
FreePart: Hardening Data Processing So�ware via
Framework-based Partitioning and Isolation

Ali Ahad
University of Maryland
College Park, MD, USA

aahad@umd.edu

Gang Wang
University of Illinois at
Urbana-Champaign
Urbana, IL, USA

gangw@illinois.edu

Chung Hwan Kim
University of Texas at Dallas

Richardson, TX, USA
chungkim@utdallas.edu

Suman Jana
Columbia University
New York, NY, USA

suman@cs.columbia.edu

Zhiqiang Lin
Ohio State University
Columbus, OH, USA

zlin@cse.ohio-state.edu

Yonghwi Kwon
University of Maryland
College Park, MD, USA
yongkwon@umd.edu

ABSTRACT

Data processing oriented software, especially machine learning

applications, are heavily dependent on standard frameworks/li-

braries such as TensorFlow and OpenCV. As those frameworks

have gained signi�cant popularity, the exploitation of vulnerabili-

ties in the frameworks has become a critical security concern.While

software isolation can minimize the impact of exploitation, exist-

ing approaches su�er from di�culty analyzing complex program

dependencies or excessive overhead, making them ine�ective in

practice.

We propose FreePart, a framework-focused software partition-

ing technique specialized for data processing applications. It is

based on an observation that the execution of a data processing

application, including data �ows and usage of critical data, is closely

related to the invocations of framework APIs. Hence, we conduct

a temporal partitioning of the host application’s execution based

on the invocations of framework APIs and the data objects used by

the APIs. By focusing on data accesses at runtime instead of static

program code, it provides e�ective and practical isolation from the

perspective of data. Our evaluation on 23 applications using pop-

ular frameworks (e.g., OpenCV, Ca�e, PyTorch, and TensorFlow)

shows that FreePart is e�ective against all attacks composed of 18

real-world vulnerabilities with a low overhead (3.68%).

CCS CONCEPTS

• Security and privacy → Software security engineering.

KEYWORDS

Software Isolation; Software Partitioning; Data Processing Frame-

works

ACM Reference Format:

Ali Ahad, GangWang, ChungHwanKim, Suman Jana, Zhiqiang Lin, and Yon-

ghwi Kwon. 2023. FreePart: Hardening Data Processing Software via

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0394-2/23/03.
https://doi.org/10.1145/3623278.3624760

Framework-based Partitioning and Isolation. In 28th ACM International

Conference on Architectural Support for Programming Languages and Op-

erating Systems, Volume 4 (ASPLOS ’23), March 25–29, 2023, Vancouver,

BC, Canada. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/

3623278.3624760

1 INTRODUCTION

Data processing software, particularly machine learning and image

processing software, are widely used to support critical systems in

practice. These programs are heavily dependent on data processing

frameworks and libraries. For example, OpenCV [68], an open-

source computer vision toolkit, has over 18 million downloads and

is widely used by real-world systems [37]. Machine learning based

applications also rely on a few well-known frameworks such as

PyTorch [76], Ca�e [27], TensorFlow [89], and Scikit-learn [83].

The wide adoption of these frameworks leads to an unfortunate

consequence that vulnerabilities in them could signi�cantly impact

the host applications [23, 49, 85, 86, 99]. In particular, software

vulnerability is one of the critical attack surfaces as it can a�ect the

entire host application’s memory (i.e., code and data). Compared to

the vulnerabilities in ML models/data that a�ect the decision made

by the framework, software vulnerabilities can allow attackers to do

almost anything. For instance, software vulnerabilities in OpenCV

are often considered to have a high security severity as they can

a�ect various critical systems using OpenCV [4], regardless of

algorithms and models used by the host application.

Software Isolation and Limitations. Software isolation [13, 50,

51, 106] can mitigate the exploitation of vulnerabilities by parti-

tioning software into multiple parts and executing each part in a

separate and isolated process or using intra-process isolation tech-

nique [41, 97]. With the technique, the impact of the exploitation

of a vulnerability is con�ned to an isolated partition so that the rest

of the program is protected.

However, those approaches su�er from limited security for crit-

ical data or APIs, runtime performance overhead, and/or require

accurate dependence analysis (otherwise breaking the program’s

functionalities). This is because, in part, program code and data

that need to be partitioned are intertwined.

Observations.We observe that the execution and data accesses of

data processing software are tightly correlated to the framework

APIs invoked. In other words, the invocation of framework APIs

1

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

at runtime depicts the program execution’s temporal progress, im-

plying what data to be read or written at a certain point of the

execution. For example, a program �rst executes data loading APIs

to load the input data, followed by a series of data pre-processing

tasks. It then calls data processing APIs (e.g., ML algorithms), fol-

lowed by the data interpretation/post-processing logic. Finally, data

visualization/storing APIs are called to present or save the results.

Framework-based Execution Partitioning. Based on the ob-

servations, we propose a program partitioning/isolation technique

from the perspective of framework APIs’ execution and correlated

data. Speci�cally, we categorize the APIs into four types re�ecting

their high-level purposes, following a typical work�ow of a data-

processing application: loading, processing, visualizing, and storing

APIs. Then, we execute each type of framework API on a separate

and isolated process. We track which type of API is executed to

infer the permission of the critical data. Lastly, we restrict the priv-

ileges of each process by only allowing necessary system calls for

framework APIs.

Challenges. We solve three major challenges. First, we conduct

a systematic analysis to support our design of framework-based

partitioning and isolation (e.g., four types of framework APIs in Sec-

tion 4.1). Second, we develop dynamic and static analysis techniques

to automatically categorize hundreds of framework APIs based on

their data dependency patterns. task (Section 4.2). Third, we reduce

the runtime performance overhead caused by inter-process commu-

nications by enabling direct data sharing between the partitioned

processes via the lazy data copy technique (Section 4.3.2).

Our major contributions are summarized as follows:

• Wepropose a framework-based execution partitioning and isolation

approach and carefully design and implement a proof-of-concept

system, FreePart.

• We develop (1) a hybrid pro�ling technique to automatically

categorize framework APIs and (2) a lazy data copy technique to

reduce the performance overhead.

• We apply FreePart to four widely used data processing frame-

works (OpenCV, Ca�e, PyTorch, and TensorFlow), that demon-

strate the generality of our approach.

• We evaluate FreePart’s performance on 23 applications and at-

tacks composed of 18 real-world vulnerabilities from Common

Vulnerabilities and Exposures (CVEs). FreePart e�ectively pre-

vents all the attacks with a low runtime overhead (3.68%).

2 THREAT MODEL

We assume an attacker who exploits a software vulnerability in a

target data processing framework, such as TensorFlow or OpenCV.

The attacker invokes a framework API with a maliciously crafted

input to exploit a vulnerability, such as a memory corruption vul-

nerability. Note that while such a vulnerability exists within a

framework API, an attacker can exploit it to disrupt the entire host

application due to the lack of isolation between the framework and

application. For example, by exploiting it the attacker may execute

malicious code in the host application process, to corrupt critical

data, or crash the host application process for a denial-of-service

attack. We do not assume attackers can compromise the underlying

system software such as the operating system, as we rely on the

Figure 1: Attack Scenario of the Motivating Example.

isolation of processes enforced by the OS kernel. We also trust our

runtime support as it is protected via the OS kernel.

Scope. Attacks that exploit a host application’s vulnerability (not

the framework’s vulnerability) are outside of our scope. Attacks tar-

geting machine learning (ML) algorithms (e.g., adversarial example

attacks [6, 9, 15, 21, 61, 74, 95] that exploit the lack of robustness in

ML algorithms) are also out of scope as it is an orthogonal problem

to our approach.

3 MOTIVATING EXAMPLE

We show how FreePart prevents vulnerabilities in the OpenCV

framework [68] from corrupting critical data in a host application,

OMRChecker [94] (auto-grader)
1
. It scans input OMR (Optical Mark

Recognition) images using OpenCV, computing scores by compar-

ing the recognized answers with the teacher’s master answer. It

grades multiple submissions and writes the results (e.g., scores) to

a .csv �le.

Attack Scenario. A teacher uses OMRChecker [94] to grade mul-

tiple OMR images submitted by students, to obtain an output .csv

�le containing answers and scores recognized from the submis-

sions. An attacker (e.g., a malicious student) provides a maliciously

crafted image that exploits a vulnerability [22] in imread() (an

OpenCV API, A) to manipulate the grading process as shown

in Fig. 1-(a) (1). Speci�cally, template.QBlocks.orig variable

in OMRCheck (2) that de�nes the coordinates of answer mark

areas in the submission image, represented as red boxes in Fig. 1-

(b). The attacker exploits the vulnerability to corrupt the values

of template.QBlocks.orig, changing the coordinates as shown

in Fig. 1-(c), making the program incorrectly recognize students’

responses (e.g., all the images’ answer Bwill be considered as answer

1
Note that there are variants [84, 93] of OMRChecker (and one of them are registered
in Google Play), sharing the same vulnerability.

2

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 2: Illustrations of Existing Techniques on the Motivating Example.

A). In addition, the attacker exploits a vulnerability in imshow()

(B) to crash the application (3).

Goal. We aim to prevent the exploitation of the two OpenCV APIs

imread() (A) and imshow() (B) from a�ecting two critical vari-

ables template (coordinates of the answer marks) and OMRCrop

(the input OMR image).

3.1 Existing Techniques

There are three types of existing techniques: code-based, library-

based, and memory-based isolation techniques. We illustrate how

they would partition the program in Fig. 2-(a)∼(d) for the motiva-

tion example (except for the memory-based technique that does

not partition a program). Table 1 summarizes the e�ectiveness of

existing techniques
2
and FreePart.

• Code-based API Isolation [44] (Fig. 2-(a)) isolates APIs (but

not data) by partitioning the host application’s code. For our ex-

ample scenario, there are three isolated processes. The �rst pro-

cess runs the initialization code (i.e., loading the template) and

imread(). The second process executes imshow(). The third

process runs the remaining APIs. Note that it requires users to

manually annotate how to partition the program and what or

where should the policies be applied, leading to unsystematic

and ine�ective protection. For example, the process running im-

read() also includes the template variable without protection,

allowing the memory corruption attack, as shown in Fig. 1 (2).

Worse, it breaks the host application’s functionality as the iso-

lated imshow() creates a GUI window, stored in a global variable,

which is not accessible by APIs in other processes.

• Code-based API and Data Isolation [13, 106] (Fig. 2-(b)) iso-

lates APIs and data by partitioning the host application’s code.

Note that they require an accurate dependency analysis technique

with annotations of variables from the user (e.g., PtrSplit [50],

PM [51] or SOAAP [36]) to e�ectively partition APIs and vari-

ables. Then, the partitioned variables and code are isolated in

2
We focus on the isolation/partitioningmechanism of existing techniques. Our example
does not necessarily represent the full capability of them.

separate processes automatically. In this example, there can be

5 processes: 3 processes for isolating APIs (same as Fig. 2-(a))

and 2 processes to isolate OMRCrop and template, respectively.

While it protects the data better than the code-based API isola-

tion, it incurs non-trivial overhead due to the frequent access of

the isolated template and OMRCrop in hot loops, causing a lot

of IPCs (e.g., more than 800 for each sample input). Note that

[13, 106] aim to isolate privileged data (e.g., secret keys) that are

not frequently accessed, di�erent from our scenario.

• Library-based Isolation for Entire Library [10, 33, 63, 105]

(Fig. 2-(c)) separates the host application’s execution from the

library’s execution. It requires users to annotate library APIs’

invocation sites, while it does not require sophisticated depen-

dency analysis, making it more practical than other techniques.

They run the entire library code in a single process. However,

since all the library APIs exist in a single process, once an API

is exploited, other APIs can be compromised, leading to data

corruptions handled by the compromised APIs. For example,

warpPerspective() returns a transformed image of an input

image. If corrupted, it can manipulate transformed images that

are input for other APIs, such as morphologyEx(). Moreover,

[10] further reduces the overhead caused by IPCs by sharing vari-

ables via shared memory (i.e., no IPCs for OMRCrop). However, it

requires sophisticated data-dependency analysis and makes the

shared variables vulnerable.

• Library-based Isolation for Individual API [31] (Fig. 2-(d))

also separates the host application’s execution and every library

API’s execution. Additionally, each API is isolated in a separate

process, making it more secure than the former approach. Un-

fortunately, it incurs signi�cant runtime overhead due to IPCs

on every API call. The entire data of the API’s arguments are

transferred between processes on each API call. For instance, to

process an image (1.7 MB) in our motivation example, there are

203 inter-process data transfers for 355 MB.

