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A B S T R A C T   

Estimating the causal effect of a treatment or exposure for a subpopulation is of great interest in 
many biomedical and economical studies. Expected shortfall, also referred to as the super- 
quantile, is an attractive effect-size measure that can accommodate data heterogeneity and 
aggregate local information of effect over a certain region of interest of the outcome distribution. 
In this article, we propose the ComplieR Expected Shortfall Treatment Effect (CRESTE) model 
under an instrumental variable framework to quantity the CRESTE for a binary endogenous 
treatment variable. By utilizing the special characteristics of a binary instrumental variable and a 
specific formulation of Neyman-orthogonalization, we propose a two-step estimation procedure, 
which can be implemented by simply solving weighted least-squares regression and weighted 
quantile regression with estimated weights. We develop the asymptotic properties for the pro
posed estimator and use numerical simulations to confirm its validity and robust finite-sample 
performance. An illustrative analysis of a National Job Training Partnership Act study is pre
sented to show the practical utility of the proposed method.   

1. Introduction 

Given a scalar response and a set of covariates, it is often of interest to understand the effect of a treatment or an intervention on the 
conditional distribution of the response. Compared to the popularly used least squares approach, quantile regression-based approach is 
more appealing due to its ability to capture heterogeneous treatment effects, i.e., the treatment effect that may vary across different 
regions of the conditional distribution of the response even after adjusting for the observed covariates (Koenker, 2005). Several ap
proaches have been proposed to estimate quantile treatment effects (Abadie et al., 2002; Chernozhukov and Hansen, 2005, among 
others). We refer the reader to Koenker (2017) for an extensive review of quantile regression and quantile treatment effects. 

In many applications, however, the average treatment effect in one tail of the response distribution may be of great interest in 
contrast to the effect at a specific quantile level (Acharya et al., 2017; Brownlees and Engle, 2016). For example, the average effect of 
public sector-sponsored training programs on the low-income subpopulation may be particularly important for making policy de
cisions (LaLonde, 1995). To this end, the expected shortfall, also known as the super-quantile or conditional value-at-risk, has proven 
to be useful. 

Various methods for estimating the expected shortfall were discussed in Taylor (2008a,b), Brazauskas et al. (2008), Cai and Wang 
(2008), Chen (2008) and Rockafellar and Royset (2013). One can also integrate over conditional quantile regression estimates in the 
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tail (Wang and Wang, 2016). More recently, several authors have considered expected shortfall of the response variable conditional on 
a set of covariates under the regression setting (Barendse, 2020; Dimitriadis and Bayer, 2019; He et al., 2022). Specifically, Dimitriadis 
and Bayer (2019) proposed joint quantile and expected shortfall regression models to estimate the expected shortfall regression co
efficients with a loss function, referred to as the FZ-loss (Fissler and Ziegel, 2016). On the other hand, Barendse (2020) proposed a 
two-stage estimation method based on Neyman-orthogonalization for estimating the expected shortfall regression coefficients. 
Motivated by Barendse (2020), He et al. (2022) proposed the robust expected shortfall regression that is robust against heavy-tailed 
random noise. 

In this article, we are interested in estimating the treatment effect on the expected shortfall of the outcome distribution, adjusted for 
a set of covariates, in observational studies. One motivating example is the National Job Training Partnership Act (JTPA) study, a large 
publicly-funded training program, also considered in Abadie et al. (2002) in the context of estimating quantile treatment effect. The 
main goal is to evaluate the effect of JTPA training on improving 30-months earnings for low-income individuals. However, as pointed 
out by Abadie et al. (2002), the training status in the JTPA study is likely to be self-selected and is correlated with the potential 
outcome of earnings. Using standard approaches for estimating expected shortfall effect without accounting for the selection bias 
would lead to an invalid estimate of the expected shortfall treatment effect. 

To address the above challenge, instead of estimating the overall expected shortfall treatment effect, we propose to estimate the 
expected shortfall treatment effect for subjects who comply with the treatment protocol, referred to as compliers. The complier ex
pected shortfall treatment effect (CRESTE) represents a local average effect on the tail of the distribution, rather than a specific quantile 
level. Compared to the complier quantile treatment effect (CQTE) proposed in Abadie et al. (2002), CRESTE is a causal estimand that is 
more suitable to characterize the behavior of the tail treatment effect. This is because, analogous to comparing the quantile and the 
expected shortfall, CQTE, defined based on the quantile of the response distribution, fails to capture the tail behavior beyond the 
quantile itself, while CRESTE characterizes the tail behavior by aggregating information from the entire tail region (Rockafellar and 
Uryasev, 2002). 

To the best of our knowledge, there is limited work on the estimation of CRESTE in the existing literature, except a concurrent work 
by Chen and Yen (2021) who proposed to estimate the CRESTE based on the method for fitting expected shortfall regression in 
Dimitriadis and Bayer (2019). The loss function used in Chen and Yen (2021) inherits the non-convexity of the loss function in 
Dimitriadis and Bayer (2019) for which the global optimum solution is not guaranteed. Moreover, their proposed CRESTE estimate is 
not locally robust to the complier quantile treatment effect estimate in the sense of robustness in Chernozhukov et al. (2022), and a 
convergence rate O(n−1/2) for the CQTE estimate is required to ensure asymptotic normality for the CRESTE estimator. 

In this manuscript, we derive a weighting scheme that can be incorporated into the two-step estimation procedure in Barendse 
(2020) by utilizing the special characteristic of a binary instrumental variable to estimate CRESTE. The validity of the proposed 
method relies only on the modeling of the complier subgroup and does not require the modeling of the other non-complier subgroups 
or the instrumental variable distribution. The proposed two-stage estimation procedure involves fitting a weighted quantile regression 
at the first stage, and fitting a weighted least squares model at the second stage. Of practical appeal is that both steps involve mini
mizing convex objective functions for which global optimum are guaranteed, and can be implemented by existing software for fitting 
quantile regression and the least squares regression. Moreover, the proposed method has the property of Neyman-orthogonalization 
for the estimation of the expected shortfall effect. The implication is that the resulting estimator is locally robust to the estimate of 
quantile, which allows flexible approaches to be used for modeling quantile regression in the first stage, such as nonparamaetric 
quantile regression (De Gooijer and Zerom, 2003; He and Shi, 1994). 

2. Preliminaries on expected shortfall regression and potential outcomes framework 

In this section, we provide an overview of the expected shortfall regression and the potential outcomes framework that are essential 
in the development of our proposed method. 

2.1. Expected shortfall regression 

The expected shortfall of a continuous random variable Z is the conditional expectation of Z, conditioned on Z falling below a given 
quantile level of its distribution. Specifically, the expected shortfall of Z at level α ∈ (0, 1) is defined as 

Sα(Z) := E{Z|Z ≤ Qα(Z)} =
1
α

∫ α

0
Qu(Z)du,

where Qu(Z) = inf{z ∈ R : Pr(Z ≤ z) ≥ u} is the uth quantile of Z (Yamai and Yoshiba, 2002). Several authors have generalized the 
expected shortfall to the regression setting to evaluate the association between a covariate of interest and the response, given a set of 
nuisance covariates; see among others, He et al. (2010), Dimitriadis and Bayer (2019), Barendse (2020), He et al. (2022). 

Let Y be the response variable and let X ∈ Rl be the covariates. Moreover, let Qα(Y|X) and Sα(Y|X) be the αth quantile and expected 
shortfall of Y conditional on X, respectively. While the expected shortfall is not elicitable, i.e., there does not exist a loss function that is 
minimized by the expected shortfall regression parameters (Gneiting, 2011), the quantile and the expected shortfall are jointly elic
itable (Fissler and Ziegel, 2016). This motivates the following joint quantile and expected shortfall regression framework (Barendse, 
2020; Dimitriadis, Bayer, 2019; Heet al., 2022): 
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Qα(Y|X) = X⊤β∗(α) and Sα(Y|X) = X⊤γ∗(α), (1)  

where β∗(α) and γ∗(α) are the true underlying regression coefficients corresponding to the αth quantile and expected shortfall 
regression, respectively. Under a two-step framework, Barendse (2020) proposed to first estimate β∗(α) by fitting a quantile regression 
model. Given a quantile regression estimator β̂(α), the expected shortfall regression coefficients γ∗(α) can then be estimated by solving 
the following convex optimization problem: 

γ̂(α) = argmin
γ(α)∈Rl

1
n

∑n

i=1

[
1
α {Yi − Q̂α(Yi|Xi)}I{Yi ≤ Q̂α(Yi|Xi)} + Q̂α(Yi|Xi) − X⊤

i γ(α)

]2

, (2)  

where I(⋅) is an indicator function and Q̂α(Yi|Xi) = X⊤
i β̂(α). 

Compared to the method in Dimitriadis and Bayer (2019), the two-step framework has advantages in both computational and 
statistical aspects. Theoretically, it is remarkable that (2) is Neyman-orthogonalized. Let ‖ ⋅ ‖ be the ℓ2-norm. The implication of 
Neyman-orthogonalization in Barendse (2020) is that the asymptotic distribution of the estimator for γ∗(α) can be established under a 
weaker condition ‖ β̂(α) − β∗(α) ‖=op(n−1/4) (Barendse, 2020) than that of Dimitriadis and Bayer (2019), which requires ‖ β̂(α) −

β∗(α) ‖ = Op(n−1/2). We note that the Neyman-orthogonalization phenomenon has been observed in Belloni et al. (2014); Chernoz
hukov et al. (2018, 2022) under different contexts. 

The weaker condition on the quantile estimate allows flexible approaches such as the nonparametric quantile regression to be used. 
Computationally, the two-stage method involves fitting a weighted quantile regression and a weighed least squares regression that can 
be readily solved via existing software. Compared to the approach in Dimitriadis and Bayer (2019) that involves solving a non-convex 
optimization problem for which global optimum is not guaranteed, we found that the two-stage method has a more stable numerical 
performance. 

2.2. The potential outcomes framework 

In this section, we provide a brief overview of the potential outcomes framework for evaluating complier treatment effects. In 
addition, we review the use of instrumental variable for estimating the complier quantile treatment effect (Abadie et al., 2002). 

Let D and V be indicators of a binary exposure and a binary instrumental variable, respectively. Define Dv as the potential treatment 
selection given V = v. Moreover, let Y, Yd, and Yvd be the observed outcome, the potential outcome given D = d, and the potential 
outcome given D = d and V = v, respectively. We note that in practice, Dv, Yd, and Yvd are not observed. 

Under the above binary exposure and instrumental variable setting, subjects can be classified into four latent subgroups: compliers 
(D1 > D0), always takers (D1 = D0 = 1), never takers (D1 = D0 = 0), and defiers (D1 < D0) (Angrist et al., 1996). Let X be an 
l-dimensional vector of covariates with one as the first component, without loss of generality. We start with some assumptions on the 
instrumental variable V. 

Assumption 1. The instrumental variable V satisfies the following conditions:  

(A1) Independence of IV: (Y00,Y01,Y10,Y11,D0,D1)⊥⊥V|X;

(A2) Exclusion of IV: P(Y1d = Y0d|X) = 1 for d = 0,1;  
(A3) First stage: 0 < P(V = 1|X) < 1 and P(D1 = 1|X) > P(D0 = 1|X);  
(A4) Monotonicity: P(D1 ≥ D0|X) = 1. 

The potential outcomes framework and Assumption 1 are commonly used in the context of estimating complier treatment effect 
(Abadie, 2003; Abadie et al., 2002; Ogburn et al., 2015). Assumption (A1) assumes that the instrumental variable, V, mimics a random 
assignment, conditional on X. Assumption (A2) requires that V affects the potential outcomes only through its effects on the treatment 
D. Assumption (A3) guarantees that D and V are correlated, conditional on X, and that each subject can have V = 0 or V = 1 with a 
non-zero probability conditional on X. Assumption (A4) excludes the existence of defiers. For more details on the use of instrumental 
variable in the context of treatment effect estimation, we refer the reader to Huber and Wüthrich (2019). 

3. The proposed method 

3.1. Complier expected shortfall treatment effect and model assumptions 

Recall from Section 2.2 that D is an indicator of a binary exposure and Yd is the potential outcome given D = d. Under the potential 
outcomes framework, the complier quantile and expected shortfall at level α ∈ (0, 1) can be formally defined as 

Qα(Yd|X, D1 > D0) = inf{y ∈ R : Pr(Yd ≤ y|X, D1 > D0) ≥ α}

and 

Sα(Yd|X, D1 > D0) = E{Yd|X, D1 > D0, Yd ≤ Qα(Yd|X, D1 > D0)} =
1
α

∫ α

0
Qu(Yd|X, D1 > D0)du, (3) 
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respectively. 
One popular causal estimand is the complier quantile treatment effect, which is commonly used to estimate the local causal effect 

for compliers (Abadie et al., 2002). Specifically, the complier quantile treatment effect at αth quantile is defined as 

CQTE(α) = Qα(Y1|X, D1 > D0) − Qα(Y0|X, D1 > D0). (4)  

The complier quantile treatment effect represents the difference between the compliers’ αth quantile of the potential outcomes Y1 and 
that of Y0. Parallel to (4), we define the complier expected shortfall treatment effect as 

CRESTE(α) = Sα(Y1|X, D1 > D0) − Sα(Y0|X, D1 > D0), (5)  

that is, the difference between compliers’ αth expected shortfall of the potential outcomes Y1 and that of Y0, given covariates X. Under 
(3)–(5), CRESTE can be rewritten as 

CRESTE(α) =
1
α

∫ α

0
CQTE(u)du. (6)  

In other words, CRESTE provides an average effect in the lower-tail of the distribution, rather than at a specific quantile level. 
Similarly, if the upper tail of the distribution is of interest we can replace Sα(Yd|X, D1 > D0) with 
Su

α(Yd|X, D1 > D0) = (1 − α)
−1 ∫ 1

α Qu(Yd|X, D1 > D0)du in (5). 

Remark 1. The quantity CRESTE(α) is equivalent to the expected shortfall treatment effect for the treated population (D = 1) in the 
case of one-sided compliance, where subjects with V = 0 have no access to treatment, i.e., Pr(D0 = 0|X) = 1. This is shown formally in 
Proposition 2 in the Appendix. In practice, one-sided compliance occurs in many scientific studies. For example, in an observational 
study comparing a new drug versus placebo where the instrumental variable is chosen as whether treatment starts after the FDA 
approval date of the new drug, the one-sided compliance means that patients treated before the FDA approval of the new drug have no 
access to it. 

To estimate the complier expected shortfall treatment effect CRESTE(α), we assume the following models: 

Qα(Yd|X, D1 > D0) = dβ∗
1(α) + Xβ∗

X(α), d = 0, 1,

Sα(Yd|X, D1 > D0) = dγ∗
1(α) + Xγ∗

X(α), d = 0, 1.
(7)  

Under (7), β∗
1(α) and γ∗

1(α) can be interpreted as the complier αth quantile and expected shortfall treatment effect, respectively. That is, 

β∗
1(α) = Qα(Y1|X, D1 > D0) − Qα(Y0|X, D1 > D0),

γ∗
1(α) = Sα(Y1|X, D1 > D0) − Sα(Y0|X, D1 > D0).

