘”i — ki) Zi{8ai (¥, ﬁ) —8ai(¥", B)}
p

2N % ezl zs Yy — 28y <278) — 278
nlz;(xw K‘,v,)z,[{zi a(y, ZIB)I(Y:<Z[B) Z,.ﬁ}

(B.16)
1 ~ ~ ~
RZy —— (v, =Z]B)I(Y; <Z[B) - Z]
{1 (l(l IB)(’—xﬁ) rﬁ}:|
= 2 Z(E\,Y; - K‘,7,-)Z,-ZiT(/7\ —¥).
i=1
Also, based on Equation (B.10), we have
H n7]/2 Z(?v,i - Kv,i)zi{ga,i(y*: E) - g(x‘i(y*vﬁ*)}l‘
i=1
< Y R al 121 sup [go(Z.b, B) — 2u(Z.b,B")] (B.17)
i1 bez
n 1 N
< P R — el 12 €=+ 1 -p -
< n ;\K. Kol [1Zil C{ o+ 1) 1B —B" |
Coupled with the Egs. (B.15), (B.16) and (B.17), we have
. B n 5 . N B n ~ 1 N .
|7l a7 (®or = k) ZZ] G =) | 4072 R — Ko HZ,v||<a+1>CHﬁfﬁ [ (B.18)
i=1 i=1

Since sup;[R,; — xi| = 0p(n7/*), || B— [l = 0p(n"*), and || ¥ — ¥°|| = 0, (n"/*), (B.18) implies that || 7 s || = 0,(1).
Next, we will show that || .7 2| = 0,(1). Let V denotes vector differential operator. By a Taylor’s expansion, we have
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I n'ElcZ{ga(Z,7". B) — 8a(Z,7", )] R
|| 1 PE{ 02V a2 V)], (B~ B) JII 4120, (1B — B7I).

From the definition of p*, we have

(B.19)

[E{K\’Zvvgfl(z7 Y*vv)‘v:ﬁ"}
= Pr(D1 > Do)E[ZN,8u(Z,¥", V) ,—p: ID1 > Do]

1 .
= Pr(D, > D())[E{Z{EFY(ZT[HZ,D, > Dy) — 1}ZT|D, > DU]
= 0.

Thus, by (B.19), we have || .7 ]| <n'/20,(||p — p*||2) = 0,(1) by the assumption that || § — p*|| = o, (n~1/4).

To prove || .7 3|l = 0p(1), we adopt a similar argument in the proof of Lemma 3 in Barendse (2020). Specifically, for any b; € %
and by € %, || kvZg4(Z,b1,b>)|| is uniformly bounded over .% x .% based on the boundedness of «, and Z, and the compactness of .%
and .%. Moreover, for any b1.,I;1 € .% and bz,;z € %, we have

| K,Zga(Z.b1,bs) — k,Zga(Z. 51, D5)|
| ,284(Z,b1,bs) — k,284(Z,b1,bs)|| + |[K,Z84(Z,b1,bs) — k,284(Z, b1, b,)| (B.20)

IN

IA

- 1 ~
sup | 211 =Bl +sup 12 (541025 )

The last equation follows from Eq. (B.10). Hence, x,Zg,(Z,b1,b2) is type IV (type 4) function in Andrews (1994) and satisfies
Ossiander’s Ly entropy condition. Following the similar argument in the proof of Lemma 3 in Barendse (2020), Doukhan et al. (1995)

and Eq. (B.20) imply that stochastic equicontinuity holds for x,Zg,(Z,b1,b>), which implies G (7, ﬁ) — Ga(v",8") = 0p(1).
From Eq. (B.14), we have the following equation

nl/z[E(KvZZT)(/’Y\ - Y*) = 7”71/2 Z%\f.izigu.[(y*7 ﬁk) + op(l)‘

i=1

Coupled with Lemma 1, we have

n'PE{I(D, > D))ZZ"Y(¥ — ") = n~ '/ i\l‘f(a) +0,(1). (B.21)
i=1

Therefore, n'/2(§ — v*)—=4N(0,J5'QuJ51), where Jo = E{I(D; > Dy)ZZ '} and Q, = E{¥(a)¥(a) " }.O0
Appendix C. Theoretical justification for the standard nonparametric bootstrap inference procedure