• Memory-based Isolation [11] protects the critical variables by

assigning memory access permissions (e.g., read-only). It requires

sophisticated data dependency analysis to ensure the correctness

3

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

Level of Security Prevented Isolated API Isolation Granularity
¶

of
Performance

¶¶

Data
∗

APIs
#

Attacks
†

CVEs
§

Ă
††

Min Max Processes
‡

Code-based
API

1
M / C / D 1 47.9 1 84 3

API & Data
2

M / C / D 2 37.3 0 84 5

Library-based
Entire Library

3
M / C / D 0 60.8 0 86 2

Individual APIs
4

M / C / D 2 0.1 0 1 87

Memory-based
5

M / C / D 0 - 86 86 1

FreePart M / C / D 2 32.4 0 75 5

: Highly e�ective. : Mostly e�ective. : Less e�ective. : Not e�ective. (Each level elaborated in Section A.1.1) ∗: Level of security in

protecting data. #: Level of security for APIs’ execution. †: Three types of attacks:M for the memory corruption attack on critical data, C for

the program code (i.e., API function’s code) manipulation (i.e., code rewriting) attack, D for the denial of service attack by crashing the

application. Crossed-out letters (e.g., M and C) mean that it failed to prevent the attacks. §: # of APIs with CVEs isolated. ¶: Granularity of

processes w.r.t the # of APIs (Details in Section A.1.3). ††: Standard deviation of isolated APIs in di�erent processes. ‡: # of processes required.

¶¶: Level of performance (Details in Section A.1.2). 1: Code-based API isolation (shown in Fig. 2-(a)). 2: Code-based API and Data isolation

(shown in Fig. 2-(b)). 3: Library-based API isolation (shown in Fig. 2-(c)). 4: Library-based API and Data isolation (shown in Fig. 2-(d)).

5: Memory-based data isolation. Green, orange, and red background colors indicate desirable, moderate, and undesirable respectively.

Table 1: E�ectiveness of Existing Techniques and FreePart.

in memory protection. It does not create additional processes

for isolation. However, since APIs’ execution is not isolated, a

denial-of-service attack is possible. Also, it does not protect APIs

from being compromised.

FreePart. We provide practical solutions for protecting

data and APIs with low overhead. It is based on frame-

work API-based partitioning and isolation with temporal

memory access permission enforcement via framework API

invocations.

3.2 Exploit Mitigation by FreePart

Fig. 2-(e) shows how FreePart partitions the host program in the

motivation example. There are 5 processes where 4 processes run

each of the di�erent types of framework APIs. The vulnerabilities

(A and B) reside in two di�erent processes. The last process

contains the two critical data to be protected and FreePart controls

the memory access permissions to prevent data corruption from

the exploit. Note that the last row of Table 1 shows the performance

of FreePart.

Framework API Categorization and Isolation. FreePart runs

4 di�erent types of APIs (e.g., data loading, data processing, vi-

sualizing, and storing) separately so that the exploitation of each

type’s APIs is con�ned within an isolated process. In this example,

we categorize 86 APIs as shown in Table 2. We present how we

decide the four API types in Section 4.1 and how we automatically

categorize them in Section 4.2. Fig. 2-(e) shows that A and B are

isolated in separate processes.

Data Protection via Temporal Partitioning. Fig. 3 shows how

FreePart monitors API calls at runtime and changes the access

permissions of the data. The x-axis represents the time of the exe-

cution. The ‘Framework State’ row shows how FreePart maintains

the current state of execution based on API calls: the initial state is

Type # APIs Examples of APIs

Data Loading 3 cv2.imread(), pd.read_csv()
1
, json.load()

1

Data
75

cv2.GaussianBlur(), cv2.erode(), cv2.Canny(),

Processing cv2.warpPerspective(), cv2.morphologyEx(), ...

Visualizing 6 cv2.imshow(), cv2.moveWindow(), plt.show()
1
, ...

Storing 2 cv2.imwrite(), plt.savefig()
1

1: Those framework APIs of pd (pandas [73]), json, and plt (Matplotlib [91])

require our hybrid analysis to categorize them.

Table 2: Framework APIs Categorized for the Motivating

Example.

Figure 3: Timeline of API Calls and Data Protection.

“initialization,” and the state changes on a framework API’s call. For

example, a call of imread() (a data-loading API) changes the cur-

rent state to data loading. Similarly, calling a data processing API,

e.g., GaussianBlur(), changes the current state to data processing.

As the state changes, FreePart changes the access permission of

the variables de�ned in the previous state to readonly. Note that

we require users to de�ne the memory layout of a customized data

structure (e.g., bu�er location and size of ‘template’) to set the

memory access permissions.

4

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 4: Average Runtime for Di�erent Number of Parti-

tions.

Mitigation of Memory Corruption and DoS. Fig. 2-(e) shows

that the vulnerable function imread() is executed in a separate

process (i.e., data loading process), protecting the template vari-

able from being corrupted. Denial-of-service (DoS) attacks by A

and B are mitigated as they only crash the data loading and visu-

alizing processes, respectively. In addition, as shown in Fig. 3- A ,

FreePart makes the template variable readonly on and after the

imread() call, protecting the variable.

Mitigation of Code Manipulation. Code manipulation (e.g., code

rewriting) requires a malicious payload to change the memory

permission via system calls such as mprotect(). It is mitigated as

FreePart only allows system calls required for framework APIs

isolated in each process. Note that each isolated process runs the

same type of framework APIs (typically requiring a similar set of

system calls), enabling the e�ective system call restriction.
3

Choice of Four Partitions. While increasing the number of parti-

tions (i.e., �ne-grained partitioning) may increase security, it would

incur performance overhead. To understand the trade-o� of the

security and performance regarding the partitions, we conduct ex-

periments for a di�erent number of partitions. From the 4 partitions

(i.e., data loading, data processing, storing, and visualizing), we try

to increase the number of partitions from 4 to 25, resulting in more

than 155K combinations. Speci�cally, there are 23 APIs and we cre-

ate 7,750 di�erent partitions (randomly created) for each number

of partitions from 5 to 25.

Fig. 4 shows that the average overhead increases 1.4 times when

the number of partitions is increased from 4 to 5. This is because

there are two functions, i.e., cv.rectangle and cv.putText (both

without CVEs), in hot-loop (i.e., frequently executed), sharing a

substantial amount of data. When they are separated into di�erent

partitions, a substantial overhead occurs. Note that the two APIs

in this example do not have known vulnerabilities, meaning that

the �ner-grained partitioning does not o�er better security in this

example practically. We elaborate on more details in Section A.1.4.

4 DESIGN

Work�ow. As shown in Fig. 5, FreePart takes the source code

of the target host program and the frameworks used by the host

program. It �rst gets a list of all the framework APIs used in the

program. Then, it runs a hybrid analysis (i.e., static and dynamic

combined) to categorize framework APIs. Finally, we hook the

identi�ed framework APIs and objects used in the APIs at runtime

3
Techniques running APIs and the application code together (Fig. 2-(a)∼(b)) or diverse
types of APIs together (Fig. 2-(c)∼(d)) require diverse system calls to be allowed, making
system call restriction ine�ective.

Name
Data Loading Data Processing Visualizing Storing

Avg
1

M
2

T
3

Avg
1

M
2

T
3

Avg
1

M
2

T
3

Avg
1

M
2

T
3

OpenCV 0.6 1 1 0.2 1 1 0 0 0 0 0 0

TensorFlow 0.3 2 2 2.3 12 24 0 0 0 0 0 0

Pillow 0.4 2 2 0 0 0 0.5 1 1 0 0 0

NumPy 0.1 1 1 0.4 1 1 0 0 0 0 0 0

Total 1.4 5 6 2.9 14 26 0.5 1 1 0 0 0

1: Average # of vulnerable APIs in a single application. 2: Maximum # of vulnerable APIs

in a single application. 3: Total # of vulnerable APIs across all 56 applications.

Table 3: Categorization ofVulnerableAPIs in 56Applications.

to implement communications between the isolated processes and

enforce the protections.

4.1 Studies for FreePart’s Design

We present two studies that obtain insights for designing our

framework-based partitioning and isolation.

Study 1: Usage of Framework APIs. We manually analyze 56

popular programs (selected by the number of stars of their GitHub

repositories) using data processing frameworks to check whether

the execution of framework APIs can be used to infer temporal par-

titions for the isolation. As shown in Fig. 6, we observe that all the

analyzed applications follow the data loading, data processing, and

visualizing or storing work�ow.
4
Speci�cally, a program typically

loads an input �le, runs an algorithm on the data, and then presents

visualizations or stores the results in �les. Some programs, such as

video processing programs, repeat the data loading and processing.

Note that an output of a component is an input of the next compo-

nent, and the next component only reads the input, supporting our

data protection via temporal partitioning.

The pipeline style pattern of framework APIs’ execution moti-

vates the framework-based API partitioning. The observation

that components only read the input motivates us to make

the memory of the previous component readonly when a new

type of framework API is called.

Study 2: API Types and Vulnerabilities. We study 241 publicly

available CVEs (from August 2018 to February 2022) related to data

processing frameworks: TensorFlow (172 CVEs), Pillow (44 CVEs),

OpenCV (22 CVEs), and NumPy (3 CVEs). For each CVE, we identify

which task in Fig. 6 triggers or is being a�ected by the vulnerability.

Fig. 7 shows the categorized result with types of vulnerabilities

(e.g., DoS and unauthorized �le/memory access). Vulnerabilities

exist across all the API types, while the majority of them are in the

data loading and data processing APIs. To better understand the

security implications of the vulnerabilities, we investigate them

further. First, we �nd vulnerabilities in utility functions such as

CVE-2019-16249 and CVE-2019-15939 can be exploited during the

execution of multiple types of APIs, potentially a�ecting multiple

processes. Second, we realize that even if there are many vulnerable

APIs in a particular API type, each application only uses a few of

them (e.g., data processing type uses 2.9 vulnerable APIs on average).

4
Note that programs without GUI may not use visualizing APIs

5

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

Figure 5: Work�ow of FreePart (From the O�line Analysis to the Online Runtime Enforcement).

Figure 6: Pipeline Pattern of Data Processing.

Figure 7: CVEs Categorized by Types of Vulnerabilities.

In other words, for individual applications, we only need to isolate

the vulnerable APIs actually used, instead of vulnerable but unused

APIs. Table 3 shows how many vulnerable APIs are used in the

56 applications in our study. Observe that each data loading or

processing agent process only includes 2∼3 vulnerable APIs on

average.

Our study on the CVEs shows that vulnerabilities are all

across the four types of APIs. In addition, for a single applica-

tion, there is only a handful of vulnerable APIs in each agent

process as shown in Table 3.

4.2 Automated API Type Categorization

We develop a hybrid analysis (i.e., static and dynamic analyses

combined) to automatically categorize framework APIs based on the

data �ow patterns during the execution due to the large number of

APIs (e.g., OpenCV and Ca�e have 1,405 APIs [71] and 224 APIs [27]

respectively).

De�nitions. To facilitate discussion, we introduce a few formal

de�nitions describing operations that cause data transfers in Fig. 8.

Data read and write operations are modeled by R(Ssrc) and W(Sdst ,

Operation O ∶∶= Sdst = R(Ssrc) ∣ W(Sdst , Ssrc)
Storage S ∶∶= mem ∣ gui ∣ file ∣ dev ∣ ...

Figure 8: De�nitions for Data Flow Patterns.

Ssrc), with Ssrc and Sdst holding the de�nition of data source and des-

tination, respectively. Storage ď de�nes the origins of data. Speci�-

cally, mem represents the memory, gui means variables and objects

that are relevant to GUI (Graphical User Interface): g_windows

and cvNamedWindow(). file and dev represent a �le (in the �le

system) and a device such as a camera, respectively.

Figure 9: Patterns of Dependencies for Framework APIs.

4.2.1 Data Flow Pa�erns. Fig. 9 shows data �ow patterns that

correspond to the four di�erent types of framework APIs.

1 Data Loading APIs: If an API uses system calls to load data from

storage or devices (e.g., retrieving an image from a camera) to

memory, it is categorized as the data loading API. Hence, APIs

containing ‘W(mem, R(file or dev))’ operations are the data

loading type.

2 Data Processing APIs:Most APIs running algorithms are only

reads/writes memory is categorized as the data processing type.

APIs that have ‘W(mem, R(mem))’ operations but not others are

the data processing type.

3 Visualizing APIs: Visualizing APIs display the content to the

user (e.g., imshow()). We identify them by detecting APIs that

access the GUI-relevant objects (e.g., g_windows). Speci�cally,

APIs that have one of the following operations are categorized

as the visualizing type: ‘W(gui, R(mem))’, ‘W(mem, R(gui))’, and

‘R(gui)’.

