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ABSTRACT

Penalized quantile regression (QR) is widely used for studying the relationship between a response variable
and a set of predictors under data heterogeneity in high-dimensional settings. Compared to penalized least
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squares, scalable algorithms for fitting penalized QR are lacking due to the non-differentiable piecewise

linear loss function. To overcome the lack of smoothness, a recently proposed convolution-type smoothed
method brings an interesting tradeoff between statistical accuracy and computational efficiency for both
standard and penalized quantile regressions. In this article, we propose a unified algorithm for fitting
penalized convolution smoothed quantile regression with various commonly used convex penalties, accom-
panied by an R-language package congquer available from the Comprehensive R Archive Network. We
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perform extensive numerical studies to demonstrate the superior performance of the proposed algorithm
over existing methods in both statistical and computational aspects. We further exemplify the proposed
algorithm by fitting a fused lasso additive QR model on the world happiness data.

1. Introduction

Let y € R be a scalar response variable of interest, and x € R?
be a p-dimensional vector of covariates. Since the seminal work
of Koenker and Bassett (1978), quantile regression (QR) has
become an indispensable tool for understanding pathways of
dependence between y and x, which is irretrievable through con-
ditional mean regression analysis via the least squares method.
Motivated by a wide range of applications, various models have
been proposed and studied for QR, from parametric to nonpara-
metric and from low- to high-dimensional covariates. We refer
the reader to Koenker (2005) and Koenker et al. (2017) for a
comprehensive exposition of quantile regression.

Consider a high-dimensional linear QR model in which the
number of covariates, p, is larger than the number of obser-
vations, n. In this setting, different low-dimensional structures
have been imposed on the regression coefficients, thus, motivat-
ing the use of various penalty functions. One of the most widely
used assumption is the sparsity, which assumes that only a small
number of predictors are associated with the response. Quantile
regression models are capable of capturing heterogeneity in the
set of important predictors at different quantile levels of the
response distribution caused by, for instance, heteroscedastic
variance. For fitting sparse models in general, various sparsity-
inducing penalties have been introduced, such as the lasso (¢;-
penalty) (Tibshirani 1996), elastic net (hybrid of £,/¢;-penalty)
(Zou and Hastie 2005), smoothly clipped absolute deviation
(SCAD) penalty (Fan and Li 2001) and minimax concave (MC)
penalty (Zhang 2010). Other commonly used regularizers that
induce different types of structures include the group lasso

(Yuan and Lin 2006), sparse group lasso (Simon et al. 2013)
and fused lasso (Tibshirani et al. 2005), among others. We
refer to the monographs Bithlmann and van de Geer (2011),
Hastie, Tibshirani, and Wainwright (2015), and Wainwright
(2019) for systematic introductions of high-dimensional statis-
tical learning.

The above penalties/regularizers have been extensively stud-
ied when applied with the least squares method, accompanied
with the user-friendly and efficient software glmnet (Fried-
man, Hastie, and Tibshirani 2010). Quantile regression, on the
other hand, involves minimizing a non-differentiable piecewise
linear loss, known as the check function. Although a handful
of algorithms have been developed based on either linear pro-
gramming or the alternating direction method of multipliers
(ADMM) (Koenker and Ng 2005; Li and Zhu 2008; Peng and
Wang 2015; Yu, Lin, and Wang 2017; Gu et al. 2018), there
is not much software that is nearly as efficient as glmnet
available for penalized quantile regressions. As the most recent
progress, Yi and Huang (2017) proposed a semismooth Newton
coordinate descent (SNCD) algorithm for solving a Huberized
QR with the elastic net penalty; Yu, Lin, and Wang (2017) and Gu
et al. (2018), respectively proposed ADMM-based algorithms
for solving folded-concave penalized QR. See Gu et al. (2018)
for a detailed computational comparison between the SNCD and
ADMM-based algorithms, which favors the latter. The primary
computation effort of each ADMM update is to evaluate the
inverse of a p X p or n X n matrix. This can be computa-
tionally expensive when both n and p are large. Compared
to sparsity-inducing regularization, the computational develop-
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ment of penalized QR with other important penalties, such as
the group lasso, is still scarce. For instance, quantile regression
with the group lasso penalty can be formulated as a second-
order cone programming (SOCP) problem (Kato 2011), solvable
by general-purpose optimization toolboxes. These toolboxes
are only adapted to small-scale problems and usually lead to
solution with very high precision (low duality gap). For large-
scale datasets, they tend to be too slow, or often run out of
memory.

Addressing the non-differentiability of an objective func-
tion through smoothing has been a common technique in the
statistics and machine learning literature. Several studies have
proposed smoothing methods in the context of rank estima-
tion, which bears many similarities to quantile regression. In
their work, Brown and Wang (2005) introduced an induced
smoothing method designed to smooth rank estimators, with
a particular focus on estimating standard errors and covari-
ance matrices. Building upon this method, Pang, Lu, and Wang
(2012) employed it to develop a variance estimation procedure
for the censored quantile coefficient estimator. They also used
an algorithm based on linear programming. Additionally, Choi
and Choi (2021) followed the convolution-type smoothing tech-
nique outlined in Fernandes, Guerre, and Horta (2021) to pro-
pose a smoothed estimating equation procedure. This procedure
uses a logistic kernel approximation to smooth the estimating
functions for the semiparametric accelerated failure time model,
especially when dealing with high-dimensional right-censored
data. Furthermore, they introduced a coordinate descent algo-
rithm for the £;-penalized, adaptive £;-penalized, and SCAD-
penalized least squares approximations of their smoothed objec-
tive function.

To resolve the non-differentiability issue of the check loss,
Horowitz (1998) proposed to smooth the check loss directly
using a kernel function. This approach, however, leads to a non-
convex loss function which brings further computational issues
especially in high dimensions. Recently, Fernandes, Guerre, and
Horta (2021) employed a convolution-type smoothing tech-
nique to introduce the smoothed quantile regression (SQR)
without sacrificing convexity. Convolution smoothing turns the
non-differentiable check function into a twice-differentiable,
convex and locally strongly convex surrogate, which admits fast
and scalable gradient-based algorithms to perform optimization
(He et al. 2023). Theoretically, the SQR estimator is asymp-
totically first-order equivalent to the standard QR estimator,
and enjoys desirable statistical properties (Fernandes, Guerre,
and Horta 2021; He et al. 2023). For high-dimensional sparse
models, Tan, Wang, and Zhou (2022) proposed an iteratively
reweighted ¢;-penalized SQR estimator that achieves oracle rate
of convergence when the signals are sufficiently strong. They also
proposed coordinate descent and ADMM-based algorithms for
(weighted) £;-penalized SQR with the uniform and Gaussian
kernels. These algorithms, however, do not adapt to more gen-
eral kernel functions as well as penalties.