In this section, we will prove that n!/2{g —B} given the observed data is asymptotically equivalent to n}/2{B —*} given Conditions
(C1)-(C8), where g is bootstrapped counterpart of p. We will also prove that nl/ 2{yt -7} given the observed data is asymptotically
equivalent to n'/2{¥ —y*} given Conditions (C1)-(C8), where y! is bootstrapped counterpart of ¥.

We firstly state data notations that used in this justification. Let U = {D, X, V, Y}, and U; = {D;, X;, Vi, Yi}. Denote 5y, as the
probability measure that assigns a mass of 1 to U;. The empirical measure based on the observed data is given by P, =n"13"1' ;5y,. The
bootstrap empirical measure corresponding to the standard nonparametric bootstrap inference procedure is given by P, =
n! S r 1 Whidy,, where Wn = (Wn, -, Wnn)T is a multinomial vector with probabilities (1/n, ---, l/n)T and index n, and Wn is inde-
pendent of the observed data {U;}™,. Let G, = n"Y/23""  (5y, — P), and G, = n V23", W,,;(8y, — ), where P is the probability
measure that governs U.

Throughout this section, for notational convenience, we include a superscript for the bootstrapped counterparts of the estimators,
estimating functions, and other quantities of interest. Specifically, let

S Wil (x — X)Vi Yot) S W (D =d) 7 (e = (Y, X)) Y,
= n oE >V ,X) = H,
S Waidl X)) Y S Wl (D= )7 {x) — (YaX]) '}

2

)

7 (x)

V(Y0 Zi) =1(Di = 1)V} (Y0, Xi) + I(Ds = 0)v(Ye, Xi), w}y =1 — 2020} (DOOA) and &), = min{max (k) ;,C1n),Cun}. Let ] and v]

be shorthand notation for #'(X;) and v/ (Y3, Z;) respectively.
Based on the results on the error rate of empirical bootstrap approximation rate for kernel estimator (Chernozhukov et al., 2014;

2022; Neumann, 1998), under Condition (C8), we have supi}ﬁj — m| = op(n7V*), supi}v;f —vi| = 0p(n~1/#) and sup; K;l- — Kkyi| =

g
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= op(n V4.

We start with some lemmas that will be helpful in justifying the standard non-parametric bootstrap inference procedure. The proofs
of the Lemmas are deferred to Appendix D.

0p(n"1/4). Under Condition (C6), we have sup; K|, — ky;

Lemma 3. Under Conditions (C1)—(C8), we have

' Z ‘/Vn.i?z.iziga,i(y*1 pr)=n'V? Z W, ¥i(a) + 0,(1),
— i=1

i=1 i=

where W;(a) = mz(Yi,Zi,a){l =) —M} + Hay(X;, @) {V; —1(Xy)}, with ma (Y, Zi, @) = Zigas(v*, B°) and Ha(X;,a) = [E[mz(Yi7Zi,

T
{82 -3l

i

Lemma 4. Under Conditions (C1)—(C8), we have

PN WK Z{a—1(Y, <Z[ )} =072 W, @i(a) +o,(1),
i i=1

i=1
where ®;(a) =m1 (Y, Zi,a){1 —2U=Y)_Q=DVil o g (x; 0){V; —n(X;)}. Here m1(Y;,Zi,a) = Z{a—I(Y; < Z7 ")} and Hy(X;, a) =
i i

1-7;
[ (Y1, 21,00 { 25532 — 2=} .

