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a b s t r a c t

High-dimensional data can often display heterogeneity due to heteroscedastic variance
or inhomogeneous covariate effects. Penalized quantile and expectile regression methods
offer useful tools to detect heteroscedasticity in high-dimensional data. The former is
computationally challenging due to the non-smooth nature of the check loss, and the
latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study
(penalized) robust expectile regression (retire), with a focus on iteratively reweighted
ℓ1-penalization which reduces the estimation bias from ℓ1-penalization and leads to ora-
cle properties. Theoretically, we establish the statistical properties of the retire estimator
under two regimes: (i) low-dimensional regime in which d ≪ n; (ii) high-dimensional
regime in which s ≪ n ≪ d with s denoting the number of significant predictors.
In the high-dimensional setting, we thoroughly analyze the statistical properties of the
solution path of iteratively reweighted ℓ1-penalized retire estimation, adapted from
the local linear approximation algorithm for folded-concave regularization. Under a mild
minimum signal strength condition, we demonstrate that with as few as log(log d)
iterations, the final iterate of our proposed approach achieves the oracle convergence
rate. At each iteration, we solve the weighted ℓ1-penalized convex program using a
semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the
promising performance of the proposed procedure in comparison to both non-robust
and quantile regression based alternatives.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Penalized least squares has become a baseline approach for fitting sparse linear models in high dimensions. Its focus
s primarily on inferring the conditional mean of the response given a large number of predictors/covariates. In many
conomic applications, however, more aspects than the mean of the conditional distribution of the response given the
ovariates are of interest, and that the covariate effects may be inhomogeneous and/or the noise variables exhibit heavy-
ailed and asymmetric tails. For instance, in the Job Training Partners Act studied in Abadie et al. (2002), one is more
nterested in the lower tail than the mean of the conditional distribution of income given predictors such as enrollment
n a subsidized training program and demographic variables. To capture heterogeneity in the set of covariates at different
ocations of the response distribution, methods such as quantile regression (Koenker and Bassett, 1978) and asymmetric
east squares regression (expectile regression) (Newey and Powell, 1987) have been widely used. We refer the reader
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o Koenker and Bassett (1978), Koenker (2005), and Koenker et al. (2017) for a comprehensive overview of quantile
egression, and Newey and Powell (1987) and Gu and Zou (2016) for conventional and penalized expectile regressions.

Both quantiles and expectiles are useful descriptors of the tail behavior of a distribution in the same way as the median
nd mean are related to its central behavior. As shown by Jone (1994), expectiles are exactly quantiles of a transformed
ersion of the original distribution. In fact, the expectile regression can be interpreted as a least squares analogue of
egression quantile estimation (Newey and Powell, 1987). Quantile regression is naturally more dominant in the literature
ue to the fact that expectiles lack an intuitive interpretation while quantiles are the inverse of the distribution function
nd directly indicate relative frequency. The key advantage of expectile regression is its computational expediency and
he asymptotic covariance matrix can be estimated without the need of estimating the conditional density function
nonparametrically). Therefore, it offers a convenient and relatively efficient method of summarizing the conditional
esponse distribution.

Expectile regression has found applications in various fields, including risk analysis (Taylor, 2008; Kuan et al., 2009;
ie et al., 2014; Bellini and Bernardino, 2017; Daouia et al., 2018), as well as the study of determinants of inflation (Busetti
t al., 2021) and life expectancy and economic production (Schnabel and Eilers, 2009). In finance applications, the
xpectile, also known as the expectile-Value at Risk, represents the minimum amount of capital needed to add to a position
n order to achieve a specified high gain–loss ratio (Bellini and Bernardino, 2017; Gu and Zou, 2019). In contrast to quantile,
the expectile is a coherent measure of risk that is desirable in finance applications (Kuan et al., 2009). While the expected
shortfall is another popular coherent risk measure in finance (Acerbie and Tasche, 2002), it is not elicitable (Gneiting,
2011), which poses challenges for its estimation. In fact, the expectile is the only risk measure that is both coherent and
elicitable, making it a valuable tool for financial risk management and decision-making (Bellini and Bignozzi, 2015; Ziegel,
016; Bellini and Bernardino, 2017).
In contrast to quantile regression, expectile regression minimizes a quadratic-type loss and is therefore sensitive to

eavy-tailed response distributions. To address this limitation, we propose a robust expectile regression approach that
s designed to effectively handle heavy-tailed response distributions in both low- and high-dimensional models. In the
atter setting, the number of covariates/regressors, d, is substantially greater than the number of observations, denoted
y n. High-dimensional data analysis greatly benefits from the sparsity assumption—only a small number of significant
redictors are associated with the response. This motivates the use of various convex and non-convex penalty functions so
s to achieve a desirable trade-off between model complexity and statistical accuracy (Bühlmann and van de Geer, 2011;
ainwright, 2019; Fan et al., 2020). The most widely used penalty functions include the ℓ1/Lasso penalty (Tibshirani,
996), the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001), and the minimax concave penalty
MCP) (Zhang, 2010a). Albeit being computationally efficient and statistically (near-)optimal under ℓ2-errors, the ℓ1
enalty induces non-negligible estimation bias, which may prevent consistent variable selection. The selected model with
relatively small prediction error tends to include many false positives, unless stringent assumptions are imposed on the
esign matrix (Zou and Li, 2008; Zhang and Zhang, 2012; Su et al., 2017; Lahiri, 2021).
Folded-concave (non-convex) penalty functions, on the other hand, have been designed to reduce the bias induced by

he ℓ1 penalty. With either the ℓ2 or a robust loss function, the resulting folded-concave penalized estimator is proven to
chieve the oracle property provided the signals are sufficiently strong, i.e., the estimator has the same rate of convergence
s that of the oracle estimator obtained by fitting the regression model with true active predictors that are unknown
n practice (Fan and Li, 2001; Zou and Li, 2008; Zhang and Zhang, 2012; Loh and Wainwright, 2015; Loh, 2017). Due
o non-convexity, directly minimizing the concave penalized loss raises numerical instabilities. Standard gradient-based
lgorithms are often guaranteed to find a stationary point, while oracle results are primarily derived for the hypothetical
lobal minimum. Zou and Li (2008) proposed a unified algorithm for folded-concave penalized estimation based on local
inear approximation (LLA). It relaxes the non-convex optimization problem into a sequence of iteratively reweighted
1-penalized subproblems. The statistical properties of the final iterate have been studied by Zhang (2010b), Fan et al.
2014), (Fan et al., 2018) and Pan et al. (2021) under different regression models. We refer to Wainwright (2019) and Fan
t al. (2020), and the references therein, for a comprehensive introduction of penalized M-estimation based on various

convex and folded-concave (non-convex) penalty functions.
For sparse quantile regression (QR) in high dimensions, Belloni and Chernozhukov (2011) studied ℓ1-penalized quantile

regression process, and established the uniform (over a range of quantile levels) rate of convergence. To alleviate the bias
induced by the ℓ1 penalty, Wang et al. (2012) proposed concave penalized quantile regression, and showed that the oracle
estimator is a local solution to the resulting optimization problem. Via the one-step LLA algorithm, Fan et al. (2014) proved
that the oracle estimator can be obtained (with high probability) as long as the magnitude of true nonzero regression
coefficients is at least of order

√
s log(d)/n. We refer to Wang and He (2022) for a unified analysis of global and local

optima of penalized quantile regressions. While quantile regression offers the flexibility to model the conditional response
distribution and is robust to outliers, together, the non-differentiability of the check function and the non-convexity of
the penalty pose substantial technical and computational challenges. To our knowledge, the theoretical guarantee of the
convergence of a computationally efficient algorithm to the oracle QR estimator under the weak minimum signal strength
condition, i.e., the true nonzero regression coefficients is at least of order

√
log(d)/n, remains unclear.

In high-dimensional sparse models, Gu and Zou (2016) considered the penalized expectile regression using both convex
and concave penalty functions. Since the expectile loss is convex and twice-differentiable, scalable algorithms, such as the
cyclic coordinate decent and proximal gradient descent, can be employed to solve the resulting optimization problem.
2



R. Man, K.M. Tan, Z. Wang et al. Journal of Econometrics 239 (2024) 105459

T
r
w
c
i
r
c

b
e
T
r
a
n
f

p
p
a
M

a

t

2

d
m

w
M
t
t

i
a
t
a
d

c
a
r
Z

w

i
W

heoretically, the consistency of penalized expectile regression in the high-dimensional regime ‘‘log(d) ≪ n ≪ d"
equires sub-Gaussian error distributions (Gu and Zou, 2016). This is in strong contrast to penalized QR, the consistency of
hich requires no moment conditions (Belloni and Chernozhukov, 2011; Wang and He, 2022) although certain regularity
onditions on the conditional density function are still needed. This lack of robustness to heavy-tailedness is also observed
n numerical studies. Since expectile regression is primarily introduced to explore the tail behavior of the conditional
esponse distribution, its sensitivity to the tails of the error distributions, particularly in the presence of high-dimensional
ovariates, raises a major concern from a robustness viewpoint.
In this work, we aim to shrink the gap between quantile and expectile regressions, specifically in high dimensions,

y proposing a robust expectile regression (retire) method that inherits the computational expediency and statistical
fficiency of expectile regression and is nearly as robust as quantile regression against heavy-tailed response distributions.
he main idea, which is adapted from Sun et al. (2020), is to replace the asymmetric squared loss associated with expectile
egression with a Lipschitz and locally quadratic robust alternative, parameterized by a data-dependent parameter to
chieve a desirable trade-off between bias and robustness. Under the low-dimensional regime ‘‘d ≪ n’’, we provide
onasymptotic high probability error bounds, Bahadur representation, and a Berry–Esseen bound (normal approximation)
or the retire estimator when the noise variable has bounded variance.