Moreover, β∗
X(α) and γ∗

X(α) quantify the effects of covariates X on the conditional complier αth quantile and expected shortfall of the 
potential outcome Yd given X, respectively. 

Model (7) involves the unobserved potential outcome Yd. To provide a convenient venue to estimate β∗
1(α) and γ∗

1(α), we show in 
Proposition 1 in Appendix A that (7) is equivalent to 

Qα(Y|D, X, D1 > D0) = Dβ∗
1(α) + Xβ∗

X(α),

Sα(Y|D, X, D1 > D0) = Dγ∗
1(α) + Xγ∗

X(α),
(8)  

where Y = D × Y1 + (1 − D) × Y0, Qα(Y|D,X,D1 > D0) = inf{y : Pr(Y ≤ y|D,X,D1 > D0) ≥ α}, and Sα(Y|D,X,D1 > D0) = α−1 ∫ α
0 Qu(Y|D,

X,D1 > D0)du. Under the reformulation in (8), the parameter of interests β∗
1(α) and γ∗

1(α) now depend only on the conditional quantile 
and expected shortfall of Y rather than the potential outcome Yd. 

Remark 2. As will be elaborated in Section 4, the linearity assumption for the conditional quantile function in (7) can be relaxed. For 
instance, one can replace the linear quantile model in (7) with the nonparametric quantile regression function with sufficient 
smoothness. The linearity assumption for conditional expected shortfall function in (7) is adopted to balance model complexity and 
statistical interpretation. 

3.2. Estimation procedure 

Let Z = (D, X⊤)
⊤, β = {β1(α), β⊤

X (α)}
⊤, and γ = {γ1(α), γ⊤

X (α)}
⊤, where we suppress the dependency on α for notational conve

nience. Let {Y1, V1, Z⊤
1 }

⊤
, …, {Yn, Vn, Z⊤

n }
⊤ be n independent and identically distributed realizations of {Y, V, Z⊤}

⊤. Recall that β∗ and 
γ∗ are the true underlying values of β and γ, respectively. Note that β∗ = argminβE{I(D1 > D0)ρα(Y − Z⊤β)}, where ρα(u)

= u{α −I(u ≤ 0)} is the quantile loss function. In addition, let gα(Z, b1, b2) = Z⊤b1 − 1
α (Y −Z⊤b2)I(Y ≤ Z⊤b2) − Z⊤b2 and gα,i(b1,b2) =

Z⊤
i b1 − 1

α (Yi − Z⊤
i b2)I(Yi ≤ Z⊤

i b2) − Z⊤
i b2. To estimate γ∗, one key observation is that under (8), we have 
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E{I(D1 > D0)Zgα(Z, γ∗, β∗)} = 0, where β∗ = argminβE{I(D1 > D0)ρα(Y − Z⊤β)}. (9) 

However, γ∗ and β∗ can not be directly estimated via (9) since D1 and D0 are not observed simultaneously. Let κv(Y, Z)

= Pr(D1 > D0|Y, Z) be the conditional probability of the complier group, conditional on Y and Z. By the law of iterated expectation, (9) 
is equivalent to 

E{κv(Y, Z)Zgα(Z, γ∗, β∗)} = 0, where β∗ = argminβE{κv(Y, Z)ρα(Y − Z⊤β)}. (10)  

Equation (10) suggests a simple weighting scheme for estimating β∗ and γ∗. Let Di1 and Di0 be the potential treatment selection for the 
ith sample given Vi = 1 and Vi = 0, respectively. Let κv,i = Pr(Di1 > Di0|Yi, Zi) be the conditional probability of the ith sample. Then, an 
estimating equation for γ∗ is given by 

∑n

i=1
κv,iZigα,i(γ, β̂) = 0, where β̂ = argminβ

∑n

i=1
κv,iρα

(
Yi − Z⊤

i β
)
. (11) 

In practice, κv,i is unknown and needs to be estimated. By Proposition 3 in the Appendix, we have 

κv(Y, Z) = 1 −
D{1 − v(Y, Z)}

1 − π(X)
−

(1 − D)v(Y, Z)

π(X)
, (12)  

where v(Y, Z) = Pr(V = 1|Y, Z) and π(X) = Pr(V = 1|X). Note that κv(Y, Z) is identical to κv(U) in Lemma 3.2 of Abadie et al. (2002). 
Thus, it suffices to estimate π(X) and v(Y, Z). One widely used approach to model the conditional distribution of V is the logistic 
regression, which may suffer from model misspecification. We instead use an alternative non-parametric approach for modeling V 
given Y, D, and X (Wei et al., 2021). 

Briefly, let vd(Y, X) = Pr(V = 1|Y, X, D = d) and let v(Yi,Zi) = I(Di = 0)v0(Yi,Xi) + I(Di = 1)v1(Yi,Xi). Denote K ∗
σ1

(u) and K ∗∗
σ2

(u) as 
two kernel functions that satisfy Conditions (C7)–(C8) in Section 4 with bandwidths σ1 and σ2, respectively. When all components of X 
are continuous, we propose to estimate π(x) and vd(y, x) via 

π̂(x) =

∑n
i=1K

∗

σ1
(x − Xi)Vi

∑n
i=1K

∗
σ1

(x − Xi)
and v̂d(y, x) =

∑n
i=1I(Di = d)K

∗∗

σ2

{
(y, x⊤)

⊤
−

(
Yi, X⊤

i

)⊤}
Vi

∑n
i=1I(Di = d)K

∗∗
σ2

{
(y, x⊤)

⊤
−

(
Yi, X⊤

i

)⊤} , (13)  

respectively. Subsequently, we estimate v(Yi, Zi) via v̂(Yi, Zi) = I(Di = 1)v̂1(Yi, Xi) + I(Di = 0)v̂0(Yi, Xi). Thus, a non-parametric 
estimator of κv,i is then given by 

κ̂v,i = 1 −
Di{1 − v̂(Yi, Zi)}

1 − π̂(Xi)
−

(1 − Di)v̂(Yi, Zi)

π̂(Xi)
. (14) 

Note that κv,i is a value between zero and one since it is the conditional probability of the complier group for the ith sample. We 
enforce such constraints on κ̂v,i by performing truncation around zero and one, i.e., 

κ̃v,i = min
{

max
(

κ̂v,i, cl,n
)
, cu,n

}
, (15)  

where cl,n and cu,n are two sequences of positive constants that approach to zero and one, respectively, as the sample size n increases. 
Replacing κv,i with the non-parametric estimator ̃κv,i in (11), an estimator for γ∗ can then be obtained by solving the estimating equation 

∑n

i=1
κ̃v,iZigα,i(γ, β̂) = 0, where β̂ = argminβ

∑n

i=1
κ̃v,iρα

(
Yi − Z⊤

i β
)
, (16)  

which amounts to solving a weighted ordinary least squares problem. 
The proposed estimation procedure for estimating the complier expected shortfall treatment effect is summarized as follows:  

Step 1: Calculate π̂(Xi) and v̂(Yi, Zi) with bandwidths σ1 and σ2 selected via cross-validation, and obtain κ̃v,i for i = 1, …,n.  
Step 2: Calculate the quantile regression estimator β̂ = argminβ

∑n
i=1κ̃v,iρα(Yi − Z⊤

i β).  

Step 3: Plug κ̃v,i and Z⊤
i β̂ into (16), and obtain γ̂ by solving (16). 

Details for performing statistical inference on γ∗ are deferred to Section 4. 

Remark 3. The series-based non-parametric estimator used in Abadie et al. (2002) is another non-paramteric approach for esti
mating κv,i. By using similar regularity conditions and techniques to those in Abadie et al. (2002), we can show that the asymptotic 
results in Section 4 remain valid with the series-based estimator of κv,i. Generally, which nonparametric estimator one uses to estimate 
κv,i does not have a strong impact on the estimation of CRESTE as long as the tuning parameters are chosen appropriately and the 
dimension of X is moderate. 

Remark 4. In practice, the bandwidth parameters σ1 and σ2 can be selected using cross-validation. Let π̂σ(X) be an estimator of π(X)
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obtained from the training dataset with bandwidth σ. We can then select σ1,n as the value of σ that minimizes 
∑

i∈test set|Vi − π̂σ(Xi)|. 
The bandwidth σ2,n can be selected similarly. 

Remark 5. For discrete covariates in X, π(Xi) and v(Yi, Zi) can be estimated by first stratifying the dataset into multiple cells based on 
the discrete covariates in X. For each cell, non-parametric estimates of π(Xi) and v(Yi, Zi) can be constructed by using only the 
continuous covariates in X and Y using (13), since the discrete covariates take the same value within each cell. When all of the 
covariates X are discrete, non-parametric estimates for π(Xi) in each cell reduce to empricial estimates of E(V) in each cell. Non- 
parametric estimates for v(Yi, Zi) in each cell can be obtained by only using the continuous variables in Y in its corresponding cell. 

4. Asymptotic properties 

In this section, we establish consistency and weak convergence of the proposed estimators β̂ and γ̂ at the αth level quantile and 
expected shortfall, for any given α ∈ (0,1). Let f(⋅|Z, D1 > D0) be the density function of Y conditional on Z and D1 > D0. For notational 
convenience, we write v = v(Y,Z), vi = v(Yi,Zi), π = π(X), and πi = π(Xi). Besides, let Xc be a subvector of continuous covariates in X. 
We start with some regularity conditions.  

(C1) The data (Yi, Di, Xi, Vi) are independent and identically distributed for i = 1,2, …,n.  
(C2) (a) Each discrete component of X takes on finitely many values; (b) conditional on D, D1 > D0, and the discrete components of X, 

(Y, Xc) has a support as a closed subset of the product of compact intervals and has a density at least third order continuously 
differentiable and bounded away from zero and infinity; (c) β∗ ∈ K and γ∗ ∈ B , where K and B are compact subsets in Rl+1.  

(C3) E{I(D1 > D0)ZZ⊤} is of full rank.  
(C4) For all Z, there exists some c0 > 0, such that f(Z⊤β∗|Z, D1 > D0) > c0.  
(C5) (a) For some c > 0, κv(Y, Z) > c almost surely; (b) For some 0 < c1 < c2 < 1, c1 < π(X) < c2 almost surely.  
(C6) The sequences cl,n > 0 and cu,n < 1 satisfy cl,n = o(n−1/2) and 1 − cu,n = o(n−1/2).  
(C7) (a) There is a positive integer Δ, such that K ∗

σ1
(u) and K ∗∗

σ2
(u) are differentiable of order Δ and the derivatives of order Δ are 

Lipschitz in a bounded support. K ∗
σ1

(u) and K ∗∗
σ2

(u) have bounded support; (b) K ∗
σk

(u) = 1 for k = 1,2; (c) for some positive 

integers s1 and s2, 
∫

K ∗
σk

(u)[⊗
j
r=1u]du = 0 for all j < sk, where k = 1,2, and ⊗j

r=1u stands for executing j times Kronecker product 
on u.  

(C8) There exists a constant p such that: (a) v(⋅) and π(⋅) are at least pth order continuous differentiable; (b) p ≥ sk,k = 1,2; and (c) 

nσ2p
i,n→0 and nσ2l+2

i,n

(logn)
2→∞. 

Condition (C2) implies the boundedness of X and Z, and the positiveness and boundedness of the density of Y or X. Conditions (C3) 
and (C4) are imposed to ensure the identifiablilty of β∗ and γ∗; similar conditions have been used in Barendse (2020). By Condition 
(C5), κv(Y, Z) and π(X) are bounded away from zero and one almost surely. Condition (C6) implies that truncating κ̂v by cl,n and cu,n 

would only lead to a negligible impact on the asymptotic results with cl,n and cu,n approaching zero and one, respectively. Conditions 
(C7)–(C8) are similar to the regularity conditions in Newey (1994) for kernel estimators. By Condition (C8), we require that v(⋅) and 
π(⋅) to be smooth, and that the bandwidths satisfy σk,n = o(n−1/(2p) ∧ (logn)

1/(l+1)n−1/(2l+2)) for k = 1,2. Compared to existing regularity 
conditions in the context of estimating CQTE (Abadie et al., 2002), the proposed CRESTE estimator only additionally requires the full 
rank condition in (C4) to ensure the identifiability of γ∗. In practice, Condition (C3) is satisfied in many studies. 

Given the regularity conditions, we now establish the theoretical properties of the proposed estimators β̂ and γ̂ in Theorems 1–3. 

Let m1(Y, Z, α) = Z{α −I(Y < Z⊤β∗)} and let H1(X, α) = E
[
m1(Y, Z, α)

{
(1−D)v

π2 −
D(1−v)

(1−π)
2

}
|X

]
. In addition, let 

Φ(α) = m1(Y, Z, α)

{

1 −
D(1 − V)

1 − π −
(1 − D)V

π

}

+ H1(X, α){V − π(X)}.

The following theorem establishes the asymptotic normality of β̂. 

Theorem 1 (Consistency and asymptotic distribution of. β̂) Under Conditions (C1)–(C8), we have 

n1/2(β̂ − β∗)→dN
(
0, J−1

1 Ω1J−1
1

)
,

where Ω1 = E{Φ(α)Φ(α)
⊤

} and J1 = E{I(D1 > D0)f(Z⊤β∗|Z,D1 > D0)ZZ⊤}. Next, we establish consistency and asymptotic normality 

for γ̂ obtained from solving (16). Let m2(Y, Z, α) = Zgα(Z, γ∗, β∗) and let H2(X, α) = E
[
m2(Y,Z,α)

{
(1−D)v

π2 −
D(1−v)

(1−π)
2

}
|X

]
. In addition, let 

Ψ(α) = m2(Y,Z,α)
{

1 −
D(1−V)

1−π −
(1−D)V

π

}
+ H2(X,α){V − π(X)}. Theorems 2 and 3 establish the consistency and asymptotic normality 

of γ̂, respectively. 

Theorem 2 (Consistency of. γ̂) Under Conditions (C1)–(C8), we have 

‖ γ̂ − γ∗‖→p0,
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where ‖ ⋅ ‖ is the ℓ2 norm. 