C1. Theoretical justification for the standard nonparametric bootstrap inference procedure for f*

We will prove that the conditional distribution of n1/2{g! —B} given the observed data is asymptotically equivalent to n'/2{p —p*}
to justify the standard non-parametric bootstrap inference procedure for *. To prove this result, We only need to prove that the

conditional distribution of n!/2{g" —B} given the observed data is asymptotically equivalent to N(0, J71@J7 ). This result can be
proved by adapting the similar arguments in the proof of Theorem 1 and the techniques in the justification of the standard

nonparametric bootstrap inference procedure in Wei et al. (2021). In detail, let L},(¢, k) = S Waili(§, x) with
(& x) = koi{pa(ei—n"PZ]E) = p,(e)},

where ¢; = Y; — Z] p* and p,(u) = u{a — I(u < 0)}. Similarly, let L} (¢, ') = S, Waili(¢, &) with L(g,&T) = Ef,,i{ﬂa(ex‘ —-n12z]¢) -
Palei)}

The function L,(E,¥) is a convex function with respect to { and a minimizer takes the form CL =nt/ 2([3T - B").

Note that W, is independent of the observed data, following the similar argument in the proof of Eq. (B.1) in Theorem 1, by a
Taylor’s expansion, we have

E{LL(60)} = 37+ 0, (1), 1
Similarly, by adapting the similar argument in the proof of Eq. (B.1) in Theorem 1, we can obtain
Li&®) = E{Li(&x)} —n7'? Z W, Z] tla—1I(e; < 0)} +o0,(1). (C.2)
i=1
From Egs. (C.1) and (C.2), for a given ¢,
LYER) = (L)@} —n S W& 25— 1 < 0)} + 0,(1)

LIPS W 2 a1 < 0)) + 0y(1).
i=1

Since L}(g,&) +n~Y/ ey Wn‘iE‘T,_iZiT ¢{a—I(e; < 0)} is convex in . From Pollard’s convexity lemma (Pollard, 1991), for any compact

subset .7 cR*!, we have

sup|L} (¢, &) +n1? Z W, & 2T a—I(e; < 0)} — %(;TJIC =0,(1). (C.3)
teT n

i=1

Let nj, = J;'n V231 Wy ikl Zi{a — I(e; < 0)}. Note that
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1 . 1 B
SE—n) i(e—n) = g —n Z Wik, 2 ta— (e <0)} + 5 ('l”) I
From Eq. (C.3), for any compact subset .7 cR""!, we have

~ 1 T 1, .\1
Li&R) =& =) Ji(E—n)) +5(m) S| =o,(1).

sup
te7
Finally, by an application of Lemma 3 in Buchinsky and Hahn (1998), we have & = 0} + 0,(1). From Lemma 4, we have
n' (BT —p) =12 W, ®i(a) +o,(1). (C.4)
i=1
Note that n!/2(§ —§*) = n"2/25"" @;(a) 4 0,(1) from the proof of Theorem 1. Coupled with Eq. (C.4) we have
n'2(pt = B) —n-l/ZZWn,m () —n-1/22<1> a) +o,(1). (C.5)

To prove that n'/2{pf —ﬁ} given the observed data is asymptotically equivalent to N(0,J;'Q.J;"), we can adapt similar arguments
in Wei et al. (2021). In detail, since {®;(a) : @ € (0,1)} is a Donsker class from the definition of ®;(a), it is implied by bootstrap
consistency for Donsker classes (e.g. Theorem 2.6 of Kosorok (2008)) that the difference between the conditional random law of

G 2®i(a) and the unconditional law of G,®;(a) converges to zero almost surely. It implies that the conditional distribution of
Y23 W ®i(a) — n /23" @;(a) given the observed data is asymptotically equivalent to the distribution of n=¥/23""  ®;(a) —
l/Z[E{d)l(a )} Note that E{®;(a)} =0 and | n"/23"1 ®i(a) | = O,(1), and the distribution of n23"7  ®;(a) — n'2E{®;(a)} is

asymptotically equivalent to N(0,J;'Q,J;") given the result of Theorem 1. We then obtained that n'/2{p! 75} given the observed data

is asymptotically equivalent to N(0,J;'Q.J;").