In this article, we introduce a major variant of the local adap-
tive majorize-minimization (LAMM) algorithm (Fan etal. 2018)
for fitting convolution smoothed quantile regression that applies
to any kernel function and a wide range of convex penalties.
The main idea is to construct an isotropic quadratic objective
function that locally majorizes the smoothed quantile loss such

that closed-form updates are available at each iteration. The
quadratic coeflicient is adaptively chosen in order to guarantee
the decrease of the objective function. In a sense, the LAMM
algorithm can be viewed as a generalization of the iterative
shrinkage-thresholding algorithm (ISTA) (Beck and Teboulle
2009). Compared to the interior point methods (for solving
linear programming and SOCP problems) as well as ADMM,
LAMM is a simpler gradient-based algorithm that is particularly
suited for large-scale problems, where the dominant computa-
tional effort is a relatively cheap matrix-vector multiplication
at each step. The (local) strong convexity of the convolution
smoothed quantile loss facilitates the convergence of such a first
order method. A key advantage of the proposed algorithm over
those in Tan, Wang, and Zhou (2022) is that it can be applied to a
broad class of convex penalties, typified by the lasso, elastic net,
group lasso and sparse group lasso, and to any continuous kernel
function. The proposed algorithm has been implemented in the
R package conquer (He et al. 2022). This package provides
a comprehensive framework for fitting penalized (smoothed)
quantile regression models, encompassing all the penalties dis-
cussed in this article.

The remainder of the article is organized as follows. Sec-
tion 2 briefly revisits quantile regression and its convolution
smoothed counterpart. In Section 3, we describe a general local
adaptive majorize-minimization principal for solving penalized
smoothed quantile regression with four types of convex penal-
ties, which are the lasso (¢;-penalty), elastic net (a combination
of £;- and ¢;-penalties), group lasso (weighted ¢,-penalty) and
sparse group lasso (a combination of £;- and weighted £;-
penalties). The computational and statistical efficiency of the
proposed algorithm is demonstrated via extensive simulation
studies in Section 4. In Section 5, we further exemplify the
proposed algorithm by fitting a fused lasso additive QR model
on the world happiness data.

2. Quantile Regression and Convolution Smoothing

Let x € RP? be a p-dimensional covariates and let y € R be
a scalar response variable. Given a quantile level T € (0,1) of
interest, assume that the tth conditional quantile of y given x

follows a linear model F;‘;(r) = xTB*(z), where B*(r) =
{Br(@),..., ﬂ; (1)}T e RP. For notational convenience, we set

x1 = 1 such that g} is the intercept. Moreover, we suppress the
dependency of 8*(7) on 7 throughout the article. Let {y;, x;}"_,
be a random sample of size n from (y, x). The standard quantile
regression estimator is defined as the solution to the optimiza-
tion problem (Koenker and Bassett 1978)

T T
minimize — i — X N
BeRp " ?_1 Pt (}/1 i ﬁ)

(2.1)
where p; (1) = u{tr — 1(u < 0)} is the quantile loss, also known
as the check function. Although the quantile loss is convex, its
non-differentiability (even only at one point) prevents gradient-
based algorithms to be efficient. In this case, subgradient meth-
ods typically exhibit very slow (sublinear) convergence and
hence are not computationally stable. A more widely acknowl-
edged approach is to formulate the optimization problem (2.1)
asalinear program, solvable by the simplex algorithm or interior



point methods. The latter has an average-case computational
complexity that grows as a cubic function of p (Portnoy and
Koenker 1997).

For fitting a sparse QR model in high dimensions, a natural
parallel to the lasso (Tibshirani 1996) is the £;-penalized QR
(QR-lasso) estimator (Belloni and Chernozhukov 2011), defined
as a solution to the optimization problem

1 n
minimize — Y " p; (v — x{ B) + AIB1, (2.2)
i=1

BeRP n

where A > 0 is a regularization parameter that controls (indi-
rectly) the sparsity level of the solution, and | - ||; denotes the
£1-norm. We refer to Wang, Wu, and Li (2012) and Zheng, Peng,
and He (2015) for further extensions to adaptive £; and folded
concave penalties. Computationally, all of these sparsity-driven
penalized methods boil down to solving a weighted £ -penalized
QR loss minimization problem that is of the form

n p
minimize l Z oz i — xiTﬂ) + Z AilBjls (2.3)
BeR? n i1 o
where A; > 0 for each 1 < j < p. Thus far, the most notable
methods for solving (2.2) or more generally (2.3) include linear
programming (Koenker 2023), coordinate descent algorithms
(Peng and Wang 2015; Yi and Huang 2017) and ADMM-based
algorithms (Yu, Lin, and Wang 2017; Gu et al. 2018). Among
these, ADMM-based algorithms have the best overall perfor-
mance as documented in Gu et al. (2018). The dominant com-
putational effort of each ADMM update is the inversion of ap x p
or an n X n matrix. For genomics data that typically has a small
sample size, say in the order of hundreds, ADMM works well
even when the dimension p is in the order of thousands or tens
of thousands. However, there is not much efficient algorithm,
that is also scalable to n, available for (weighted) £;-penalized
QR, let alone for more general penalties.

To address the non-differentiability of the quantile loss,
Fernandes, Guerre, and Horta (2021) proposed a convolution
smoothed approach to quantile regression, resulting in a twice-
differentiable, convex and (locally) strongly convex loss func-
tion. On the statistical aspect, Fernandes, Guerre, and Horta
(2021) and He et al. (2023) established the asymptotic and
finite-sample properties for the smoothed QR (SQR) estimator,
respectively. Tan, Wang, and Zhou (2022) further considered the
penalized SQR with iteratively reweighted ¢; -regularization and
proved oracle properties under a minimum signal strength con-
dition. Let K(-) be a symmetric, nonnegative kernel function,
that is, K(4) = K(—u) > 0 for any u € R, and ffooo K(u)du =
1. Given a bandwidth parameter h > 0, the ¢;-penalized SQR
(SQR-lasso) estimator is defined as the solution to

1

n
inimize — Y £ (yi — x) A ,  wh
mllr;glg)l e " 1221 hr i i B) +AlBli,  where

1 [ v—u
eh,r(”)zzf pr(V)K< h )dV-

Equivalently, the smoothed loss £, ; can be written as £, =
pr o Ky, where Ky, (1) = (1/h)K(u/h) and “o” denotes the con-
volution operator. Below, we present four most frequently used
kernel functions, accompanied by the corresponding explicit
expressions for the resultant smoothed check losses.

(2.4)
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1. (Uniform kernel) The uniform kernel takes the form K(u) =
%]1(|u| < 1).Foranyh > Oand r € (0, 1), the corresponding
smoothed check loss is given by £, (1) = tu — ul(u <
—h) + g5 (u = W)*1(Ju| < h).