In the high-dimensional sparse setting ‘‘max{s, log(d)} ≪ n ≪ d’’, we propose an iteratively reweighted ℓ1-penalized
(IRW-ℓ1) algorithm to obtain the penalized retire estimator, where s denotes the number of significant predictors. The
roblem boils down to iteratively minimizing convex loss functions (proven to be locally strongly convex with high
robability), solvable by (but not limited to) a semismooth Newton coordinate descent type algorithm proposed by Yi
nd Huang (2017). Theoretically, we provide explicit error bounds (in high probability) for the solution path of IRW-ℓ1.
ore specifically, we first obtain the statistical error of the ℓ1-penalized retire estimator, i.e., the first iterate of the IRW-

ℓ1 algorithm initialized at zero. We then show that the statistical error for the subsequent estimators can be improved
sequentially by a δ-fraction at each iteration for some constant δ ∈ (0, 1). Under a near necessary and sufficient minimum
signal strength condition, we show that the IRW-ℓ1 algorithm with O{log(log d)} iterations delivers an estimator that
chieves the oracle rate of convergence with high probability.
The rest of the paper is organized as follows. In Section 2, we briefly revisit the connection and distinction between

quantile and expectile regressions. We describe the proposed method in Section 3, where we construct the new loss
function and detail the semismooth Newton algorithm to solve the resulting optimization problem. The theoretical
properties of the proposed estimator are presented in Section 4. Sections 5 and 6 consist of extensive numerical studies and
wo data applications, respectively. The proofs of the theoretical results are given in the online supplementary material.

. Background and problem setup

Let y ∈ R be a scalar response variable and x = (x1, . . . , xd)T ∈ Rd be a d-dimensional vector of covariates. The training
ata (y1, x1), . . . , (yn, xn) are independent copies of (y, x). Given a location parameter τ ∈ (0, 1), we consider the linear
odel

yi = xTi β
∗(τ )+ εi(τ ), (2.1)

here β∗(τ ) is the unknown d-dimensional vector of regression coefficients, and εi(τ )’s are independent random noise.
odel (2.1) allows the regression coefficients β∗(τ ) to vary across different values of τ , and thereby offers insights into

he entire conditional distribution of y given x. Throughout the paper, we let x1 = 1 so that β∗1 denotes the intercept
erm. We suppress the dependency of β∗(τ ) and ε(τ ) on τ whenever there is no ambiguity.

The most natural way to relate the conditional distribution of y given x and the parameter process {β∗(τ ), τ ∈ (0, 1)}
s through quantile regression, under the assumption that F−1yi|xi (τ ) = xTi β

∗(τ ), or equivalently, P{εi(τ ) ≤ 0 |xi} = τ . Fitting
conditional quantile model involves minimizing a non-smooth piecewise linear loss function, ϕτ (u) = u{τ − 1(u < 0)},
ypically recast as a linear program, solvable by the simplex algorithm or interior-point methods. For the latter, Portnoy
nd Koenker (1997) showed that the average-case computational complexity grows as a cubic function of the dimension
, and thus, is computationally demanding for problems with large dimensions.
Adapted from the concept of quantiles, Newey and Powell (1987) and Efron (1991) separately proposed an alternative

lass of location measures of a distribution, named the expectile according to the former. The resulting regression methods
re referred to as the expectile regression or the asymmetric least squares regression, which are easy to compute and
easonably efficient under normality conditions. We start with some basic notation and facts for expectile regression. Let
∈ R be a random variable with finite moment, i.e., E(|Z |) <∞. The τ th expectile or τ -mean of Z is defined as

eτ (Z) := argmin
u∈R

E
{
ητ (Z − u)− ητ (Z)

}
, τ ∈ (0, 1), (2.2)

here

ητ (u) = |τ − 1(u < 0)| ·
u2

2
=
τ

2
{max(u, 0)}2 +

1− τ
2
{max(−u, 0)}2 (2.3)

s the asymmetric squared/ℓ2 loss (Newey and Powell, 1987). The quantity eτ (Z) is well defined as long as E|Z | is finite.
hen τ = 1/2, it can be easily seen that e (Z) = E(Z). Therefore, expectiles can be viewed as an asymmetric
1/2
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eneralization of the mean, and the term ‘‘expectile’’ stems from a combination of ‘‘expectation’’ and ‘‘quantile’’. Moreover,
xpectiles are uniquely identified by the first-order condition

τ · E(Z − eτ (Z))+ = (1− τ ) · E(Z − eτ (Z))−,

where x+ = max(x, 0) and x− = max(−x, 0). Note also that the τ -expectile of Z defined in (2.2) is equivalent to Efron’s
-mean with ω = τ/(1− τ ) (Efron, 1991).
The notion of expectiles is a least squares counterpart of quantiles, and can be viewed as an alternative measure of

‘locations’’ of the random variable Z . Respectively, 1/2-expectile and 1/2-quantile correspond to the mean and median,
oth of which are related to the central behavior. In general, τ -expectile and τ -quantile with τ close to zero and one
escribe the lower and higher regions of the distribution of Z , respectively. The latter is the point below which 100τ% of
he mass of Z lies, whereas the former specifies the position, say eτ , such that the average distance from Z below eτ to
τ itself is 100τ% of the average distance between Z and eτ .
Given independent observations Z1, . . . , Zn from Z , the expectile location estimator is given by êτ =

rgminu∈R
∑n

i=1 ητ (Zi−u), which is uniquely defined due to the strong convexity of the asymmetric ℓ2-loss. The expectile
stimator êτ can also be interpreted as a maximum likelihood estimator of a normal distributed sample with unequal
eights given to disturbances of differing signs, with a larger relative weight given to less variable disturbances (Aigner
t al., 1976).
Essentially the asymmetric squared loss ητ (·) is an ℓ2-version of the check function ϕτ (·) for quantile regression. Given

raining data from the linear model (2.1) subject to eτ (εi|xi) = 0, the expectile regression estimator (Newey and Powell,
987) is defined as the minimizer of the following convex optimization problem

minimize
β∈Rd

1
n

n∑
i=1

ητ (yi − xTi β), (2.4)

hich consistently estimates β∗ when d = o(n) as n → ∞. In particular, expectile regression with τ = 0.5 reduces to
the ordinary least squares regression.

3. Retire: Robust Expectile Regression

3.1. A class of asymmetric robust squared losses

Despite its computational advantage over quantile regression, expectile regression (2.4) is much more sensitive to
heavy-tailed distributions due to the squared loss component in (2.3). This lack of robustness is amplified in the presence
of high-dimensional covariates, and therefore necessitates the development of a new class of asymmetric loss functions
that preserves the robustness of the check loss to a degree.

To this end, we construct a class of asymmetric robust loss functions that is more resistant against heavy-tailed
error/response distributions. The main idea is to replace the quadratic component in (2.3) with a Lipschitz and locally
trongly convex alternative, typified by the Huber loss (Huber, 1964) that is a hybrid ℓ1/ℓ2 function. The proposed loss
unction, ℓγ (u), contains a tuning parameter γ > 0 that is to be chosen to achieve a balanced trade-off between the
obustification bias and the degree of robustness. At a high level, we focus on the class of loss functions that satisfies
ondition 1 below.

ondition 1. Let ℓγ (u) = γ 2ℓ(u/γ ) for u ∈ R, where the function ℓ : R ↦→ [0,∞) satisfies: (i) ℓ′(0) = 0 and
|ℓ′(u)| ≤ min(a1, |u|) for all u ∈ R; (ii) ℓ′′(0) = 1 and ℓ′′(u) ≥ a2 for all |u| ≤ a3; and (iii) |ℓ′(u)− u| ≤ u2 for all
u ∈ R, where a1, a2, and a3 are positive constants.