C2. Theoretical justification for the standard nonparametric bootstrap inference procedure for y*

We will prove that the conditional distribution of n/2{y! —¥} given the observed data is asymptotically equivalent to N(0,
J31Q,J51) to justify the standard nonparametric bootstrap inference procedure for y*. Its proof can be given by adapting the similar
techniques in C.1 and Theorem 3.

Firstly, we will show that

sup | n~ ZWU, | 2] 50i(b.B') — E{k.Zg,(Z,b,B)} [|= 0, (n™""*) C6)

bez

Adapting the similar argument in Eq. (B.9), we have
! Z W"-i;{i,iziga,i(bv B")
i=1

= [E{K‘,Zga(Z,b, ﬁ*)} +n! i: Wn.iKv»iZigu.,i(bv ﬁ*) - E{K\,Zga(z,b, ﬁ*)} (C.7)

i=1
1Y Wi (Rl = ) Zigaa 6, B) + *IZWMK\ Zi{80i(B,B) — 20 (6,8°)}-
i=1
Let T(b) = n 'S WaiZigui(b, B) — E{xZgu(Z, b, )}, W) = n 'S0, Wai(R); — xi)Zi- guilb, 1), and TI(b) =

n IS Wik i Zi{8ui(b, B7) — gai(b,B7)}. To prove Eq. (C.6), it is sufficient to prove sup,., || Il (5) || = 0,(n"1/4), sup,., || LLL(B) || =
0p(n™'/*), and sup,, || TIL}() || = op(n~"/*).

Note that sup; ?f,yi — kyi| = 0p(n~1/*). Adapting the similar arguments in Theorem 2, we can shown that sup,., || I () || =
op(n’l/ 4). Following the similar arguments in Eqs. (B.10) and (B.11) in the proof of Theorem 2, we have
. 1 & «
sup || T} (b) (< (~ > Wai | suplilsup||Zi[|sup|ga(Z.b, B') — gu(Z.b,67)]
bez n = i i bez .8)

1 .
<suple sl (5 1) 1979

Given that || B’ — B*||=0,(n"/*) from the result in C.1, we have sup,., || IIL}, () || = o,(n~1/4).
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To prove sup,. , || I (b) || = 0p(n~1/#), we first know that {x,Zg,(Z,b,p") : b € #} is a Donsker class from the proof in Theorem (3).
Adapting the similar arguments in Theorem (3), we have

sup | n Y K0iZigai(b,B) — E{x.Zga(Z,b,8°)} ||= 0, (n'*). (C.9)
€0 i=1
By bootstrap consistency for Donsker class (e.g Theorem 2.6 in Kosorok (2008)), we have

n'/2{n-1 S i WhikyiZigai(b, B*) —n 1> F 1kyviZigqi(b, B*)} converges weakly to a tight mean zero Gaussian process. It implies that

sup || n”! Z W,k Zigai(b,B*) —n”" Zkv,iziga,[(b> B") 1= o0, (”71/4) (C.10)
b = =1
Based on Egs. (C.9) and (C.10), we can show that sup,., || I,(8) || = op(n~/4).