2. (Gaussian kernel) The Gaussian kernel takes the form
K@) = (Zn)’l/ze’”z/z. The corresponding smoothed loss
is L (1) = {T — D(—u/h)}u+ (2m) =V 2he /M),

3. (Logistic kernel) The logistic kernel takes the form K(u) =
e ¥/(1 + e *)2. The corresponding smoothed loss is
Lpr(u) = tu+ hlog(l+ e u/hy,

4. (Laplacian kernel) The Laplacian kernel takes the form
K(u) = %e"“‘. In this case, the smoothed loss function is

given by £y, (1) = € (u) + 0.5he~ul/h,

We refer to Remark 3.1 in He et al. (2023) for details on Epanech-
nikov and triangle kernels.

Statistical properties of convolution smoothed QR have been
studied in the context of linear models under fixed-p, growing-
p and high-dimensional settings (Fernandes, Guerre, and Horta
2021; Tan, Wang, and Zhou 2022; He et al. 2023). In the low-
dimension setting “p <« n”, He et al. (2023) showed that the
SQR estimator is (asymptotically) first-order equivalent to the
QR estimator. Moreover, the asymptotic normality of SQR holds
under a weaker requirement on dimensionality than needed
for QR. In the high-dimensional regime “p > n”, Tan, Wang,
and Zhou (2022) proved that the SQR-lasso estimator with a
properly chosen bandwidth enjoys the same convergence rate
as QR-lasso (Belloni and Chernozhukov 2011). With iteratively
reweighted ¢ -regularization, oracle properties can be achieved
by SQR under a weaker signal strength condition than needed
for QR.

For fitting ¢;-penalized SQR, Tan, Wang, and Zhou (2022)
proposed coordinate descent and ADMM-based algorithms that
are tailored to the uniform and Gaussian kernels, respectively.
These algorithms do not exhibit evident advantages over existing
ones for fitting penalized QR, and also limit the choice of both
kernel and penalty functions. The main contribution this arti-
cle is to develop a computationally efficient generic algorithm
for penalized SQR, which applies to any nonnegative kernel
smoothing function and various convex penalties. With the lasso
penalty, the proposed algorithm is much more scalable than
those in Tan, Wang, and Zhou (2022). The numerical studies
in Section 4 further demonstrate the efficacy of the proposed
algorithm for group lasso SQR.

3. Local Adaptive Majorize-minimization Algorithm
for Penalized SQR

In this section, we describe a unified algorithm to solve the
optimization problem for penalized SQR, which has a general
form

1

n
nimize © 50, (v — x78) + P(B), 3.1
mlélelfé}lle - ; ne (i —x; B) + P(B) (3.1)

where P(B) is a generic convex penalty function and €, . (-) is
the smoothed check loss given in (2.4). In this article, we focus
on the following four widely used convex penalty functions.
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1. Weighted lasso (Tibshirani 1996): P(B) = 25:1
Aj=z0forj=1,...,p;

2. Elastic net (Zou and Hastie 2005): P(8) = Ax||B]l1 + A (1 —
)|l ||%, where A > 0 is a sparsity-inducing parameter and
a € [0,1] is a user-specified constant that controls the
tradeoff between the ¢; penalty and the ridge penalty;

3. Group lasso (Yuan and Lin 2006): P(8) = X Zngl wg||ﬂg||2,

where § = (ﬁlT,...,ﬂg)T and B, is a sub-vector of B
corresponding to the gth group of coefficients, and w, > 0
are predetermined weights;

4. Sparse group lasso (Simon et al. 2013): P(B) =

G
)\Zg=1 Wg”ﬂg”Z-

We employ the local adaptive majorize-minimization
(LAMM) principle to derive an iterative algorithm for
solving (3.1). The LAMM principle is a generalization of
the majorize-minimization (MM) algorithm (Lange, Hunter,
and Yang 2000; Hunter and Lange 2004) to high dimensions,
and has been applied to penalized least squares, generalized
linear models (Fan et al. 2018) and robust regression (Pan, Sun,
and Zhou 2021). We first provide a brief overview of the LAMM
algorithm.

Consider the minimization of a general smooth function

f(B). Given an estimate Ek_l at the kth iteration, the LAMM
algorithm locally majorizes f (8) by a properly constructed func-

tion g(B(B
33

FB" < BB

Aj|Bjl, where

MBI +

1) that satisfies the local property

-1 ~k—1
y=fB )
(3.2)
1). This ensures the decrease of

and g8 B

where ﬁk = argming g(ﬁ|ﬁk_
the objective function after each step, that is, f (Ek) <f (Ek_l)
Note that (3.2) is a relaxation of the global majorization require-
ment, f(B) < g(ﬂ|;§k_1), used in the MM algorithm (Lange,
Hunter, and Yang 2000; Hunter and Lange 2004).

Motivated by the local property in (3.2), we now derive an
iterative algorithm for solving (3.1). For notational convenience,
let QB) = n 'Y o (yi — xIB) and let VQ(B) be the
gradient of Q(B). We locally majorize Q(f) given ﬁk_l by
constructing an isotropic quadratic function of the form

)=Q@ T+ (va@ 8-

Ok ~k—1
+5 18— B I3,

FBlpw B

where ¢y > 0 is a quadratic parameter (to be determined) at the
. . . —~k .
kth iteration. Then, define the kth iterate 8 as the solution to

minimize F(B|éw B° ) + P(B). (3.3)
BeR?

To ensure the descent of the objective function in (3.1) at each
iteration, the parameter ¢ > 0 needs to be sufficiently large

such that Q(8") < F(B"|¢w, B*
QB + P(B") < FB 190 B + P(B)
<FB o BH +PETY
— QB H+pP@H

1). Consequently,

where the second inequality is due to the fact that TB\k is a mini-
mizer of (3.3). In practice, we choose ¢y, by starting from a small
value ¢9 = 0.01 and successively inflate it by a factor y > 1 until
the majorization requirement Q(Bk) <F (Ekkﬁk, ﬁk_l) is met at
each iteration of the LAMM algorithm. The tuning parameter
y serves a role similar to the control parameters used in the
backtracking line search method. In the context of penalized
least squares, Fan et al. (2018) recommended employing y = 2.
However, due to the increased condition number of the Hessian
matrix for the smoothed empirical quantile loss compared to the
squared loss, we opt for a smaller value of y = 1.2 to enhance
the accuracy of the quadratic approximation. Through extensive
numerical studies, we see that this choice consistently yields
favorable results across various settings.

One of the main advantages of our approach is that the

isotropic form of F(ﬂ|¢k,/ﬂ\k71), as a function of B, permits

a simple analytic solution ﬁk = (B\{‘, el ,B})T for different
convex penalty functions P(8). By the first-order optimization

Lok
condition, B satisfies

0eVpQB )+ 5B~ B+ 0PB e

where 0P denotes the subdifferential of P : R? — [0, 00). With

. . . ~k
certain convex penalties, a closed-form expression for 8 can be
derived from the above condition. Since a common practice is
to leave the intercept term unpenalized, its update takes a simple

form Bf = B¥1 — ¢ V5, QB

rules of ﬂ for the above four convex penalties in Step 3 of Algo-
rithm 1, and postpone their derivations to the Appendix. Here
S(a,b) = sign(a) - (Ja| — b)+ denotes the shrinkage operator,
sign(-) is the sign function and (¢)+ = max(c, 0). For all the four
penalty functions, the dominant computational effort of each
LAMM update is a relatively cheap matrix-vector multiplication
involving X = (xy,. .., x,)7, thus, with a complexity O(np).