Theorem 3 (Asymptotic distribution of. γ̂) Under Conditions (C1)–(C3) and (C5)–(C8), if ‖ β̂ − β∗‖=op(n−1/4), we have 

n1/2(γ̂ − γ∗)→dN
(
0, J−1

2 Ω2J−1
2

)
,

where Ω2 = E{Ψ(α)Ψ(α)
⊤

} and J2 = E{I(D1 > D0)ZZ⊤}. Theorem 3 requires only ‖ β̂ − β∗‖=op(n−1/4) to establish asymptotic 
normality of γ̂: this is in contrast to the faster rate ‖ β̂ − β∗‖=Op(n−1/2) needed in Chen and Yen (2021) to obtain similar results. The 
weaker convergence requirement for β̂ allows us to replace the linear quantile model in (7) with other flexible approaches, such as the 
nonparametric quantile regression method (De Gooijer and Zerom, 2003; He and Shi, 1994), without affecting the asymptotic dis
tribution of γ̂. In addition, Chen and Yen (2021) required Op(n−1/2) as the convergence rate for π̂(X) to establish the asymptotic 
distribution of γ̂. Typically, the above convergence rate can only be satisfied when a parametric estimator is used to estimate π(X). We 
instead adopt a non-parametric estimator of π(X) with convergence rate op(n−1/4) to establish the asymptotic distribution of γ̂. The 
non-parametric estimate of π(X) does not require parametric modeling, and thus prevents the bias induced from model 
misspecifications. 

Remark 6. From Theorem 3, we have n1/2(γ̂ − γ∗)→dN(0,J−1
2 Ω2J−1

2 ). In principle, the sample-based variance estimator can be used 
to estimate J2 and Ω2. However, Ω2 includes evaluating the conditional expectation given X, H2(X,α); this quantity is challenging to 
estimate when X is continuous. We instead propose to perform statistical inference on γ∗ using the bootstrap method. In particular, to 

Table 1 
Comparisons among estimators of β1(α) and γ1(α) from the proposed two-stage method, oracle method and naive methods in the simulation 
experiment with n ∈ {500, 3000} and α = {0.1,0.2,…,0.5}. Bias, Emp var, Boot var and Cov 95 stand for average bias of the estimated coefficients, 
empirical variance, average variance estimates, coverage probabilities of the 95% confidence intervals.  

α n  Oracle method Proposed method Naive method  

β1(α) γ1(α) β1(α) γ1(α) β1(α) γ1(α)

0.1 500 Bias − 0.006 0.023 − 0.036 − 0.047 − 0.197 − 0.208 
Emp var 0.123 0.262 0.124 0.247 0.080 0.161 
Boot var 0.143 0.244 0.140 0.230 0.088 0.156 
Cov 95 0.955 0.931 0.948 0.931 0.892 0.896 

3000 Bias 0.000 − 0.003 − 0.015 − 0.018 − 0.195 − 0.200 
Emp var 0.022 0.047 0.021 0.043 0.013 0.029 
Boot var 0.022 0.043 0.022 0.042 0.014 0.027 
Cov 95 0.938 0.945 0.946 0.931 0.624 0.756 

0.2 500 Bias 0.001 − 0.022 − 0.039 − 0.069 − 0.201 − 0.210 
Emp var 0.052 0.118 0.056 0.117 0.029 0.071 
Boot var 0.062 0.120 0.063 0.116 0.033 0.073 
Cov 95 0.961 0.943 0.946 0.935 0.789 0.874 

3000 Bias 0.002 − 0.002 − 0.011 − 0.014 − 0.196 − 0.197 
Emp var 0.009 0.019 0.009 0.021 0.005 0.012 
Boot var 0.010 0.021 0.010 0.020 0.005 0.013 
Cov 95 0.954 0.954 0.947 0.939 0.242 0.574 

0.3 500 Bias 0.001 0.001 − 0.011 − 0.023 − 0.207 − 0.202 
Emp var 0.033 0.080 0.034 0.080 0.014 0.046 
Boot var 0.038 0.079 0.039 0.077 0.016 0.046 
Cov 95 0.955 0.943 0.968 0.943 0.625 0.824 

3000 Bias 0.001 0.002 − 0.015 − 0.014 − 0.202 − 0.198 
Emp var 0.005 0.012 0.006 0.014 0.002 0.008 
Boot var 0.006 0.013 0.006 0.013 0.002 0.008 
Cov 95 0.965 0.965 0.938 0.937 0.026 0.376 

0.4 500 Bias − 0.005 − 0.008 − 0.021 − 0.028 − 0.211 − 0.207 
Emp var 0.023 0.055 0.022 0.053 0.009 0.032 
Boot var 0.025 0.055 0.025 0.054 0.009 0.031 
Cov 95 0.944 0.938 0.955 0.948 0.396 0.766 

3000 Bias − 0.007 − 0.008 − 0.012 − 0.007 − 0.208 − 0.207 
Emp var 0.003 0.009 0.004 0.009 0.001 0.005 
Boot var 0.004 0.009 0.004 0.009 0.002 0.005 
Cov 95 0.958 0.960 0.951 0.951 0.000 0.160 

0.5 500 Bias 0.007 0.005 − 0.034 − 0.031 − 0.204 − 0.195 
Emp var 0.015 0.045 0.014 0.039 0.005 0.024 
Boot var 0.017 0.041 0.017 0.041 0.006 0.022 
Cov 95 0.952 0.935 0.952 0.953 0.263 0.723 

3000 Bias 0.001 − 0.004 − 0.018 − 0.017 − 0.209 − 0.206 
Emp var 0.003 0.007 0.003 0.007 0.001 0.004 
Boot var 0.003 0.007 0.003 0.007 0.001 0.004 
Cov 95 0.949 0.943 0.937 0.940 0.000 0.077  
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estimate the asymptotic variance of γ̂, we resample n data points with replacement, and obtain an estimator for γ∗ by applying the 
proposed estimation method described in Section 3.2 to the resampled dataset. Let {γ̂b}

B
b=1 be the estimates obtained by repeating the 

aforementioned bootstrap method for B number of times. The variance of γ̂ can then be approximated by the empirical variance of 
{γ̂∗

b}
B
b=1. A formal justification for the presented nonparametric bootstrap inference procedure is provided in Appendix C. 

5. Numerical studies 

We assess the finite-sample performance of the proposed method via extensive numerical studies. We compare the proposed 
method to several approaches: (i) the naive method by directly applying the two-stage method to the entire dataset (Barendse, 2020); 
(ii) the oracle (but practically infeasible) method that applies the two-stage method to the latent complier subgroup that is unknown in 
practice; and (iii) the joint regression method for estimating complier expected shortfall effect by Chen and Yen (2021). Our proposed 
method involves estimating the conditional probability of complier group conditional on Yi and Zi, i.e., κv,i. We compute the 
non-parametric estimator ̃κv,i (15) using the second order Epanechnikov kernel with cl,n = 10/n and cu,n = 1 − 10/n. The bandwidths 
for estimating π̂(Xi) and v̂(Yi, Zi) are selected from {0.1, 0.2, …, 0.9} based on cross-validation with the criterion described in Remark 
4. We use the bootstrap approach to estimate the standard errors for all of the estimators with B = 1000 number of bootstrapped 
samples. To assess the performance across different methods, we compute the average bias of the estimated coefficients, average 
variance estimates and the empirical variances, and coverage probabilities of the 95% confidence interval estimates. 

We first generate the latent compliance group memberships from a multinomial distribution such that Pr(Compliers) = 2/3 and 
Pr(Always takers) = Pr(Never takers) = 1/6. We then generate two independent covariates X1 ∼ Unif(0, 1) and X2 ∼ Bernoulli(0.5). 
Given X = (X1, X2)

⊤, the instrumental variable V is generated from a Bernoulli distribution with probability 

π(X, ϵ) =
exp

(
0.1X2 + X2

1 + X1X2 + ϵ
)

1 + exp
(
0.1X2 + X2

1 + X1X2 + ϵ
),

where ϵ ∼ N(0, 0.52) controls the deviation of π(X) from a logistic regression model. The treatment variable D can then be determined 
based on V and the latent compliance subgroup membership via the following equation 

D =

⎧
⎨

⎩

V, Compliers,

1, Always takers,

0, Never takers.

With D, V, and the latent compliance memberships, the response Y for compliers and non-compliers are generated from the 

Table 2 
Results for the two stage method and the joint regression method under four different combinations of (G1(⋅),G2(⋅)), denoted as Joint 1–4, with n =
3000 and α = {0.1,0.2,…,0.5}. Bias, Emp var, Boot var, Boot SD, and Cov 95 stand for average bias of the estimated coefficients, empirical variance, 
average variance estimates, average standard error estimates, and coverage probabilities of the 95% confidence intervals.  

α  Two-stage method Joint regression method  

Joint 1 Joint 2 Joint 3 Joint 4 

0.1 Bias − 0.018 − 0.004 − 0.025 − 0.029 − 0.008 
Emp var 0.043 0.046 0.199 0.198 0.045 
Boot var 0.042 0.047 0.048 0.046 0.045 
Cov 95 0.931 0.940 0.936 0.932 0.932 
Boot SD 0.204 0.215 0.217 0.213 0.211 

0.2 Bias − 0.014 − 0.036 − 0.098 − 0.099 − 0.038 
Emp var 0.021 0.157 0.958 0.961 0.159 
Boot var 0.020 0.061 0.030 0.030 0.061 
Cov 95 0.939 0.942 0.932 0.932 0.940 
Boot SD 0.142 0.162 0.154 0.153 0.161 

0.3 Bias − 0.014 − 0.010 − 0.120 − 0.120 − 0.011 
Emp var 0.014 0.014 1.374 1.374 0.014 
Boot var 0.013 0.020 0.022 0.022 0.020 
Cov 95 0.937 0.939 0.929 0.928 0.938 
Boot SD 0.114 0.120 0.125 0.123 0.120 

0.4 Bias − 0.007 − 0.031 − 0.178 − 0.178 − 0.032 
Emp var 0.009 0.168 3.196 3.196 0.169 
Boot var 0.009 0.158 0.016 0.016 0.158 
Cov 95 0.951 0.949 0.936 0.935 0.949 
Boot SD 0.097 0.126 0.107 0.107 0.125 

0.5 Bias − 0.017 − 0.091 − 0.342 − 0.343 − 0.092 
Emp var 0.007 0.415 4.466 4.466 0.418 
Boot var 0.007 0.290 0.019 0.019 0.290 
Cov 95 0.940 0.937 0.910 0.910 0.935 
Boot SD 0.085 0.151 0.101 0.100 0.151  
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following model: 

Y =

{
logτ − 0.2X1 − 0.3X2 + 0.5 × exp(0.3τ) × D, Compliers,

−0.1X1 − 0.2X2 + 0.2D + ϵnc, Otherwise,

where τ ∼ Unif(0, 1) and ϵnc ∼ N(0, 0.52). We note that the data generating mechanism satisfies Assumptions (A1)–(A4). 
Results with n = {500, 3000} for α = {0.1,0.2,0.3,0.4,0.5}, averaged across 1000 replications, are presented in Table 1. We see 

that the performance of the proposed method is close to that of the oracle method, i.e, the estimated parameters of interest are close to 
their corresponding true underlying values. Moreover, the empirical coverage probabilities of 95% confidence intervals are close to the 
nominal level, and the bootstrap-based variance estimates agree well with the empirical variances. In contrast, the naive method 
produces substantially biased estimators and suffers from under-coverage. The numerical results confirm that ignoring treatment 
endogeneity can lead to biased estimation and inference. We see that as we increase the sample size to n = 3000, the bias of the 
proposed method further diminishes. 

Next, we compare the numerical performance between the proposed two-stage method and the joint regression method in Chen and 
Yen (2021) with different choices of specification functions G1(⋅) and G2(⋅). Specifically, we consider four combinations of (G1(⋅),

G2(⋅)), where G1(z) = z or 0, and G2(z) = exp(z) or log{1 + exp(z)}. The initial values for the joint regression method are generated 
from the normal distribution with mean equal to the estimator obtained from the proposed two-stage method and standard deviation 

Fig. 1. The error of estimated complier expected shortfall treatment effect, ̂γ1(α) − γ∗
1(α), based on random initial values with sample size n = 3000. 

From left to right, each column represents γ̂1(α) from the proposed two-stage method and joint regression method with different specifications of 
(G1(⋅), G2(⋅)), which are denoted as Joint 1–4. From top to bottom, each row represents γ̂1(α) calculated at α = {0.1, …, 0.5}. 
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equal to one. The non-parametric estimated conditional probability of complier group described above, κ̃v, are adopted in both 
methods. In each setting, we generate 1000 simulated data sets and choose B = 1000 as the number of bootstrapped samples. 

Results with n = 3000 for α = {0.1, 0.2, 0.3, 0.4, 0.5} are presented in Table 2. Histograms of γ̂1(α) − γ∗
1(α) across the 1000 

simulated data sets are also shown in Fig. 1. We found from Table 2 and Fig. 1, that the proposed two-stage method and joint regression 
method have two main differences in their numerical performance: (1) the distributions of 1000 estimators from the proposed two- 
stage method across all α levels are well approximated to a normal distribution, while the distributions of 1000 estimators from 
the joint regression method are not well approximated by a normal distribution for some α levels; (2) the estimated coefficients from 
the proposed two-stage method are close to the true underlying value, while the estimates from the joint regression method are not 
close to the true underlying values for some α levels. One potential reason for the differences is that the joint regression estimators are 
obtained from solving a non-convex loss function for which global minimum is not guaranteed. Thus, the estimators may be sensitive to 
the choice of initial values. 

In short, our numerical results suggest that without taking into account compliers can lead to substantial biased estimation and 
inference. Compared to the joint regression approach, our proposed two-stage method has a more robust and stable numerical per
formance. Moreover, the proposed method can be implemented efficiently compared to that of the joint regression approach in Chen 
and Yen (2021). 

6. An application to the JTPA dataset 

Job Training Partnership Act (JTPA) is a large publicly-funded training program that began in year 1983. Title II of JTPA, the 
largest component of JTPA, provides training for economically disadvantaged adults. In this study, applicants were randomized for 
JTPA trainings in the application process, but did not compel those offered services to participate in training. We consider a dataset 
from Title II of the JTPA study that includes 6102 adult women and 5102 adult men who applied for JTPA between years 1987 and 
1989. The objective is to quantify the effect of JTPA training for the low-income groups. This dataset has also been considered in 
Abadie et al. (2002) in estimating complier quantile treatment effect of JTPA training on the 30-months earnings. 

In this dataset, the response variable is the 30-months earnings, and the observed covariates include race of applicants, whether 
participants graduated from high-school, including general educational diploma (GED) holders, marital status, age, aid for families 
with dependent children (AFDC) receipt (for women), whether worked at least 12 weeks in the 12 months preceding random 
assignment, the original recommended service strategy (classroom training, on-the-job training (OJT)/job search assistance (JSA), and 
others), and whether the data are from the second follow-up survey. The summary statistics of the covariates for adult women and men 
are shown in Table 3. From Table 3, we see that only around 60% percent of participants who are offered the JTPA services actually 
receive the JTPA training. Besides, the percentage of participants with high school degree in the trainee group is higher than that of the 

Table 3 
Descriptive statistics of variables for participants in JTPA dataset, overall and stratified by the JTPA training status for men and women.  