4 Storing APIs: An API that stores data to the storage or device

(i.e., W(file or dev, R(mem)) operation) is categorized as the

storing type.

Memory Copy via Files. APIs can use storage as a space to copy

data. For instance, tf.keras.utils.get_file() in TensorFlow

6

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

consists of three operations: (1) downloading from the network

(membuf1 = R(devnetwork)), (2) storing the downloaded data to a �le

(W(filetmp , membuf1)), and (3) reading the �le content to a bu�er

(membuf2 = R(filetmp)). The �le operations on filetmp are to pass

the data from membuf1 to membuf2 . Hence, we reduce the operations

to “membuf2=R(membuf1)”, making it a data loading API.

4.2.2 Hybrid Analysis. FreePart runs a static analysis �rst to iden-

tify the data �ow pattern in a framework API. To handle data �ows

missed by static analysis (e.g., APIs having dynamically allocated

objects and indirect calls), we use dynamic analysis.

Static Analysis. We identify system calls that read/store data (e.g.,

read() and write()) to indicate the data �ows between stor-

age/devices and the memory. For memory reads/writes, we focus

on assignment statements (e.g., ‘x = y’). APIs that do not have data

loading/storing system calls are categorized as data processing APIs.

For visualizing APIs, FreePart searches statements or functions

accessing GUI objects or invoking GUI relevant functions. Note

that our static analysis might have false positives and negatives

due to language constructs such as indirect calls and pointers. To

solve the problem, we use dynamic analysis.

Dynamic Analysis. We obtain test cases based on frameworks’

examples and test cases [27, 69, 77, 78], coveringmost of the APIs
5
in

the framework (Table 11 inAppendix A.3).Wemeasure the test runs’

code coverage by using Coverage.py [64] and llvm-cov [20]. For

programs that require user interactions, we use Monkey Tools [8] to

randomly generate user interactions. Table 4 shows a few examples

of the framework APIs with categories (More APIs can be found in

Appendix A.4).

Type Functions / Classes

O
p
en
C
V

DL
1

imread(), cvLoad(), VideoCapture(), readOpticalFlow(), ...

DP
2 CascadeClassifier(), cvtColor(),equalizeHist(), ...

V
3

setWindowTitle(), getMouseWheelDelta(), imshow(), ...

S
4

imwrite(), writeOpticalFlow(), VideoWriter(), ...

C
a�

e

DL
1 ReadProtoFromTextFile(), ReadProtoFromBinaryFile(), ...

DP
2

Forward(), Backward(), CopyTrainedLayersFrom(), ...

S
4

hdf5_save_string(), WriteProtoToTextFile(), ...

P
yT

o
rc
h DL

1 load(), hub.load(), utils.model_zoo.load_url(), ...

DP
2

argmax(), tensor(), nn.Conv2d(), combinations(), ...

S
4

save(), utils.tensorboard.writer.SummaryWriter(), ...

T
en
so
rF
lo
w DL

1 image_dataset_from_directory(), utils.get_file(), ...

DP
2

nn.conv3d(), nn.avg_pool(), nn.max_pool(), ...

S
4

preprocessing.image.save_img(), Model.save_weights(), ...

* Ca�e, PyTorch, and TensorFlow do not have visualizing type APIs hence omitted.

1: Data Loading. 2: Data Processing. 3: Visualizing. 4: Storing.

Table 4: API Type Categorization Example.

Execution Partitioning with Framework APIs.With the cat-

egorized APIs, FreePart partitions the execution of the host ap-

plication and enforces memory permissions
6
. Fig. 10-(a) shows

5
Note that the APIs that are not covered by our test cases (i.e., outside of the ‘most’
APIs) are not used by any of our evaluated programs in Section 5.
6
We leverage mprotect() to change memory permissions.

a slightly modi�ed version of a facial recognition program [67]

which is the host application. It initializes a VideoCapture object

to read image frames from a camera (line 1) and a classi�er for

facial recognition (line 3). It also loads user pro�les that contain

personal information related to the facial recognition models (line

4). The program starts a loop that fetches frames from the camera

(line 5). For each frame, it runs the facial recognition algorithm

(cascade.detectMultiScale()) (lines 7∼10). At line 12, it sends

out the detection results to another server. Finally, it shows the

current frame on the screen (line 14) and writes the current frame

to a �le if the ‘s’ key is pressed (line 16). The program terminates if

the ‘q’ key is pressed (lines 17∼19).

Framework APIs with the same type are grouped and annotated

by the circled letters: L , P , S , and V for the data loading, data

processing, storing, and visualizing respectively. Fig. 10-(b) and (c)

are the modi�ed source code of the library interface and implemen-

tation of the agent process.

Type-neutral Framework APIs.We observe that there are frame-

work APIs that do only memory-to-memory operations and are

frequently used together with di�erent types of APIs. Unfortu-

nately, when such two APIs with di�erent types also share the data,

it may cause substantial overhead via IPCs between the agent pro-

cesses. For instance, cvtColor() is a data processing API which

is frequently used together with detectMultiScale() (object de-

tection algorithm; data processing API) to create a gray scale image

and imshow() (a visualizing API). Utility APIs such as cvCre-

ateMemStorage() and cvAlloc() are also used together with

di�erent types of APIs. Since their semantics are dependent on the

calling context, we consider the type of such APIs is also �exible

or neutral. To this end, we call them type neutral APIs, and their

types are determined by the types of other APIs used together. To

this end, we run them in an existing agent process together. For

example, if cvtColor() is used right after the data loading pro-

cess API imread(), we run the cvtColor() on the data loading

agent process. Similarly, if cvtColor() is used in the middle of

the data processing APIs (e.g., GaussianBlur()), we run it in the

data processing agent process.

4.3 Framework Hook and Agent Process
Creation

FreePart automatically instruments the categorized APIs and data

structures used in the APIs (as an argument or return). For frame-

work APIs, we use the LD_PRELOAD trick [59] to hook the APIs

since all the frameworks we support use dynamic libraries by de-

fault
7
. Each hooked API function then intercepts the API calls and

runs the API’s code in an agent process (i.e., essentially making

a remote procedure call to the agent process). Our API hooking

seamlessly redirects the program execution without a�ecting the

correctness of the program (i.e., we do not change input/output of

the APIs except for enforcing security policies). Note that we as-

sume symbols of the framework and library functions are presented,

which is typical. FreePart also hooks data structures and objects’

methods by rede�ning them. For instance, Mat is a frequently used

data structure for image data in OpenCV. The image data in Mat

are stored in a heap bu�er. Since a framework API takes or returns

7
For frameworks using static libraries, we hook APIs in source code.

7

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

VideoCapture cam(0);

Mat frame, img, gray;

CascadeClassifier cascade("classifier.xml");

fread(fopen("userprofile.xml", ...), ...);

while(cam.read(frame)) {

...

cvtColor(frame, gray, COLOR_BGR2GRAY);

resize(gray, img, ...);

equalizeHist(img, img);

cascade.detectMultiScale(img, faces, ...);

for (size_t i = 0; i < faces.size(); i++) {

send(server, "notification", ...);

}

imshow(..., frame);

if (pollKey() == 's') {

imwrite("...", frame);

} else if (pollKey() == 'q9) {

destroyAllWindows();

break;

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

L

P

V

S

void recv_agent_request(int cmd) {

switch (cmd) {

case ID_VideoCapture_4:

{

VideoCapture* p =

new VideoCapture(agent_arg(0));

agent_ret(map_set(p));

} break;

case ID_CascadeClassifier_2:

{

CascadeClassifier* p =

new CascadeClassifier(agent_arg(0));

agent_ret(map_set(p));

} break;

case ID_VideoCapture_read:

{

VideoCapture* p = map_get(agent_arg(0));

OutputArray image = agent_arg(1);

agent_ret(p->read(image));

agent_update_arg(1, image);

} break;

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

enum { LOADING=0, PROCESSING, VISUALIZING, STORING,

ID_VideoCapture_4, ..., ID_VideoCapture_read,

..., ID_CascadeClassifier_2, ...,

ID_CascadeClassifier_detectMultiScale, ...

};

VideoCapture::VideoCapture(int n) {

request(LOADING, ID_VideoCapture_4, n);

m_obj = agent_ret();

}

CascadeClassifier::CascadeClassifier(String& fn) {

request(PROCESSING, ID_CascadeClassifier_2, fn);

m_obj = agent_get();

}

bool VideoCapture::read(OutputArray image) {

request(LOADING, ID_VideoCapture_read,

m_obj, image);

return agent_ret();

}

Figure 10: Example API Categorization, Interface Hooking, and Agent Processes.

a reference (i.e., address) of a Mat object (not the heap bu�er), we

implement a deep copy of the object when its reference is passed

to or returned by APIs.

FreePart as RPC. FreePart’s API hooking essentially imple-

ments a remote procedure call (RPC). Speci�cally, FreePart im-

plements the “exactly-once” semantic, meaning that a request to

execute an API on an agent process will be delivered to the agent

process and executed exactly once.

4.3.1 Hook Interfaces and Agent Processes. Fig. 10-(b) shows an

example of how FreePart hooks methods and connects them to

the agent processes. Note that it is automatically instrumented ac-

cording to the de�nition of the original framework APIs. Arrows

between Fig. 10-(a) and (b) indicate control �ow transfers from the

host program to the hooked interfaces. request() (at lines 29, 34,

and 39) sends a framework API execution request with arguments

to the agent process.
8
Lines 22∼26 de�ne constant identi�ers used

in the program. request()’s arguments include (1) the API type

(e.g., LOADING for the data loading), (2) the id of the target function,

and (3) arguments of the target function (including its object refer-

ence). Fig. 10-(c) shows the source code of an agent process. The

agent process accepts requests, runs the requested APIs (with the

command id through the cmd and the arguments retrieved through

agent_arg() and agent_arg()), and copies the results back to

the host application (via agent_ret() at lines 49, 55, and 61∼62).

4.3.2 Lazy Data Copy for Optimizing IPCs. We observe that in

typical data-processing programs, results returned by a framework

API are often immediately used by another framework API. FreeP-

art leverages the observation to reduce IPCs by directly copying

the data between the agent processes, without going through the

host application’s process. We call this optimization ‘Lazy Data

Copy (LDC),’ which reduces the unnecessary data copy, only if data

loaded by a framework API are directly fed to another framework

API in a di�erent agent process. LDC essentially postpones data

copy operations until the data are dereferenced by a concrete agent

process. Then, LDC allows the agent process to copy data directly.

8
We implement IPC (Inter-Process Communication) between processes using shared
memory. It uses ring bu�ers and futex for synchronization.

Figure 11: Inter Process Data Flow with the Lazy Data Copy.

Fig. 11-(a) and (b) show examples of data �ows with and without

the LDC, respectively.

1 The host program process calls imread(), passing all the ar-

guments of the function to the data processing agent process.

With LDC, it passes the references of the objects. Without LDC,

it passes all the data of the objects. The reference only contains

the origin
9
of the object’s data.

2 The data loading agent loads the data and returns it to the

host program process. After the function, all the arguments (as

they might be modi�ed) and the return values are copied back.

Without LDC, the entire data of objects are passed, even though

the host program process does not access the data. With LDC,

the references are passed.

3 The host program calls equalizeHist() (i.e., data processing

API), which sends a request to run the API with the loaded object

in the data processing agent process. Again, the references are

passed with LDC while the entire data of objects are passed

without LDC.

4 The data processing agent process runs the equalize Hist()

API, beginning to access the data. With LDC, since only the

references were passed, it copies the data directly from the

9
The agent process’s process id (PID) and the identi�er of the bu�er (e.g., a hash value
of the bu�er’s address) that contains the data.

8

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

CascadeClassifier::load() openat, close, brk, fstat, read, lseek,

VideoCapture::VideoCapture() openat, close, ioctl, mmap

VideoCapture::read() brk, ioctl, select

openat, close, brk, fstat, read, lseek, ioctl, mmap, select

Figure 12: Obtaining Required System Calls.

data loading process at this time. Without LDC, the data were

already passed at 3 .

5 The resulting object is returned to the host process. Without

LDC, the data of the resulting objects are copied back.

4.4 Runtime Support

FreePart’s runtime support consists of a loader and a dynamic

library. The loader is a standalone program that initializes the host

and agent processes. The dynamic library hooks framework APIs

and data objects, initializes the IPC channels, monitors the execu-

tion and enforces security policies.