). We summarize the update

4. Numerical Studies

In this section, we perform extensive numerical studies to eval-
uate the performance of the LAMM algorithm (Algorithm 1)
for fitting penalized SQR with four convex penalties, the lasso
(¢1 penalty), elastic net, group lasso, and sparse group lasso.
We implement Algorithm 1 using the Gaussian kernel. The
numerical performance under other commonly used kernels,
such the logistic kernel, Laplacian kernel and uniform kernel,
are quite similar and thus we omit the correspondent results. As
suggested in Tan, Wang, and Zhou (2022), we set the default
bandwidth value as & = max{0.05,/7(1 — t)(logp/n)1/4}
throughout the numerical studies. The empirical evidence from
He et al. (2023) and Tan, Wang, and Zhou (2022) shows that the
SQR estimator is not susceptible to the choice of h in a reasonable
range that is neither too small nor too large. In Section 4.1, we fit
penalized SQR with the £; and elastic net penalties on simulated
data with sparse regression coefficients. We also evaluate the
computational efficiency of Algorithm 1, implemented via the
conqguer package, by comparing it to several state-of-the-art
packages on penalized regression. In Section 4.2, we fit penalized
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Algorithm 1 The LAMM Algorithm for Solving (3.1).

Input: kernel function K(-), penalty function P(-), regularization parameters, bandwidth h, inflation factor y = 1.2, and convergence criterion €.

Initialization: 8° < 0, ¢ < 0.01.

. . . . -~k k-1 . =k . .
Repeat the following steps until the stopping criterion ||~ — B~ |l < € is met, where 8 is the kth iterate.

1. Set ¢y < max{¢po, pr—1/v}-
2. repeat

3. forj=1,...,p(org =1,...,G for group lasso and sparse group lasso), update ,B;k (or Ez) as follows:

weighted lasso

Bt <SB! - g 'vpQB ),

b ')

elastic net B\k <~ 1

fi 1+2¢; ' 2(1—a)

SBE — 6 'V5 QB b a0,

Awg

=k —~k—1 _ —~k—1
group lasso By < By — ¢ 'Vg,QB N — —=

PrllByg

S
6 V5,Q8" Dl

Awg

sparse group lasso

B < SB. ¢ 'V8,QB gy (1 -

oellBy '~ ' p,QB" Dl

)4

4 I F(EA"IJ(/)k,EA";l) < Q(/pikk), update ¢ < .
5 untilF(B ¢, B~ ) > Q(B).

Output: the updated parameter ﬁk.

SQR with the group lasso penalty on simulated data for which
the groups of regression coeflicients are sparse.

4.1. Simulated Data with Sparse Regression Coefficients

We start with generating ¥; € R from a multivariate normal
distribution N (0, X), where X = (0.7‘j_k|)1§j,k§p, and set x;
(I,EiT )T, Given t € (0,1), we generate the response y; from the
following linear heteroscedastic model:

yi =] B* + (05|xip11| + Die; — F' (D)}, (41)

where Fg,l () denotes the tth quantile of the noise variable ¢;.
We consider two noise distributions: (i) Normal distribution
with mean zero and variance 2, that is, ¢, ~ N(0,2), and
(ii) t-distribution with 1.5 degrees of freedom, that is, €; ~
t1.5. Moreover, the vector of regression coeflicients B* takes the
following two forms: (i) sparse B* with S} 4 (intercept),
B =18, BF =168 =145 = 12,8, = 1, B, = —1,
Bi, = —12, B, = —14, 8% = —16, B = —18, and
/3]?k = 0 for all other j’s, and (ii) dense B* with B} = 4 (intercept),
B = 0.8 forj=2,...,100, and 0 otherwise.

We compare the proposed algorithm for penalized SQR with
the ¢; and elastic net penalties to the ¢;-penalized QR imple-
mented by the R package rgPen! (Sherwood and Maidman
2020). Note that the ADMM-based algorithm proposed by Gu
et al. (2018), implemented in the R package FHDQR, is incom-
patible with the current version of R and hence is not included
in this article. The regularization parameter A is selected via 10-
fold cross-validation for which the validation error is defined
through the quantile loss. We set the additional tuning parame-
ter « for the elastic net penalty as @ = {0.3,0.5,0.7}. To evaluate
the statistical performance of different methods, we report the
estimation error under the £,-norm, that is, || — 8%, as well as
the true positive rate (TPR) and false positive rate (FPR), which
are defined as the proportion of correctly estimated non-zeros
and the proportion of falsely estimated non-zeros, respectively.

'The rgPen package does not have the elastic net penalty option.

The results for the sparse and dense B*, averaged over 100
replications, are reported in Tables 1 and 2, respectively.

From Table 1 we see that when true signals are genuinely
sparse, both £1-penalized SQR and QR outperform the elastic
net SQR (with different « values) in all three facets. Due to the
large number of zeros in B*, the performance of the elastic net
SQR deteriorates as o decreases, where o € [0,1] is a user-
specified parameter that balances the ¢; penalty and the ridge
(£2) penalty. Table 2 summarizes the results under a dense B*
that contains 100 non-zeros coordinates. In this case, the elastic
net SQR estimators tend to have lower estimation error and high
true positive rate, suggesting that the elastic net penalty may
be beneficial when the signals are dense and the signal-to-noise
ratio is relatively low.