Condition 1 encompasses many commonly used robust loss functions such as the Huber loss ℓ(u) = min{u2/2, |u| −
1/2} (Huber, 1964), pseudo-Huber losses ℓ(u) =

√
1+ u2 − 1 and ℓ(u) = log(eu/2 + e−u/2), smoothed Huber losses

(u) = min{u2/2 − |u|3/6, |u|/2 − 1/6} and ℓ(u) = min{u2/2 − u4/24, (2
√
2/3)|u| − 1/2}, among other smooth

approximations of the Huber loss (Lange, 1990). Consequently, we consider the following asymmetric robust loss

Lτ ,γ (u) := |τ − 1(u < 0)| · ℓγ (u), (3.1)

here ℓγ (·) is subject to Condition 1.
In Section 3.2, we consider the robust expectile regression (retire) estimator based on the robust loss (3.1) in the

lassical setting that d < n. Its statistical properties, both asymptotic and nonasymptotic, will be given in Section 4.1
nder the so-called ‘‘many regressors’’ model (Belloni et al., 2015) in which the dimension d = dn is allowed to grow
ith n subject to the constraint dn = o(na) for some 0 < a ≤ 1. To deal with high-dimensional data for which d can
e much larger than n, we propose penalized retire estimators in Section 3.3 with statistical guarantees (under sparsity)
rovided in Section 4.2.
4
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.2. Retire estimator in low dimensions

Given a location parameter τ ∈ (0, 1), we define the retire estimator (when d < n) as

β̂ = β̂γ = argmin
β∈Rd

1
n

n∑
i=1

Lτ ,γ (yi − xTi β), (3.2)

here γ > 0 is a robustification parameter that will be calibrated adaptively from data as we detail in Section 5.1.
umerically, the optimization problem (3.2) can be efficiently solved by either gradient descent or quasi-Newton
ethods (Nocedal and Wright, 1999), such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm that can be

mplemented as on option of the base function optim() in R.
Recall that the population parameter β∗ is uniquely identified as

β∗ = argmin
β∈Rd

E{Lτ ,∞(y− xTβ)} with Lτ ,∞(u) := |τ − 1(u < 0)| · u2/2.

n the other hand, β̂ can be viewed an M-estimator of the following population parameter

β∗γ := argmin
β∈Rd

E{Lτ ,γ (y− xTβ)}.

t is worth pointing out that β∗γ typically differs from β∗ for any given γ > 0. To see this, note that the convexity of the
obust loss Lτ ,γ : Rd

→ R implies the first-order condition, that is, E{|τ − 1(y < xTβ∗γ )| · ℓ′τ ,γ (y − xTβ∗γ )x} = 0. On the
ther hand, we have eτ (ε|x) = eτ (y− xTβ∗|x) = 0, implying E{|τ − 1(ε < 0)| · εx} = 0. Since the random error ε given x

is asymmetric around zero, in general we have

0 ̸= E{|τ − 1(ε < 0)| · ℓ′τ ,γ (ε)x} = E{|τ − 1(y < xTβ∗)| · ℓ′τ ,γ (y− xTβ∗)x},

hich in turn implies that β∗ ̸= β∗γ . We refer to the difference ∥β∗γ − β∗∥2 as the robustification bias, where ∥ · ∥2 is the
2-norm. In Section 4.1, we will show that under mild conditions, the robustification bias is of the order O(γ−1), and a
roperly chosen γ balances bias and robustness.
To perform statistical inference on β∗j ’s, we construct normal-based confidence intervals based on the asymptotic

heory developed in Section 3.2. To this end, we first introduce some additional notation. Let ε̂i = yi−xTi β̂ be the residuals
rom the fitted model and let ej ∈ Rd be the canonical basis vector, i.e., the jth entry equals one and all other entries equal
ero. Let Ĵ = n−1

∑n
i=1 |τ − 1(̂εi < 0)| · xixTi . An approximate 95% confidence interval for β∗j can thus be constructed as[

β̂j − 1.96
σ̂ (ej)
√
n
, β̂j − 1.96

σ̂ (ej)
√
n

]
,

where

σ̂ 2(ej) := eTj Ĵ
−1

[
1
n

n∑
i=1

ζ 2 (̂εi)xixTi

]̂
J−1ej,

and ζ (u) = L′τ ,γ (u) = |τ − 1(u < 0)| · ℓ′γ (u) is the first-order derivative of Lτ ,γ (·) given in (3.1).

.3. Penalized retire estimator in high dimensions

In this section, we propose the penalized retire estimator for modeling high-dimensional data with d > n, obtained
y minimizing the robust loss in (3.2) plus a penalty function that induces sparsity on the regression coefficients. As
entioned in Section 1, the non-negligible estimation bias introduced by convex penalties (e.g., the Lasso penalty) can be

educed by folded-concave regularization when the signals are sufficiently strong, that is, the minimum of magnitudes
f all nonzero coefficients are away from zero to some extent. The latter, however, is computationally more challenging
nd unstable due to non-convexity.
Adapted from the local linear approximation algorithm proposed by Zou and Li (2008), we apply an iteratively

eweighted ℓ1-penalized algorithm for fitting sparse robust expectile regression models with the robust loss Lτ ,γ (·). At each
teration, the penalty weights depend on the previous iterate and the choice of a (folded) concave regularizer satisfying
ondition 2 (Zhang and Zhang, 2012) below. Some popular examples include the smoothly clipped absolute deviation
SCAD) penalty (Fan and Li, 2001), the minimax concave penalty (Zhang, 2010a), and the capped-ℓ1 penalty. We refer the
reader to Zhang and Zhang (2012) and Section 4.4 of Fan et al. (2020) for more details.

Condition 2. The penalty function pλ (λ > 0) is of the form pλ(t) = λ2p0(t/λ) for t ≥ 0, where the function p0 : R+ → R+
satisfies: (i) p0(·) is non-decreasing on [0,∞) with p0(0) = 0; (ii) p0(·) is differentiable almost everywhere on (0,∞) and
lim p′ (t) = 1; (iv) p′ (t ) ≤ p′ (t ) for all t ≥ t > 0.
t↓0 0 0 1 0 2 1 2

5
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Let pλ(·) be a prespecified concave regularizer that satisfies Condition 2, and let p′λ(·) be its first-order derivative.
Starting at iteration zero an initial estimate β̂

(0)
, we sequentially solve the following weighted ℓ1-penalized convex

optimization problems:

β̂
(t)
∈ minimize

β∈Rd

⎧⎨⎩1
n

n∑
i=1

Lτ ,γ (yi − xTi β)+
d∑

j=2

p′λ(|̂β
(t−1)
j |)|βj|

⎫⎬⎭ , (3.3)

here β̂
(t)
= (̂β (t)

1 , . . . , β̂
(t)
d )T. At each iteration, β̂

(t)
is a weighted ℓ1-penalized robust expectile regression estimate, where

he weight p′λ(|̂β
(t−1)
j |)|βj| can be viewed as a local linear approximation of the concave regularizer pλ(|βj|) around |̂β

(t−1)
j |.

ith the trivial initialization β̂
(0)
= 0, the first optimization problem (3.3) (when t = 1) reduces to the ℓ1-penalized robust

xpectile regression because p′λ(0) = λ. This iterative procedure outputs a sequence of estimates β̂
(1)
, . . . , β̂

(T )
, where the

umber of iterations T can either be set before running the algorithm or depend on a stopping criterion. Throughout this
aper, we refer to the sequence of estimates {̂β

(t)
}t=1,...,T given in (3.3) as the iteratively reweighted ℓ1-penalized retire

stimators. We will characterize their statistical properties in Section 4.2, including the theoretical choice of T in order
o obtain a statistically optimal estimator.

We now outline a coordinate descent type algorithm, the semismooth Newton coordinate descent (SNCD) algorithm
roposed by Yi and Huang (2017), to solve the weighted ℓ1-penalized convex optimization problem in (3.3). Recall that
he key component of the asymmetric loss function Lτ ,γ (·) is the robust loss ℓγ (u) = γ 2ℓ(u/γ ). For convenience, we focus
n the Huber loss for which ℓ(u) = u2/2 · 1(|u| ≤ 1)+ (|u| − 1/2) · 1(|u| > 1). The main crux of the SNCD algorithm is to
ombine the semismooth Newton method and the cyclic coordinate descent algorithm to iteratively update the parameter
f interest one at a time via a Newton-type step until convergence. In the following, we provide a brief derivation of the
lgorithm, and defer the details to Section A of the supplementary material.
Let L′τ ,γ (u) and L′′τ ,γ (u) be the first- and second-order derivatives (with respect to u) of the loss function in (3.1),

espectively. For notational convenience, let λ(t)j = p′λ(|̂β
(t−1)
j |) be the penalty weights at the tth iteration. Then, the

arush–Kuhn–Tucker conditions for (3.3) read⎧⎪⎨⎪⎩
−

1
n

∑n
i=1 L

′
τ ,γ (yi − xTi β̂) = 0 for j = 1,

−
1
n

∑n
i=1 L

′
τ ,γ (yi − xTi β̂)xij + λ

(t)
j ẑj = 0 for j = 2, . . . , d,

β̂j − S (̂βj + ẑj) = 0 for j = 2, . . . , d,
(3.4)

here ẑj ∈ ∂ |̂βj| is a subgradient of the absolute value function, and S(u) = sign(u)max(|u| − 1, 0). Finding the optimum
o the optimization problem (3.3) is equivalent to solving the system of Eqs. (3.4). The latter can be done iteratively in a
cyclic fashion. That is, at each iteration, we update the pair of parameters (βj, zj) by solving the corresponding equations
in (3.4) while keeping the remaining parameters fixed. Each pair of parameters is updated by a semismooth Newton step,
which we detail in Section A of the online supplementary material. The whole procedure is summarized in Algorithm 1.

Algorithm 1 Semismooth Newton Coordinate Descent Algorithm for Solving (3.3) with a Huber Loss.
Input: regularization parameter λ, Huber loss tuning parameter γ , and convergence criterion ϵ.
nitialization: β̂

0
= 0.

terate: the following until the stopping criterion ∥̂β
k
− β̂

k−1
∥2 ≤ ϵ is met, where β̂

k
is the value of β obtained at the kth iteration.

1. β̂k+1
1 ← β̂k

1 + {
∑n

i=1 L
′
τ ,γ (yi − xTi β̂

k
)}/{

∑n
i=1 L

′′
τ ,γ (yi − xTi β̂

k
)}.