4.4.1 Restricting System Calls. Each framework API does not need

to access all the system calls. For example, to run a data-loading

framework API in OpenCV, around 5∼6 system calls are needed

on average [30] (Syscalls Per API). Hence, FreePart restricts sys-

tem calls unnecessary for executing framework APIs. For example,

Fig. 12-(a) shows the system calls required for the data loading APIs

used by the program shown in Fig. 10. Then, we create an allowed

system call list by taking the union of required system calls for all

framework APIs within an agent process as shown in Fig. 12-(b).

Identifying Required System Calls. We use the hybrid analysis

described in Section 4.2.2 to identify required system calls for each

framework API. Note that our hybrid analysis has a high code

coverage of the framework APIs (as reported in Table 11), resulting

in high-con�dence results.

Overlapping System Calls Between APIs. On average, we �nd

that 6 system calls are required per API. Among them, 4 system

calls (e.g., openat, fstat, brk and read in the data loading agent

process) commonly appear across the APIs of the same type. FreeP-

art allows the superset of system calls used by APIs in the agent

process.

System Call Restrictions.We use seccomp-BPF [72] to permit

system calls in the allowed list. The allowed list ensures that the

system call restriction also prevents system object interface attacks

(e.g., restricting shm_open and mprotect to manipulating shared

memory or re-writing memory permissions). To protect FreeP-

art from attackers recon�guring seccomp-BPF to tamper with

the system call restriction, we use PR_SET_NO_NEW_PRIVS which

prevents con�guration changes. In addition, system calls, such as

ioctl, require an additional restriction on their arguments because

they can access diverse devices (e.g., a camera to retrieve images

or a network device for communication) depending on their argu-

ments. For such APIs (e.g., ioctl, connect, select, and fcntl),

FreePart checks their �le descriptors to ensure they operate only

on the designated �les.

SystemCalls RequiredDuring the Initialization.A few security-

critical system calls such as mprotect and connect are used by

framework APIs but only in their �rst execution. Our manual analy-

sis result shows that they are only required for the initialization.

For instance, connect is used only once during the �rst execution

of a visualizing API to initialize a socket to communicate to a GUI

subsystem and mprotect is used to load library modules on its �rst

execution. Since those system calls are not required after the �rst

execution of the APIs, FreePart �rst executes all the framework

APIs and then restricts them afterwards.

4.4.2 Restarting Agent Processes. Server programs (e.g., web servers)

often prioritize availability over security, automatically restarting

the process when it crashes. For them, FreePart provides function-

ality to restart agent processes so that FreePart does not break

the original work�ow. If a user prioritizes security over availability,

one can opt out of it. Note that since a separate process restarts the

agent processes, a compromised agent processes cannot in�uence

the restarting functionality.

FreePart as RPC. In terms of RPC, FreePart implements the

restarting agent process via “at-least-once,” meaning that for crashed

processes, FreePartmay re-execute APIs multiple times. Note that

this is acceptable as most framework APIs are stateless. There are

a few stateful APIs. For them, we periodically store the states. We

elaborate it on Appendix Section A.2.4.

4.4.3 Deriving and EnforcingMemory Access Permissions. As shown

in Fig. 3 (in Section 3) FreePart enforces memory access permis-

sions (e.g., read-only) when the framework changes its state. Specif-

ically, it requires a user to annotate a data structure to be protected,

including the functions that create the data (e.g., the constructor of a

class if the data is an object) and access the data (e.g., read/get meth-

ods of the data object). FreePart supports the de�nitions of such

functions for popular data structures in supported frameworks such

as Mat in OpenCV. However, for the user-de�ned data structures,

the de�nitions should be manually provided.

Given the de�nitions, FreePart’s runtime infers the current

framework’s state by monitoring which type of framework API is

invoked. The current framework state is essentially re�ecting the

last framework API’s type. There are 5 framework states: Initializa-

tion, Data Loading, Data Processing, Visualizing, Data Storing. The

initialization state represents the initial state before any framework

API’s invocation.

When the framework state is changed (e.g., the program starts

to call a data processing API, after calls to data loading APIs), it

enforces the memory access permissions of all the data objects

de�ned in the previous state read-only. For example, if the state just

changed to the data processing from the data loading, all the data

objects de�ned (i.e., created/allocated) during the data loading state

will become read-only.

5 EVALUATION

Implementation. The prototype of FreePart is implemented with

3,829 SLOC. We use LLVM [90] to categorize framework APIs by

analyzing their data �ow patterns and to instrument the frame-

works written in C/C++. In addition, we use PyCG [80] to conduct

9

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

Vuln. Type CVE IDs Vuln. Samples
1

Type

Unauthorized CVE-2017-12604, CVE-2017-12605,
1, 9, 10, 12 DL

2

Mem. Write CVE-2017-12606, CVE-2017-12597

Remote Code

Execution

CVE-2017-17760 1, 7, 10, 12 DL
2

CVE-2019-5063, CVE-2019-5064 1, 9, 10 DP
3

Denial-of-

Service (DoS)

CVE-2017-14136, CVE-2018-5269 1, 7, 9, 10, 12 DL
2

CVE-2019-14491, CVE-2019-14492,
1, 9, 10 DP

3

CVE-2019-14493

CVE-2021-29513 21, 23 DP
3

CVE-2021-29618 23 DP
3

CVE-2021-37661 21, 22, 23 DP
3

CVE-2021-41198 20, 22 DP
3

1: Sample IDs having the vulnerability. 2: Data Loading. 3: Data Processing.

Table 5: List of CVEs used for Evaluation.

static analysis on Python programs. Our runtime support is written

in C++.

Experimental Setup.All the experiments were done on a machine

with Intel i7-9750H, 2.6GHz, 32GB RAM, and 64-bit Ubuntu 18.04

with a GeForce RTX 2060.We use a commercial o�-the-shelf (COTS)

system without any modi�cations.

Program Selection.We search open-source repositories to �nd 30

popular applications (i.e., by the number of GitHub stars [32]) using

the data processing frameworks that we support: OpenCV, Ca�e,

PyTorch, and TensorFlow. From the searched result, we sort them

by the number of source lines of code (SLOC) to �lter trivial projects.

In addition, if there exist multiple similar programs (e.g., there are

many facial recognition applications with a similar code structure),

we only select one project that has versatile functionalities and

ignore similar applications. To this end, we choose 23 programs

(out of 30) as shown in Table 6: 9 for OpenCV (and OpenCV based),

3 for Ca�e, 10 for PyTorch, and 4 for TensorFlow. Some applications

use multiple frameworks together (e.g., Face_classi�cation [5] uses

OpenCV and Keras together).

Vulnerability Selection and Attack Construction.We searched

the CVE database to �nd vulnerabilities on OpenCV, Ca�e, Torch

(for PyTorch), and TensorFlow reported in the last �ve years that

are also used by the selected 23 programs. We successfully repro-

duce 18 vulnerabilities, that form the set of CVEs we use in this

evaluation. Table 5 shows the vulnerability type and the selected

CVEs that we use in this evaluation. The third column shows sam-

ple program IDs (shown in Table 6) that have the vulnerability

(hence a�ected). The last column shows the di�erent types of vul-

nerable framework API (also representing which agent process it

will belong to). Then, we create attacks by constructing exploits

for the selected vulnerabilities, either by improving already pro-

vided Proof-of-Concept (PoC) exploits or by creating our own from

scratch. We use Metasploit [79] to create malicious payloads (e.g.,

ROP payloads and shellcodes).

Correctness of FreePart.We apply FreePart to all 23 programs.

For all programs, we use their respective test suites (linked each on

ourwebsite [30]) publicly available as inputs to test the functionality.

We observe that all the test cases are correctly executed, without

detecting any attacks incorrectly (i.e., no false positives). We also

conduct 8 attacks by reproducing 18 CVEs (shown in Table 5) and

6 attacks used in case studies (Section 5.4 and Section A.7) on the

23 programs. They are all successfully mitigated, meaning that

we did not observe false negatives. We further manually inspect

the API categorization of the 23 programs and con�rmed that all

partitioned APIs were correctly categorized conforming to the data

�ow patterns outlined in Section 4.2.1.

5.1 API Type Categorization Result

The 7th∼14th columns of Table 6 show the numbers of framework

APIs categorized to each type. “Unique” shows the unique number

of APIs used in the application and “Total” shows the number of

API call instances of each type.

Categorized APIs. The data loading type has the smallest num-

ber of framework APIs used in the programs. However, since they

are the interface functions that directly handle untrusted user in-

puts, they are major targets of attacks (and have many vulnerabili-

ties). The data processing type has the most framework APIs (both

Unique and Total). Note that in the data processing APIs, the total

numbers are signi�cantly larger than unique numbers, suggesting

there are multiple call sites of a single framework API. Our manual

inspection reveals that those programs have many duplicated code

snippets to implement multiple optimized versions for di�erent

workloads.

Figure 13: Normalized Runtime Overhead of FreePart.

5.2 Runtime Performance Overhead

We measure the runtime performance overhead of FreePart with

the 23 programs in Table 6. Speci�cally, we run the original pro-

grams and the FreePart protected programs with various work-

loads and compare the performance results. We collect the work-

loads as follows. First, for applications that provide demo and

test workloads [65, 66, 70], we use them. Second, we additionally

use non-trivial image/video data sets (144GB) collected from Im-

ageNet [24] and text data (a few MBs) for image/video and text

processing applications [62].

Fig. 13 shows the results: the average overhead is 3.68%. The

hybrid analysis for each application took 1 hour on average. We

observe that our low overhead is largely due to partitioning depen-

dent APIs together in the same process (i.e., avoiding data copies

on each RPC).

Lazy Data Copy. To understand the e�ectiveness of our lazy data

copy, we measure the overhead of FreePartwithout lazy data copy

support, which is 9.7% for 23 programs on average. We observe that

10

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

ID
Frame-

work
Name Lang. SLOC Size

Loading
∗

Processing
+

Visualizing Storing
Description

Uniq
†

Total Uniq
†

Total Uniq
†

Total Uniq
†

Total

1 OpenCV
1

Face_classi�cation [5] Python 7,082 280K 4 4 5 10 4 4 1 1 Face, emotion, gender detection

2 OpenCV FaceTracker [48] C/C++ 3,012 588K 2 5 19 99 3 3 3 6 Real-time deformable face tracking

3 OpenCV Face_Recognition [2] Python 3,205 14.8M 1 8 5 26 3 15 2 3 Face recognition application

4 OpenCV lbpcascade_anime [62] Python 6,671 224K 1 1 4 4 3 3 1 1 Image classi�cation/object detection

5 OpenCV EyeLike [92] C/C++ 742 44K 5 5 21 100 4 18 1 2 Webcam based pupil tracking

6 OpenCV Video-to-ascii [42] Python 483 48K 4 7 2 2 0 0 1 1 Plays videos in terminal

7 OpenCV Libfacedetection [111] C/C++ 14,016 8.8M 4 6 14 62 4 4 1 1 Library for face detection

8 OpenCV OMRChecker [94] Python 1,797 6.2M 2 4 42 88 4 5 1 1 Grading application

9 Ca�e
2

EmoRecon [87] Python 1,773 53K 6 10 11 32 5 6 1 1 Real-time emotion recognition

10 Ca�e
2

Openpose [14] C/C++ 459,373 6.8M 10 12 44 171 2 2 0 0 Real-time person keypoint detection

11 Ca�e
2

MTCNN [46] Python 425 12.9K 1 1 11 18 2 2 0 0 MTCNN face detector

12 PyTorch
3

SiamMask [102] Python 39,999 1.4M 2 9 19 103 4 10 2 11 Object tracking and segmentation

13 PyTorch CycleGAN-pix2pix [116] Python 1,963 7.64M 5 7 50 103 0 0 1 2 Image-to-image translation

14 PyTorch FAIRSEQ [28] Python 39,800 5.9M 8 19 20 65 0 0 4 4 Sequence modeling toolkit

15 PyTorch PyTorch-GAN [26] Python 6,199 31.1M 3 105 41 1,747 0 0 1 37 PyTorch implementation of GANs

16 PyTorch YOLO-V3 [96] Python 2,759 1.98M 3 9 68 254 3 3 2 6 PyTorch implementation of YOLOv3

17 PyTorch StarGAN [18] Python 740 2.07M 1 2 32 105 0 0 1 4 PyTorch implementation of StarGAN

18 PyTorch E�cientNet [57] Python 2,554 2.48M 4 8 37 86 0 0 2 2 PyTorch implementation of E�cientNet

19 PyTorch Semantic-Seg. [115] Python 3,699 5.53M 2 2 136 304 0 0 1 3 Semantic segmentation/scene parsing

20 TensorFlow DCGAN-TensorFlow [88] Python 3,142 67.4M 3 6 54 137 0 0 1 1 TensorFlow implementation of DCGAN

21 TensorFlow See in the Dark [16] Python 610 836K 1 8 31 244 0 0 2 10 Learning-to-See-in-the-Dark (CVPR’18)

22 TensorFlow CapsNet [39] Python 679 486K 1 8 43 108 0 0 4 6 TensorFlow implementation of CapsNet

23 TensorFlow Style-Transfer [56] Python 731 11M 3 4 37 61 0 0 3 5 Add styles from images to any photo

∗: Data Loading. +: Data Processing. †: Unique. 1: Uses OpenCV (main) and Keras (secondary) APIs. 2: Uses Ca�e (main) and OpenCV (secondary) APIs.