Gender Variable Entire Sample (N =

5102) 
Assignment Treatment 

Training (N =

3339) 
Non-training (N =

1703) 
Trainee (N =

2136) 
Non-trainee (N =

2966) 

Men Training 0.42 0.62 0.01 - - 
High School or GED 0.69 0.60 0.69 0.71 0.68 
Age 32.91 32.85 33.04 32.76 33.02 
Married 0.35 0.36 0.34 0.37 0.34 
Black 0.25 0.25 0.25 0.26 0.25 
Hispanic 0.10 0.10 0.09 0.10 0.09 
Worked less than 13 weeks 0.40 0.40 0.40 0.40 0.40  
Data from the second follow-up 
survey 

0.29 0.30 0.28 0.30 0.29  

classroom training 0.20 0.21 0.19 0.26 0.16  
OJT/JSA 0.50 0.50 0.50 0.46 0.53 

Gender Variable Entire Sample (N =

6102) 
Assignment Treatment 

Training (N =

4088) 
Non-training (N =

2014) 
Trainee (N =

2722) 
Non-trainee (N =

3380) 

Women Training 0.45 0.67 0.02 - - 
High School or GED 0.72 0.73 0.70 0.75 0.70 
Age 33.33 33.33 33.35 33.11 33.52 
Married 0.22 0.22 0.21 0.22 0.21 
Black 0.26 0.27 0.26 0.26 0.27 
Hispanic 0.12 0.12 0.12 0.12 0.11 
Worked less than 13 weeks 0.52 0.52 0.52 0.51 0.53 
Data from the second follow-up 
survey 

0.26 0.26 0.25 0.26 0.25  

classroom training 0.38 0.38 0.39 0.45 0.33  
OJT/JSA 0.37 0.37 0.38 0.32 0.42  
AFDC 0.31 0.30 0.31 0.32 0.30  
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non-trainee group. These imbalances suggest the existence of some unmeasured confounders that affect both the JTPA training status 
and potential earnings. Without considering these confounders, the standard method may fail to provide a valid estimate of the effect 
of JTPA training among low-income subpopulation. 

We first estimate the complier proportions for men and women group, pc, by 

pc = 1 −

∑n
i=1Di(1 − Vi)

∑n
i=1(1 − Vi)

−

∑n
i=1(1 − Di)Vi

∑n
i=1Vi

.

Specifically, the estimated complier proportions for men and women are 0.61 and 0.64, respectively. We apply the proposed CRESTE 
method to estimate the effect of JTPA training for low-income adult men and women separately, using the offer of JTPA service as the 
instrumental variable. As discussed in Abadie et al. (2002), the validity of using JTPA service as an instrumental variable is guaranteed 
by the fact that the training offer is randomly assigned. For both of the analyses, we adjust for the following covariates: dummy 
variables for black and Hispanic applicants, an indicator variable for high-school graduates (including GED holders), an indicator for 
married applicants, 5 age-group indicator variables (22–25, 26–29, 30–35, 36–44, 45–54), an indicator for AFDC receipt (for women), 
an indicator variable recording whether the applicant worked at least 12 weeks in the 12 months preceding random assignment, 
dummy variables for the original recommended service strategy (classroom, OJT/JSA, other), and an indicator for whether earnings 
data are from the second follow-up survey. 

We perform our analysis for adult men and women separately at α = 0.25 and 0.5, which are the groups of men or women whose 
30-months earnings are below the first quartile and the median of the 30-months earnings (after adjusting for the covariates), 
respectively. We apply the proposed method and the as-treated method, which refers to applying the two-stage method of Barendse 
(2020) to the entire dataset. We use the same variables as those of Abadie et al. (2002) to estimate κv,i, where π is estimated by the 
empirical estimator of E(V). We use 30-month earnings to estimate v for adult men, and 30-month earnings and the classroom training 
indicator to estimate v for women. We adopt the fourth-order Epanechnikov kernel in v̂i, and the bandwidth is selected via 
cross-validation. In our analysis, the selected bandwidths are 5200 and 7800 for adult men and women, respectively. 

Table 4 presents the estimated CQTE and CRESTE (with standard errors computed via the bootstrap) of the effect of JTPA services 
on earnings for both men and women subgroups. From Table 4, we see that the proposed method concludes that JTPA training does not 
have a statistically significant effect on improving earnings for low-income men. In contrast, the as-treated method overestimates the 
effect of JTPA training on earnings and the conclusion obtained from the as-treated method can be misleading. From the discussion in 
Abadie et al. (2002), the difference between these two methods may be due to self-selection or an effort by program operators to 
exclude men with low earnings potentials from JTPA training. In contrast, both results from the as-treated analysis and the proposed 
method show that the JTPA service has significant effect on improving earnings for low-income adult women, even though over
estimation of the effects from the as-treated analysis remain visible. Quantitatively we note that for adult women in the lower half of 
their earnings (after adjusted for the covariates), the average JTPA training effect is about $1086, much lower than the median effect of 
$1760. It is notable that CQTE and CRESTE at the 0.25 quantile level do not differ much for women, which indicates that we do not 
have a significant spread toward lower values of the response below the first quartile for women. The difference between CQTE and 
CRESTE at α = 0.25 is greater for men than that of women, which suggests a greater lower tail spread for the effects of JTPA training in 
terms of the 30-month earnings for men than for women. 

7. Discussion 

We consider estimating the CRESTE, i.e., the expected shortfall treatment effect for the compliers, in observational studies. 
Different from the quantile treatment effect, the expected shortfall treatment effect measures the aggregate quantile treatment effect 
over the lower (or upper) tail of the conditional distribution for the response variable. Moreover, the average treatment effect can be 
treated as a special case of the expected shortfall treatment effect with α = 1. 

We propose a two-stage method to estimate CRESTE by utilizing the special characteristic of a binary instrumental variable. The 
proposed two-stage estimation procedure involves solving a weighted quantile regression to obtain the thresholding quantile at the 
first stage, and solving a weighted least squares problem to estimate the expected shortfall parameter at the second stage. The method 

Table 4 
The estimated coefficients (Est) and the corresponding estimated standard error (Boot SD) of JTPA trainings from the proposed CRESTE method and 
the as-treated method in JTPA dataset at α = 0.25 and 0.5.  

Gender α  CRESTE As-treated  

β1(α) γ1(α) β1(α) γ1(α)

Men 0.25 Est 755 383 2510 1502 
SD 588 408 397 211 

0.5 Est 1663 921 4420 2984 
SD 986 617 673 358 

Women 0.25 Est 657 633 1013 792 
SD 222 187 177 129 

0.5 Est 1760 1086 2707 1633 
SD 606 323 427 221  
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can be readily implemented using existing software such as the R package quantreg or conquer (Man et al., 2022) for solving a 
weighted quantile regression, and the lm function in base R for solving the weighted least squares problem. Compared to the approach 
in Chen and Yen (2021) that requires solving a non-convex loss function, we demonstrate in numerical studies that the proposed 
two-stage method has a more stable solution and is computationally efficient. Theoretically, the estimated CRESTE from the proposed 
two-stage method is locally robust to the estimates of quantiles at the first stage due to Neyman-orthogonalization in the relevant 
expected shortfall score function. 
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Appendix A. Propositions 

Proposition 1. Under Assumptions (A1) and (A2), Models (7) and (8) are equivalent. 

Proof. Given the fact that Y = D × Y1 + (1 − D) × Y0, we have 

Qα(Y|D = 1, X, D1 > D0) = inf{y : Pr(Y ≤ y|D = 1, X, D1 > D0) ≥ α}

= inf{y : Pr(Y1 ≤ y|D = 1, X, D1 > D0) ≥ α}

Since V = D for the compliers, we have inf{y : Pr(Y1 ≤ y|D = 1, X, D1 > D0) ≥ α} = inf{y : Pr(Y1 ≤ y|V = 1, X, D1 > D0) ≥ α}. Under 
Assumptions (A1) and (A2), we have 

inf{y : Pr(Y1 ≤ y|V = 1, X, D1 > D0) ≥ α} = inf{y : Pr(Y1 ≤ y|X, D1 > D0) ≥ α}

= Qα(Y1|X, D1 > D0).

Similarly, we have Qα(Y|D = 0, X,D1 > D0) = Qα(Y0|X, D1 > D0). 
The aforementioned equations imply that Qα(Y|D = d, X, D1 > D0) = Qα(Yd|X, D1 > D0) for d = {0,1}. Similarly, we have 

Sα(Y|D = d, X, D1 > D0) ≐
1
α

∫ α

0
Qu(Y|D = d, X, D1 > D0)du

=
1
α

∫ α

0
Qu(Yd|X, D1 > D0)du

≐ Sα(Yd|X, D1 > D0).

Thus, Model (7) and Model (8) are equivalent.□ 

Proposition 2. Under Assumptions (A1) and (A2), in the one-sided compliance case where subjects with V = 0 have no access to the 
treatment (i.e., Pr(D0 = 0|X) = 1), γ1(α) = Sα(Y1|X, D = 1) − Sα(Y0|X, D = 1). 

Proof. From the proof of Proposition (1), we have Sα(Y|D = d, X, D1 > D0) = Sα(Yd|X, D1 > D0). Thus, 

γ1(α) ≐ Sα(Y1|X, D1 > D0) − Sα(Y0|X, D1 > D0)

= Sα(Y|D = 1, X, D1 > D0) − Sα(Y|D = 0, X, D1 > D0).

Note that Pr(D0 = 0|X) = 1 implies that subjects with D = 1 must belong to the complier group. Given the fact that Y = D × Y1 + (1 −

D) × Y0, we have 

Qα(Y|D = 1, X, D1 > D0) = inf{y : Pr(Y1 ≤ y|D = 1, X, D1 > D0) ≥ α}

= inf{y : Pr(Y1 ≤ y|D = 1, X) ≥ α}

= Qα(Y1|X, D = 1).

Moreover, 

Qα(Y|D = 0, X, D1 > D0) = inf{y : Pr(Y0 ≤ y|D = 0, X, D1 > D0) ≥ α}

= inf{y : Pr(Y0 ≤ y|V = 0, X, D1 = 1) ≥ α}

= inf{y : Pr(Y0 ≤ y|V = 1, X, D1 = 1) ≥ α}

= inf{y : Pr(Y0 ≤ y|D = 1, X) ≥ α}

= Qα(Y0|X, D = 1),

where the second equality follows from the one-sided compliance constraint, Pr(D0 = 0|X) = 1, and the third equality is ensured by 
Assumption (A1). Assumption (A1) along with Pr(D0 = 0|X) = 1 further imply the fourth equality. 

For d = {0,1}, we have 
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Sα(Yd|D = 1, X) =
1
α

∫ α

0
Qu(Yd|D = 1, X)du

=
1
α

∫ α

0
Qu(Y|D = d, X, D1 > D0)du

= Sα(Y|D = d, X, D1 > D0).

Thus, γ1(α) ≐ Sα(Y1|X, D1 > D0) − Sα(Y0|X, D1 > D0) is equivalent to Sα(Y1|X, D = 1) − Sα(Y0|X, D = 1).□ 

Proposition 3. Let κv(Y, Z) = Pr(D1 > D0|Y, Z). Under Assumptions (A1)–(A4), we have 

κv(Y, Z) = 1 −
D{1 − v(Y, Z)}

1 − π(X)
−

(1 − D)v(Y, Z)

π(X)
,

where v(Y, Z) = Pr(V = 1|Y, Z) and π(X) = Pr(V = 1|X). 

Proof. Note that D(1 − V) only differs from zero when D = 1 and V = 0. By the monotonicity assumption, D0 = 1 implies D1 = 1. 
Then 

E{D(1 − V)|Y, Z} = Pr{D(1 − V) = 1|Y, Z} = Pr(D1 = D0 = 1, V = 0|Y, Z)

= Pr(D1 = D0 = 1|Y, Z)Pr(V = 0|D1 = D0 = 1, Y1, X)

= Pr(D1 = D0 = 1|Y, Z)Pr(V = 0|X),

where the last equality follows from Assumptions (A1) and (A4), i.e., V is independent of (D1, D0, Y1, Y0) conditional on X. Similarly, 
we can show that E{(1 − D)V|Y, Z} = Pr(D1 = D0 = 0|Y, Z)Pr(V = 1|X). Therefore, 

1 −
D{1 − v(Y, Z)}

1 − π(X)
−

(1 − D)v(Y, Z)

π(X)

= E

{

1 −
D(1 − V)

Pr(V = 0|X)
−

(1 − D)V
Pr(V = 1|X)

|Y, Z}

= 1 − Pr(D1 = D0 = 1|Y, Z) − Pr(D1 = D0 = 0|Y, Z)

= Pr(D1 > D0|Y, Z),

where the last equality follows from the monotonicity assumption.□ 

Appendix B. Proof of Theorems 1–3 

We start with some lemmas that will be helpful in proving Theorems 1–3. The proofs of the Lemmas are deferred to  Appendix D. 

Lemma 1. Under Conditions (C1)–(C8), we have 

n−1/2
∑n

i=1
κ̃v,iZigα,i(γ∗, β∗) = n−1/2

∑n

i=1
Ψi(α) + op(1),

where Ψi(α) = m2(Yi, Zi, α)
{

1 −
Di(1−Vi)

1−πi
−

(1−Di)Vi
πi

}
+ H2(Xi, α){Vi −π(Xi)}, with m2(Yi, Zi, α) = Zigα,i(γ∗, β∗) and H2(Xi, α) = E

[
m2(Yi, Zi,

α)
{

(1−Di)vi
π2

i
−

Di(1−vi)

(1−πi)
2

}⃒
⃒
⃒Xi

]
. 

Lemma 2. Under Conditions (C1)–(C8), we have 

n−1/2
∑n

i=1
κ̃v,iZi

{
α − I

(
Yi < Z⊤

i β∗
)}

= n−1/2
∑n

i=1
Φi(α) + op(1),

where Φi(α) = m1(Yi, Zi, α)
{

1 −
Di(1−Vi)

1−πi
−

(1−Di)Vi
πi

}
+ H1(Xi, α){Vi −π(Xi)}. Here m1(Yi, Zi, α) = Zi{α −I(Yi < Z⊤

i β∗)} and H1(Xi, α) =

E
[
m1(Yi, Zi, α)

{
(1−Di)vi

π2
i

−
Di(1−vi)

(1−πi)
2

}⃒
⃒
⃒Xi

]
. 