Furthermore, we provide speed comparisons of the three R
packages, glmnet, rgPen, and conquer, for fitting sparse
linear models. As a benchmark, glmnet is used to compute
the ¢;-penalized least squares (lasso) estimator, whereas rgPen
and conquer are used to fit penalized quantile regression
with ¢ = 0.5. For each method, the regularization parameter
is selected from a sequence of 50 A-values via 10-fold cross-
validation. The curves in panels (a) and (c) of Figure 1 represent
the estimation error (under £, norm) as a function of dimension
p> and the curves in panels (b) and (d) of Figure 1 represent the
logarithmic computational time (in log second) as a function of
dimension p. The sample size # is taken to be p/2. As the sample
size n increases, the lasso, QR-lasso, and SQR-lasso estimators
demonstrate similar convergence rates under normal errors. It
is worth noting that the lasso estimator becomes inconsistent
in high dimensions when the error distribution follows a #; 5-
distribution; see Section 5.1 of Loh (2017). This phenomenon
explains the non-decaying error curve observed for glmnet
in plot (c). Notably, the SQR-lasso may even exhibit slight
improvements over the QR-lasso, suggesting that incorporating
smoothing techniques has the potential to enhance finite-sample
performance. Regarding computational efficiency, our con-
quer package showcases significant advancements compared
to rgPen, particularly when dealing with a large number of
predictors. The algorithms implemented in rgPen are either a
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Table 1. Numerical comparisons under the linear heteroscedastic model (4.1) with sparse regression coefficients in moderate-dimensional (n = 500, p = 250) and
high-dimensional settings (n = 250, p = 500).
Linear heteroscedastic model with sparse * and r = 0.5
(n = 500,p = 250) (n = 250,p = 500)
Noise Methods Error TPR FPR Error TPR FPR
SOR (lasso) 0.852 (0.015) 1(0) 0.126 (0.007) 0.992 (0.019) 1(0) 0.071 (0.004)
SQR (elastic net, o« = 0.7) 1.386 (0.017) 1(0) 0.268 (0.009) 1.666 (0.018) 1(0) 0.162 (0.005)
N(0,2) SOR (elastic net, @ = 0.5) 1.727 (0.015) 1(0) 0.393 (0.009) 2.108 (0.016) 1(0) 0.258 (0.007)
SQR (elastic net, o« = 0.3) 2.056 (0.014) 1(0) 0.589 (0.010) 2.506 (0.012) 1(0) 0.416 (0.007)
rgPen (lasso) 0.892(0.017) 1(0) 0.135 (0.007) 1.030 (0.020) 1(0) 0.072 (0.003)
SQR (lasso) 0.758 (0.016) 1(0) 0.099 (0.005) 0.903 (0.022) 0.980 (0.014) 0.065 (0.004)
SOR (elastic net, @ = 0.7) 1.293 (0.018) 1(0) 0.264 (0.007) 1.635 (0.030) 0.980 (0.014) 0.161 (0.005)
t15 SQR (elastic net, « = 0.5) 1.676 (0.018) 1(0) 0.389 (0.008) 2.104 (0.034) 0.980 (0.014) 0.242 (0.006)
SQR (elastic net, o« = 0.3) 2.058 (0.016) 1(0) 0.567 (0.008) 2.530(0.038) 0.980 (0.014) 0.402 (0.009)
rgPen (lasso) 0.793(0.017) 1(0) 0.109 (0.006) 0.935 (0.023) 0.980 (0.014) 0.069 (0.003)
Linear heteroscedastic model with sparse * and T = 0.7
SQR (lasso) 0.873 (0.017) 1(0) 0.112(0.005) 1.049 (0.020) 0.999 (0.001) 0.064 (0.003)
SQR (elastic net,« = 0.7) 1.423(0.018) 1(0) 0.247 (0.007) 1.743 (0.021) 1(0) 0.155 (0.006)
N(0,2) SOR (elastic net, @ = 0.5) 1.772(0.016) 1(0) 0.382 (0.009) 2.169 (0.017) 1(0) 0.244 (0.006)
SQR (elastic net, o« = 0.3) 2.113(0.015) 1(0) 0.574(0.010) 2.557 (0.013) 1(0) 0.401 (0.007)
rgPen (lasso) 0.902 (0.018) 1(0) 0.120 (0.005) 1.098 (0.020) 0.999 (0.001) 0.065 (0.003)
SQR (lasso) 0.919(0.020) 1(0) 0.106 (0.005) 1.104 (0.028) 0.979 (0.014) 0.061 (0.003)
SOR (elastic net, @ = 0.7) 1.499 (0.020) 1(0) 0.247 (0.007) 1.849 (0.034) 0.979 (0.014) 0.147 (0.005)
t1s SQR (elastic net, o = 0.5) 1.887 (0.020) 1(0) 0.368 (0.008) 2.313(0.038) 0.979 (0.014) 0.220 (0.006)
SQR (elastic net, @ = 0.3) 2.263(0.016) 1(0) 0.524 (0.008) 2.706 (0.041) 0.979 (0.014) 0.370(0.008)
rgPen (lasso) 0.951(0.021) 1(0) 0.112 (0.006) 1.124(0.028) 0.979 (0.014) 0.064 (0.003)

NOTE: The mean (and standard error) of the estimation error under ¢,-norm, true and false positive rates (TPR and FPR), averaged over 100 replications, are reported.

Table 2. Numerical comparisons under the linear heteroscedastic model (4.1) with dense regression coefficients.

Linear heteroscedastic model with dense 8* and r = 0.5

(n = 500,p = 250)

(n = 250,p = 500)

Noise Methods Error TPR FPR Error TPR FPR
SQR (lasso) 2.126(0.019) 1(0) 0.244 (0.009) 2.600 (0.025) 0.999 (0) 0.163 (0.007)
SQR (elastic net, o = 0.7) 1.691 (0.015) 1(0) 0.312(0.008) 1.955 (0.019) 1(0) 0.230 (0.006)
N(0,2) SOR (elastic net, « = 0.5) 1.598 (0.016) 1(0) 0.452 (0.009) 1.898 (0.020) 1(0) 0.361 (0.006)
SQR (elastic net, o = 0.3) 1.633(0.017) 1(0) 0.647 (0.006) 2.102 (0.021) 1(0) 0.584 (0.005)
rgPen (lasso) 2.221(0.022) 1(0) 0.245 (0.011) 2.731(0.025) 0.998 (0) 0.160 (0.006)
SQR (lasso) 2.320(0.025) 1(0) 0.231(0.007) 3.095 (0.083) 0.975(0.014) 0.156 (0.007)
SOR (elastic net, o = 0.7) 1.767 (0.017) 1(0) 0.314(0.007) 2.058(0.038) 0.980 (0.014) 0.222 (0.006)
t15 SQR (elastic net, o = 0.5) 1.660 (0.016) 1(0) 0.447 (0.006) 2.018(0.037) 0.980 (0.014) 0.356 (0.007)
SQOR (elastic net, o = 0.3) 1.709 (0.018) 1(0) 0.641 (0.006) 2.249 (0.040) 0.980 (0.014) 0.567 (0.010)
rgPen (lasso) 2.377 (0.026) 1(0) 0.248 (0.009) 3.051(0.059) 0.974(0.014) 0.146 (0.005)
Linear heteroscedastic model with dense 8* and t = 0.7
SQOR (lasso) 2.214(0.020) 1(0) 0.244 (0.009) 2.731(0.026) 0.998 (0.001) 0.150 (0.006)
SOR (elastic net, = 0.7) 1.725(0.015) 1(0) 0.300 (0.008) 2.030(0.019) 1(0) 0.228 (0.006)
N(0,2) SOR (elastic net, o = 0.5) 1.636 (0.020) 1(0) 0.442 (0.009) 1.932(0.018) 1(0) 0.348 (0.006)
SQR (elastic net, o« = 0.3) 1.670(0.018) 1(0) 0.641 (0.006) 2.100 (0.018) 1(0) 0.563 (0.005)
rgPen (lasso) 2.326(0.020) 1(0) 0.238(0.010) 2.916(0.027) 0.996 (0.001) 0.147 (0.006)
SOR (lasso) 2.781(0.039) 0.998 (0.001) 0.236 (0.008) 3.582(0.077) 0.968 (0.014) 0.157 (0.006)
SQR (elastic net, o = 0.7) 2.005 (0.025) 1(0) 0.310(0.008) 2.313 (0.044) 0.980 (0.014) 0.225 (0.007)
t1s SQOR (elastic net, o« = 0.5) 1.849(0.022) 1(0) 0.439 (0.007) 2.200 (0.040) 0.980 (0.014) 0.351(0.007)
SOR (elastic net, « = 0.3) 1.892 (0.021) 1(0) 0.646 (0.007) 2.415 (0.044) 0.980 (0.014) 0.568 (0.010)
rgPen (lasso) 2.836(0.038) 0.996 (0.001) 0.245 (0.009) 3.583 (0.067) 0.962 (0.014) 0.138 (0.005)