3: Uses PyTorch (main) and OpenCV (secondary) APIs.

Table 6: Applications used for Evaluation.

about 95% of the data copy operations are lazy data copies, indicat-

ing the target applications mostly have data �ows only between

the framework APIs. More details can be found in Appendix A.5.

5.3 Security Analysis on Attack Scenarios

We present an analysis of FreePart under typical attack scenarios:

(1) data ex�ltration and (2) data corruption attacks.

The data ex�ltration attack represents a typical scenario of steal-

ing sensitive information (i.e., information leak). We assume a pow-

erful attacker who is capable of identifying the exact memory ad-

dresses of the bu�er containing sensitive data. Given a memory

address of a bu�er to leak, the attack aims to send the critical in-

formation to attacker-controlled servers via network APIs such as

send().

The data corruption attack corrupts critical data in the program,

such as outcomes of the algorithms or other metadata used in the

program (e.g., sensitive user pro�les). We assume that the attacker

already knows the exact memory addresses to compromise (i.e.,

memory addresses of bu�ers containing sensitive information).

Then, the attacker leverages the RCE vulnerability (e.g., CVE-2019-

5063) to overwrite critical data.

We launch the two attacks to all vulnerable programs as shown

in Table 5. We then analyze what information can be stolen or what

damages can be made by the attacks.

Analysis of Data Ex�ltration. For all the programs we evaluate,

we �nd that most sensitive information stays within the target

program process. Since all the vulnerabilities we tested are in the

data loading or data processing processes, attacks could not access

sensitive information that exists in the target program process.

In the data loading process, if a target program processes inputs

from multiple users (e.g., a server program that detects objects

in pictures provided by remote users), other users’ inputs can be

considered sensitive. In the data processing process, the processed

outcomes (e.g., facial recognition results of a speci�c person) might

be sensitive.

While the attacks can access those, both data loading and data

processing processes do not allow system calls that can write data

to the disk or other devices (e.g., write or send), meaning that it

is di�cult to send the stolen information to outside. Table 7 shows

a few allowed system calls for each API type. Note that all the API

types are for OpenCV.

Type Allowed system calls

Loading (43) bind, fstat, futex, getcwd, getpid, listen, mkdir, openat, recvfrom, ...

Processing (22) getrandom, gettimeofday, open, openat, read, close, clock_gettime, ...

Visualizing (56) access, connect, eventfd2, futex, getuid, lseek, select, sendto, ...

Storing (27) accept, close, dup, exit, lstat, mkdir, umask, uname, unlink, ...

Table 7: System Calls Allowed for Each API Type.

Analysis of Data Corruption Attack. If the attack happens in

the data loading process, the attack may corrupt previous inputs

of the program. However, since it is already passed to the data

11

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

processing process and processed, corrupting previous inputs has

practically no impact. An attacker may corrupt the data, which will

be passed to the next process (i.e., to another API type). However,

this is essentially providing a crafted input. In the data processing

process, an attacker may corrupt the data currently processing.

However, it is di�cult in practice, as the corrupted values are likely

to be overwritten during the algorithm, meaning that the attacker

has limited controllability. In addition, an attacker may target ML

models and con�gurations on the memory. However, we observe

that compromising them in the middle of computation mostly leads

to wrecking the result.

5.4 Case Study

5.4.1 Autonomous Object Tracking Drone. We use FreePart to

mitigate attacks on an autonomous drone project [17] that keeps

tracking an object using an object recognition technique via a

camera attached to the drone. The drone follows the recognized

object as it moves. The program fetches images from the camera and

uses imread() (which has the vulnerability) to load and process.

We prepare two attacks: (1) a DoS attack that crashes the drone

program and (2) a data corruption attack that modi�es the speed of

the drone by overwriting a con�guration variable.

Figure 14: FreePart Protected Autonomous Drone [17].

DoS Attack. An attacker exploits CVE-2017-14136 and CVE-2019-

14491 vulnerabilities, which can crash the entire drone program.

Without FreePart, the entire program crashes, and the drone will

halt its operation and fall to the ground. As shown in Fig. 14, with

FreePart, the crash happens in the data loading process (in im-

read()), crashing the process. Note that even if FreePart does

not restart the crashed process, the target program process is still

alive, making the drone alive. Before it restarts the process, it may

not handle new images from the camera. However, the user can

safely land the drone as all other functionalities (e.g., controlling

the drone) are not a�ected. With the process restarting, FreePart

can seamlessly mitigate this DoS attack, while the drone might be

a little sluggish due to the restarting of the isolated process.

Data Corruption Attack. An attacker exploits CVE-2017-12606

vulnerability to corrupt a speci�c con�guration variable that de�nes

the speed of the drone. Speci�cally, the drone’s speed is stored in

the self.speed variable. The default speed is 0.3, and changing it

to ‘−0.3’ will make the drone move in the opposite direction (i.e.,

not following the object but moving away from the object). Without

FreePart, the attacker can access the variable and modify its value.

With FreePart, the exploitation is contained within the data

loading process (1 in Fig. 14), while the variable self.speed

exists in the target program process.

5.4.2 Information Leak in an Image Viewer. MComix3 [53] is an im-

age viewer program which is forked from the MComix [60] project.

The program has a menu listing recently loaded �les’ names. An at-

tacker aims to leak the recent �le names whichmight be sensitive in-

formation. They are stored in self._window.uimanager.recent

and Gtk::RecentManager which is a part of the GTK library (i.e.,

a GUI framework).

An attacker can use CVE-2020-10378 to read the variables. Then,

it can send the information through network APIs such as con-

nect() and send(). With FreePart, the attack will fail because

the exploitation happens in the data loading process while the

self._window.uimanager.recent exists in the target program

process, and Gtk::RecentManager exists in the visualizing pro-

cess. Attempts to access the variable in the target program process

and in the vizualizing process (2 in Fig. 15) fail. Moreover, send-

ing the information through the network will be prevented by the

system call restriction.

Figure 15: FreePart Protected MComix3 Program.

6 DISCUSSION

Restoring States of Crashed Process.When a process crashes,

FreePart intentionally decides not to restore values of variables

in the crashed process after restarting the crashed process. This is

because the crash might be caused by an attack with a malicious

payload. Note that this may cause state discrepancies between

processes after the isolated process is recovered from a crash.

Impact of API Miscategorization. If our hybrid analysis (in Sec-

tion 4.2.2) fails to identify data �ows (false negative) or incorrectly

detects bogus data �ows (false positive) described in Fig. 9, frame-

work APIs can be miscategorized. Miscategorization would cause

two major consequences. First, when a vulnerability in a miscate-

gorized API is exploited, it can have access to sensitive data that

should not be allowed access. Second, miscategorized APIs can

cause many unnecessary IPC communications as they frequently

access variables that do not exist in the same process. This is because

FreePart uses a separate process to run each type of framework

API.

Impact of Intra-Process Attacks.While partitioning using FreeP-

art reduces the attack surface, it is still vulnerable to intra-process

attacks. For instance, an attacker can arbitrarily execute malicious

code in the vulnerable process. However, FreePart reduces the

attack surface by limiting capabilities (e.g., by employing syscall

restriction), restricting the privileges of the compromised API (i.e.,

same memory-access privileges as the API type). In addition, an at-

tacker can attempt control �ow hijacking attacks. However, one can

employ CFI [98] and debloating solutions [108] to mitigate them.

12

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

On the other hand, an attacker can also in�uence other APIs or

memory (stack and heap) within the compromised process. For this,

one can employ other intra-process partition techniques [38, 41] to

the agent processes to mitigate or reduce the e�ects of the attack.

Note that, applying security techniques to isolated processes is an

orthogonal problem.

Partitioned Processes and Multi-threading. FreePart executes

with �ves processes (1 host program process and 4 agent processes).

Each partitioned process has its independent stack and heap (miti-

gating all memory corruption attacks across partitions while cor-

rupting a compromised agent process’s local stack is possible and is

our limitation). For multi-threading processes, each thread will have

its own set of four agent processes, hence avoiding race conditions.

7 RELATED WORK

Software Fault Isolation (SFI). Program partitioning and SFI are

closely related to FreePart. [101] is one of the earliest software-

based fault isolation approaches, which instruments a target pro-

gram to detect unsafe memory accesses. Since then, SFI has been

applied to various targets, including OS kernels [113], system appli-

cations [12], web applications [25, 40, 110], and mobile apps [7, 75],

to partition the existing system into sub-components by functional-

ity. [105] needs developers to manually write wrappers for the

target untrusted library to partition and isolate libraries while

FreePart does it automatically to prevent attackers who can com-

promise the user mode program’s memory. Existing works have

used diverse partitioning approaches, such as static analysis and in-

strumentation [25], compiler modi�cations [12], runtime primitive

(e.g., sandboxing) [7, 105, 110], and additional language primitive

support [40, 75]. A key di�erence is that existing approaches fo-

cus on partitioning a target program, while FreePart focuses on

partitioning from frameworks.

Automated Program Dependence Analysis. Program depen-

dency analysis aims to identify program statements and data that

are required for the correct execution of other statements. Re-

searchers have used static analysis [13], dynamic analysis [45,

47, 107], and hybrid methods [54] to perform dependency anal-

ysis for program partitions. In addition, source code-based tech-

niques [19, 112] can leverage annotations to help with the analysis.

Program slicing techniques [3, 104, 114] are proposed to identify a

set of program statements required to execute a certain function-

ality. There are slicing techniques for concurrent programs [29],

source code locality identi�cation [43], and clustering-based pro-

gram component decomposing [58]. For example, BCD [43] uses

static analysis to extract the code locality, data references and func-

tion calls. Bunch [58] uses clustering to decompose applications.

Advanced techniques can further optimize FreePart’s API type

identi�cation and partitioning.

Intra-process Isolation. Recently, intra-process isolation tech-

niques have been proposed to isolate a part of the program from

the remainder to enhance security. Note that these techniques are

orthogonal to our approach and can be adapted to complement

FreePart. Recent techniques such as Hodor [38] and SeCage [55]

utilize virtualization to enable di�erent memory views for each

program part, isolating data and code. Meanwhile, other tech-

niques [34, 82, 97, 100] utilize PKU-based memory isolation tech-

nique to protect critical data. They focus on enhancing memory

security for data on heap memory, while they may not be e�ective

in preventing attacks on stack memory or non-memory attacks.

Endokernel [41] attempts to solve the problem by mapping their

virtual machine abstraction to system-level objects. It provides

programmable security abstractions that can be used to monitor

and secure the system against low-level attacks with low overhead.

In addition, Jenny [81] employs the system call �lter rules necessary

for protecting the former PKU-based isolation domains. Note that

Endokernel and Jenny provide practical security primitives that

can be used to enhance FreePart. However, to apply them, one

needs to partition the target application �rst, which may require

sophisticated data-dependency analysis. Our technique provides

a practical partitioning approach for data-processing applications

without requiring complex dependency analysis.

8 CONCLUSION

We present FreePart which mitigates the impact of vulnerabilities

in data processing frameworks onto its host applications. It lever-

ages framework-based software partitioning to identify API types

of a target program and isolate each framework API belonging to a

certain API type into a separate process. FreePart e�ectively con-

�nes the exploited execution, preventing it from escaping from each

partitioned process and damaging the system. Our experiments on

23 applications on four widely used frameworks (OpenCV, Ca�e,

PyTorch, and TensorFlow) and 18 vulnerabilities show that it e�ec-

tively prevents attacks with negligible overhead (3.68%).

ACKNOWLEDGMENT

We thank the anonymous referees for their constructive feedback.

The authors gratefully acknowledge the support of NSF (1908021,

1916499, 2145616, and 1955719), and DARPA (N6600120C4020). This

research was also supported by a Google Faculty Fellowship and

a gift from Cisco Systems. Any opinions, �ndings, conclusions or

recommendations expressed in this material are those of the authors

and do not necessarily re�ect the views of the sponsors.