Since n 13" Waik Z] g.i(y!, B') = 0 and E{x,Zg,(Z,y*,p")} = 0, we have

Vil

0 =n! Z Wn,[Ef,,,-Z,-gu,[(Yf, ﬁT)
=1

= E{xZga(Z,7', B")} — E{xZ8a(Z,¥", B")} +

n! Z ‘/V”i}/»‘:.iz;rgavi(y)f: 131) - [E{K»’Zgrl(zv 717 ﬁr)}:|
i=1

=E{x2ZZ"}(y' —¥) +

i=1

n! Z WoikiZ! gai (1!, B') — E{kZgu(Z, 7', ﬁ*)}}

From Condition (C3) and Eq. (C.6), we have || ¥ — v*[| = 0,(n"1/4).
Next step, we will prove that

n'PEZZT)(y =) = —n7 ' Z Wn,izi,izig(z.i(y*v B7) + o,(1).

i=1

Note that

0 =n'? Z Wn.iﬁ_iziga.i(YTv ﬁT)

i=1

= n71/2 Z Wn‘iﬂ_izigu,i(y*a ﬁ*)

P
+n7!? Z Wi (75;,» — Kv.i>Zi{grl.i(YT1 B) — gai(¥, ﬁ*)}
P

+ ”]/Z[E[sz{ga(zayiv BT) - ga(ZfY*v ﬁ*)}]
+Gi(y',8") - Gl(v', B") (C.11)

= n—I/Z Z ‘/Vn.iﬂk/,r-_,’ziga,i(y*ﬂ ﬁx)

i1
+n 2 Z Wi (%T, - Kv.i)Zi{ga.i(YTv BT) —8ai(Y", ﬁ*)}
i1

+ ”]/Z[E[sz{ga(zv 7*7 ﬁT) - ga(Z,Y*, ﬁ*)}]
+n'PEZZ) (' - 1)
+ GI,(YT7 ﬁT) - GI:(Y*7ﬁ*)7

where Gj,(bl,bz) = Tlil/zz?zl anKv‘iZiga_i(bl,bz) — Tll/z[E{KVZga(Z,bl,bz)}.
Let 7}y = n V200 Wail®)y — &) Zif8ai(v',BY) — 8uilr B}, T hy = n'PEZ{g(Z, 7" BY) — gu(Z,7",$")}), and 7} 5 = Ga(y',
") — Gi(y*,p"). In the following, we will show that || 57;1.“:0},(1) fori ={1,2,3}.

We start with showing || .7~ ;1 || = op(1). Note that
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-7 hll= a7 W (? - Kv.f)Zi{ga.i(ﬂ B') — 8ai(¥",B") + gai(r', B') — gui (", B}
i=1
< ' Z Wi (751, - Kv,i)Zi{ga.i(YTv B) — gai(y", B}l (C.12)
i=1

Y Wi (R, = ) Z{ i (0 B) = gas (B -
i=1

Adapting the similar argument in Egs. (B.16) and (B.17), we have

Y Wi (R = ) 2 8ai (0 B) = sy B0} = 2> Wi (R~ k)22 (0 =), (C.13)
i=1 i=1
and
\ | ,
||n*’/22wn,( =) ) = s B S W 1 (51 ) 18- (C14)
i=1

Coupled with the Egs. (C.12), (C.13) and (C.14), we have
- 1 * - - I~ 1 *
| 7l 1 ‘/2ZWM( )22 =) YW R 120 (G ) 18- (€15)
P

Since sup; 75;1. — Ky
721 = 0p(1).

Note that || B — B*|| = 0,(n~1/4). The proof of || 7 12ll=0,(1) is identical to the proof of || .77, 2||=0,(1) using p! in place of B in the
proof of || .7 p2||=0,(1) in Theorem 3. Moreover, adapting the arguments for showing || 7n 3||=0p(1) in Theorem 3 with Poissonization

=o,(n V%), || ' — B*||=0,(n"/*) from the result in C.1, and || y' — v*|| = 0,(n"/4), Eq. (C.15) implies that ||

employed to remove dependence among W,; Vaart and Wellner (1996), we can get || 1 nall=0p(1).
From Eq. (C.11), we have the following equation

n'PE(,ZZ") (v — v)=-n'" Z Wn,iﬁ,iziga.i(y*v B7) +op(1).