B1. Proof of Theorem 1 

Proof. This proof of Theorem 1 is adapted from the proof of Theorem 3.1 in Abadie et al. (2002), which we detail here for 
completeness. Let Ln(ζ, κ) =

∑n
i=1li(ζ, κ) with 

li(ζ, κ) = κv,i
{

ρα
(
ϵi − n−1/2Z⊤

i ζ
)

− ρα(ϵi)
}

,
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where ϵi = Yi − Z⊤
i β∗ and ρα(u) = u{α − I(u ≤ 0)}. Similarly, let Ln(ζ, κ̃) =

∑n
i=1li(ζ, κ̃) with li(ζ, κ̃) = κ̃v,i{ρα(ϵi − n−1/2Z⊤

i ζ) − ρα(ϵi)}

The function Ln(ζ, κ̃) is a convex function with respect to ζ and a minimizer takes the form ζn = n1/2(β̂ − β∗). Besides, 

∂li(ζ, κ)

∂ζ
= −n−1/2Ziκv,i

{
α − I

(
ϵi − n−1/2Z⊤

i ζ ≤ 0
)}

,

almost surely. Denote l(ζ,κ) = κv{ρα(ϵ − n−1/2Z⊤ζ) − ρα(ϵ)}, where ϵ = Y − Z⊤β∗. By Condition (C4) and Weierstrass domination, we 
have 

∂E{l(ζ, κ)}

∂ζ
|ζ=0 = −n−1/2E[Zκv{α − I(ϵ ≤ 0)}] = 0,

and 

∂E{l(ζ, κ)}

∂ζ∂ζ⊤
|ζ=0 = −n−1E{f (Z⊤β∗|Z, D1 > D0)ZZ⊤|D1 > D0}Pr(D1 > D0)

= n−1E{I(D1 > D0)f (Z⊤β∗|Z, D1 > D0)ZZ⊤}

= n−1J1.

From Conditions (C3) and (C4), J1 is nonsingular. By a Taylor’s expansion, we have 

E{Ln(ζ, κ)} =
1
2

ζ⊤J1ζ + op(1). (B.1) 

To prove Theorem 1, we first show 

Ln(ζ, κ̃) = E{Ln(ζ, κ)} − n−1/2
∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} + op(1). (B.2)  

Note that 

Ln(ζ, κ̃) = E{Ln(ζ, κ)} + [Ln(ζ, κ̃) − E{Ln(ζ, κ)}]

= E{Ln(ζ, κ)} − n−1/2
∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)}

+

[

Ln(ζ, κ̃) + n−1/2
∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} − E{Ln(ζ, κ)}

]

For notational convenience, let Un(Zi, κ, ζ) = li(ζ, κ) + n−1/2κv,iZ⊤
i ζ{α −I(ϵi ≤ 0)} and let Un(Zi, κ̃, ζ) = li(ζ, κ̃) + n−1/2κ̃v,iZ⊤

i ζ{α −

I(ϵi ≤ 0)}. Then, 

Ln(ζ, κ̃) = E{Ln(ζ, κ)} + [Ln(ζ, κ̃) − E{Ln(ζ, κ)}]

= E{Ln(ζ, κ)} − n−1/2
∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)}

+
∑n

i=1
Un(Zi, κ̃, ζ) −

∑n

i=1
Un(Zi, κ, ζ)

+
∑n

i=1
Un(Zi, κ, ζ) − E{Un(Zi, κ, ζ)}.

The last equation holds because E[κv,iZi{α − I(ϵi ≤ 0)}] = 0. 
Let fϵ|Z(⋅) and Fϵ|Z(⋅) be the conditional density function and cumulative distribution function of ϵ given Z, respectively. Since ϵ = Y 

−Z⊤β∗ and 

|ρα
(
ϵi − n−1/2Z⊤

i ζ
)

−
(
ϵi − n−1/2Z⊤

i ζ
)
{α − I(ϵi ≤ 0)}| ≤ I(|ϵi| ≤ |n−1/2Z⊤

i ζ|) ⋅ |n−1/2Z⊤
i ζ|,

we have 
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E
[
n ⋅

⃒
⃒ρα

(
ϵi − n−1/2Z⊤

i ζ
)

−
(
ϵi − n−1/2Z⊤

i ζ
)
{α − I(ϵi ≤ 0)}

⃒
⃒
]

≤ E[I(|ϵi| ≤ |n−1/2Z⊤
i ζ|) ⋅ |n1/2Z⊤

i ζ|]

= E

[
Fϵ|Z(|n−1/2Z⊤

i ζ|) − Fϵ|Z( − |n−1/2Z⊤
i ζ|)

n−1/2

⃒
⃒Z⊤

i ζ
⃒
⃒

]

→2E
[
fϵ|Z(0)

⃒
⃒Z⊤

i ζ
⃒
⃒2

]
< ∞.

(B.3) 

Then, 

|
∑n

i=1
Un(Zi, κ̃, ζ) − Un(Zi, κ, ζ)|

≤
∑n

i=1
|̃κv,i − κv,i| ⋅ |

{
ρα

(
ϵi − n−1/2Z⊤

i ζ
)

−
(
ϵi − n−1/2Z⊤

i ζ
)
{α − I(ϵi ≤ 0)}

}
|

≤ sup
i

|̃κv,i − κv,i|
1
n

∑n

i=1
n ⋅

⃒
⃒ρα

(
ϵi − n−1/2Z⊤

i ζ
)

−
(
ϵi − n−1/2Z⊤

i ζ
)
{α − I(ϵi ≤ 0)}

⃒
⃒.

(B.4) 

Besides, from Conditions (C7) and (C8), Lemma B.3 of Newey (1994) implies supi|v̂i −v| = op(n−1/4) and supi|π̂ i − π| = op(n−1/4). 
Then by Condition (C5), we have supi

⃒
⃒κ̂v,i − κv,i

⃒
⃒ = op(n−1/4). From Condition (C6), we can obtain 

sup
i

⃒
⃒κ̃v,i − κv,i

⃒
⃒ = op

(
n−1/4)

. (B.5) 

Coupled with Eq. (B.3) and supi

⃒
⃒κ̃v,i − κv,i

⃒
⃒ = op(n−1/4), Eq. (B.4) implies that 

|
∑n

i=1
Un(Zi, κ̃, ζ) − Un(Zi, κ, ζ)| =op(1). (B.6)  

Besides, 

E

[(
∑n

i=1
Un(Zi, κ, ζ) − E{Un(Zi, κ, ζ)}

)

2

]

≤
∑n

i=1
E

{
Un(Zi, κ, ζ)

2}

≤ E{I(|ϵi| ≤ |n−1/2Z⊤
i ζ|) ⋅ |Z⊤

i ζ|
2
}

→0,

(B.7)  

where the first inequality follows from the cancellation of cross-product terms. Based on Eqs. (B.6) and (B.7), we have 

Ln(ζ, κ̃) = E{Ln(ζ, κ)} − n−1/2
∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} + op(1).

Next, we will show ζn = n1/2(β̂ − β∗)→dN(0, J−1
1 Ω1J−1

1 ). From Eqs. (B.1) and (B.2), for a given ζ, 

Ln(ζ, κ̃) = E{Ln(ζ, κ)} − n−1/2
∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} + op(1)

=
1
2
ζ⊤J1ζ − n−1/2

∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} + op(1).

Since Ln(ζ, κ̃) + n−1/2∑n
i=1κ̃v,iZ⊤

i ζ{α −I(ϵi ≤ 0)} is convex in ζ. From Pollard’s convexity lemma (Pollard, 1991), for any compact subset 
T ⊂Rl+1, we have 

sup
ζ∈T

⃒
⃒
⃒
⃒
⃒
Ln(ζ, κ̃) + n−1/2

∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} −
1
2

ζ⊤J1ζ

⃒
⃒
⃒
⃒
⃒

= op(1). (B.8)  

Let ηn = J−1
1 n−1/2∑n

i=1κ̃v,iZi{α − I(ϵi ≤ 0)}. Note that 

1
2
(ζ − ηn)

⊤J1(ζ − ηn) =
1
2
ζ⊤J1ζ − n−1/2

∑n

i=1
κ̃v,iZ⊤

i ζ{α − I(ϵi ≤ 0)} +
1
2

η⊤
n J1ηn.

From Eq. (B.8), for any compact subset T ⊂Rl+1, we have 
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sup
ζ∈T

⃒
⃒
⃒
⃒Ln(ζ, κ̃) −

1
2
(ζ − ηn)

⊤J1(ζ − ηn) +
1
2
η⊤

n J1ηn

⃒
⃒
⃒
⃒ = op(1).

Finally, by an application of Lemma 3 in Buchinsky and Hahn (1998), we have ζn = ηn + op(1). From Lemma 2, we have 

n1/2(β̂ − β∗)→dN
(
0, J−1

1 Ω1J−1
1

)

as desired.□ 

B2. Proof of Theorem 2 

Proof. From Theorem 1, we have ‖ β̂ − β∗‖→p0. By the definition of γ∗, E{I(D1 > D0)Zgα(Z,γ∗,β∗)} = 0. For any b ∈ B and b ∕= γ∗, we 
have 

E{I(D1 > D0)Zgα(Z, b, β∗)} − E{I(D1 > D0)Zgα(Z, γ∗, β∗)}

= E

[

I(D1 > D0)Z
(

Z⊤b −
1
α (Y − Z⊤β∗)I(Y ≤ Z⊤β∗) − Z⊤β∗

)

−I(D1 > D0)Z
(

Z⊤γ∗ −
1
α (Y − Z⊤β∗)I(Y ≤ Z⊤β∗) − Z⊤β∗

)

]

= E{I(D1 > D0)ZZ⊤}(b − γ∗).

Thus, E{I(D1 > D0)Zgα(Z, b, β∗)} = E{I(D1 > D0)Zgα(Z, γ∗, β∗)} = 0 if and only if E{I(D1 > D0)ZZ⊤}(b − γ∗) = 0. By Condition (C3), i. 
e., E{I(D1 > D0)ZZ⊤} is of full rank, we have E{I(D1 > D0)Zgα(Z, b, β∗)} = 0 if and only if b = γ∗. Thus, γ∗ is the unique solution of 
E{I(D1 > D0)Zgα(Z, b, β∗)} = 0. 

Next, we will show that n−1∑n
i=1κ̃v,iZigα,i(b, β̂) uniformly converges to E{κvZgα(Z, b, β∗)} for b ∈ B and β̂ given that ‖ β̂ − β∗‖ =

op(1). By adding and subtracting terms, it can be shown that 

n−1
∑n

i=1
κ̃v,iZigα,i(b, β̂)

= E{κvZgα(Z, b, β∗)} + n−1
∑n

i=1
κv,iZigα,i(b, β∗) − E{κvZgα(Z, b, β∗)}

+n−1
∑n

i=1

(
κ̃v,i − κv,i

)
Zigα,i(b, β̂) + n−1

∑n

i=1
κv,iZi

{
gα,i(b, β̂) − gα,i(b, β∗)

}
.

(B.9) 

Let In(b) = n−1∑n
i=1κv,iZigα,i(b, β∗) − E{κvZgα(Z, b, β∗)}, IIn(b) = n−1∑n

i=1(κ̃v,i − κv,i)Zi ⋅ gα,i(b, β̂), and IIIn(b) = n−1∑n
i=1κv,iZi{gα,i(b,

β̂) − gα,i(b, β∗)}. To prove that n−1∑
i=1κ̃v,iZi ⋅ gα,i(b, β̂) uniformly converges to E{κvZgα(Z, b, β∗)} for b ∈ B , it is sufficient to prove 

supb∈B ‖ In(b) ‖ = op(1), supb∈B ‖ IIn(b) ‖ = op(1), and supb∈B ‖ IIIn(b) ‖ = op(1). 
Firstly, by the boundedness b ∈ B , Yi and Zi, ‖ In(b) ‖→p0 pointwisely by weak law of large numbers. Since B is a compact space, 

we have ‖ In(b) ‖ uniformly converge to 0 for b ∈ B . Besides, from the compactness of Zi and Yi, Eq. (B.5) implies that supb∈B ‖ IIn(b) ‖

= op(n−1/4). To prove supb∈B ‖ IIIn(b) ‖ = op(1), by the fact that |I(Y ≤ u)(Y − u) − I(Y ≤ v)(Y − v)| ≤ |v − u|, we have 

|gα(Z, b, β̂) − gα(Z, b, β∗)|

=

⃒
⃒
⃒
⃒
1
α (Y − Z⊤β∗)I{Y ≤ Z⊤β∗} + Z⊤β∗ −

1
α (Y − Z⊤ β̂)I(Y ≤ Z⊤ β̂) − Z⊤ β̂

⃒
⃒
⃒
⃒

≤
1
α |(Y − Z⊤β∗)I(Y ≤ Z⊤β∗) − (Y − Z⊤ β̂)I(Y ≤ Z⊤ β̂)| + |Z⊤β∗ − Z⊤ β̂|

≤

(
1
α + 1

)

|Z⊤β∗ − Z⊤ β̂|.

By the assumption that ‖ Z ‖ is bounded, there exist a constant C, such that supZ|Z⊤β∗ − Z⊤ β̂| ≤ C ‖β̂ − β∗‖. Therefore, 

sup
Z,b∈B

|gα(Z, b, β̂) − gα(Z, b, β∗)| ≤ C
(

1
α + 1

)

‖ β̂ − β∗ ‖ . (B.10) 

By ‖ β̂ − β∗‖=op(1) from Theorem 1, we have 

sup
b∈B

‖ IIIn(b) ‖ ≤ sup
i

|κv,i|sup
i

‖Zi‖ sup
Z,b∈B

|gα(Z, b, β̂) − gα(Z, b, β∗)|

≤ sup
i

|κv,i|sup
i

‖Zi‖ C
(

1
α + 1

)

‖ β̂ − β∗ ‖= op(1).

(B.11) 
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Therefore, we have n−1∑
i=1κ̃v,iZ⊤

i gα,i(b, β̂) uniformly converges to E{κvZgα(Z, b, β∗)} for b ∈ B . By the definition of γ̂ and γ∗, we 
have 

0 = n−1
∑n

i=1
κ̃v,iZigα,i(γ̂, β̂)

= E{κvZgα(Z, γ̂, β∗)} − E{κvZgα(Z, γ∗, β∗)} + op(1)

= E{κvZZ⊤}(γ̂ − γ∗) + op(1).

From Condition (C3), we have ‖ γ̂ − γ∗‖ = op(1).□ 

B3. Proof of Theorem 3 

Proof. In the first step, we will show that ‖ γ̂ − γ∗‖=op(n−1/4) given that ‖ β̂ − β∗‖ = op(n−1/4). To prove it, we firstly show that supb ‖

n−1∑n
i=1κ̃v,iZ⊤

i gα,i(b, β̂) − E{κvZgα(Z, b, β∗)} ‖ = op(n−1/4). From Eq. (B.9), we have 

n−1
∑n

i=1
κ̃v,iZ⊤

i gα,i(b, β̂) − E{κvZgα(Z, b, β∗)} = In(b) + IIn(b) + IIIn(b),

where In(b), IIn(b) and IIIn(b) are defined in the proof of Theorem 2. Thus, we only need to show that supb∈B ‖ In(b) ‖ = op(n−1/4), 
supb∈B ‖ IIn(b) ‖ = op(n−1/4), and supb∈B ‖ IIIn(b) ‖ = op(n−1/4). In the proof of Theorem 2, we have shown that supb∈B ‖ IIn(b) ‖ =

op(n−1/4). From Eqs. (B.10) and (B.11) in the proof of Theorem 2, we have 

sup
b∈B

‖ IIIn(b) ‖ ≤ sup
i

|κv,i|sup
i

‖Zi‖sup
b∈B

|gα(Z, b, β̂) − gα(Z, b, β∗)|

≤ sup
i

|κv,i|sup
i

‖Zi‖ C
(

1
α + 1

)

‖ β∗ − β̂ ‖ .