REFERENCES
[1] R.P. Abbott, Lawrence Livermore Laboratory, Institute for Computer Sciences,

and Technology. Security Analysis and Enhancements of Computer Operating
Systems: The RISOS Project, Lawrence Livermore Laboratory. U.S. Department of
Commerce, National Bureau of Standards, 1976.

[2] Adam Geitgey. The world’s simplest facial recognition api for Python and the
command line, 2020. https://github.com/ageitgey/face_recognition.

[3] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. SIGPLAN
Not., 25(6):246–256, June 1990.

[4] Ionut Arghire. Serious Vulnerabilities Patched in OpenCV Computer Vision
Library, 2020. https://www.securityweek.com/serious-vulnerabilities-patched-
opencv-computer-vision-library.

[5] Octavio Arriaga, Matias Valdenegro-Toro, and Paul Plöger. Real-time convo-
lutional neural networks for emotion and gender classi�cation. arXiv preprint
arXiv:1710.07557, 2017.

[6] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
July 2018.

[7] Elias Athanasopoulos, Vasileios P Kemerlis, Georgios Portokalidis, and Ange-
los D Keromytis. Nacldroid: Native code isolation for android applications. In
European Symposium on Research in Computer Security, pages 422–439. Springer,
2016.

13

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

[8] Autoit. Autoit. https://www.autoitscript.com/site/.
[9] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex

stochastic optimization via conditional gradient and gradient updates. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, page 3459–3468, Red Hook, NY, USA, 2018. Curran Associates
Inc.

[10] Markus Bauer and Christian Rossow. Cali: Compiler-assisted library isolation. In
Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security, ASIA CCS ’21, page 550–564, New York, NY, USA, 2021. Association
for Computing Machinery.

[11] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting
applications into reduced-privilege compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation, NSDI’08,
pages 309–322, USA, 2008. USENIX Association.

[12] Ajay Brahmakshatriya, Piyus Kedia, Derrick P McKee, Deepak Garg, Akash Lal,
Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik Bhatu. Con�lvm: A
compiler for enforcing data con�dentiality in low-level code. In Proceedings of
the Fourteenth EuroSys Conference 2019, pages 1–15, 2019.

[13] David Brumley and Dawn Song. Privtrans: Automatically partitioning programs
for privilege separation. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, page 5, USA, 2004. USENIX Association.

[14] Zhe Cao, T. Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d
pose estimation using part a�nity �elds. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1302–1310, 2017.

[15] Nicholas Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

[16] cchen156. Learning-to-See-in-the-Dark. https://github.com/cchen156/Learning-
to-See-in-the-Dark.

[17] Mohamed Chaabane. Autonomous-�ight-of-the-drone-AR.Drone-1.0.
https://github.com/MedChaabane/Autonomous-�ight-of-the-drone-
AR.Drone-using-OpenCV.

[18] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. StarGAN: Uni�ed Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[19] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng,
and Xin Zheng. Secure web applications via automatic partitioning. SIGOPS
Oper. Syst. Rev., 41(6):31–44, October 2007.

[20] Chris Lattner and Vikram Adve. llvm-cov tool shows code coverage information
for programs, 2020. https://llvm.org/docs/CommandGuide/llvm-cov.html.

[21] Kenneth T. Co, Luis Muñoz González, Sixte de Maupeou, and Emil C. Lupu. Pro-
cedural noise adversarial examples for black-box attacks on deep convolutional
networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 275–289, New York, NY, USA, 2019.
Association for Computing Machinery.

[22] CVE. CVE-2017-12597. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-12597.

[23] CVE. CVE-2019-19781 - Vulnerability in Citrix Application Delivery Con-
troller, Citrix Gateway, and Citrix SD-WAN WANOP appliance, 2019. https:
//support.citrix.com/article/CTX267027.

[24] Jia Deng, R. Socher, Li Fei-Fei, Wei Dong, Kai Li, and Li-Jia Li. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 00, pages 248–255, 06 2009.

[25] Adam Doupé, Weidong Cui, Mariusz Jakubowski, Marcus Peinado, Christopher
Kruegel, and Giovanni Vigna. dedacota: toward preventing server-side xss via
automatic code and data separation. pages 1205–1216, 11 2013.

[26] Erik Linder-Norén. PyTorch implementations of Generative Adversarial Net-
works., 2020. https://github.com/eriklindernoren/PyTorch-GAN.

[27] Evan Shelhamer. Ca�e Deep learning framework. https:
//ca�e.berkeleyvision.org/.

[28] FaceBook. Facebook AI Research Sequence-to-Sequence Toolkit written in
Python., 2020. https://github.com/pytorch/fairseq.

[29] Moreno Falaschi, Maurizio Gabbrielli, Carlos Olarte, and Catuscia Palamidessi.
Slicing concurrent constraint programs. In International Symposium on Logic-
Based Program Synthesis and Transformation, pages 76–93. Springer, 2016.

[30] FreePart. FreePart Code Release, 2020. https://github.com/freepart2022/
FreePart-22.

[31] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. Enclosure: Language-based restriction of untrusted libraries. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’21, page 255–267,
New York, NY, USA, 2021. Association for Computing Machinery.

[32] GitHub. GitHub Stars, 2020. ttps://stars.github.com/.
[33] Google. Google/sandboxed-api: Generates sandboxes for c/c++ libraries auto-

matically. https://github.com/google/sandboxed-api.
[34] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. EPK: Scalable and

e�cient memory protection keys. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 609–624, Carlsbad, CA, July 2022. USENIX Association.

[35] guanshuicheng. Invoice, 2021. https://github.com/guanshuicheng/invoice.
[36] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks

Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. Clean
application compartmentalization with soaap. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, page
1016–1031, New York, NY, USA, 2015. Association for Computing Machinery.

[37] Ankit Gupta. What is OpenCV and why is it so popular?, 2019. https:
//medium.com/analytics-vidhya/what-and-why-opencv-3b807ade73a0.

[38] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process isolation
for High-Throughput data plane libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 489–504, Renton, WA, July 2019. USENIX
Association.

[39] Huadong Liao. CapsNet. https://github.com/naturomics/CapsNet-Tensor�ow.
[40] Casen Hunger, Lluís Vilanova, Charalampos Papamanthou, Yoav Etsion, and

Mohit Tiwari. Dats-data containers for web applications. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 722–736, 2018.

[41] Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo Vahldiek-
Oberwagner, and Nathan Dautenhahn. The endokernel: Fast, secure, and pro-
grammable subprocess virtualization. CoRR, abs/2108.03705, 2021.

[42] Joel Ibaceta. Video to Ascii. https://github.com/joelibaceta/video-to-ascii.
[43] Vishal Karande, Swarup Chandra, Zhiqiang Lin, Juan Caballero, Latifur Khan,

and Kevin Hamlen. BCD: Decomposing Binary Code Into Components Using
Graph-Based Clustering. In 13th ACMASIA Conference on Information, Computer
and Communications Security, Songdo, Korea, June 2018.

[44] Douglas Kilpatrick. Privman: A library for partitioning applications. In 2003
USENIX Annual Technical Conference (USENIX ATC 03), San Antonio, TX, June
2003. USENIX Association.

[45] Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and
Dongyan Xu. Dual execution for on the �y �ne grained execution comparison.
SIGARCH Comput. Archit. News, 43(1):325–338, March 2015.

[46] kuangliu. MTCNN with pyca�e. https://github.com/kuangliu/pyca�e-mtcnn.
[47] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan

Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Ldx: Causality inference
by lightweight dual execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, page 503–515, New York, NY, USA, 2016. Association for
Computing Machinery.

[48] Kyle McDonald. Real time deformable face tracking in C++ with OpenCV 3.
[49] Lindsey O’Donnell. Chinese Hackers Exploit Cisco, Citrix Flaws in Massive

Espionage Campaign, 2020. https://threatpost.com/chinese-hackers-exploit-
cisco-citrix-espionage/154133/.

[50] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general pointers
in automatic program partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2359–2371, 2017.

[51] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCa-
mant, Trent Jaeger, and Gang Tan. Program-mandering: Quantitative privilege
separation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1023–1040, 2019.

[52] Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li. Stegonet:
Turn deep neural network into a stegomalware. In Annual Computer Security
Applications Conference, pages 928–938, 2020.

[53] WJ Liu. MComix3. https://github.com/multiSnow/mcomix3.
[54] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. Thwarting

memory disclosure with e�cient hypervisor-enforced intra-domain isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, page 1607–1619, New York, NY, USA, 2015. Association
for Computing Machinery.

[55] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. Thwarting
memory disclosure with e�cient hypervisor-enforced intra-domain isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, page 1607–1619, New York, NY, USA, 2015. Association
for Computing Machinery.

[56] Logan Engstrom. Style transfer. https://github.com/lengstrom/fast-style-
transfer.

[57] lukemelas. A PyTorch implementation of E�cientNet, 2020. https://github.com/
lukemelas/E�cientNet-PyTorch.

[58] SpirosMancoridis, BrianMitchell, Yih-Farn Chen, and EmdenGansner. Bunch: A
clustering tool for the recovery and maintenance of software system structures.
04 1999.

[59] Linux manual page. Linux Programmer’s Manual dynamic linker/loader. https:
//man7.org/linux/man-pages/man8/ld.so.8.html.

[60] MComix. MComix: GTK+ comic book viewer. https://sourceforge.net/p/
mcomix/wiki/Home/.

[61] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2574–2582,

14

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

2016.
[62] Nagadomi. A Face detector for anime/manga using OpenCV, 2018. https:

//github.com/nagadomi/lbpcascade_animeface.
[63] Shravan Narayan, Craig Disselkoen, Tal Gar�nkel, Nathan Froyd, Eric Rahm,

Sorin Lerner, Hovav Shacham, and Deian Stefan. Retro�tting �ne grain isolation
in the �refox renderer. In 29th USENIX Security Symposium (USENIX Security
20), pages 699–716. USENIX Association, August 2020.

[64] Ned Batchelder. Code coverage measurement for Python, 2020. https:
//github.com/nedbat/coveragepy.

[65] OpenCV. Extra data for the OpenCV library . https://github.com/opencv/
opencv_extra.

[66] OpenCV. Test code for the OpenCV library . https://github.com/opencv/
opencv/tree/master/modules/core/test.

[67] OpenCV. OpenCV object detection example. https://github.com/
opencv/opencv/blob/master/samples/python/tutorial_code/objectDetection/
cascade_classi�er/objectDetection.py.

[68] OpenCV. OpenCV Project. https://opencv.org/.
[69] OpenCV. Performance testing in OpenCV. https://github.com/opencv/opencv/

wiki/HowToUsePerfTests.
[70] OpenCV. Samples for the OpenCV library. https://github.com/opencv/opencv/

tree/master/samples.
[71] OpenCV. Open Source Computer Vision, 2020. https://docs.opencv.org/4.1.0/

d2/d75/namespacecv.html.
[72] Linux Kernel Organization. Seccomp BPF (SECure COMPuting with �lters).

https://www.kernel.org/doc/html/v5.0/userspace-api/seccomp_�lter.html.
[73] The pandas development team. pandas-dev/pandas: Pandas, February 2020.
[74] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay

Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 372–387, 2016.

[75] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid:
Privilege separation for applications and advertisers in android. In Proceedings of
the 7th ACM Symposium on Information, Computer and Communications Security,
pages 71–72, 2012.

[76] PyTorch. PyTorch. https://pytorch.org/.
[77] PyTorch. Training a Classi�er. https://pytorch.org/tutorials/beginner/blitz/

cifar10_tutorial.html.
[78] Suriyadeepan Ramamoorthy. torchtest. https://github.com/suriyadeepan/

torchtest, 2019.
[79] Rapid7. Metasploit, 2020. https://www.metasploit.com/.
[80] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and

Dimitris Mitropoulos. Pycg: Practical call graph generation in python. In 43rd
International Conference on Software Engineering, ICSE ’21, 2021.

[81] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. Jenny:
Securing syscalls for PKU-based memory isolation systems. In 31st USENIX
Security Symposium (USENIX Security 22), pages 936–952, Boston, MA, August
2022. USENIX Association.

[82] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain keys – e�cient
In-Process isolation for RISC-V and x86. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1677–1694. USENIX Association, August 2020.

[83] Scikit-learn. Scikit-learn: Machine Learning in Python, 2020. https://scikit-
learn.org/stable/.

[84] Shreyas. OMR Checker. https://github.com/letssolvetogether/OMRChecker.
[85] SolarWinds MSP. RCE: Remote Code Execution Explained, 2019. https://

www.solarwindsmsp.com/blog/remote-code-execution.
[86] Steve Zurier. TensorFlow revokes support for YAML because of arbitrary code

execution vulnerability, 2021. https://www.scmagazine.com/analysis/devops/
tensor�ow-revokes-support-for-yaml-because-of-arbitrary-code-execution-
vulnerability.