2. for j = 2, . . . , d, update the pair of parameters (βj, zj) as follows:

[
β̂k+1
j

ẑk+1j

]
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎣β̂k
j +

∑n
i=1 L′τ ,γ (yi−x

T
i β̂

k)xij−λ
(t)
j ·sign(̂β

k
j +̂z

k
j )∑n

i=1 L′′τ ,γ (yi−xTi β̂
k))x2ij

sign(̂βk
j + ẑkj )

⎤⎦ , if |̂βk
j + ẑkj | > 1,[

0
(nλ(t)j )−1

∑n
i=1 L

′
τ ,γ (yi − xTi β̂

k
)xij + (nλ(t)j )−1β̂k

j
∑n

i=1 L
′′
τ ,γ (yi − xTi β̂

k
)x2ij

]
, if |̂βk

j + ẑkj | ≤ 1.

utput: the final iterate β̂
k
.

For the Huber loss, the first- and second-order derivatives of Lτ ,γ (u) are

L′τ ,γ (u) =

⎧⎪⎪⎨⎪⎪⎩
−(1− τ )γ , if u < −γ ,
(1− τ )u, if − γ ≤ u < 0,
τu, if 0 ≤ u ≤ γ ,
τγ , if u > γ ,

and L′′τ ,γ (u) =

⎧⎨⎩
1− τ , if − γ ≤ u < 0,
τ , if 0 ≤ u ≤ γ ,
0, otherwise,

respectively. In Algorithm 1, the update β̂k+1
j involves the second-order derivative of the loss function,

∑n
i=1 L

′′
τ ,γ (yi−x

T
i β̂

k
),

in the denominator. For extreme values of τ that are near zero or 1, the denominator may be close to zero, causing
6
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nstability. To address this issue, Yi and Huang (2017) implemented a continuity approximation in their R package hqreg,
and we adopt the same technique to implement Algorithm 1. In particular, if the sum of second-order derivatives is equal
to zero or the percentage of residuals with magnitude below γ is less than 5% or n−1, we instead substitute the sum of
second-order derivatives by the quantity

∑n
i=1(|yi − xTi β̂

k
|)−11(|yi − xTi β̂

k
| > γ ). Such a continuity approximation works

well across all of the numerical settings that we have considered.

4. Theoretical results

We provide an explicit characterization of the estimation error for the retire estimator β̂ defined in (3.2) (low-
dimensional setting), and the sequence of penalized retire estimators {̂β

(t)
}t=1,...,T defined in (3.3) (high-dimensional

setting) in Sections 4.1 and 4.2, respectively. Our proposed estimator relies on the choice of robust loss function in
Condition 1. For simplicity, we focus on the Huber loss ℓ(u) = u2/2 · 1(|u| ≤ 1) + (|u| − 1/2) · 1(|u| > 1) throughout
our analysis, i.e., a1 = a2 = a3 = 1 in Condition 1, but note that similar results hold for any robust loss that satisfies
Condition 1. Throughout the theoretical analysis, we assume that the location measure τ ∈ (0, 1) is fixed.

We first defined the empirical loss function and its gradient as

Rn(β) =
1
n

n∑
i=1

Lτ ,γ (yi − xTi β) and ∇Rn(β) = −
1
n

n∑
i=1

L′τ ,γ (yi − xTi β)xi,

espectively. Moreover, we impose some common conditions on the random covariates x and the random noise ε for both
ow-and high-dimensional settings. In particular, we assume that the random covariates x ∈ Rd are sub-exponential and
hat the random noise ε is heavy-tailed with finite second moment.

ondition 3. Let Σ = E(xxT) be a positive definite matrix with λu ≥ λmax(Σ ) ≥ λmin(Σ ) ≥ λl > 0 and assume that
l = 1 for simplicity. There exists ν0 ≥ 1 such that P(|uTΣ−1/2x| ≥ ν0∥u∥2 · t) ≤ e−t for all t ∈ R and u ∈ Rd. For
otational convenience, let σ 2

x = max1≤j≤d σjj, where σjj is the jth diagonal entry of Σ .

Condition 4. The random noise ε has a finite second moment, i.e., E(ε2|x) ≤ σ 2
ε < ∞. Moreover, the conditional

τ -expectile of ε satisfies E[wτ (ε)ε|x] = 0, where wτ (u) := |τ − 1(u < 0)|.

.1. Statistical theory for the retire estimator in (3.2)

In this section, we provide nonasymptotic error bounds for the retire estimator, β̂, under the regime in which n > d
ut d is allowed to diverge. Moreover, we establish a nonasymptotic Bahadur representation for β̂− β∗, based on which
e construct a Berry–Esseen bound for a normal approximation. As mentioned in Section 3.2, the robustification bias
β∗γ − β∗∥2 is inevitable due to the asymmetry nature of error term ε. Let τ = min(τ , 1 − τ ), τ̄ = max(τ , 1 − τ ), and

A1 ≥ 1 be a constant satisfying E(uTΣ−1/2x)4 ≤ A4
1∥u∥

4
2 for all u ∈ Rd. The following proposition reveals the fact that the

robustification bias scales at the rate γ−1, which decays as γ grows.

Proposition 4.1. Assume Conditions 1, 3, and 4 hold. Provided that γ ≥ 2σεA2
1τ̄ /τ , we have

∥Σ 1/2(β∗γ − β∗)∥2 ≤ 2γ−1(τ̄ /τ )σ 2
ε .

The key to our subsequent analysis for the retire estimator β̂ is the strong convexity property of the empirical loss
unction Rn(·) uniformly over a local ellipsoid centered at β∗ with high probability. Let κ1 = min|u|≤1 ℓ′′(u) and let
Σ (r) = {δ ∈ Rd

: ∥Σ 1/2δ∥2 ≤ r} be an ellipsoid. We characterize the strong convexity of Rn(·) in Lemma 4.1. With
he aid of Lemma 4.1, we establish a non-asymptotic error bound for the retire estimator β̂ in Theorem 4.1.

emma 4.1. Let (γ , n) satisfy γ ≥ 4
√
2max{σε, 2A2

1r} and n ≳ (γ /r)2(d+ t). Under Conditions 1, 3, and 4, with probability
at least 1− e−t , we have

⟨∇Rn(β)−∇Rn(β∗),β − β∗⟩ ≥
1
2
κ1τ∥Σ

1/2(β − β∗)∥22 uniformly over β ∈ β∗ + BΣ (r).

heorem 4.1. Assume Conditions 1, 3, and 4 hold. For any t > 0, the retire estimator β̂ in (3.2) with γ = σε
√
n/(d+ t)

satisfies the bound

∥Σ 1/2 (̂β − β∗)∥2 ≤ C(τ̄ /τ )κ−11 σεv0

√
d+ t
n

,

with probability at least 1− 2e−t as long as n ≳ d+ t, where C > 0 is an absolute constant.
7
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Theorem 4.1 shows that under the sub-exponential design with heavy-tailed random errors with bounded second
moment, the retire estimator β̂ exhibits a sub-Gaussian type deviation bound, provided that the robustification parameter
is properly chosen, i.e., γ = σε

√
n/(d+ t). In other words, the proposed retire estimator gains robustness to heavy-tailed

random noise without compromising statistical accuracy.

Remark 4.1. The choice of γ = σε
√
n/(d+ t) in Theorem 4.1 is a reflection of the bias and robustness trade-off for the

retire estimator β̂. Intuitively, a large γ creates less robustification bias but sacrifices robustness. More specifically, we
shall see from the proof of Theorem 4.1 that conditioning on the event {̂β ∈ β∗ + BΣ (rloc)},

∥Σ 1/2 (̂β − β∗)∥2 ≲
σ 2
ε

γ
robustification bias

+ σε

√
d
n
+ γ

d
n  

statistical error

with high probability. Therefore, we choose γ = σε
√
n/(d+ t) to minimize the right-hand side as a function of γ .

Next, we establish nonasymptotic Bahadur representation for the difference β̂ − β∗. To this end, we need slightly
stronger conditions on both the random covariates x and the random noise ε. In particular, we require that the random
covariate vector x is sub-Gaussian and that the conditional density of the random noise ε is upper bounded. We formalize
the above into the following conditions.

Condition 5. There exists ν1 ≥ 1 such that P(|uTΣ−1/2x| ≥ v1∥u∥2t) ≤ 2e−t
2/2 for all t ∈ R and u ∈ Rd.

ondition 6. Let fε|x(·) be the conditional density function of the random noise ε. There exists f̄ε|x > 0 such that
upu∈R fε|x(u) ≤ f̄ε|x almost surely (for all x).

Recall that wτ (u) = |τ − 1(u < 0)| and that ζ (u) = L′τ ,γ (u) = wτ (u)ℓ′γ (u). Moreover, let J = E{wτ (ε)xxT} be the
essian matrix. Theorem 4.2 establishes the Bahadur representation of the retire estimator β̂. Specifically, we show that
he remainder of the Bahadur representation for β̂ exhibits sub-exponential tails, which we will use to establish the
erry–Esseen bound for linear projections of β̂ − β∗ in Theorem 4.3.

heorem 4.2. Assume Conditions 1, 4, 5, and 6 hold. For any t > 0, the retire estimator β̂ given in (3.2) with γ =
ε

√
n/(d+ t) satisfies the following nonasymptotic Bahadur representationΣ−1/2J(̂β − β∗)−

1
n

n∑
i=1

ζ (εi)Σ−1/2xi


2
≤ Cσε ·

d+ t
n

(4.1)

ith probability at least 1− 3e−t as long as n ≳ d+ t, where C > 0 is a constant independent of (n, d) and t.

heorem 4.3. Under the same set of conditions as in Theorem 4.2, assume further that E(|ε|3|x) ≤ v3 <∞ (almost surely).
Then, the retire estimator β̂ in (3.2) with γ = σε

√
n/(d+ log n) satisfies

sup
u∈Rd,z∈R

⏐⏐P(n1/2
⟨u, β̂ − β∗⟩ ≤ σ z)−Φ(z)

⏐⏐ ≲ d+ log n
√
n

,

where σ 2
= σ 2(u) := uTJ−1E{ζ 2(ε)xxT}J−1u and Φ(·) is the standard normal cumulative distribution function.