NOTE: Other details are as in Table 1

variant of the Barrodale and Roberts simplex method (Koenker
2023) or an iterative coordinate descent method (Peng and
Wang 2015). The plots (b) and (d) demonstrate a substantial
reduction in the computational efficiency gap between imple-
menting penalized least squares and penalized quantile regres-
sion. We also compared our proposed algorithm to ADMM
for fitting ¢;-penalized quantile regression, implemented using
the R package FHDQR, and found that our proposed algo-
rithm is more computationally efficient than that of Gu et al.

(2018) when p is large. See Figure Bl in Appendix B for
more details.

We proceed with a sensitivity analysis of our proposed algo-
rithm for fitting penalized SQR by varying the smoothing band-
width h. In this analysis, we maintain (n,p) = (150,300) and
consider the setting outlined in (4.1), involving either sparse
regression coefficients or sparse groups of regression coeffi-
cients. As before, the random noise follows either the nor-
mal distribution N(0,2) or the t; 5-distribution. We conduct
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Figure 1. Estimation error and logarithmic elapsed time (in seconds) under model (4.1) with N(0, 2) and t; 5 random noise and t = 0.5, averaged over 50 datasets for
three different algorithms: (i) the proposed algorithm for fitting £1-penalized SQR with Gaussian kernel; (ii) the £1-penalized QR implemented using rgPen; and (iii) the

£1-penalized least squares method implemented using glmnet.

£1-penalized SQR for sparse regression coefficients and group
lasso penalized SQR for sparse groups, selecting h from a range
while keeping y = 1.2 fixed. We then compare the estimation
error with that of ¢;-penalized QR, as illustrated in Figure 2.
The results indicate that the estimation error of penalized SQR
is consistently lower than or comparable to that of £;-penalized
QR across a range of h values, including our default choice.
This finding suggests that penalized SQR exhibits robustness to
variations in the bandwidth parameter h.

4.2. Simulated Data with Sparse Groups of Regression
Coefficients

To further evaluate the performance of penalized SQR with
the group lasso penalty, we conduct a comparison between the
conqguer package and the SGL package in R. The latter is
designed to fit regularized linear models (using squared loss),
logistic models and Cox models, using a combination of lasso
and group lasso penalties. To this date, we are not aware of
any existing R package that implements group lasso penalized
quantile regression. The regularization parameter A is once again
selected by 10-fold cross-validation, and the weights wy, ..., wg
are set as wg = /Py, where p, is the dimension of the
sub-vector B,.

We generate the data according to (4.1) with 10 groups of
regression coefficients B*. Specifically, we construct a block-
diagonal covariance matrix ¥’ = diag(X,..., X10), where
Zl, 22 € RSXS, 23, 24, 25 € RlOXlO, and 26, ey 215 €

R(P—40)/10x(p—40)/10 3nd each block is an exchangeable covari-
ance matrix with diagonal 1 and off-diagonal elements 0.6.
We then generate the covariates from the multivariate normal
distribution, x; ~ N,(0,X’) and set x; = (1,35,-T )T we
construct B* that has a sparse group structure, that is, B* =
{Bs> BHT,.... (BT} with B¢ = 4 (intercept), B = 2 € R®,
B5=16cR B =-—2ecROBI=1cRY Bt =06¢
R and B = .- = B} = 0 € RO,

To assess the performance of group lasso SQR, we calcu-
late the group TPR and group FPR, defined as the proportion
of groups that are correctly estimated to contain non-zeros,
and the proportion of groups that are incorrectly estimated
to contain non-zeros, respectively. Since ¢;-penalized meth-
ods do not induce group structures, the group TPR and FPR
are not well defined. Simulation results under N(0,2) and t;5
distributed error models, averaged over 100 replications, are
reported in Table 3. Under sparse group structures, the group
lasso SQR demonstrates comparable performance to its least
squares counterpart (implemented via SGL) in the presence
of Gaussian errors. Additionally, it showcases robustness when
confronted with heavy-tailed distributions, as evidenced by the
results obtained with f; 5-errors. In the latter case, the consis-
tency of penalized least squares estimators is compromised. Our
findings suggest that employing a group lasso penalty can be
advantageous when the covariates are highly correlated within
predefined groups. Moreover, the conquer package serves as a
useful complement to SGL, offering an efficient implementation
of group lasso regularized quantile regression.
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Figure 2. Sensitivity analysis of £1-penalized conquer with a range of bandwidth parameter h. Results for (n,p) = (150,300) under model (4.1) with sparse regression

coefficients and sparse groups of regression coefficients N(0,2) and t; 5 random noise and 7 =

0.5, averaged over 100 datasets, with the proposed algorithm

for fitting £1-penalized and group lasso penalized SQR implemented using a Gaussian kernel. The purple vertical dashed line represents our default choice of h =
max{0.05, /7 (1 — 7)(log p/n)1 /43, and the red horizontal dashed line represents the estimation error of £1-penalized QR.

5. Fused Lasso Additive SQR and World Happiness
Data

In this section, we employ the fused lasso additive smoothed
quantile regression for flexible and interpretable modeling of
the conditional relationship between country happiness level
and a set of covariates, using the world happiness data (United
Nations Development Programme 2012; World Bank Group
2012; Helliwell, Layard, and Sachs 2013) previously studied in
Petersen, Witten, and Simon (2016). Specifically, the goal is to
study the conditional distribution of country-level happiness
index, the average of Cantril Scale (Cantril 1965) responses of
approximately 3000 residents in each country, given 12 country-
level predictors, including but not limited to log gross national
income (USD), satisfaction with freedom of choice, satisfaction
with job, satisfaction with community, and trust in national
government.