[87] Sushant. Real-Time Facial Emotion Recognition with Convolutional Neural
Nets, 2017.

[88] Taehoon Kim. DCGAN Tensor�ow. https://github.com/carpedm20/DCGAN-
tensor�ow.

[89] TensorFlow. Tensor�ow: An end-to-end open source machine learning platform,
2020. https://www.tensor�ow.org/.

[90] The LLVM Foundation. The LLVM Compiler Infrastructure Project. https:
//llvm.org/.

[91] The Matplotlib Development team. Matplotlib - Visualization with Python, 2022.
https://matplotlib.org/.

[92] Trishume. A webcam based pupil tracking implementation., 2019.
[93] Udayraj Deshmukh. An android application for validating images of OMR

sheets before they are sent for processing, 2019. https://github.com/Udayraj123/
AndroidOMRHelper.

[94] Udayraj Deshmukh. Grade exams fast and accurately using a scanner or your
phone, 2020. https://github.com/Udayraj123/OMRChecker.

[95] Jonathan Uesato, Brendan O’Donoghue, Aäron van den Oord, and Pushmeet
Kohli. Adversarial risk and the dangers of evaluating against weak attacks. In

ICML, 2018.
[96] Ultralytics. YOLOv3 in PyTorch. https://github.com/ultralytics/yolov3.
[97] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. ERIM: Secure, e�cient in-process isolation
with protection keys (MPK). In 28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 1221–1238, Santa Clara, CA, August 2019. USENIX Association.

[98] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giu�rida. Practical context-sensitive
c�. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’15, page 927–940, New York, NY, USA, 2015. Association
for Computing Machinery.

[99] Vidita V Koushik. Uncovering critical vulnerabilities in real-time computer
vision library, OpenCV, 2020. https://www.secpod.com/blog/opencv-bu�er-
over�ow-vulnerabilities-jan-2020/.

[100] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. You
shall not (by)pass! practical, secure, and fast pku-based sandboxing. In Proceed-
ings of the Seventeenth European Conference on Computer Systems, EuroSys ’22,
page 266–282, New York, NY, USA, 2022. Association for Computing Machinery.

[101] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. Ef-
�cient software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages 203–216, 1993.

[102] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast
online object tracking and segmentation: A unifying approach. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1328–1338,
2019.

[103] JinpengWei and Calton Pu. Tocttou vulnerabilities in unix-style �le systems: An
anatomical study. In Proceedings of the 4th Conference on USENIX Conference on
File and Storage Technologies - Volume 4, FAST’05, page 12, USA, 2005. USENIX
Association.

[104] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, page 439–449. IEEE Press, 1981.

[105] YongzhengWu, Sai Sathyanarayan, RolandHC Yap, and Zhenkai Liang. Codejail:
Application-transparent isolation of libraries with tight program interactions. In
European Symposium on Research in Computer Security, pages 859–876. Springer,
2012.

[106] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically partition
software into least privilege components using dynamic data dependency anal-
ysis. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 323–333. IEEE, 2013.

[107] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically partition
software into least privilege components using dynamic data dependency anal-
ysis. In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE’13, page 323–333. IEEE Press, 2013.

[108] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. Subdomain-based
generality-aware debloating. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’20, page 224–236, New
York, NY, USA, 2021. Association for Computing Machinery.

[109] xming521. CTAI, 2020. https://github.com/xming521/CTAI.
[110] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis

Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Commun. ACM, 53(1):91–99,
January 2010.

[111] Shiqi Yu. an open source library for CNN-based face detection in images., 2020.
[112] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.

Secure program partitioning. ACM Trans. Comput. Syst., 20(3):283–328, August
2002.

[113] Weijuan Zhang, Xiaoqi Jia, Shengzhi Zhang, Rui Wang, and Peng Liu. Running
os kernel in separate domains: A new architecture for applications and os
services quarantine. In 2018 25th Asia-Paci�c Software Engineering Conference
(APSEC), pages 219–228, Dec 2018.

[114] Xiangyu Zhang and Rajiv Gupta. Cost e�ective dynamic program slicing. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, PLDI ’04, page 94–106, New York, NY, USA, 2004.
Association for Computing Machinery.

[115] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. Semantic understanding of scenes through the ade20k
dataset. International Journal on Computer Vision, 2018.

[116] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networkss. In Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.

A APPENDIX

A.1 Motivating Example Data

A.1.1 Level of Security in Table 1. In Section 3, we compare FreeP-

art to existing techniques in terms of security. We use the metric

15

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

“Security Level” in Table 1, which we de�ne as follows. Speci�cally,

we rank them from ‘Highly e�ective’ () to ‘Not e�ective’ (). The

detailed rubrics are in Table 8.

A.1.2 Performance in Table 1. In Table 9, we show the performance

breakdown of FreePart and related approaches. Speci�cally, the

overall performance presented in Table 1 is computed by consid-

ering the total runtime overhead (in seconds) shown in the third

column of Table 9. The number of IPCs and the amount of trans-

ferred data between processes are presented in the �rst and second

columns.

Data

Memory-corruption on OMRCrop is mitigated ✓ ✓ ✓ ✓

Memory-corruption on template is mitigated ✓ ✓ ✓ ✓

Memory permissions enforced to avoid unauthorized writes on OMRCrop ✓ ✓ ✓ ✓

Memory permissions enforced to avoid unauthorized writes on template ✓ ✓ ✓ ✓

OMRCrop memory is not shared with APIs ✓ ✓ ✓ ✓

template memory is not shared with APIs ✓ ✓ ✓ ✓

API

Code-rewriting attack on other API code mitigated ✓ ✓ ✓ ✓

Vulnerable imread() isolated ✓ ✓ ✓ ✓

Vulnerable imshow() isolated ✓ ✓ ✓ ✓

APIs distributed in 5 or more processes ✓ ✓ ✓ ✓

APIs isolated in individual processes (≥86 processes) ✓ ✓ ✓ ✓

Table 8: Ruberic for Level of Security of Data and APIs.

of IPC
‡

Data
#
(GB) Time

∗

(seconds) Overall
†

Code-based
API

1
169 0.1 54.3

API and Data
2

6,854 21.9 88.8

Library-based
Entire Lib.

3
12,411 0.0 54.9

Individual APIs
4

12,411 42.7 121.8

Memory-based
5

0 0.0 54.1

FreePart 12,411 0.4 55.6

‡: Total number of IPC calls. #: Total data transferred between processes. †: Overall overhead. : Low

Overhead (<10% increase). : Moderate Overhead (>50% increase). : High Overhead (>100% incr-

ease). ∗: Total time taken. 1: Code-based API isolation (shown in Fig. 2-(a)). 2: Code-based API and Data

isolation (shown in Fig. 2-(b)). 3: Library-based isolation for the entire library (shown in Fig. 2-(c)).

4: Library-based isolation for individual APIs (shown in Fig. 2-(d)). 5: Memory-based data isolation.

Table 9: Overhead of Existing Techniques and FreePart.

A.1.3 Granularity of Isolation of Existing Techniques and FreePart.

Table 10 shows the granularity of API isolation of existing tech-

niques mentioned in Section 3 and FreePart. Each value in the

table shows the number of framework APIs in each partition (or

isolated process).

A.1.4 Partitioning Beyond Four Partitions. In this section, we elab-

orate on our analysis of �ner-grained partitioning beyond the four

partitions used in FreePart. In particular, we try to reason by fur-

ther partitioning the existing four partitions, particularly the data

processing agent, which contains 74 framework APIs, as shown

in Table 10. To split the partition (with 74 APIs in data processing

APIs), there are more than 1.8e+22 ways. We tried (i.e., subsampled)

155K combinations of partitions by randomly choosing APIs for

the new partitions. To this end, we �nd an average overhead in-

crease of 16 times in the worst case. This is because there are two

frequently executed APIs: cv.rectangle and cv.putText in the

data processing agent.
10

If the new partitioning separates the APIs

into di�erent partitions, they cause signi�cant overhead.

Note that they two follow the pipeline style pattern of data

processing that FreePart leverages, avoiding such overhead.

Process Number

1 2 3 4 5 ≥ 6

Code-based
API

1
1 1 84 - - -

API and Data
2

1 1 84 0 0 -

Library-based
Entire Lib.

3
0 86 - - - -

Individual APIs
4

1 1 1 1 1 1

Memory-based
5

86 - - - - -

FreePart 3 75 6 2 0 -

1: Code-based API isolation (shown in Fig. 2-(a)). 2: Code-based

API and Data isolation (shown in Fig. 2-(b)). 3: Library-based

isolation for the entire library (shown in Fig. 2-(c)). 4: Library-

based isolation for individual APIs (shown in Fig. 2-(d)).

5: Memory-based data isolation.

Table 10: API Isolation Granularity.

A.2 Extended Design

A.2.1 Handling Complex Control Structures. There are many chal-

lenges in applying application-based partitioning to target pro-

grams because of complex control structures. We provide a few

examples of them.

Try-Catch Structure. Fig. 16-(a) shows a code snippet taken from

the readResponse() functionmentioned in Section 3 (Motivation).

Note that there is a try-catch structure that surrounds the state-

ments from lines 4 to 8. A desirable partitioning in this example is

to partition the show() function at line 8 from other statements be-

cause show() is a GUI relevant function and others (e.g., resize_-

util()) calls data processing functions (e.g., cv2.resize()).

Fig. 16-(b) shows two functions that are partitioned (partition1()

and partition2()). Lines 4∼7 are partitioned to partition1()

(lines 18∼21) and line 8 is partitioned to partition2() (line 35).

There are also IPC functions added to communicate between the

partitioned programs (lines 22∼24, 33∼34, and 36), highlighted in

gray.

Observe that the try-catch statements are copied to both par-

tition1() and partition2() (denoted by 1 and 2 respec-

tively). Otherwise, runtime exceptions in a partitioned function

will not be preserved, breaking the target program’s functionality.

10
They are used to annotate di�erent answers in an input image.

16

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 16: Challenges in Application-based Partitioning.

FreePart handles this by catching and redirecting exceptions that

happen in the framework APIs. Note that since FreePart does

not change the target programs’ code, exceptions in the target

programs’ code are not a�ected.

Loop Structure and Function Call Chain. Fig. 17-(a) shows

another code snippet from the readResponse() function which

is a for loop calling saveOrShowStacks(). Note that saveOr-

ShowStacks() should be partitioned because it can eventually

call framework APIs that belong to two di�erent API types (data

processing and Visualizing).

This example shows two challenges. First, to partition a target

function that calls framework APIs belonging to di�erent process,

one needs to analyze all the functions called in the target function

until all the framework APIs belong to a single API type, hence

single process. Second, when a target function for partitioning

is inside a loop, the partitioned code should preserve the loop

structure.

1. A function calling APIs belong to di�erent API types: Since to

partition the line 3, we analyze and partition statements in saveOr-

ShowStack(). Since resize_util() calls a data processing API

(cv2.resize()) and saveImg() invokes a storing process API

(cv2.imwrite()), we partition the second function, saveImg(),

and isolate it in another process. This is done in saveOrShow-

Stacks_partition1() and saveOrShowStacks_partition2()

(lines 21∼23 and 26∼30 respectively).

However, show() calls multiple framework APIs that belong

to di�erent API types: Visualizing (e.g., imshow()) and data pro-

cessing (resize_util()). To partition the function, one needs to

analyze statements in show() as well. show_partition3() and

show_partition4() show the resulting partitioned function.

2. Partitioning code in a loop: Note that there are two while state-

ments at lines 27 and 42 that do not exist in the original program.

Those are added because of line 2. Speci�cally, in the original pro-

gram saveOrShowStacks() is expected to be executed multiple

times (since it is in a loop), meaning that APIs called by the function

will be invoked multiple times as well. If the partitioned functions

do not have the while loop, it has to create a new process every

time, which will cause signi�cant performance overhead. The loop

essentially makes the partitioned process alive to handle multi-

ple requests if framework APIs are called in a loop in the original

program.

Observe that the analysis must remember whether a target state-

ment for partitioning might be in a loop (i.e., any callers of the

statement are in the loop). The analysis is challenging because it

needs to analyze all the caller functions of the statement. Worse, it

is more challenging if one of the callers is an indirect function call

(via a function pointer).