Theorem 4.3 shows that with a diverging parameter γ = σε
√
n/(d+ log n), for any u ∈ Rd, the linear projection of

β − β∗ is asymptotically normal after some standardization as long as (n, d) satisfies the scaling condition d = o(
√
n).

.2. Statistical theory for the iteratively reweighted ℓ1-penalized retire estimator

In this section, we analyze the sequence of estimators {̂β
(t)
}
T
t=1 obtained in (3.3) under the high-dimensional regime

in which d > n. Throughout the theoretical analysis, we assume that the regression parameter β∗ ∈ Rd in model (2.1) is
exactly sparse, i.e., β∗ has s non-zero coordinates. Let S = {1 ≤ j ≤ d : β∗j ̸= 0} be the active set of β∗ with cardinality
|S| = s. Recall that τ = min(τ , 1− τ ), κ1 = min|u|≤1 ℓ′′(u) and A1 > 0 is a constant that satisfies E(uTΣ−1/2x)4 ≤ A4

1∥u∥
4
2

for all u ∈ Rd, where x satisfies Condition 3. Similar to the low-dimensional setting, the key to our high-dimensional
analysis is an event Ersc that characterizes the local restricted strong convexity property of the empirical loss function
Rn(·) over the intersection of an ℓ1-cone and a local ℓ2-ball centered at β∗ (Loh and Wainwright, 2015). Lemma 4.2 below
shows that the event E occurs with high probability for suitably chosen parameters.
rsc

8
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efinition 4.1. Given radii parameters r, L > 0 and a curvature parameter κ > 0, define the event

Ersc(r, L, κ) =
{

inf
β∈β∗+B(r)∩C(L)

⟨∇Rn(β)−∇Rn(β∗),β − β∗⟩

∥β − β∗∥22
≥ κ

}
,

here B(r) = {δ ∈ Rd
: ∥δ∥2 ≤ r} is an ℓ2-ball with radius r , and C(L) = {δ : ∥δ∥1 ≤ L∥δ∥2} is an ℓ1-cone.

emma 4.2. Let the radii parameters (r, L) and the robustification parameter γ satisfy

γ ≥ 4
√
2λu max{σε, 2A2

1r} and n ≳ (σxν0γ /r)2(L2 log d+ t).

hen, under Conditions 1, 3, and 4, event Ersc(r, L, κ) with κ = κ1τ/2 occurs with probability at least 1− e−t .

Under the local restricted strong convexity, in Theorem 4.4, we provide an upper bound on the estimation error of
β
(1)
, i.e., the ℓ1-penalized retire estimator.

Theorem 4.4. Assume Conditions 1, 3, and 4 hold. Then, the ℓ1-penalized retire estimator β̂
(1)

with γ = σε
√
n/(log d+ t)

and λ ≍
√
(log d+ t)/n satisfies the bounds

∥̂β
(1)
− β∗∥2 ≤ 3(κ1τ )−1s1/2λ and ∥̂β

(1)
− β∗∥1 ≤ 12(κ1τ )−1sλ,

with probability as least 1− 3e−t .

Theorem 4.4 shows that with an appropriate choice of the tuning parameters γ and λ, the ℓ1-penalized robust expectile
regression satisfies exponential deviation bounds with near-optimal convergence rate as if sub-Gaussian random noise
were assumed (Gu and Zou, 2016).

emark 4.2. Condition 4 can be further relaxed to accommodate heavy-tailed random error with finite (1+ φ) moment
ith 0 < φ < 1. Specifically, it can be shown that under the ℓ2 norm, the estimation error of the ℓ1-penalized Huber
egression estimator takes the form s1/2{log(d)/n}min{φ/(1+φ),1/2} (Sun et al., 2020; Tan et al., 2023). Similar results can be
btained for the proposed ℓ1-penalized retire estimator and we leave it for future work.

emark 4.3. Throughout this section, we assume that the underlying regression parameter β∗ ∈ Rd is exactly sparse.
n this case, iteratively reweighted ℓ1-penalization helps reduce the estimation bias from ℓ1-penalization as signal
trengthens. For weakly sparse vectors β∗ satisfying

∑d
j=1 |β

∗

j |
q
≤ Rq for some 0 < q ≤ 1 and Rq > 0, Fan et al. (2017)

howed that the convergence rate (under ℓ2-norm) of the ℓ1-penalized adaptive Huber estimator with a suitably chosen
obustification parameter is of order O(σ

√
Rq {log(d)/n}1/2−q/4). Using the same argument, the results in Theorem 4.4 can

e directly extended to the weakly sparse case where β∗ belongs to an Lq-ball for some 0 < q ≤ 1. For recovering weakly
sparse signals, folded-concave penalization no longer improves upon ℓ1-penalization, and therefore we will not provide
details on such an extension.

Next, we establish the statistical properties for the entire sequence of estimators β̂
(1)
, β̂

(2)
, . . . , β̂

(T )
obtained from

olving the convex optimization problem (3.3) iteratively. Let ∥β∗S∥min = minj∈S |β
∗

j | be the smallest (in absolute

alue) non-zero regression coefficient. Under a beta-min condition, we show that the estimation error of β̂
(1)

stated in
heorem 4.4 can be refined. More generally, given the previous iterate β̂

(T−1)
, the estimation error of the subsequent

stimator, β̂
(T )

, can be improved by a δ-fraction for some constant δ ∈ (0, 1).

heorem 4.5. Let p0(·) be a penalty function satisfying Condition 2. Under Conditions 1, 3 and 4, assume there exist some
onstants a1 > a0 > 0 such that

a0 >
√
5/(κ1τ ), p′0(a0) > 0, p′0(a1) = 0.

Assume further the minimum signal strength condition ∥β∗S∥min ≥ (a0+ a1)λ and the sample size requirement n ≳ s log d+ t.
icking γ ≍ σε

√
n/(s+ log d+ t) and λ ≍ σε

√
(log d+ t)/n, we have

∥̂β
(T )
− β∗∥2 ≲ δT−1σε

√
s (log d+ t)

n
+

σε

1− δ

√
s+ log d+ t

n
,

ith probability at least 1− 4e−t . Furthermore, setting T ≳ log{log(d)+t}
log(1/δ) , we have

∥̂β
(T )
− β∗∥2 ≲ σε

√
s+ log d+ t

n
(4.2)

and ∥̂β
(T )
− β∗∥1 ≲ σεs1/2

√
s+ log d+ t

n
(4.3)

ith probability at least 1− 4e−t , where δ =
√
5/(a κ τ ) < 1.
0 1

9
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Theorem 4.5 shows that under the beta-min condition ∥β∗S∥min ≳
√
log(d)/n, the iteratively reweighted ℓ1-penalized

retire estimator β̂
(T )

with T ≍ log{log(d)} achieves the near-oracle convergence rate, i.e., the convergence rate of the oracle
estimator that has access to the true support of β∗. This is also known as the weak oracle property. Picking t = log d, we see
hat iteratively reweighted ℓ1-penalization refines the statistical rate from

√
s log(d)/n for β̂

(1)
to
√
(s+ log d)/n for β̂

(T )
.

emark 4.4. Theorem 4.5 reveals the so-called weak oracle property in the sense that the regularized estimator β̂
(T )

njoys the same convergence rate as the oracle estimator defined by regressing only on the significant predictors. To
btain such a result, the required minimum signal strength ∥β∗S∥min ≳

√
log(d)/n is almost necessary and sufficient.

o see this, consider the linear model yi = xTi β
∗
+ εi with εi ∼ N(0, σ 2) independent of xi, and define the parameter

pace Ωs,a = {β ∈ Rd
: ∥β∥0 ≤ s,minj:βj ̸=0 |βj| ≥ a} for a > 0. Under the assumption that the design matrix

= (x1, . . . , xn)T ∈ Rn×d satisfies a restricted isometry property and has normalized columns, Ndaoud (2019) derived
he following sharp lower bounds for the minimax risk ψ(s, a) := inf̂β supβ∗∈Ωs,a E∥̂β − β∗∥22: for any ϵ ∈ (0, 1),

ψ(s, a) ≥ {1+ o(1)}
2σ 2s log(ed/s)

n
for any a ≤ (1− ϵ)σ

√
2 log(ed/s)

n

and ψ(s, a) ≥ {1+ o(1)}
σ 2s
n

for any a ≥ (1+ ϵ)σ

√
2 log(ed/s)

n
,

here the limit corresponds to s/d → 0 and s log(ed/s)/n → 0. The minimax rate 2σ 2s log(ed/s)/n is attainable by
oth Lasso and Slope (Bellec et al., 2018), while the oracle rate σ 2s/n can only be achieved when the magnitude of the
inimum signal is of order σ

√
log(d/s)/n. The beta-min condition imposed in Theorem 4.5 is thus (nearly) necessary and

ufficient, and is the weakest possible within constant factors.
Under a stronger beta-min condition ∥β∗S∥min ≳

√
s log(d)/n, Gu and Zou (2016) showed that with high probability,

the IRW-ℓ1 expectile regression estimator (initialized by zero) coincides with the oracle estimator after three iterations.
This is known as the strong oracle property. Based on the more refined analysis by Pan et al. (2021), we conjecture that the
IRW-ℓ1 retire estimator β̂

(T )
with T ≍ log(s ∨ log d) achieves the strong oracle property provided ∥β∗S∥min ≳

√
log(d)/n

without the
√
s-factor.