We first provide a brief overview of the fused lasso additive
model in Petersen, Witten, and Simon (2016). The fused lasso
additive model seeks to balance interpretability and flexibility
by approximating the additive function for each covariate via
a piecewise constant function. Let §; = (Qlj,...,an)T for

j=1,...,pandlet D be an (n — 1) x »n matrix with entries
Djj = l1and D41y = —1fori =1,...,n—1,and D;j = 0
for j # i,i + 1. Moreover, let P; be a permutation matrix
that orders the elements of x; = (xyj,. .. ,xnj)T from least to

greatest. The fused lasso additive model estimator in Petersen,
Witten, and Simon (2016) can be obtained by solving the convex
optimization problem

p 2 P
1 n
minimize — C— Oy — 0 ) + A DP#;||,
R w2 (- T) oz

subject to ]1T0j =0,j=1,...,p (5.1)

where ||DP;#;|; is a fused lasso type penalty that encourages
the consecutive entries of the ordered parameters P;#; to be the
same. We refer the reader to Petersen and Witten (2019), Wu
and Witten (2019), and Sadhanala and Tibshirani (2019) for a
summary of recent work on flexible and interpretable additive
models.

We now propose the fused lasso additive smoothed quantile
regression for interpretable and flexible modeling of the condi-
tional distribution of y given x at specific quantile levels. Specif-
ically, we propose to solve the following optimization problem
by substituting the squared error loss in (5.1) via the smoothed
quantile loss in (2.4):

n

p p
1
=S b yi—60=Y 65 ) +2Y IDP6;

minimize
1

subjectto 170, =0,j=1,...,p. (52)
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Table 3. Numerical comparisons under the linear heteroscedastic model (4.1) with groups of regression coefficients in moderate-dimensional (n = 500, p = 250) and

high-dimensional settings (n = 250, p = 500).

Linear heteroscedastic model with sparse groups of 8* and t = 0.5

(n = 500,p = 250)

(n = 250,p = 500)

Noise Methods Error Group TPR Group FPR Error Group TPR Group FPR
SOR (lasso) 1.114(0.013) 1(0) 0.022 (0.002) 1.286 (0.016) 1(0) 0.017 (0.002)
N(0,2) rgPen (lasso) 1.161(0.015) 1(0) 0.107 (0.008) 1.356 (0.019) 1(0) 0.074 (0.006)
SOR (group) 0.772(0.008) 1(0) 0.020 (0.005) 0.840 (0.009) 1(0) 0.038 (0.007)
SGL (group) 1.092 (0.042) 1(0) 0.068 (0.013) 1.280 (0.057) 1(0) 0.062 (0.010)
SQR (lasso) 1.412 (0.040) 0.996 (0.001) 0.002 (0) 1.562 (0.037) 0.975(0.014) 0.002 (0)
t1s rgPen (lasso) 1.075 (0.015) 1(0) 0.102 (0.006) 1.278 (0.026) 0.980 (0.014) 0.059 (0.004)
SOR (group) 0.914 (0.028) 1(0) 0(0) 0.953(0.023) 0.980 (0.014) 0(0)
SGL (group) 3.376 (0.483) 1(0) 0.228 (0.034) 2.357(0.133) 0.980 (0.014) 0.147 (0.025)
Linear heteroscedastic model with sparse groups of 8* and T = 0.7
SQR (lasso) 1.195 (0.014) 1(0) 0.025 (0.002) 1.381(0.019) 1(0) 0.016 (0.001)
N(0,2) rgPen (lasso) 1.232(0.014) 1(0) 0.106 (0.006) 1.432(0.023) 1(0) 0.067 (0.004)
SQR (group) 0.809 (0.009) 1(0) 0.033 (0.010) 0.893 (0.011) 1(0) 0.048 (0.009)
SGL (group) 1.427 (0.059) 1(0) 0.061 (0.010) 1.540 (0.077) 1(0) 0.063 (0.012)
SQR (lasso) 1.764 (0.052) .995 (0.001) 0.003 (0) 1.948 (0.051) 0.969 (0.014) 0.003 (0)
t1s rgPen (lasso) 1.253(0.018) 1(0) 0.096 (0.006) 1.541(0.032) 0.978 (0.014) 0.060 (0.004)
SQR (group) 1.155 (0.040) 1(0) 0.001 (0.001) 1.180(0.031) 0.980 (0.014) 0.002 (0.001)
SGL (group) 3.529 (0.480) 1(0) 0.229 (0.034) 2.492 (0.138) 0.980 (0.014) 0.150 (0.025)

NOTE: The mean (and standard error) of the estimation error under £;-norm, group true and group false positive rates (Group TPR and Group FPR), averaged over 100

replications, are reported.

Optimization problem (5.2) is convex and can be solved by
updating 6y € R and each block of parameters 6, ...,0, € R”
iteratively, holding all others fixed. We employ a block coordi-
nate descent algorithm similar to that of Petersen, Witten, and
Simon (2016) to solve (5.2), which we outline in Algorithm 2.

Speciﬁcally, at the kth iteration, let rf.]‘. = yi — é\ok_l —
ZJ #] ~! be the residuals, where 90 and #¥ ! are solutions

from the (k — 1)th iteration. For each j = 1, ..., p, we obtain an
update for 6}, holding the other parameters fixed, by solving the
following convex optimization problem

o~

n
0]17 = argminajeRn% Z e (rg -
i=1
Tibshirani and Taylor (2011) showed that (5.3) can be rewrit-
ten as a lasso problem through some transformation on the
regression coeflicients, and thus Algorithm 1 can naturally be
employed to solve (5.3). To this end, we construct a rank n matrix
= (DT, 17)" by stacking an n-dimensional vector of ones to
D. Let §; = = DP; ;0. By a change of variable, (5.3) reduces to a
lasso-type problem that can be solved using Algorithm 1, that is,

6;) + AIDPO;l1.  (5.3)

E].(_argmm;eRn Z&n( — (P D7) )+)‘Z|§’-’

(54)
where we do not penalize the last coordinate of £;. The updates

for 6; can then be constructed as /O\Jk = Pj711~)*1/§\]]»(. We refer the
reader to Tibshirani and Taylor (2011) for more details.

We apply the proposed method to investigate the condi-
tional distribution of country-level happiness index at dif-
ferent quantile levels © = {0.2,0.5,0.8}. We implement
our proposed method under the Gaussian kernel with h =
max[0.05, /7 (1 — 7){log(p)/n}'/*], and 1 selected using cross-
validation. The estimated fits for three selected covariates are
shown in Figure 3: the first, second, and third rows in Figure 3

Algorithm 2 A Block Coordinate Descent Algorithm for Solv-
ing (5.2).

Input: kernel function K(-), regularization parameter 2, smoothing param-
eter h, the matrix D, and convergence criterion €.

Initialization: 58 <« 0,5}’ «~O0forj=1,...,p.
Iterate: for each j = 1,...,p, until the stopping criterion | ,*_ll +

7 1||0

kth iteration.