(B.12)  

Given that ‖ β̂ − β∗‖ = op(n−1/4), we have supb∈B ‖ IIIn(b) ‖ = op(n−1/4). 
It remains to show that supb∈B ‖ In(b) ‖ = op(n−1/4). To prove it, we firstly show that {κvZgα(Z, b, β∗) : b ∈ B } is a Donsker class. 

Given the boundedness of Z and κv, and the compactness of B , ‖ κvZgα(Z, b, β∗) ‖ is uniformly bounded on B . Moreover, for b, b̃ ∈ B , 
given the boundedness of Z, there exist constant C1, such that 

‖ κvZgα(Z, b, β∗) − κvZgα(Z, b̃, β∗)‖=‖κvZZ⊤(b − b̃)‖≤C1‖ b − b̃ ‖.

Hence, κvZgα(Z, b, β∗) is a type IV (type 4) function defined in Andrews (1994) with p = 2 and satisfies Ossiander’s L2 entropy condition 
in Andrews (1994), which implies that {κvZgα(Z, b, β∗) : b ∈ B } is a Donsker class. Thus, from the law of iterated logarithm for 
empirical process on Vapnik-Cervonenkis (VC) class (Alexander and Talagrand, 1989), we have 
supb∈B ‖

∑n
i=1κv,iZigα,i(b, β∗) −E{κvZgα(Z, b, β∗)} ‖= O(n1/2(loglogn)) almost surely, which implies that supb∈B ‖ In(b) ‖ = op(n−1/4). 

Coupled with Eq. (B.9), we have 

sup
b∈B

‖ n1/4

[

n−1
∑n

i=1
κ̃v,iZ⊤

i gα,i(b, β̂) − E{κvZgα(Z, b, β∗)}

]

‖= op(1). (B.13) 

Since n−1∑n
i=1κ̃v,iZigα,i(γ̂, β̂) = 0 and E{κvZgα(Z, γ∗, β∗)} = 0, we have 

0 = n−1
∑n

i=1
κ̃v,iZigα,i(γ̂, β̂)

= E{κvZgα(Z, γ̂, β∗)} − E{κvZgα(Z, γ∗, β∗)} +

[

n−1
∑n

i=1
κ̃v,iZ⊤

i gα,i(γ̂, β̂) − E{κvZgα(Z, γ̂, β∗)}

]

= E{κvZZ⊤}(γ̂ − γ∗) +

[

n−1
∑n

i=1
κ̃v,iZ⊤

i gα,i(γ̂, β̂) − E{κvZgα(Z, γ̂, β∗)}

]

From Condition (C3) and Eq. (B.13), we have ‖ γ̂ − γ∗‖ = op(n−1/4). 
Next step, we will prove that 

n1/2E(κvZZ⊤)(γ̂ − γ∗) = −n−1/2
∑n

i=1
κ̃v,iZigα,i(γ∗, β∗) + op(1).

Note that 
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0 = n−1/2
∑n

i=1
κ̃v,iZigα,i(γ̂, β̂)

= n−1/2
∑n

i=1
κ̃v,iZigα,i(γ∗, β∗)

+n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ̂, β̂) − gα,i(γ∗, β∗)

}

+n1/2E[κvZ{gα(Z, γ̂, β̂) − gα(Z, γ∗, β∗)}]

+Gn(γ̂, β̂) − Gn(γ∗, β∗)

= n−1/2
∑n

i=1
κ̃v,iZigα,i(γ∗, β∗)

+n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ̂, β̂) − gα,i(γ∗, β∗)

}

+n1/2E[κvZ{gα(Z, γ∗, β̂) − gα(Z, γ∗, β∗)}]

+n1/2E(κvZZ⊤)(γ̂ − γ∗)

+Gn(γ̂, β̂) − Gn(γ∗, β∗),

(B.14) 

where Gn(b1, b2) = n−1/2∑n
i=1κv,iZigα,i(b1, b2) − n1/2E{κvZgα(Z, b1, b2)}. 

Let T n,1 = n−1/2∑n
i=1(κ̃v,i − κv,i)Zi{gα,i(γ̂, β̂) − gα,i(γ∗, β∗)}, T n,2 = n1/2E[κvZ{gα(Z, γ∗, β̂) − gα(Z, γ∗, β∗)}], and T n,3 = Gn(γ̂, β̂) −

Gn(γ∗, β∗). In the following, we will show that ‖ T n,i‖=op(1) for i = {1,2,3}. 
We start with showing ‖ T n,1‖ = op(1). Note that 

‖ T n,1‖= ‖ n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ̂, β̂) − gα,i(γ∗, β̂) + gα,i(γ∗, β̂) − gα,i(γ∗, β∗)

}
‖

≤ ‖ n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ̂, β̂) − gα,i(γ∗, β̂)

}
‖

+ ‖ n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ∗, β̂) − gα,i(γ∗, β∗)

}
‖ .

(B.15) 

Moreover, we have 

n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ̂, β̂) − gα,i(γ∗, β̂)

}

= n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

[{

Z⊤
i γ̂ −

1
α

(
Yi − Z⊤

i β̂
)
I
(
Yi ≤ Z⊤

i β̂
)

− Z⊤
i β̂

}

−

{

Z⊤
i γ∗ −

1
α

(
Yi − Z⊤

i β̂
)
I
(
Yi ≤ Z⊤

i β̂
)

− Z⊤
i β̂

}]

= n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
ZiZ⊤

i (γ̂ − γ∗).

(B.16) 

Also, based on Equation (B.10), we have 

‖ n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
Zi

{
gα,i(γ∗, β̂) − gα,i(γ∗, β∗)

}
‖

≤ n−1/2
∑n

i=1
|̃κv,i − κv,i| ‖Zi‖ sup

Z,b∈B

|gα(Z, b, β̂) − gα(Z, b, β∗)|

≤ n−1/2
∑n

i=1
|̃κv,i − κv,i| ‖Zi‖ C

(
1
α + 1

)

‖ β̂ − β∗ ‖ .

(B.17) 

Coupled with the Eqs. (B.15), (B.16) and  (B.17), we have 

‖ T n,1‖≤ ‖ n−1/2
∑n

i=1

(
κ̃v,i − κv,i

)
ZiZ⊤

i (γ̂ − γ∗)‖ +n−1/2
∑n

i=1
|̃κv,i − κv,i| ‖Zi‖

(
1
α + 1

)

C ‖ β̂ − β∗ ‖ . (B.18) 

Since supi

⃒
⃒κ̃v,i − κv,i

⃒
⃒ = op(n−1/4), ‖ β̂ − β∗‖ = op(n−1/4), and ‖ γ̂ − γ∗‖ = op(n−1/4), (B.18) implies that ‖ T n,1‖ = op(1). 

Next, we will show that ‖ T n,2‖ = op(1). Let ▽ denotes vector differential operator. By a Taylor’s expansion, we have 
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‖ n1/2E[κvZ{gα(Z, γ∗, β̂) − gα(Z, γ∗, β∗)}]‖

=‖ n1/2E
{

κvZ▽vgα(Z, γ∗, v)|v=β∗ (β̂ − β∗)
}

‖ +n1/2Op( ‖β̂ − β∗‖2)
.

(B.19) 

From the definition of β∗, we have 

E
{

κvZ▽vgα(Z, γ∗, v)|v=β∗

}

= Pr(D1 > D0)E[Z▽vgα(Z, γ∗, v)|v=β∗ |D1 > D0]

= Pr(D1 > D0)E

[

Z
{

1
αFY (Z⊤β∗|Z, D1 > D0) − 1

}

Z⊤|D1 > D0

]

= 0.

Thus, by (B.19), we have ‖ T n,2‖≤n1/2Op(‖β̂ − β∗‖2) = op(1) by the assumption that ‖ β̂ − β∗‖ = op(n−1/4). 
To prove ‖ T n,3‖ = op(1), we adopt a similar argument in the proof of Lemma 3 in Barendse (2020). Specifically, for any b1 ∈ B 

and b2 ∈ K , ‖ κvZgα(Z, b1, b2)‖ is uniformly bounded over B × K based on the boundedness of κv and Z, and the compactness of B 

and K . Moreover, for any b1, b̃1 ∈ B and b2, b̃2 ∈ K , we have 

‖ κvZgα(Z, b1, b2) − κvZgα(Z, b̃1, b̃2)‖

≤ ‖ κvZgα(Z, b1, b2) − κvZgα(Z, b̃1, b2)‖ + ‖κvZgα(Z, b̃1, b2) − κvZgα(Z, b̃1, b̃2)‖

≤ sup ‖ Z ‖‖ b1 − b̃1‖ +sup ‖ Z ‖

(
1
α + 1

)

C ‖ b2 − b̃2 ‖ .

(B.20)  

The last equation follows from Eq. (B.10). Hence, κvZgα(Z, b1, b2) is type IV (type 4) function in Andrews (1994) and satisfies 
Ossiander’s L2 entropy condition. Following the similar argument in the proof of Lemma 3 in Barendse (2020), Doukhan et al. (1995) 
and Eq. (B.20) imply that stochastic equicontinuity holds for κvZgα(Z, b1, b2), which implies Gn(γ̂, β̂) − Gn(γ∗, β∗) = op(1). 

From Eq. (B.14), we have the following equation  

n1/2E(κvZZ⊤)(γ̂ − γ∗) = −n−1/2
∑n

i=1
κ̃v,iZigα,i(γ∗, β∗) + op(1).

Coupled with Lemma 1, we have 

n1/2E{I(D1 > D0)ZZ⊤}(γ̂ − γ∗) = n−1/2
∑n

i=1
Ψi(α) + op(1). (B.21)  

Therefore, n1/2(γ̂ − γ∗)→dN(0, J−1
2 Ω2J−1

2 ), where J2 = E{I(D1 > D0)ZZ⊤} and Ω2 = E{Ψ(α)Ψ(α)
⊤

}.□ 

Appendix C. Theoretical justification for the standard nonparametric bootstrap inference procedure 

In this section, we will prove that n1/2{β† −β̂} given the observed data is asymptotically equivalent to n1/2{β̂ −β∗} given Conditions 
(C1)-(C8), where β† is bootstrapped counterpart of β̂. We will also prove that n1/2{γ† −γ̂} given the observed data is asymptotically 
equivalent to n1/2{γ̂ −γ∗} given Conditions (C1)-(C8), where γ† is bootstrapped counterpart of γ̂. 

We firstly state data notations that used in this justification. Let U = {D, X, V, Y}, and Ui = {Di, Xi, Vi, Yi}. Denote δUi as the 
probability measure that assigns a mass of 1 to Ui. The empirical measure based on the observed data is given by Pn = n−1∑n

i=1δUi . The 
bootstrap empirical measure corresponding to the standard nonparametric bootstrap inference procedure is given by P̂n =

n−1∑n
i=1Wn,iδUi , where W→n = (Wn1, ⋯, Wnn)

⊤ is a multinomial vector with probabilities (1/n, ⋯, 1/n)
⊤ and index n, and W→n is inde

pendent of the observed data {Ui}
n
i=1. Let Gn = n−1/2∑n

i=1(δUi − P), and Ĝn = n−1/2∑n
i=1Wn,i(δUi − Pn), where P is the probability 

measure that governs U. 
Throughout this section, for notational convenience, we include a superscript for the bootstrapped counterparts of the estimators, 

estimating functions, and other quantities of interest. Specifically, let 

π†(x) =

∑n
i=1Wn,iK

∗
σ1

(x − Xi)Vi
∑n

i=1Wn,iK
∗
σ1

(x − Xi)
, v†

d(y, x) =

∑n
i=1Wn,iI(Di = d)K

∗∗
σ2

{
(y, x⊤)

⊤
−

(
Yi, X⊤

i

)⊤}
Vi

∑n
i=1Wn,iI(Di = d)K

∗∗

σ2

{
(y, x⊤)

⊤
−

(
Yi, X⊤

i

)⊤} ,

v†(Yi,Zi) = I(Di = 1)v†

1(Yi,Xi) + I(Di = 0)v†

0(Yi,Xi), κ†

v,i = 1 −
Di{1−v†(Yi ,Zi)}

1−π†(Xi)
−

(1−Di)v†(Yi ,Zi)

π†(Xi)
, and ̃κ†

v,i = min{max(κ†

v,i,cl,n),cu,n}. Let π†

i and v†

i 

be shorthand notation for π†(Xi) and v†(Yi, Zi) respectively. 
Based on the results on the error rate of empirical bootstrap approximation rate for kernel estimator (Chernozhukov et al., 2014; 

2022; Neumann, 1998), under Condition (C8), we have supi
⃒
⃒π†

i − πi
⃒
⃒ = op(n−1/4), supi

⃒
⃒v†

i −vi
⃒
⃒ = op(n−1/4) and supi

⃒
⃒
⃒κ†

v,i − κv,i

⃒
⃒
⃒ =
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op(n−1/4). Under Condition (C6), we have supi

⃒
⃒
⃒κ̃†

v,i − κv,i

⃒
⃒
⃒ = op(n−1/4). 

We start with some lemmas that will be helpful in justifying the standard non-parametric bootstrap inference procedure. The proofs 
of the Lemmas are deferred to  Appendix D. 

Lemma 3. Under Conditions (C1)–(C8), we have 

n−1/2
∑n

i=1
Wn,iκ̃†

v,iZigα,i(γ∗, β∗) = n−1/2
∑n

i=1
Wn,iΨi(α) + op(1),

where Ψi(α) = m2(Yi, Zi, α)
{

1 −
Di(1−Vi)

1−πi
−

(1−Di)Vi
πi

}
+ H2(Xi, α){Vi −π(Xi)}, with m2(Yi, Zi, α) = Zigα,i(γ∗, β∗) and H2(Xi, α) = E

[
m2(Yi, Zi,

α)
{

(1−Di)vi
π2

i
−

Di(1−vi)

(1−πi)
2

}⃒
⃒
⃒Xi

]
. 

Lemma 4. Under Conditions (C1)–(C8), we have 

n−1/2
∑n

i=1
Wn,iκ̃†

v,iZi
{

α − I
(
Yi < Z⊤

i β∗
)}

= n−1/2
∑n

i=1
Wn,iΦi(α) + op(1),

where Φi(α) = m1(Yi, Zi, α)
{

1 −
Di(1−Vi)

1−πi
−

(1−Di)Vi
πi

}
+ H1(Xi, α){Vi −π(Xi)}. Here m1(Yi, Zi, α) = Zi{α −I(Yi < Z⊤

i β∗)} and H1(Xi, α) =

E
[
m1(Yi, Zi, α)

{
(1−Di)vi

π2
i

−
Di(1−vi)

(1−πi)
2

}⃒
⃒
⃒Xi

]
. 