5. Numerical studies

5.1. Simulated data

We evaluate the performance of the proposed IRW-ℓ1-penalized retire estimator via extensive numerical studies.
We implement the ℓ1-penalized retire and the IRW-ℓ1-penalized retire using SCAD-based weights with T = 3,
which we compare to three other competitive methods: (i) ℓ1-penalized Huber regression (huber); (ii) ℓ1-penalized
asymmetric least squares regression (sales) proposed by Gu and Zou (2016), and (iii) ℓ1-penalized quantile regression
(qr) implemented via the R package rqPen (Sherwood and Maidman, 2020). To assess the performance across different
methods, we report the estimation error under the ℓ2-norm, i.e., ∥̂β − β∗∥2, the true positive rate (TPR), and the false
positive rate (FPR). Here, TPR is defined as the proportion of the number of correctly identified non-zeros and the false
positive rate is calculated as the proportion of the number of incorrectly identified nonzeros.

Note that huber and sales are special cases of retire by taking τ = 0.5 and γ →∞, respectively. Thus, both huber
and sales can be implemented via Algorithm 1. For all methods, the sparsity inducing tuning parameter λ is selected
via ten-fold cross-validation. Specifically, for methods retire, huber, and sales, we select the largest tuning parameter
that yields a value of the asymmetric least squares loss that is less than the minimum of the asymmetric least squares
loss plus one standard error. For qr, we use the default cross validation function in R package rqPen to select the largest
tuning parameter that yields a value of its corresponding loss function that is the minimum of the quantile loss function.

Both huber and ℓ1-penalized retire require tuning an additional robustness parameter γ . We propose to select
γ using a heuristic tuning method that involves updating γ at the beginning of each iteration in Algorithm 1. Let
rki = yi − xTi β̂

k−1
, i = 1, . . . , n be the residuals, where β̂

k−1
is obtained from the (k − 1)th iteration of Algorithm

1. Let r̃ki = (1 − τ )rki 1rki ≤0
+ τ rki 1rki >0 be the asymmetric residuals, and let r̃k = (̃rk1, . . . , r̃

k
n)

T. We define mad(̃rk) =
{Φ−1(0.75)}−1median(|̃rk − median(̃rk)|) as the median absolute deviation of the asymmetric residuals, adjusted by a
factor Φ−1(0.75). We start with setting γ =

√
n/ log(np). At the kth iteration of Algorithm 1, we update the robustification

parameter by

γ k
= mad(̃rk) ·

√
n

log (np)
. (5.1)

hroughout our numerical studies, we have found that γ chosen using the above heuristic approach works well across
different scenarios.

For all of the numerical studies, we generate the covariates xi from a multivariate normal distribution N(0,Σ =
(σ ) ) with σ = 0.5|j−k|. We then generate the response variable y from one of the following three models:
jk 1≤j,k≤d jk i

10
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Table 1
Homoscedastic model (5.2) with Gaussian noise (ϵ ∼ N(0, 2)) and t2.1 noise (ϵ ∼ t2.1). Estimation error under ℓ2-norm (and its standard deviation),
rue positive rate (TPR) and false positive rate (FPR), averaged over 100 repetitions, are reported.
Noise Method n = 400, d = 200 n = 400, d = 500

ℓ2 error TPR FPR ℓ2 error TPR FPR

Gaussian ℓ1 retire 0.577 (0.009) 1.000 (0.000) 0.026 (0.002) 0.615 (0.009) 1.000 (0.000) 0.013 (0.001)
IRW retire (SCAD) 0.258 (0.006) 1.000 (0.000) 0.011 (0.001) 0.251 (0.005) 1.000 (0.000) 0.005 (0.001)
ℓ1 huber 0.577 (0.009) 1.000 (0.000) 0.026 (0.002) 0.615 (0.009) 1.000 (0.000) 0.013 (0.001)
ℓ1 sales 0.577 (0.009) 1.000 (0.000) 0.026 (0.002) 0.614 (0.009) 1.000 (0.000) 0.013 (0.001)
ℓ1 qr 0.604 (0.010) 1.000 (0.000) 0.159 (0.008) 0.681 (0.010) 1.000 (0.000) 0.085 (0.005)

t2.1 ℓ1 retire 1.307 (0.039) 0.994 (0.003) 0.006 (0.001) 1.328 (0.040) 0.995 (0.002) 0.003 (0.000)
IRW retire (SCAD) 0.780 (0.052) 0.982 (0.005) 0.000 (0.000) 0.788 (0.052) 0.983 (0.005) 0.000 (0.000)
ℓ1 huber 1.307 (0.039) 0.994 (0.003) 0.006 (0.001) 1.328 (0.040) 0.995 (0.002) 0.003 (0.000)
ℓ1 sales 1.424 (0.046) 0.990 (0.003) 0.012 (0.002) 1.460 (0.046) 0.987 (0.004) 0.005 (0.001)
ℓ1 qr 0.505 (0.010) 1.000 (0.000) 0.142 (0.009) 0.563 (0.010) 1.000 (0.000) 0.078 (0.004)

1. Homoscedastic model:

yi = xTi β
∗
+ ϵi, (5.2)

2. Quantile heteroscedastic model:

yi = xTi β
∗
+ (0.5|xid| + 0.5){ϵi − F−1ϵi (τ )}, (5.3)

3. Expectile heteroscedastic model:

yi = xTi β
∗
+ (0.5|xid| + 0.5){ϵi − eτ (ϵi)}, (5.4)

here ϵi is the random noise, F−1ϵi (·) denotes the inverse cumulative distribution function of ϵi, and eτ (ϵi) denotes the
nverse of the expectile function of ϵi. Note that under Gaussian and t-distributed noises, the two models (5.4) and (5.3)
re the same for τ = 0.5. We set the regression coefficient vector β∗ = (β∗1 , β

∗

2 , . . . , β
∗

d )
T as β∗1 = 2 (intercept), β∗j =

{1.8, 1.6, 1.4, 1.2, 1,−1,−1.2,−1.4,−1.6,−1.8} for j = 2, 4, . . . , 20, and zero otherwise. The random noise is generated
from either a Gaussian distribution, N(0, 2), or a t distribution with 2.1 degrees of freedom. For the heteroscedastic models,
we consider two quantile/expectile levels τ = {0.5, 0.8}. The results, averaged over 100 repetitions, are reported in
Tables 1–4 for the moderate- (n = 400, d = 200) and high-dimensional (n = 400, d = 500) settings.

Table 1 contains results (τ = 0.5) under the homoscedastic model with normally and t-distributed noise. For Gaussian
noise, the four ℓ1-penalized estimators have similar performance, and both the estimation error and FPR of IRW retire
(with SCAD) are notably reduced. Under the t2.1 noise, we see that retire gains considerable advantage over sales
in both estimation and model selection accuracy, suggesting that the proposed estimator gains robustness without
compromising statistical accuracy.

Tables 2 and 3 show results under the quantile heteroscedastic model with the Gaussian and t2.1 noise, respectively.
Two quantile levels τ = {0.5, 0.8} are considered. We see that huber and ℓ1-penalized retire have the same
performance when τ = 0.5 since they are equivalent for the case when τ = 0.5. Moreover, IRW retire has the lowest
estimation error among all methods under the Gaussian noise. When τ = 0.8, the performance of huber deteriorates
since huber implicitly assumes τ = 0.5 and there is a non-negligible bias when τ = 0.8. Finally, from Table 4 under the
expectile heteroscedastic model, we see that the proposed estimator has an even lower estimation error than that of the
qr.

We want to point out that in general, under the t2.1 noise, the quantile regression method qr has an advantage
because the quantile loss is more robust to outliers than all of the other methods. While qr exhibits an advantage
in terms of estimation error, it is not as computationally efficient as retire, which we will show in Section 5.2. In
summary, the numerical studies confirm IRW retire as a robust alternative to its least squares counterpart sales and
as a computationally efficient surrogate for the penalized quantile regression approach.

5.2. Timing comparison

In this section, we show using additional numerical studies that the proposed ℓ1-penalized retire estimator has
a significant computational advantage over the ℓ1-penalized qr. We implement retire and qr using the R packages
adaHuber (Pan and Zhou, 2022) and rqPen, respectively. For both methods, their corresponding sparsity regularization
parameter is selected from a sequence of 50 λ-values via ten-fold cross-validation. The robustification parameter γ for
retire is selected using the data adaptive procedure described in Section 5.1.