i=1

Coupled with Lemma 3 and Eq. (B.21), we have

n\2E{I(D, > Do)ZZ" } (v - 7) {'/ZZW,“\I‘ —n"/ZZ‘I’ }+o,7 1). (C.16)

Following the similar arguments in C.1 and Wei et al. (2021), since {¥;(a) : @ € (0,1)} is a Donsker class from the definition of
W¥;(a), by bootstrap consistency for Donsker classes (e.g. Theorem 2.6 of Kosorok (2008)), it implies that the conditional distribution of
n Y23 W Wi(a) — nY2Y"1  Wi(a) given the observed data is asymptotically equivalent to the distribution of

n123°  Wi(a) — n'/2E{¥;(a)}. Note that E{¥;(a)} = O and || n"1/23"L | W;(a) || = O,(1), and the distribution of n /23" | W¥;(a) —
n'/2E{¥,(a)} is asymptotically equivalent to N(0,J5'Q2J5") given the result of Theorem 3. We then obtained that n*/2{y’ —¥} given
the observed data is asymptotically equivalent to N(0,J,'Q2J51).

Appendix D. Proof of Lemmas 1-4

D1. Proof of Lemmas 1-2

Proof. By Condition (C6), replacing %,; with ®,; inn~%/ 23 [ %viZigei(Y", B*) only leads to a difference of 0, (1). Note that my(Y;,Z;,@)
= Zig.i(Y*,B"), we can obtain the following equation
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n'? Z K0 Zigai(Y" B")
=1

—n'2 i’"z(Y“Z“ a) (1 - D"l(l _;") _a _AD")G’) +0,(1)

i=1

Stz (1- 205 0=DR) @D

+ \/Lﬁg;mz(y,-,zi,a), (“ _[;i) v Die(1 —.vf)> (@ - m)

+Rn,l + Rn,Z + Op(1)7

where

1-D; D; 1/4 1/4
Zmz Yi,Z,a) - {( ey )_(1—”i)(1—i?i)} W7 —m) - n' A=),

and

1 (I-Di)-vi  Di-(1—w) 1205
R,, = Zmz Y,Z,a)- { 77, (1717,')2(151')} (7; JT,).

Applying Lemma B.3 of Newey (1994) with Condition (C8), we have sup;|7; —z;| = o(n"*/*) and sup,|v; — vi| = o(n"'/*). Thus,

1< 1-D; D; ~ ~
IRl =I5 Yomatr 2 - {20 i) ) |

T (1-m)(1-7)

~ - D; D;
< it = sl 1 Yt {2 = s

=0,(1).

Similarly, we can show that || R,»| = 0,(1).
Given the fact V is a binary variable, the assumptions required by Theorem 4.2 of Newey (1994) are ensured by Conditions (C1),
(C7) and (C8). From there, we have

1 < (1-Di)-vi D;i-(1-v) =
\/ﬁ;mz(Y[,Z,-,a)-{ p R }.(lr;m)

i

(D.2)
\/_ZHZX”a ) + 0,(1),
and
1 & D;(1-v;) (1—D;)v;
W;mz(yfvziﬁ)'{l* -7 - ”l_ }
(D.3)
1 & D;(1-V;) (1-Dy)V;
e omn 2z {1 PV UEP g )
i=1 i i
as desired.

In the case of discrete X (with finitely many values), the only difference is that 7 (x) will be the empirical estimate of E(V|X = x), and
in this case we have sup;|7(x) — 7(x)| = Op(n~1/2). Thus, || Rnj||=0p(1), j = 1,2 and Eq. (D.3) still holds. To prove Lemma 1, we only
need to prove Eq. (D.2) with the empirical estimator of z(x) = E(V|X = x). Let L be the size of the sample space for X, and n; be the
number of subjects in cell L of X, (I = 1,--,L). Let x; be the value of X in cell , and 7}, be the expected value of V given X = x;. Then we
have