C1. Theoretical justification for the standard nonparametric bootstrap inference procedure for β∗

We will prove that the conditional distribution of n1/2{β† −β̂} given the observed data is asymptotically equivalent to n1/2{β̂ −β∗}

to justify the standard non-parametric bootstrap inference procedure for β∗. To prove this result, We only need to prove that the 
conditional distribution of n1/2{β† −β̂} given the observed data is asymptotically equivalent to N(0, J−1

1 Ω1J−1
1 ). This result can be 

proved by adapting the similar arguments in the proof of Theorem 1 and the techniques in the justification of the standard 
nonparametric bootstrap inference procedure in Wei et al. (2021). In detail, let L†

n(ζ, κ) =
∑n

i=1Wn,ili(ζ, κ) with 

li(ζ, κ) = κv,i
{

ρα
(
ϵi − n−1/2Z⊤

i ζ
)

− ρα(ϵi)
}

,

where ϵi = Yi − Z⊤
i β∗ and ρα(u) = u{α − I(u ≤ 0)}. Similarly, let L†

n(ζ, κ̃†) =
∑n

i=1Wn,ili(ζ, κ̃†) with li(ζ, κ̃†) = κ̃†

v,i{ρα(ϵi − n−1/2Z⊤
i ζ) −

ρα(ϵi)}

The function Ln(ζ, κ̃) is a convex function with respect to ζ and a minimizer takes the form ζ†
n = n1/2(β† − β∗). 

Note that W→n is independent of the observed data, following the similar argument in the proof of Eq. (B.1) in Theorem 1, by a 
Taylor’s expansion, we have 

E
{

L†
n(ζ, κ)

}
=

1
2
ζ⊤J1ζ + op(1). (C.1) 

Similarly, by adapting the similar argument in the proof of Eq. (B.1) in Theorem 1, we can obtain 

L†
n(ζ, κ̃†

) = E
{

L†
n(ζ, κ)

}
− n−1/2

∑n

i=1
Wn,iκ̃†

v,iZ
⊤
i ζ{α − I(ϵi ≤ 0)} + op(1). (C.2) 

From Eqs. (C.1) and (C.2), for a given ζ, 

L†
n(ζ, κ̃†

) = E
{

L†
n(ζ, κ)

}
− n−1/2 ∑n

i=1
Wn,i κ̃†

v,iZ
⊤
i ζ{α − I(ϵi ≤ 0)} + op(1)

=
1
2
ζ⊤J1ζ − n−1/2

∑n

i=1
Wn,i κ̃†

v,iZ
⊤
i ζ{α − I(ϵi ≤ 0)} + op(1).

Since L†
n(ζ, κ̃†) + n−1/2∑n

i=1Wn,iκ̃†

v,iZ
⊤
i ζ{α −I(ϵi ≤ 0)} is convex in ζ. From Pollard’s convexity lemma (Pollard, 1991), for any compact 

subset T ⊂Rl+1, we have 

sup
ζ∈T

⃒
⃒
⃒
⃒
⃒
L†

n(ζ, κ̃†
) + n−1/2

∑n

i=1
Wn,i κ̃†

v,iZ
⊤
i ζ{α − I(ϵi ≤ 0)} −

1
2
ζ⊤J1ζ

⃒
⃒
⃒
⃒
⃒

= op(1). (C.3)  

Let η†
n = J−1

1 n−1/2∑n
i=1Wn,iκ̃†

v,iZi{α − I(ϵi ≤ 0)}. Note that 
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1
2
(
ζ − η†

n

)⊤J1
(
ζ − η†

n

)
=

1
2
ζ⊤J1ζ − n−1/2

∑n

i=1
Wn,i κ̃†

v,iZ
⊤
i ζ{α − I(ϵi ≤ 0)} +

1
2
(
η†

n

)⊤J1η†
n.

From Eq. (C.3), for any compact subset T ⊂Rl+1, we have 

sup
ζ∈T

⃒
⃒
⃒
⃒L

†
n(ζ, κ̃†

) −
1
2

(
ζ − η†

n

)⊤J1
(
ζ − η†

n

)
+

1
2

(
η†

n

)⊤J1η†
n

⃒
⃒
⃒
⃒ = op(1).

Finally, by an application of Lemma 3 in Buchinsky and Hahn (1998), we have ζ†
n = η†

n + op(1). From Lemma 4, we have 

n1/2(β† − β∗) = n−1/2
∑n

i=1
Wn,iΦi(α) + op(1). (C.4) 

Note that n1/2(β̂ −β∗) = n−1/2∑n
i=1Φi(α) + op(1) from the proof of Theorem 1. Coupled with Eq. (C.4) we have 

n1/2(β† − β̂) = n−1/2
∑n

i=1
Wn,iΦi(α) − n−1/2

∑n

i=1
Φi(α) + op(1). (C.5) 

To prove that n1/2{β† −β̂} given the observed data is asymptotically equivalent to N(0,J−1
1 Ω1J−1

1 ), we can adapt similar arguments 
in Wei et al. (2021). In detail, since {Φi(α) : α ∈ (0, 1)} is a Donsker class from the definition of Φi(α), it is implied by bootstrap 
consistency for Donsker classes (e.g. Theorem 2.6 of Kosorok (2008)) that the difference between the conditional random law of 
ĜnΦi(α) and the unconditional law of GnΦi(α) converges to zero almost surely. It implies that the conditional distribution of 
n−1/2∑n

i=1Wn,iΦi(α) − n−1/2∑n
i=1Φi(α) given the observed data is asymptotically equivalent to the distribution of n−1/2∑n

i=1Φi(α) −

n1/2E{Φi(α)}. Note that E{Φi(α)} = 0 and ‖ n−1/2∑n
i=1Φi(α) ‖ = Op(1), and the distribution of n−1/2∑n

i=1Φi(α) − n1/2E{Φi(α)} is 
asymptotically equivalent to N(0, J−1

1 Ω1J−1
1 ) given the result of Theorem 1. We then obtained that n1/2{β† −β̂} given the observed data 

is asymptotically equivalent to N(0, J−1
1 Ω1J−1

1 ). 

C2. Theoretical justification for the standard nonparametric bootstrap inference procedure for γ∗

We will prove that the conditional distribution of n1/2{γ† −γ̂} given the observed data is asymptotically equivalent to N(0,

J−1
2 Ω2J−1

2 ) to justify the standard nonparametric bootstrap inference procedure for γ∗. Its proof can be given by adapting the similar 
techniques in C.1 and Theorem 3. 

Firstly, we will show that 

sup
b∈B

‖ n−1
∑n

i=1
Wn,iκ̃†

v,iZ
⊤
i gα,i(b, β†) − E{κvZgα(Z, b, β∗)} ‖= op

(
n−1/4)

(C.6)  

. 
Adapting the similar argument in Eq. (B.9), we have 

n−1
∑n

i=1
Wn,iκ̃†

v,iZigα,i(b, β†)

= E{κvZgα(Z, b, β∗)} + n−1
∑n

i=1
Wn,iκv,iZigα,i(b, β∗) − E{κvZgα(Z, b, β∗)}

+n−1
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zigα,i(b, β†) + n−1

∑n

i=1
Wn,iκv,iZi

{
gα,i(b, β†) − gα,i(b, β∗)

}
.

(C.7) 

Let I†
n(b) = n−1∑n

i=1Wn,iκv,iZigα,i(b, β∗) − E{κvZgα(Z, b, β∗)}, II†
n(b) = n−1∑n

i=1Wn,i(κ̃†

v,i − κv,i)Zi ⋅ gα,i(b, β†), and III†
n(b) =

n−1∑n
i=1Wn,iκv,iZi{gα,i(b, β†) − gα,i(b, β∗)}. To prove Eq. (C.6), it is sufficient to prove supb∈B ‖ I†

n(b) ‖ = op(n−1/4), supb∈B ‖ II†
n(b) ‖ =

op(n−1/4), and supb∈B ‖ III†
n(b) ‖ = op(n−1/4). 

Note that supi

⃒
⃒
⃒κ̃†

v,i − κv,i

⃒
⃒
⃒ = op(n−1/4). Adapting the similar arguments in Theorem 2, we can shown that supb∈B ‖ II†

n(b) ‖ =

op(n−1/4). Following the similar arguments in Eqs. (B.10) and (B.11) in the proof of Theorem 2, we have 

sup
b∈B

‖ III†
n(b) ‖≤

(
1
n

∑n

i=1
Wn,i

)

sup
i

|κv,i|sup
i

‖Zi‖sup
b∈B

|gα(Z, b, β†) − gα(Z, b, β∗)|

≤ sup
i

|κv,i|sup
i

‖Zi‖ C
(

1
α + 1

)

‖ β∗ − β† ‖ .

(C.8)  

Given that ‖ β† − β∗‖=op(n−1/4) from the result in C.1, we have supb∈B ‖ III†
n(b) ‖ = op(n−1/4). 
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To prove supb∈B ‖ I†
n(b) ‖ = op(n−1/4), we first know that {κvZgα(Z, b, β∗) : b ∈ B } is a Donsker class from the proof in Theorem (3). 

Adapting the similar arguments in Theorem (3), we have 

sup
b∈B

‖ n−1
∑n

i=1
κv,iZigα,i(b, β∗) − E{κvZgα(Z, b, β∗)} ‖= op

(
n−1/4)

. (C.9)  

By bootstrap consistency for Donsker class (e.g Theorem 2.6 in Kosorok (2008)), we have 
n1/2{n−1∑n

i=1Wn,iκv,iZigα,i(b, β∗) −n−1∑n
i=1κv,iZigα,i(b, β∗)} converges weakly to a tight mean zero Gaussian process. It implies that 

sup
b∈B

‖ n−1
∑n

i=1
Wn,iκv,iZigα,i(b, β∗) − n−1

∑n

i=1
κv,iZigα,i(b, β∗) ‖= op

(
n−1/4)

. (C.10)  

Based on Eqs. (C.9) and (C.10), we can show that supb∈B ‖ I†
n(b) ‖ = op(n−1/4). 

Since n−1∑n
i=1Wn,iκ̃†

v,iZ
⊤
i gα,i(γ†, β†) = 0 and E{κvZgα(Z, γ∗, β∗)} = 0, we have 

0 = n−1
∑n

i=1
Wn,i κ̃†

v,iZigα,i(γ†, β†)

= E{κvZgα(Z, γ†, β∗)} − E{κvZgα(Z, γ∗, β∗)} +

[

n−1
∑n

i=1
Wn,i κ̃†

v,iZ
⊤
i gα,i(γ†, β†) − E{κvZgα(Z, γ†, β†)}

]

= E{κvZZ⊤}(γ† − γ∗) +

[

n−1
∑n

i=1
Wn,iκ̃v,iZ⊤

i gα,i(γ†, β†) − E{κvZgα(Z, γ†, β∗)}

]

From Condition (C3) and Eq. (C.6), we have ‖ γ̂ − γ∗‖ = op(n−1/4). 
Next step, we will prove that 

n1/2E(κvZZ⊤)(γ† − γ∗) = −n−1/2
∑n

i=1
Wn,iκ̃†

v,iZigα,i(γ∗, β∗) + op(1).

Note that 

0 = n−1/2
∑n

i=1
Wn,i κ̃†

v,iZigα,i(γ†, β†)

= n−1/2
∑n

i=1
Wn,i κ̃†

v,iZigα,i(γ∗, β∗)

+ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ†, β†) − gα,i(γ∗, β∗)

}

+ n1/2E[κvZ{gα(Z, γ†, β†) − gα(Z, γ∗, β∗)}]

+ G†
n(γ†, β†) − G†

n(γ∗, β∗)

= n−1/2
∑n

i=1
Wn,i κ̃†

v,iZigα,i(γ∗, β∗)

+ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ†, β†) − gα,i(γ∗, β∗)

}

+ n1/2E[κvZ{gα(Z, γ∗, β†) − gα(Z, γ∗, β∗)}]

+ n1/2E(κvZZ⊤)(γ† − γ∗)

+ G†
n(γ†, β†) − G†

n(γ∗, β∗),

(C.11)  

where G†
n(b1, b2) = n−1/2∑n

i=1Wn,iκv,iZigα,i(b1, b2) − n1/2E{κvZgα(Z, b1, b2)}. 
Let T †

n,1 = n−1/2∑n
i=1Wn,i(κ̃†

v,i − κv,i)Zi{gα,i(γ†,β†) − gα,i(γ∗,β∗)}, T †
n,2 = n1/2E[κvZ{gα(Z,γ∗,β†) − gα(Z,γ∗,β∗)}], and T †

n,3 = G†
n(γ†,

β†) − G†
n(γ∗, β∗). In the following, we will show that ‖ T

†

n,i‖=op(1) for i = {1,2,3}. 

We start with showing ‖ T
†

n,1‖ = op(1). Note that 
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‖ T
†

n,1‖= ‖ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ†, β†) − gα,i(γ∗, β†) + gα,i(γ∗, β†) − gα,i(γ∗, β∗)

}
‖

≤ ‖ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ†, β†) − gα,i(γ∗, β†)

}
‖

+ ‖ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ∗, β†) − gα,i(γ∗, β∗)

}
‖ .

(C.12) 

Adapting the similar argument in Eqs. (B.16) and (B.17), we have 

n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ†, β†) − gα,i(γ∗, β†)

}
= n−1/2

∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
ZiZ⊤

i (γ† − γ∗), (C.13)  

and 

‖ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
Zi

{
gα,i(γ∗, β†) − gα,i(γ∗, β∗)

}
‖≤n−1/2

∑n

i=1
Wn,i |̃κ†

v,i − κv,i| ‖Zi‖ C
(

1
α + 1

)

‖ β† − β∗ ‖ . (C.14) 

Coupled with the Eqs. (C.12), (C.13) and  (C.14), we have 

‖ T
†

n,1‖≤ ‖ n−1/2
∑n

i=1
Wn,i

(
κ̃†

v,i − κv,i

)
ZiZ⊤

i (γ† − γ∗)‖ +n−1/2
∑n

i=1
Wn,i |̃κ†

v,i − κv,i| ‖Zi‖ C
(

1
α + 1

)

‖ β† − β∗ ‖ . (C.15) 

Since supi

⃒
⃒
⃒κ̃†

v,i − κv,i

⃒
⃒
⃒ = op(n−1/4), ‖ β† − β∗‖=op(n−1/4) from the result in  C.1, and ‖ γ† − γ∗‖ = op(n−1/4), Eq. (C.15) implies that ‖

T
†

n,1‖ = op(1). 

Note that ‖ β† − β∗‖ = op(n−1/4). The proof of ‖ T
†
n,2‖=op(1) is identical to the proof of ‖ T n,2‖=op(1) using β† in place of β̂ in the 

proof of ‖ T n,2‖=op(1) in Theorem 3. Moreover, adapting the arguments for showing ‖ T n,3‖=op(1) in Theorem 3 with Poissonization 
employed to remove dependence among Wn,i Vaart and Wellner (1996), we can get ‖ T

†
n,3‖ = op(1). 

From Eq. (C.11), we have the following equation  

n1/2E(κvZZ⊤)(γ† − γ∗) = −n−1/2
∑n

i=1
Wn,iκ̃†

v,iZigα,i(γ∗, β∗) + op(1).