We generate the data from the homoscedastic model (5.2) with the same setup as in Section 5.1. Results, averaged
over 100 independent data sets, for n = d/2 and d = {100, 200, 300, 400, 500} are summarized in Fig. 1. The curves in
panels (a) and (c) of Fig. 1 represent the estimation error (under ℓ2 norm) as a function of the dimension d, and the curves
in panels (b) and (d) of Fig. 1 represent the computational time (in seconds) as a function of the dimension d.
11
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Table 2
Heteroscedastic model (5.3) with Gaussian noise (ϵ ∼ N(0, 2)) and quantile levels τ = {0.5, 0.8}.
τ Method n = 400, d = 200 n = 400, d = 500

ℓ2 error TPR FPR ℓ2 error TPR FPR

0.5 ℓ1 retire 0.570 (0.009) 1.000 (0.000) 0.021 (0.002) 0.597 (0.009) 1.000 (0.000) 0.011 (0.001)
IRW retire (SCAD) 0.235 (0.006) 1.000 (0.000) 0.006 (0.001) 0.230 (0.006) 1.000 (0.000) 0.005 (0.001)
ℓ1 huber 0.570 (0.009) 1.000 (0.000) 0.021 (0.002) 0.597 (0.009) 1.000 (0.000) 0.011 (0.001)
ℓ1 sales 0.575 (0.009) 1.000 (0.000) 0.021 (0.002) 0.599 (0.009) 1.000 (0.000) 0.011 (0.001)
ℓ1 qr 0.498 (0.008) 1.000 (0.000) 0.146 (0.007) 0.562 (0.008) 1.000 (0.000) 0.086 (0.004)

0.8 ℓ1 retire 0.581 (0.008) 1.000 (0.000) 0.061 (0.005) 0.624 (0.011) 1.000 (0.000) 0.064 (0.005)
IRW retire (SCAD) 0.448 (0.012) 1.000 (0.000) 0.040 (0.004) 0.588 (0.025) 1.000 (0.000) 0.047 (0.004)
ℓ1 huber 1.210 (0.008) 1.000 (0.000) 0.019 (0.002) 1.233 (0.008) 1.000 (0.000) 0.009 (0.001)
ℓ1 sales 0.636 (0.008) 1.000 (0.000) 0.051 (0.004) 0.661 (0.010) 1.000 (0.000) 0.047 (0.004)
ℓ1 qr 0.574 (0.009) 1.000 (0.000) 0.138 (0.007) 0.639 (0.011) 1.000 (0.000) 0.073 (0.004)

Table 3
Heteroscedastic model (5.3) with t2.1 noise (ϵ ∼ t2.1) and quantile levels τ = {0.5, 0.8}.
τ Method n = 400, d = 200 n = 400, d = 500

ℓ2 error TPR FPR ℓ2 error TPR FPR

0.5 ℓ1 retire 1.222 (0.039) 0.995 (0.003) 0.006 (0.001) 1.275 (0.042) 0.995 (0.003) 0.003 (0.000)
IRW retire (SCAD) 0.663 (0.051) 0.988 (0.004) 0.000 (0.000) 0.728 (0.055) 0.979 (0.005) 0.000 (0.000)
ℓ1 huber 1.222 (0.039) 0.995 (0.003) 0.006 (0.001) 1.275 (0.042) 0.995 (0.003) 0.003 (0.000)
ℓ1 sales 1.351 (0.051) 0.995 (0.003) 0.011 (0.003) 1.399 (0.047) 0.989 (0.003) 0.004 (0.000)
ℓ1 qr 0.420 (0.008) 1.000 (0.000) 0.150 (0.008) 0.473 (0.008) 1.000 (0.000) 0.075 (0.004)

0.8 ℓ1 retire 1.052 (0.053) 0.991 (0.004) 0.015 (0.002) 1.065 (0.060) 0.987 (0.006) 0.009 (0.001)
IRW retire (SCAD) 0.498 (0.045) 0.983 (0.006) 0.003 (0.001) 0.487 (0.056) 0.985 (0.006) 0.002 (0.000)
ℓ1 huber 1.556 (0.032) 0.996 (0.002) 0.007 (0.001) 1.593 (0.034) 0.995 (0.003) 0.003 (0.000)
ℓ1 sales 1.464 (0.102) 0.979 (0.006) 0.039 (0.004) 1.415 (0.060) 0.983 (0.005) 0.026 (0.002)
ℓ1 qr 0.630 (0.013) 1.000 (0.000) 0.132 (0.007) 0.683 (0.014) 1.000 (0.000) 0.070 (0.003)

Table 4
Heteroscedastic model (5.4) with Gaussian noise (ϵ ∼ N(0, 2)) and t2.1 noise (ϵ ∼ t2.1), under the τ -expectile = 0.8.
Noise Method n = 400, d = 200 n = 400, d = 500

ℓ2 error TPR FPR ℓ2 error TPR FPR

Gaussian ℓ1 retire 0.534 (0.008) 1.000 (0.000) 0.063 (0.004) 0.557 (0.011) 1.000 (0.000) 0.066 (0.005)
IRW retire (SCAD) 0.353 (0.012) 1.000 (0.000) 0.042 (0.004) 0.501 (0.025) 1.000 (0.000) 0.050 (0.005)
ℓ1 huber 0.898 (0.008) 1.000 (0.000) 0.020 (0.002) 0.924 (0.008) 1.000 (0.000) 0.010 (0.001)
ℓ1 sales 0.538 (0.009) 1.000 (0.000) 0.058 (0.004) 0.548 (0.010) 1.000 (0.000) 0.052 (0.004)
ℓ1 qr 0.671 (0.009) 1.000 (0.000) 0.147 (0.007) 0.716 (0.012) 1.000 (0.000) 0.074 (0.004)

t2.1 ℓ1 retire 1.055 (0.053) 0.991 (0.004) 0.015 (0.002) 1.068 (0.060) 0.987 (0.006) 0.009 (0.001)
IRW retire (SCAD) 0.487 (0.045) 0.983 (0.006) 0.004 (0.001) 0.472 (0.057) 0.985 (0.006) 0.002 (0.000)
ℓ1 huber 1.535 (0.032) 0.996 (0.002) 0.007 (0.001) 1.573 (0.035) 0.995 (0.003) 0.003 (0.000)
ℓ1 sales 1.470 (0.102) 0.979 (0.006) 0.039 (0.004) 1.420 (0.060) 0.985 (0.005) 0.026 (0.002)
ℓ1 qr 0.638 (0.013) 1.000 (0.000) 0.135 (0.007) 0.688 (0.014) 1.000 (0.000) 0.069 (0.003)

Under the Gaussian random noise, ϵ ∼ N(0, 2), the ℓ1-penalized retire has slightly lower estimation error than ℓ1-
penalized qr, and both estimation errors decrease as n and d grow. On the other hand, the ℓ1-penalized qr performs better
nder the t2.1 noise since the quantile loss is more robust to outliers than that of the Huber-type loss. Computationally, the
1-penalized retire, implemented via the adaHuber package, exhibits a significant improvement over the ℓ1-penalized
r, implemented via the rqPen package, especially when d is large.

6. Data application

6.1. Job Training Partners Act data

We analyze the Job Training Partners Act (JTPA) data, previously studied in Abadie et al. (2002), using the retire
estimator proposed in Section 3.2. The JTPA began funding federal training programs in 1983, and its largest component
Title II supports training for the economically disadvantaged. Specifically, applicants who faced ‘‘barriers to employment’’,
the most common of which were high-school dropout status and long periods of unemployment, were typically considered
eligible for JTPA training. The services offered as a part of training included classroom training, basic education, on-the-job
training, job search assistance, and probationary employment.

In this data set, applicants who applied for training evaluation between November 1987 and September 1989 were
randomly selected to enroll for the JTPA training program. Of the 6102 adult women in the study, 4088 were offered
12
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Fig. 1. Estimation error and elapsedtime (in seconds) under model (5.2) with N(0, 2) and t2.1 random noise and τ = 0.5, averaged over 100 data
ets for two different methods: (i) the ℓ1-penalized retire implemented using the R package adaHuber; (ii) the ℓ1-penalized qr implemented
sing the R package rqPen. The sample size n is set to equal n = d/2.

raining and 2722 enrolled in the JTPA services, and of the 5102 adult men in the study, 3399 were offered training
nd 2136 enrolled in the services. The goal is to assess the effect of subsidized training program on earnings. Motivated
y Abadie et al. (2002), we use the 30-month earnings data collected from the Title II JTPA training evaluation study
s the response variable. Moreover, we adjust for the following covariates: individual’s sex (male = 1, female = 0),
hether or not the individual graduated high school or obtained a GED (yes = 1, no = 0), whether or not the individual
orked less than 13 weeks in the 12 months preceding random assignment (yes = 1, no = 0), whether or not the

ndividual is black (yes = 1, no = 0), whether or not the individual is Hispanic (yes = 1, no = 0), and marriage status
married = 1, not married = 0). We study the conditional distribution of 30-month earnings at different expectile levels
= {0.1, 0.5, 0.9}. Our proposed method involves robustification parameter γ , which we select using the tuning method
escribed in Section 5.1.
The regression coefficients and their associated 95% confidence intervals are shown in Table 5. We find that covariates

ith positive regression coefficients for all quantile levels are enrollment for JTPA services, individual’s sex, high school
raduation or GED status, and marriage status. Black, hispanic, and worked less than 13 weeks in the past year
ad negative regression coefficients. The regression coefficients varied across the three different expectile levels we
onsidered. The positive regression coefficients increase as the τ level increases and the negative regression coefficients
ecrease as the τ level increases. That is, for the lower expectile level of 30-month earnings, the covariates have a smaller
n magnitude effect on the individual’s earnings compared to the higher expectile level. The regression coefficient for
nrollment in JTPA services was 1685.34, 2637.57, and 2714.57 at τ = {0.1, 0.5, 0.9}, respectively. The τ -expectile of
0-month earnings for τ = {0.1, 0.5, 0.9} is 5068.02, 15815.29, and 32754.89 dollars, respectively. Compared to the
xpectile at the given τ , the effect of subsidized training was larger for lower expectile levels. Notably, if an individual
s a male, conditional on other covariates, their 30-month earnings increase by 5005 dollars for τ = 0.5 and increase
y 10,311 dollars for τ = 0.9. From the confidence intervals, we see that all variables are statistically significant except
ispanic.
13
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Table 5
Regression coefficients (and their associated 95% confidence intervals) for the retire estimator.
Variable τ = 0.1 τ = 0.5 τ = 0.9