_ ", s o JU=D) v Dy (1-v)
'El<fzz" ) ( 2] { () (-m) }>
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By Lemma 4.3 in Newey and McFadden (1994) we have
1 & (1-Dy) vy Dy-(1—v)
=N "m,(Y,.Z,,a) - R ] Y = Hy(x,a) + 0,(1). (D.5)
07 { @7 (-m)’ ey

0

Thus, Eq. (D.2) follows from Egs. (D.4) and (D.5).
The proof of Lemma 2 is similar to the proof of Lemma 1 using {a — I(Y; < Z] p*)} in place of g,;(y*, B*) in the proof of Lemma 1, and

is hence omitted.[]

D2. Proof of Lemmas 34

Proof. The proofs of Lemmas 3-4 are adapted from the proof of Lemmas 1 and 2 and the justification of the standard nonparametric
bootstrap inference procedure in Wei et al. (2021). We will prove them in detail here for completeness.

By Condition (C6), replacing Ef,i with K;i inn1/2 St Wn,{ﬁf,‘izig,,‘i(y*, B”) only leads to a difference of 0,(1). Note that my(Y;,Z;,a) =
Zig,i(Y",B"), we can obtain the following equation

n ' Z Wn,iﬁjliga.i(”f*» B
i-1

B U D;(1— vf 1— Di)vj
= =n 1/zZm,v[m2(Y,-,Z,-,a)(1 - 1(—;;'_* ) ( k )+0p(1)
i=1 i i
1 Di(1—v)) (1—D) (D.6)
= —= i nZiya)- | 1— = — -
T ; W,imy (Y, Z;,a) ( T Z

1 & 1-D;)-v; D;-(1—v;
+ﬁ;W”'im2(Y"’Zi’a)'<( Ea. (1(4,-)2 ))'(ﬂj_m)

+R), + R, +0,(1),
where

P (1-D;) D; } .
R:z =- W,.m Y,»7Z,»70( . — ‘n /4 7[; —T;) - l’ll/4 V:»f =V,
17 2y M (1 i) { (i) ")),

and

i ¢ 1—D;)-v D;-(1—v P
R,, = p Z W,im; (Y, 2, a) - {( ) v - v) } ' (] — ﬂ,~)2.
i1

e (1—m)*(1 - )
Since we have sup,|7} —7;| = o(n"/*) and sup;|v] — vi| = o(n"'/*), with the similar argument in Lemma 1, we have || R} || = 0,(1).
and || R;z“ =0p(1).
Combining the technique of Newey (1994), we have

% ;Wn7[m2(}’[,li,a) . {(1 —Zi) -V 7021' (_1’[—)\2’1)} . (ﬂ:, )

’ (D.7)
1 n
= % Zl: Wo,H> (X, a) - (Vi — m;) + 0,(1),
and
1 & D,-(l — v:') (1 —D;)v,T
% ;Wn,imZ(Yhziva) : {1 TTiCa P }
(D.8)
1 _D(1-V) (1-D)V;
fﬁ;vv,,,,-mz(n,z,-,a)-{l e p +0,(1),
as desired.

We can also prove Lemma 3 in the case of discrete X by adapting the similar arguments in Lemma 1 and the proof of the above.
The proof of Lemma 4 is identical to the proof of Lemma 3 using {a — I(Y; < Z;§*)} in place of g,;(v*, p*) in the proof of Lemma 3,
and is hence omitted.[]
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Appendix E. Simulation with discrete X

We now consider a new simulation scenario, which differs from the scenario in Section 5 of the paper in that X; and X, are both
discrete and generated from Bernoulli(0.5). Results with n = {500, 3000} for a = {0.1,0.2,0.3,0.4,0.5} are presented in Table E.5. The
performance of the proposed method remains solid in this case and the estimated parameters of interest are close to their true un-
derlying values. Besides, the bootstrap-based variance estimates agree well with the empirical variances. The empirical coverage
probabilities of 95% confidence intervals are close to the nominal level. When the sample size increases to n = 3000, the bias of the
proposed method further diminishes.