Coupled with Lemma 3 and Eq. (B.21), we have 

n1/2E{I(D1 > D0)ZZ⊤}(γ† − γ̂) = −

{

n−1/2
∑n

i=1
Wn,iΨi(α) − n−1/2

∑n

i=1
Ψi(α)

}

+ op(1). (C.16) 

Following the similar arguments in C.1 and Wei et al. (2021), since {Ψi(α) : α ∈ (0, 1)} is a Donsker class from the definition of 
Ψi(α), by bootstrap consistency for Donsker classes (e.g. Theorem 2.6 of Kosorok (2008)), it implies that the conditional distribution of 
n−1/2∑n

i=1Wn,iΨi(α) − n−1/2∑n
i=1Ψi(α) given the observed data is asymptotically equivalent to the distribution of 

n−1/2∑n
i=1Ψi(α) − n1/2E{Ψi(α)}. Note that E{Ψi(α)} = 0 and ‖ n−1/2∑n

i=1Ψi(α) ‖ = Op(1), and the distribution of n−1/2∑n
i=1Ψi(α) −

n1/2E{Ψi(α)} is asymptotically equivalent to N(0, J−1
2 Ω2J−1

2 ) given the result of Theorem 3. We then obtained that n1/2{γ† −γ̂} given 
the observed data is asymptotically equivalent to N(0, J−1

2 Ω2J−1
2 ). 

Appendix D. Proof of Lemmas 1–4 

D1. Proof of Lemmas 1–2 

Proof. By Condition (C6), replacing ̃κv,i with ̂κv,i in n−1/2∑n
i=1κ̃v,iZigα,i(γ∗, β∗) only leads to a difference of op(1). Note that m2(Yi,Zi,α)

= Zigα,i(γ∗, β∗), we can obtain the following equation  
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n−1/2
∑n

i=1
κ̃v,iZigα,i(γ∗, β∗)

= n−1/2
∑n

i=1
m2(Yi, Zi, α)

(

1 −
Di(1 − v̂i)

1 − π̂ i
−

(1 − Di)v̂i

π̂ i

)

+ op(1)

=
1̅

̅̅
n

√
∑n

i=1
m2(Yi, Zi, α) ⋅

(

1 −
Di(1 − v̂i)

1 − πi
−

(1 − Di)v̂i

πi

)

+
1̅

̅̅
n

√
∑n

i=1
m2(Yi, Zi, α) ⋅

(
(1 − Di) ⋅ vi

π2
i

−
Di ⋅ (1 − vi)

(1 − πi)
2

)

⋅ (π̂ i − πi)

+Rn,1 + Rn,2 + op(1),

(D.1) 

where 

Rn,1 =
1
n

∑n

i=1
m2(Yi, Zi, α) ⋅

{
(1 − Di)

πi π̂ i
−

Di

(1 − πi)(1 − π̂ i)

}

⋅ n1/4(π̂ i − πi) ⋅ n1/4(v̂i − vi),

and 

Rn,2 =
1
n

∑n

i=1
m2(Yi, Zi, α) ⋅

{
(1 − Di) ⋅ vi

π2
i π̂ i

−
Di ⋅ (1 − vi)

(1 − πi)
2
(1 − π̂ i)

}

⋅ n1/2(π̂ i − πi)
2
.

Applying Lemma B.3 of Newey (1994) with Condition (C8), we have supi|π̂ i −πi| = o(n−1/4) and supi|v̂i − vi| = o(n−1/4). Thus, 

‖ Rn,1‖ =‖
1
n

∑n

i=1
m2(Yi, Zi, α) ⋅

{
(1 − Di)

πi π̂ i
−

Di

(1 − πi)(1 − π̂ i)

}

⋅ n1/4(π̂ i − πi) ⋅ n1/4(v̂i − vi) ‖

≤ n1/4sup
i

|π̂ i − πi|n1/4sup
i

|v̂i − vi|
1
n

‖
∑n

i=1
m2(Yi, Zi, α) ⋅

{
(1 − Di)

πi π̂ i
−

Di

(1 − πi)(1 − π̂ i)

}

‖

= op(1).

Similarly, we can show that ‖ Rn,2‖ = op(1). 
Given the fact V is a binary variable, the assumptions required by Theorem 4.2 of Newey (1994) are ensured by Conditions (C1), 

(C7) and (C8). From there, we have 

1̅
̅̅
n

√
∑n

i=1
m2(Yi, Zi, α) ⋅

{
(1 − Di) ⋅ vi

π2
i

−
Di ⋅ (1 − vi)

(1 − πi)
2

}

⋅ (π̂ i − πi)

=
1̅

̅̅
n

√
∑n

i=1
H2(Xi, α) ⋅ (Vi − πi) + op(1),

(D.2)  

and 

1̅
̅̅
n

√
∑n

i=1
m2(Yi, Zi, α) ⋅

{

1 −
Di(1 − v̂i)

1 − πi
−

(1 − Di)v̂i

πi

}

=
1̅

̅̅
n

√
∑n

i=1
m2(Yi, Zi, α) ⋅

{

1 −
Di(1 − Vi)

1 − πi
−

(1 − Di)Vi

πi

}

+ op(1),

(D.3)  

as desired. 
In the case of discrete X (with finitely many values), the only difference is that π̂(x) will be the empirical estimate of E(V|X = x), and 

in this case we have supi|π̂(x) − π(x)| = Op(n−1/2). Thus, ‖ Rn,j‖=op(1), j = 1, 2 and Eq. (D.3) still holds. To prove Lemma 1, we only 
need to prove Eq. (D.2) with the empirical estimator of π(x) = E(V|X = x). Let L be the size of the sample space for X, and nl be the 
number of subjects in cell l of X, (l = 1,⋯,L). Let xl be the value of X in cell l, and πl

0 be the expected value of V given X = xl. Then we 
have 

1̅
̅̅
n

√
∑n

i=1
m2(Yi, Zi, α) ⋅

{
(1 − Di) ⋅ vi

π2
i

−
Di ⋅ (1 − vi)

(1 − πi)
2

}

⋅ (π̂ i − πi)

=
∑L

l=1

(
1̅

̅̅
n

√
∑nl

il=1
Zil − πl

0

)

⋅

(
1
nl

∑nl

il=1
m2

(
Yil , Zil , α

)
⋅

{(
1 − Dil

)
⋅ vil

(
πl

0

)2 −
Dil ⋅

(
1 − vil

)

(
1 − πl

0

)2

}) (D.4) 
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By Lemma 4.3 in Newey and McFadden (1994) we have 

1
nl

∑nl

il=1
m2

(
Yil , Zil , α

)
⋅

{(
1 − Dil

)
⋅ vil

(πl
0)

2 −
Dil ⋅

(
1 − vil

)

(1 − πl
0)

2

}

= H2(xl, α) + op(1). (D.5) 

Thus, Eq. (D.2) follows from Eqs. (D.4) and  (D.5). 
The proof of Lemma 2 is similar to the proof of Lemma 1 using {α − I(Yi < Z⊤

i β∗)} in place of gα,i(γ∗, β∗) in the proof of Lemma 1, and 
is hence omitted.□ 

D2. Proof of Lemmas 3–4 

Proof. The proofs of Lemmas 3–4 are adapted from the proof of Lemmas 1 and 2 and the justification of the standard nonparametric 
bootstrap inference procedure in Wei et al. (2021). We will prove them in detail here for completeness. 

By Condition (C6), replacing ̃κ†

v,i with κ†

v,i in n−1/2∑n
i=1Wn,iκ̃†

v,iZigα,i(γ∗, β∗) only leads to a difference of op(1). Note that m2(Yi,Zi,α) =

Zigα,i(γ∗, β∗), we can obtain the following equation  

n−1/2
∑n

i=1
Wn,iκ̃†

v,iZigα,i(γ∗, β∗)

= n−1/2
∑n

i=1
Wn,im2(Yi, Zi, α)

(

1 −
Di

(
1 − v†

i
)

1 − π†
i

−
(1 − Di)v†

i

π†
i

)

+ op(1)

=
1̅

̅̅
n

√
∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

(

1 −
Di

(
1 − v†

i
)

1 − πi
−

(1 − Di)v†
i

πi

)

+
1̅

̅̅
n

√
∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

(
(1 − Di) ⋅ vi

π2
i

−
Di ⋅ (1 − vi)

(1 − πi)
2

)

⋅
(
π†

i − πi
)

+R†

n,1 + R†

n,2 + op(1),

(D.6)  

where 

R†

n,1 =
1
n

∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

{
(1 − Di)

πiπ†
i

−
Di

(1 − πi)(1 − π†
i )

}

⋅ n1/4(
π†

i − πi
)

⋅ n1/4(
v†

i − vi
)
,

and 

R†

n,2 =
1
n

∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

{
(1 − Di) ⋅ vi

π2
i π†

i
−

Di ⋅ (1 − vi)

(1 − πi)
2
(1 − π†

i )

}

⋅ n1/2(
π†

i − πi
)2

.

Since we have supi

⃒
⃒π†

i −πi
⃒
⃒ = o(n−1/4) and supi

⃒
⃒v†

i − vi
⃒
⃒ = o(n−1/4), with the similar argument in Lemma 1, we have ‖ R†

n,1‖ = op(1). 
and ‖ R†

n,2‖ = op(1). 
Combining the technique of Newey (1994), we have 

1̅
̅̅
n

√
∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

{
(1 − Di) ⋅ vi

π2
i

−
Di ⋅ (1 − vi)

(1 − πi)
2

}

⋅
(
π†

i − πi
)

=
1̅

̅̅
n

√
∑n

i=1
Wn,iH2(Xi, α) ⋅ (Vi − πi) + op(1),

(D.7)  

and 

1̅
̅̅
n

√
∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

{

1 −
Di

(
1 − v†

i
)

1 − πi
−

(1 − Di)v†
i

πi

}

=
1̅

̅̅
n

√
∑n

i=1
Wn,im2(Yi, Zi, α) ⋅

{

1 −
Di(1 − Vi)

1 − πi
−

(1 − Di)Vi

πi

}

+ op(1),

(D.8)  

as desired. 
We can also prove Lemma 3 in the case of discrete X by adapting the similar arguments in Lemma 1 and the proof of the above. 
The proof of Lemma 4 is identical to the proof of Lemma 3 using {α − I(Yi < Z⊤

i β∗)} in place of gα,i(γ∗, β∗) in the proof of Lemma 3, 
and is hence omitted.□ 
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Appendix E. Simulation with discrete X 

We now consider a new simulation scenario, which differs from the scenario in Section 5 of the paper in that X1 and X2 are both 
discrete and generated from Bernoulli(0.5). Results with n = {500, 3000} for α = {0.1, 0.2, 0.3, 0.4, 0.5} are presented in Table E.5. The 
performance of the proposed method remains solid in this case and the estimated parameters of interest are close to their true un
derlying values. Besides, the bootstrap-based variance estimates agree well with the empirical variances. The empirical coverage 
probabilities of 95% confidence intervals are close to the nominal level. When the sample size increases to n = 3000, the bias of the 
proposed method further diminishes.  

Table E1 
Comparisons among estimators of β1(α) and γ1(α) from the proposed two-stage method, oracle method and the naive method in simulation exper
iment on the case of discrete X with n = {500, 3000} and α = {0.1, 0.2, …, 0.5}. Bias, Emp var, Boot var and Cov 95 stand for average bias of the 
estimated coefficients, empirical variance, average variance estimates, coverage probabilities of the 95% confidence intervals.  

α n  Oracle method Proposed method Naive method  

β1(α) γ1(α) β1(α) γ1(α) β1(α) γ1(α)

0.1 500 Bias − 0.013 − 0.027 − 0.039 − 0.053 − 0.255 − 0.268 
Emp var 0.131 0.284 0.134 0.272 0.082 0.170 
Boot var 0.156 0.264 0.153 0.256 0.094 0.162 
Cov 95 0.956 0.924 0.949 0.930 0.857 0.861 

3000 Bias 0.000 − 0.003 − 0.017 − 0.018 − 0.245 − 0.251 
Emp var 0.026 0.049 0.026 0.048 0.016 0.031 
Boot var 0.025 0.046 0.025 0.045 0.015 0.028 
Cov 95 0.933 0.950 0.935 0.946 0.482 0.652 

0.2 500 Bias − 0.007 0.016 − 0.029 − 0.044 − 0.245 − 0.256 
Emp var 0.060 0.132 0.064 0.131 0.031 0.078 
Boot var 0.069 0.131 0.071 0.129 0.035 0.076 
Cov 95 0.955 0.947 0.949 0.933 0.721 0.822 

3000 Bias − 0.001 − 0.002 − 0.015 − 0.017 − 0.243 − 0.249 
Emp var 0.011 0.025 0.012 0.025 0.005 0.014 
Boot var 0.011 0.022 0.011 0.022 0.006 0.013 
Cov 95 0.936 0.936 0.941 0.930 0.10 0.395 

0.3 500 Bias 0.000 − 0.012 − 0.019 − 0.037 − 0.239 − 0.250 
Emp var 0.036 0.084 0.038 0.085 0.015 0.047 
Boot var 0.041 0.084 0.044 0.084 0.017 0.046 
Cov 95 0.958 0.949 0.958 0.942 0.533 0.757 

3000 Bias − 0.001 − 0.001 − 0.015 − 0.016 − 0.240 − 0.246 
Emp var 0.006 0.016 0.007 0.016 0.002 0.008 
Boot var 0.006 0.014 0.007 0.014 0.003 0.008 
Cov 95 0.947 0.933 0.949 0.928 0.003 0.210 

0.4 500 Bias − 0.001 − 0.009 − 0.028 − 0.034 − 0.237 − 0.248 
Emp var 0.023 0.060 0.025 0.061 0.009 0.032 
Boot var 0.027 0.060 0.029 0.061 0.009 0.031 
Cov 95 0.955 0.948 0.956 0.937 0.323 0.694 

3000 Bias 0.001 − 0.001 − 0.013 − 0.016 − 0.238 − 0.245 
Emp var 0.004 0.011 0.005 0.011 0.001 0.006 
Boot var 0.004 0.010 0.005 0.010 0.001 0.005 
Cov 95 0.951 0.937 0.952 0.933 0.000 0.076 

0.5 500 Bias − 0.007 − 0.007 − 0.033 − 0.033 − 0.233 − 0.244 
Emp var 0.015 0.045 0.017 0.047 0.006 0.023 
Boot var 0.018 0.045 0.020 0.046 0.006 0.023 
Cov 95 0.954 0.950 0.947 0.939 0.167 0.615 

3000 Bias 0.001 0.000 − 0.012 − 0.015 − 0.233 − 0.243 
Emp var 0.003 0.008 0.003 0.009 0.001 0.004 
Boot var 0.003 0.008 0.003 0.008 0.001 0.004 
Cov 95 0.942 0.942 0.945 0.939 0.000 0.036  
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