"I, < € is met, where 9; is the value of 8; obtained at the

1. Update the residuals "Z‘ <~ yi— 5(7)‘ Yfori=1,...,n.

ZJ #J
2. Updatezjlf as

Z]If < argming g — Z&n( - (P 1D_1;] )+)‘Z 14

i=1
using Algorithm 1.
3. Update the parameters 5]( “« P’IIN)_lka

4. Update the mtercepté\k §k Vyn iy 57‘

~k ~k
5. Center the parameters 6; < 6; — n1 ?:1 @:’]‘

Output: the updated parameters é\é‘,g}f, e ,5’;.

correspond to the results for t = 0.2, 7 = 0.5, and v = 0.8,
respectively. For t = 0.5 the estimated fits are similar to that
of the fused lasso additive model presented in Petersen, Wit-
ten, and Simon (2016). In particular, we find that an increased
in gross national income, up to a certain level, is associated
with increased happiness, conditional on the other predictors.
Moreover, the differences in conditional associations between
country’s happiness level and both gross national income and
percent trustful of national government are negligible for the
three quantile levels. It is interesting to see that the conditional
association between mean happiness index and females with
secondary education are different for the three different quantile
levels, suggesting that there are potential heterogeneous effects.
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Figure 3. Conditional associations between country’s happiness level and three selected country-level predictors for t = {0.2,0.5,0.8}. The first, second, and third rows

correspond to results for 7 = 0.2, 7 = 0.5, and T = 0.8, respectively.

Appendix A. Derivation of Updates for Different
Penalty Functions in Algorithm 1

In this section, we provide a detailed derivation of the iterative updates
used in Step 3 of Algorithm 1 under the following four convex penalty
functions, the weighted lasso (Tibshirani 1996), elastic net (Zou and
Hastie 2005), group lasso (Yuan and Lin 2006), and sparse group lasso
(Simon et al. 2013) penalty functions.

By the first-order optimization condition and using the isotropic

form of F(B|¢x., ﬁk_l) in (3.3), the minimizer ﬁk of (3.3) is such that

0 V4B H+aB B h+ 0Pl g (A
where 9P is the subdifferential of the convex function P : RP —
[0, 00). Recall that 8 is the intercept. A common practice is to leave the
intercept term unpenalized, that is, P(8) depends only on Ba,..., Bp
with Vg, P(B) = 0. In this case, the update rule for the intercept takes
the form

V5 QB Y+ B - =0 =

Bl =B — 9 'v5,QB .

The updates for the regression coefficients ﬁk depend on the specific
structure of dP(B), and can be carried out component-wise, or group-
wise in the case of group lasso and sparse group lasso penalty functions.
Let S(a, b) = sign(a) - (Ja| — b, 0)+ be the soft-thresholding operator,
where sign(-) is the sign function and (c)+ = max(c, 0). In addition, let

Vﬂg Q(Ek_ ! ) be the sub-vector of the gradient Vg Q(Ek_ 1), indexed by

the gth group. In the following, we provide explicit derivations for the

updates of ﬁk under the four penalty functions.
(1) Weighted lasso (Tibshirani 1996): P(8) = Zﬁ":l Al Bjl, where Aj >

0forj = 1,...,p. The element-wise updates for Ejk,j =1...,p
are computed as follows:

V5, QB" ) + gr (Bl — B + 1ysign(B) =,

— B+ hysign(B) = B - 91V, ),

— B =SB -9, V5QB ), 6 ).

(2) Elastic net (Zouand Hastie 2005): P(8) = Acr|| 1|1+ (1—a)| | B12.
The element-wise updates for B\]k, j = 1,...,p, are computed as

follows:
V5QB )+ ¢u(BE— B +har sign(BH) +21(1 — ) B =0,
— @M1 —a) + ¢0B + rasign(BH) = B — V5B,
= (1426201 — )} + ¢ "2t sign(Bf)
=B 0 QB T,

‘B\k 1

Kk~ Bl lv, Ak—1’ 10,
T 142001~ @) 5 ¢ Vg QB )¢y )
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Figure B1. Estimation error and elapsed time in seconds under Model (4.1) with N(0, 2) error and t1 5 random noise and r = 0.5, averaged over 100 datasets for three
different algorithms: (i) the proposed algorithm with the Gaussian kernel for fitting £1-penalized SQR; (ii) the £1-penalized QR implemented using the smooth coordinate
descent ADMM algorithm in Gu et al. (2018); and (iii) the £1-penalized QR implemented using the proximal ADMM algorithm in Gu et al. (2018). The sample size n is taken

to be 2p.

(3) Group lasso (Yuan and Lin 2006): P(8) = A Zgzl wg||ﬂg||2. The
updates for Eg, g=1,...,G, are computed group-wise as follows:

~k

e SO ;
Vp QB ) + By — By H +wg—E— =0,
1112

~k
~k . By k1
= Byt Wgﬁ—ﬂg -
g 2

~ #;'95,QB )

9 Vg, QB ),

~k ~k—1
AW,
g

orlIBy ' — 7'V, Dl

x |1

(4) Sparse group lasso (Simon et al. 2013): P(8) = A|Bl1 +

A Zgzl wg ||ﬂg |l2. The updates for ﬁg,g =1,...,G,are computed
group-wise as follows:

~k

. ke - B
Vg, QB ) + e By — By )+ hsign(By) + dwg—L— =0,
I1Bgl2
Ek
= By + & hsignBy) + o hwg —Ak‘j ‘
g 2
=By '~ 'vs,QB T,

— B =SBy ' —¢;'Vp,QB o)
B Awg
oellBy | — 6 'V, Dl

x |1

+

where S(a, b) is the soft-thresholding operator, applied element-
wise within the gth group.

Appendix B. Additional Numerical Studies

We compared our proposed algorithm for £1-penalized smoothed
quantile regression with the Gaussian kernel and default bandwidth
value h = max{0.05, /(1 — r)(logp/n)1/4}, to £1-penalized quantile
regression implemented using the ADMM algorithm in Gu et al. (2018).
We compare our algorithm to both algorithms proposed in Gu et al.
(2018), smooth coordinate descent ADMM (scdADMM) and proximal
ADMM (pADMM), implemented via the FHDQR package. The data
are generated according to Model (4.1) with ¢ = 0.5 and N(0,2) and
t1.5 random noise. Results, averaged over 100 datasets, are reported in
Figure B1. We see that the proposed algorithm has a significant com-
putational gain especially in high dimensions and achieves comparable
estimation error to that of Gu et al. (2018).

Another rapid ADMM-based algorithm, known as QPADM, for
penalized quantile regression, was introduced in Yu, Lin, and Wang
(2017). However, since there is no readily available package to directly
implement this method, we did not include a runtime comparison in
this study. The source code for the conquer package was crafted using
ReppArmadillo. Consequently, comparing it with QPADM imple-
mented in R code would be unfair.
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