Table E1

Comparisons among estimators of f; (a) and y; («) from the proposed two-stage method, oracle method and the naive method in simulation exper-
iment on the case of discrete X with n = {500,3000} and « = {0.1,0.2,...,0.5}. Bias, Emp var, Boot var and Cov 95 stand for average bias of the
estimated coefficients, empirical variance, average variance estimates, coverage probabilities of the 95% confidence intervals.

a n Oracle method Proposed method Naive method
b(a) n(a) p(a) n(a) b(a) n(a)
0.1 500 Bias —0.013 — 0.027 — 0.039 — 0.053 — 0.255 — 0.268
Emp var 0.131 0.284 0.134 0.272 0.082 0.170
Boot var 0.156 0.264 0.153 0.256 0.094 0.162
Cov 95 0.956 0.924 0.949 0.930 0.857 0.861
3000 Bias 0.000 — 0.003 —0.017 —0.018 —0.245 —0.251
Emp var 0.026 0.049 0.026 0.048 0.016 0.031
Boot var 0.025 0.046 0.025 0.045 0.015 0.028
Cov 95 0.933 0.950 0.935 0.946 0.482 0.652
0.2 500 Bias — 0.007 0.016 — 0.029 — 0.044 —0.245 — 0.256
Emp var 0.060 0.132 0.064 0.131 0.031 0.078
Boot var 0.069 0.131 0.071 0.129 0.035 0.076
Cov 95 0.955 0.947 0.949 0.933 0.721 0.822
3000 Bias — 0.001 — 0.002 - 0.015 - 0.017 —0.243 —0.249
Emp var 0.011 0.025 0.012 0.025 0.005 0.014
Boot var 0.011 0.022 0.011 0.022 0.006 0.013
Cov 95 0.936 0.936 0.941 0.930 0.10 0.395
0.3 500 Bias 0.000 —0.012 —0.019 —0.037 —0.239 — 0.250
Emp var 0.036 0.084 0.038 0.085 0.015 0.047
Boot var 0.041 0.084 0.044 0.084 0.017 0.046
Cov 95 0.958 0.949 0.958 0.942 0.533 0.757
3000 Bias — 0.001 — 0.001 —0.015 — 0.016 —0.240 — 0.246
Emp var 0.006 0.016 0.007 0.016 0.002 0.008
Boot var 0.006 0.014 0.007 0.014 0.003 0.008
Cov 95 0.947 0.933 0.949 0.928 0.003 0.210
0.4 500 Bias —0.001 — 0.009 —0.028 —0.034 —0.237 —0.248
Emp var 0.023 0.060 0.025 0.061 0.009 0.032
Boot var 0.027 0.060 0.029 0.061 0.009 0.031
Cov 95 0.955 0.948 0.956 0.937 0.323 0.694
3000 Bias 0.001 — 0.001 —0.013 — 0.016 —0.238 —0.245
Emp var 0.004 0.011 0.005 0.011 0.001 0.006
Boot var 0.004 0.010 0.005 0.010 0.001 0.005
Cov 95 0.951 0.937 0.952 0.933 0.000 0.076
0.5 500 Bias — 0.007 — 0.007 —0.033 —0.033 —0.233 — 0.244
Emp var 0.015 0.045 0.017 0.047 0.006 0.023
Boot var 0.018 0.045 0.020 0.046 0.006 0.023
Cov 95 0.954 0.950 0.947 0.939 0.167 0.615
3000 Bias 0.001 0.000 —0.012 —0.015 —0.233 —0.243
Emp var 0.003 0.008 0.003 0.009 0.001 0.004
Boot var 0.003 0.008 0.003 0.008 0.001 0.004
Cov 95 0.942 0.942 0.945 0.939 0.000 0.036
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