Enrolled in services 1685.34 (1401.03, 1969.65) 2637.57 (2079.74, 3195.40) 2714.57 (1766.01, 3663.13)
Male 1706.87 (1435.04, 1978.69) 5005.12 (4449.07, 5561.17) 10310.62 (9338.91, 11282.34)
High school or GED 1477.19 (1218.33, 1736.06) 3656.13 (3140.12, 4172.14) 5718.62 (4803.60, 6633.63)
Black −580.04 (−917.86, −242.21) −1567.03 (−2265.51, −868.56) −2459.81 (−3686.14, −1233.48)
Hispanic −130.72 (−588.11, 326.66) −669.76 (−1626.83, 287.32) −1495.33 (−3306.12, 315.46)
Married 1268.30 (933.66, 1602.94) 3343.63 (2668.95, 4018.30) 4518.43 (3376.92, 5659.93)
Worked less than 13 wks −3677.98 (−3957.24, −3398.72) −6879.14 (−7438.20, −6320.08) −8206.16 (−9151.81, −7260.50)

6.2. Childhood malnutrition data

We apply the IRW ℓ1-penalized retire estimator with SCAD-based weights to the childhood malnutrition data,. This
ata set is previously studied in Belloni et al. (2019) and Koenker (2011). The data are collected from the Demographic
nd Health Surveys (DHS) conducted regularly in more than 75 countries. Similar to Belloni et al. (2019), in this analysis,
e will focus on data collected from India, with a total sample size of 37,623. The children studied are between the ages
f zero and five.
The goal is to study the conditional distribution of children’s height in India given the following covariates: the child’s

ge, months of breastfeeding, mother’s body mass index, mother’s age, mother’s education in years, partner’s (father’s)
ducation in years, number of dead children in family, and multiple categorical variables including but are not limited to
hild’s sex, child’s birth order, mother’s employment status, family’s wealth (whether they are in poorest, poorer, middle,
r richer bracket), electricity, television, refrigerator, bicycle, motorcycle, and car. Additionally, interactions between the
ollowing variables were considered: child’s age, months of breastfeeding, child’s sex, whether or not the child was a twin,
other’s BMI, mother’s age, mother’s years of education, father’s years of education, mother’s employment status, and
other’s residence. There are a total of 75 covariates: 30 individual variables and 45 two-way interactions.
We aim to study the conditional distribution of children’s height at different expectile levels τ = {0.1, 0.5, 0.9}. Our

roposed method involves two tuning parameters γ and λ. The choice of robustification parameter γ was determined
y theoretic guidance via a tuning method described in Section 5.1. The choice of sparsity tuning parameter λ is selected
sing a ten-fold cross validation where we select the largest tuning parameter that yields a value of the asymmetric
east squares loss that is less than the minimum of the asymmetric least squares loss plus one standard error. For fair
omparison, we apply the same sparsity tuning parameter across the three expectile levels. This is achieved by taking the
aximum of the sparsity tuning parameters selected using a ten-fold cross-validation for the three different expectile

evels. The selected tuning parameter takes value λ = 0.035.
The regression coefficients that are non-zero for at least one value of τ are shown in Table 6. There are a total of

8 non-zero coefficients. The regression coefficients for months of breastfeeding vary across the three different expectile
evels we consider. At τ = 0.1, the coefficient is 0.445, while at τ = {0.5, 0.9}, the coefficients are 0.397 and 0.378
espectively. That is, for lower expectile level of child’s height, months of breastfeeding plays a more important role to
nsure that the child is not malnourished compared to higher expectile levels.
Other variables of interest are electricity, television, and motorcycle. For τ = 0.1 and τ = 0.9, the regression

oefficients are zero, suggesting that access to these resources plays less of a role in a child’s height at extreme expectile
evels since access becomes a given for τ = 0.9 and vice versa. For τ = 0.5, the coefficients for electricity, television, and
otorcycle are 0.647, 0.367, and 0.587 respectively, suggesting that these resources are important.

. Discussion

In this study, we focused on robust estimation and inference for expectile regression in two scenarios: the low-
imensional setting where d ≪ n, and the high-dimensional sparse setting where s ≪ n ≪ d. For the latter, we
eveloped a robust penalized expectile regression method through iterative reweighted ℓ1-penalization and established
on-asymptotic high probability bounds. Performing statistical inference in high dimensions is much more challenging
han in low dimensions due to the lack of a tractable limiting distribution of the penalized estimator when d ≫ n. In
ecent years, there has been a rich development of debiased and de-sparsified procedures for penalized regression. These
ethods lead to estimators with asymptotically normal distributions, as demonstrated by Zhang and Zhang (2014), van

de Geer et al. (2014), Javanmard and Montanari (2014) and Ning and Liu (2017), among others. However, a complete
overview of these methods is beyond the scope of this study.

To conduct statistical inference for β∗j (2 ≤ j ≤ d), the jth coordinate of β∗, we consider the score function

Sn(βj,β−j, v) =
1
n

n∑
L′τ ,γ (yi − xi,jβj − xTi,−jβ−j)(xi,j − xTi,−jv),
i=1

14
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Table 6
Non-zero regression coefficients for IRW-ℓ1-penalized retire with SCAD-based weights across three expectile levels τ = {0.1, 0.5, 0.9} for the
hildhood malnutrition data.
Variable τ = 0.1 τ = 0.5 τ = 0.9 Variable τ = 0.1 τ = 0.5 τ = 0.9

cage (child age) 0.650 0.686 0.728 breastfeeding*medu −0.002 −0.001 −0.001
breastfeeding 0.445 0.397 0.378 breastfeeding*edupartner 0.001 0.000 0.000
cbirthorder1 0.012 0.703 0.000 breastfeeding*munemployed 0.000 0.000 −0.002
deadchildren 0.000 −0.345 0.000 breastfeeding*mresidence 0.000 0.000 −0.011
electricity 0.000 0.647 0.000 csex*mbmi −0.011 −0.015 0.000
television 0.000 0.367 0.000 csex*mage −0.039 −0.034 −0.040
motorcycle 0.000 0.587 0.000 ctwin*mage −0.035 −0.032 0.000
cage*breastfeeding −0.010 −0.008 −0.008 mbmi*mage 0.000 0.002 0.002
cage*csex 0.000 0.001 0.000 mbmi*medu 0.002 0.001 0.004
cage*ctwin 0.000 0.000 −0.028 mbmi*edupartner 0.000 −0.002 0.000
cage*mbmi 0.002 0.001 0.001 mbmi*munemployed 0.000 0.013 0.019
cage*mage 0.001 0.002 0.002 mage*medu 0.002 0.000 −0.001
cage*medu 0.005 0.003 0.002 mage*edupartner 0.002 0.003 0.001
cage*edupartner 0.001 0.001 0.001 mage*munemployed 0.006 0.006 0.004
cage*munemployed −0.006 −0.007 −0.007 mage*mresidence −0.010 0.000 0.000
cage*mresidence 0.000 0.003 0.000 medu*edupartner 0.002 0.003 0.005
breastfeeding*csex −0.005 −0.007 −0.009 medu*munemployed −0.009 −0.031 −0.050
breastfeeding*mbmi 0.002 0.002 0.002 edupartner*munemployed −0.017 −0.030 −0.028
breastfeeding*mage −0.002 −0.002 −0.003 edupartner*mresidence 0.000 −0.019 −0.015

where β−j and xi,−j are, respectively, the subvectors of β ∈ Rd and xi ∈ Rd with the jth element removed. Let β̂
init

e an initial penalized estimator of β∗ as described in Section 3.3, and denote by v̂ ∈ argminv∈Rp−1{(2n)−1
∑n

i=1(xi,j −
xTi,−jv)

2
+ λv∥v∥1} a Lasso-type estimator of v∗ := argminv∈Rd−1 E(xi,j − xTi,−jv)

2, the linear projection vector of the
regressor of interest xi,j on the remaining covariates xi,−j. Assuming that v∗ is sv-sparse, we conjecture that with a
properly chosen robustification parameter γ , the ‘‘oracle’’ score

√
n Sn(β∗j , β̂

init
−j , v̂) converges in distribution to a centered

ormal distribution as n and d diverge, provided that max{s, sv} log(d) = o(
√
n). Motivated by the classical one-step

onstruction (Bickel, 1975), which aims to improve an initial estimator that is consistent but not efficient, we propose a
ebiased estimator

β̂j = β̂
init
j − Sn (̂β init

j , β̂
init
−j , v̂)

/
∂bSn(b, β̂

init
−j , v̂)|b=β̂ initj

.

This estimator is conjectured to follow an asymptotically normal distribution. With a consistent estimate of its asymptotic
variance, a Wald-type confidence interval can be constructed. However, a rigorous theoretical investigation of the debiased
estimator and the accompanying asymptotic variance estimation problem requires a significant amount of future work,
which we leave for future studies.
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