A.2.2 Performance. We observe that the framework instrumenta-

tion approach is resulting in less overhead as the instrumenting

of a target program often ends up creating more duplicated data

values across the processes. In typical cases, it also causes more

inter-process data transfers between the processes. While it can be

mitigated by a precise and accurate program analysis technique,

state-of-the-art program dependency analysis techniques and imple-

mentations are di�cult to handle complex real-world applications.

A.2.3 Scalability. Even if the instrumentation is possible, target

applications, in practice, are written in various languages, and it is

challenging to develop instrumentation tools for all such diverse

languages.

A.2.4 Restoring States for Restarted Agent Processes. When FreeP-

art restarts an agent process, it needs to retain states for stateful

APIs (i.e., APIs that behave di�erently depending on states stored

internally). When an agent process crashes, FreePart needs to

restore the states. We analyze the framework APIs and identi�ed

1,841 stateful APIs across four frameworks including OpenCV, Ca�e,

PyTorch, and TensorFlow. We further analyze them and identi�ed

that they are APIs for initialization, visualization (i.e., GUI), and

data processing.

• Initialization. These are APIs that are used during the ini-

tialization of the program (e.g., cv::setNumThreads). We

17

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

def saveOrShowStacks(...):

if(...):

result = resize_util(result, ...)

if (...):

saveImg(..., result)

else:

show(..., result, ...)

def show(...):

if(...):

cv2.destroyAllWindows()

...

img = resize_util(orig, ...)

cv2.imshow(name, img)

def saveOrShowStacks_part2()

while True:

IPC.waitfor(sig_part2)

IPC.dequeue(result)

saveImg(..., result)

IPC.signal(sig_part2_done)

def readResponse(...):

for i in range(...):

saveOrShowStacks(...)

def show_part4(...):

while True:

IPC.waitfor(sig_part4)

IPC.dequeue(orig)

img = resize_util(orig, ...)

IPC.enqueue(img)

IPC.signal(sig_part4_done)

def show_part3(...):

if(...):

cv2.destroyAllWindows()

...

IPC.enqueue(orig)

IPC.signal(sig_part4)

IPC.waitfor(sig_part4_done)

IPC.dequeue(img)

cv2.imshow(name, img)

def saveOrShowStacks_part1(...):

if(...):

result = resize_util(result, ...)

if (...):

IPC.enqueue(result)

IPC.signal(sig_part2)

IPC.waitfor(sig_part2_done)

else:

show_partition3(..., result, ...)

show()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Figure 17: Challenges in Application-based Partitioning.

observe that they set the state once and do not change it,

meaning that we do not need to store the states. After restart-

ing the agent process, simply re-executing the initialization

code will restore the state.

• GUI APIs. GUI APIs maintain the states for GUI compo-

nents, while those can be restored by running them again.

For example, after a visualization agent process crashed, ex-

ecuting imshow() again without restoring the GUI states

does not cause issues.

• Data processing APIs. Data processing APIs maintain the

states internally, and FreePart has to store and restore them,

otherwise, they would lead to an incorrect execution. For ex-

ample, tf.estimator.DNNClassifier.train maintains

the current state of the training data of a model. For them,

we store their states periodically. We �nd 1,056 APIs in this

category.

A.3 API Coverage

Table 11 gives the coverage of dynamic analysis on di�erent APIs.

Framework API Coverage Code Coverage

OpenCV 80.4% (424/527) 91%

PyTorch 82.8% (111/134) 84%

Ca�e 91.9% (103/112) 76%

TensorFlow 82.6% (2,236/2,704) 73%

Table 11: Coverages of Dynamic Analysis for API Categoriza-

tion.

A.4 List of Categorized APIs

In Section 4.2, Table 4 shows a few examples of framework APIs

with their categories. We list the full list of APIs on GitHub [30].

Application Lazy Data Copy Non Lazy Data Copy

Face_classi�cation 18,722 2,993

FaceTracker 252,892 5,987

Face_Recognition 22,116 8,964

lbpcascade_animeface 1,910 342

EyeLike 29,638 995

Video-to-ascii 6,788 1,997

OMRChecker 7,914 2,357

Libfacedetection 109,258 3,970

EmoRecon 43,698 2,981

OpenPose 369,822 11,958

MTCNN 1,818 202

SiamMask 20,650 111

CycleGAN-and-pix2pix 25,382 2,985

FAIESEQ 21,818 2,992

PytorchGAN 136,602 29,733

YOLO-V3 8,678 333

StarGAN 60,482 2,983

E�cientNet-Pytorch 2,668 168

Semantic-Segmentation 11,278 276

DCGAN-TensorFlow 5,255 107

See in the Dark 6,832 149

CapsNet 4,252 78

Style-Transfer 2,187 128

Total 1,170,660 (95.08%) 82,789 (4.92%)

Table 12: Statistics of Lazy Data Copy Operations.

18

FreePart: Hardening Data Processing So�ware via Framework-based Partitioning and Isolation ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

A.5 Lazy Data Copy

Table 12 shows the number of lazy data copy and non-lazy data

copy operations observed during our evaluation. As shown in the

table, the lazy data copy occupies 95.1% of the total data copy oper-

ations, meaning that it signi�cantly contributes the performance

optimization.

A.6 Additional Discussion

Handling Unauthorized Backward Data Flow. If a target ap-

plication has a complicated backward data �ow that cannot be

detected by state-of-the-art static analysis techniques, FreePart

may fail to identify them, and functionalities that depend on the

undetected backward data �owmay break. During our experiments,

we do not encounter complicated backward data �ow cases that

break our static analysis. In addition, our empirical study on 56 pop-

ular applications (mentioned in Generality paragraph) shows that

applications typically follow the unidirectional data �ow pattern.

Stateful APIs across Agent Processes. A stateful API stores its

state during an invocation (on global variables or heap bu�ers), and

the stored state a�ects the behavior of the API calls in the future

(e.g., strtok is an example). There are two types of stateful APIs:

(1) an API that does not share the state with other APIs and (2)

an API that share the state with other APIs. For the �rst type, as

long as all the API calls are made by the same process, it does not

cause any problems. For the second type, if such APIs are executed

in di�erent processes, the states will not be shared, breaking the

behavior of the target program. To ensure that this would not

happen, we run our hybrid analysis to �nd APIs that access the

same memory space (e.g., via arguments, heap bu�ers, and global

variables). To this end, we identify 4,778 and 21 APIs that belong to

the data-processing and visualization process, respectively. Among

them, we check if there are APIs sharing the states categorized

into di�erent processes. We �nd that debugging/pro�ling APIs

(e.g., tf.debugging.experimental.enable_dump_debug_info()) follow

the pattern. Note that such APIs are only reading the pro�ling

data, while other APIs write the data. Our separation essentially

separates the pro�ling data. It does not break the functionality while

the pro�ling data will be collected and reported in each process

separately.

Finer-grained System Call Restriction. Observe that our per-

agent process system call restriction might be coarse-grained if

there are many framework APIs belonging to an agent process.

For example, Fig. 12-(c) shows that 9 system calls are permitted

in the data loading agent process. In this case, if a vulnerability in

CascadeClassifier::load() is exploited, the attacker can also

access the ioctl system call while the system call is not required

for the framework API. If the restriction is applied per framework

API, the attacker has to exploit one of the two methods in Video-

Capture to access the ioctl.

However, implementing the per API system call restriction is

not trivial with seccomp. Speci�cally, FreePart uses PR_SET_-

NO_NEW_PRIVS, meaning that only one allowed system call list

can be applied for a process. Hence, to support Ĥ framework APIs

with di�erent required system calls, FreePart needs to run Ĥ

di�erent processes. For example, Fig. 12-(b) shows three frame-

work APIs that require di�erent sets of system calls. To apply

per framework API system call restriction, we need to have three

separate agent processes for each API. Unfortunately, running

each framework API in a separate process often causes a num-

ber of additional IPCs, leading to signi�cant overhead. For exam-

ple, two data loading APIs in PyTorch, i.e., datasets.MNIST and

torch.utils.data.DataLoader, are operating on the same data.

In particular, torch.utils.data.DataLoader() takes data re-

turned by datasets.MNIST()
11
. If the two APIs are executed in

separate processes, there will be an additional IPC between the two

processes. In Fig. 12-(b), the two methods of VideoCapture share

various data, meaning that running them in separated processes

would substantially increase the number of IPCs due to the shared

data.

Note that while FreePart applies the system call restriction for

each agent process, not for each framework API, it does not mean

that FreePart cannot further partition each agent process. FreeP-

art supports multiple sub-partitioned agent processes (e.g., 3 agent

processes where each of the processes runs a single framework

API in Fig. 12-(b)). An alternative can be assigning multiple closely

related framework APIs to a single agent process. Intuitively, meth-

ods of the same class share more data than methods of di�erent

classes. Hence, instead of having 3 data loading agent processes for

Fig. 12, we can have 2 data loading agent processes: the �rst process

for CascadeClassifier::load() and the second process for the

twomethods of VideoCapture. This would minimize the overhead

caused by additional IPCs while providing better security. However,

further partitioning the agent process requires manual e�ort. To

this end, FreePart allows the execution of sub-partitioned agent

processes if one manually partitions it.

Framework/Program Updates. When a target program is up-

dated, a user needs to reapply FreePart on the updated target

program and framework. If the framework is not updated and the

target program does not use new framework APIs, the reapplying

process simply inserts a few lines of code to hook data objects and

functions, which does not cause compatibility issues. If a framework

is updated, it should be analyzed again.

Impact on Timing. FreePart changes timings of execution since

the target program needs to communicate with isolated processes.

However, while it can introduce performance overhead at runtime,

FreePart does not introduce logical vulnerabilities such as TOC-

TOU (Time-of-Check to Time-of-Use) [1, 103]. Note that if a target

application already has them, FreePart may a�ect the chance of

the exploitability of the vulnerability due to the performance over-

head. In any case, the vulnerability will be contained within one

isolated process.

A.7 Additional Case Study: StegoNet Trojan
Attack

Liu et al. [52] propose an evasive attack that delivers malicious

payload in DNN (Deep Neural Network) models. The attack is

stealthy because it uses model parameters as a payload injection

channel. We decide to use this attack to show FreePart’s e�ective-

ness, particularly against the new stealthy and evasive attacks. We

use PyTorch [76] to reproduce the attack. Speci�cally, we create

a malicious DNN model containing malicious code. The model is

11
r=datasets.MNIST(...); torch.utils.data.DataLoader(r,...)

19

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yonghwi Kwon

loaded by torch.load(). Note that loading a DNN model belongs

to a Data Processing process because data processing APIs depend

on the loaded model.

Mitigation. Since the model is loaded and executed in the Data

Processing process, the malicious payload is contained. The original

StegoNet paper uses a fork bomb as an example malicious payload.

Our analysis shows that none of the data-processing APIs in the

frameworks we support requires fork(), meaning that FreePart

restricts the use of fork system call. The attack is successfully

prevented.

Mitigation on Other Applications using PyTorch. We also

pick two real-world programs to understand the e�ectiveness of

FreePart in mitigating StegoNet attacks. Speci�cally, we pick a

program that analyzes a medical image (i.e., CT image [109]) and

another program that does OCR (Optical Character Recognition)

on the tax invoices [35].

The �rst program contains several sensitive pieces of informa-

tion: the patient’s CT image, name, age, and phone number. With

FreePart, the patient’s name, age, and phone number exist in the

target process. The patient’s CT image exists in the data loading pro-

cess. However, the data loading process does not store previously

loaded CT images, meaning that it does not contain other users’

CT images. Exploitations can happen in both data loading and data

Processing processes. However, as discussed above, sensitive data

are not accessible.

The second program contains tax images and personal informa-

tion extracted from the image, such as an address, taxpayer ID, and

bank account number. Similar to the �rst program, input images

exist in the data Loading process. However, it only has the currently

processed image. Moreover, all other sensitive data exist in the tar-

get program process, which is not accessible from the data loading

and data processing processes, where exploitations can happen.

20

	Abstract
	1 Introduction
	2 Threat Model
	3 Motivating Example
	3.1 Existing Techniques
	3.2 Exploit Mitigation by FreePart

	4 Design
	4.1 Studies for FreePart's Design
	4.2 Automated API Type Categorization
	4.3 Framework Hook and Agent Process Creation
	4.4 Runtime Support

	5 Evaluation
	5.1 API Type Categorization Result
	5.2 Runtime Performance Overhead
	5.3 Security Analysis on Attack Scenarios
	5.4 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 Motivating Example Data
	A.2 Extended Design
	A.3 API Coverage
	A.4 List of Categorized APIs
	A.5 Lazy Data Copy
	A.6 Additional Discussion
	A.7 Additional Case Study: StegoNet Trojan Attack

