FREEPART: Hardening Data Processing Software via
Framework-based Partitioning and Isolation

Ali Ahad Gang Wang Chung Hwan Kim
University of Maryland University of Illinois at University of Texas at Dallas
College Park, MD, USA Urbana-Champaign Richardson, TX, USA

aahad@umd.edu Urbana, IL, USA chungkim@utdallas.edu
gangw@illinois.edu
Suman Jana Zhiqiang Lin Yonghwi Kwon
Columbia University Ohio State University University of Maryland
New York, NY, USA Columbus, OH, USA College Park, MD, USA
suman@cs.columbia.edu zlin@cse.ohio-state.edu yongkwon@umd.edu

ABSTRACT

Data processing oriented software, especially machine learning
applications, are heavily dependent on standard frameworks/li-
braries such as TensorFlow and OpenCV. As those frameworks
have gained significant popularity, the exploitation of vulnerabili-
ties in the frameworks has become a critical security concern. While
software isolation can minimize the impact of exploitation, exist-
ing approaches suffer from difficulty analyzing complex program
dependencies or excessive overhead, making them ineffective in
practice.

We propose FREEPART, a framework-focused software partition-
ing technique specialized for data processing applications. It is
based on an observation that the execution of a data processing
application, including data flows and usage of critical data, is closely
related to the invocations of framework APIs. Hence, we conduct
a temporal partitioning of the host application’s execution based
on the invocations of framework APIs and the data objects used by
the APIs. By focusing on data accesses at runtime instead of static
program code, it provides effective and practical isolation from the
perspective of data. Our evaluation on 23 applications using pop-
ular frameworks (e.g., OpenCV, Caffe, PyTorch, and TensorFlow)
shows that FREEPART is effective against all attacks composed of 18
real-world vulnerabilities with a low overhead (3.68%).

CCS CONCEPTS

« Security and privacy - Software security engineering.

KEYWORDS

Software Isolation; Software Partitioning; Data Processing Frame-
works
ACM Reference Format:

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhiqiang Lin, and Yon-
ghwi Kwon. 2023. FREEPART: Hardening Data Processing Software via

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0394-2/23/03.

https://doi.org/10.1145/3623278.3624760

Framework-based Partitioning and Isolation. In 28th ACM International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, Volume 4 (ASPLOS °23), March 25-29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/
3623278.3624760

1 INTRODUCTION

Data processing software, particularly machine learning and image
processing software, are widely used to support critical systems in
practice. These programs are heavily dependent on data processing
frameworks and libraries. For example, OpenCV [68], an open-
source computer vision toolkit, has over 18 million downloads and
is widely used by real-world systems [37]. Machine learning based
applications also rely on a few well-known frameworks such as
PyTorch [76], Caffe [27], TensorFlow [89], and Scikit-learn [83].
The wide adoption of these frameworks leads to an unfortunate
consequence that vulnerabilities in them could significantly impact
the host applications [23, 49, 85, 86, 99]. In particular, software
vulnerability is one of the critical attack surfaces as it can affect the
entire host application’s memory (i.e., code and data). Compared to
the vulnerabilities in ML models/data that affect the decision made
by the framework, software vulnerabilities can allow attackers to do
almost anything. For instance, software vulnerabilities in OpenCV
are often considered to have a high security severity as they can
affect various critical systems using OpenCV [4], regardless of
algorithms and models used by the host application.

Software Isolation and Limitations. Software isolation [13, 50,
51, 106] can mitigate the exploitation of vulnerabilities by parti-
tioning software into multiple parts and executing each part in a
separate and isolated process or using intra-process isolation tech-
nique [41, 97]. With the technique, the impact of the exploitation
of a vulnerability is confined to an isolated partition so that the rest
of the program is protected.

However, those approaches suffer from limited security for crit-
ical data or APIs, runtime performance overhead, and/or require
accurate dependence analysis (otherwise breaking the program’s
functionalities). This is because, in part, program code and data
that need to be partitioned are intertwined.

Observations. We observe that the execution and data accesses of
data processing software are tightly correlated to the framework
APIs invoked. In other words, the invocation of framework APIs

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

at runtime depicts the program execution’s temporal progress, im-
plying what data to be read or written at a certain point of the
execution. For example, a program first executes data loading APIs
to load the input data, followed by a series of data pre-processing
tasks. It then calls data processing APIs (e.g., ML algorithms), fol-
lowed by the data interpretation/post-processing logic. Finally, data
visualization/storing APIs are called to present or save the results.
Framework-based Execution Partitioning. Based on the ob-
servations, we propose a program partitioning/isolation technique
from the perspective of framework APIs’ execution and correlated
data. Specifically, we categorize the APIs into four types reflecting
their high-level purposes, following a typical workflow of a data-
processing application: loading, processing, visualizing, and storing
APIs. Then, we execute each type of framework API on a separate
and isolated process. We track which type of API is executed to
infer the permission of the critical data. Lastly, we restrict the priv-
ileges of each process by only allowing necessary system calls for
framework APIs.
Challenges. We solve three major challenges. First, we conduct
a systematic analysis to support our design of framework-based
partitioning and isolation (e.g., four types of framework APIs in Sec-
tion 4.1). Second, we develop dynamic and static analysis techniques
to automatically categorize hundreds of framework APIs based on
their data dependency patterns. task (Section 4.2). Third, we reduce
the runtime performance overhead caused by inter-process commu-
nications by enabling direct data sharing between the partitioned
processes via the lazy data copy technique (Section 4.3.2).

Our major contributions are summarized as follows:

o We propose a framework-based execution partitioning and isolation
approach and carefully design and implement a proof-of-concept
system, FREEPART.

e We develop (1) a hybrid profiling technique to automatically
categorize framework APIs and (2) a lazy data copy technique to
reduce the performance overhead.

o We apply FREEPART to four widely used data processing frame-
works (OpenCV, Caffe, PyTorch, and TensorFlow), that demon-
strate the generality of our approach.

o We evaluate FREEPART’s performance on 23 applications and at-
tacks composed of 18 real-world vulnerabilities from Common
Vulnerabilities and Exposures (CVEs). FREEPART effectively pre-
vents all the attacks with a low runtime overhead (3.68%).

2 THREAT MODEL

We assume an attacker who exploits a software vulnerability in a
target data processing framework, such as TensorFlow or OpenCV.
The attacker invokes a framework API with a maliciously crafted
input to exploit a vulnerability, such as a memory corruption vul-
nerability. Note that while such a vulnerability exists within a
framework API, an attacker can exploit it to disrupt the entire host
application due to the lack of isolation between the framework and
application. For example, by exploiting it the attacker may execute
malicious code in the host application process, to corrupt critical
data, or crash the host application process for a denial-of-service
attack. We do not assume attackers can compromise the underlying
system software such as the operating system, as we rely on the

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

The exploit can access and corrupt all the critical data
residing within the same process.

Exploiting
an out of bound

(
i Data (Variables) OpenCV | write vulnerability
| - = (CVE-2017-12597)
| [E|l OMR imread() @ N ;

i =V images

| morphologyEx ()

:___> goo Template

888 pata findContours()

erode()

imshow() 1 ... Attacker

Answers
Exploiting DoS
(Denial-of-Service)

i E] Grades
vulnerability

(a) OMRChecker Process: Exploitation Scenario

1]

‘eBEEEED

e
(

2

5 PEE i O
@@ @

so@EE@En

(b) Template (Original) (c) Template (Corrupted)

Figure 1: Attack Scenario of the Motivating Example.

isolation of processes enforced by the OS kernel. We also trust our
runtime support as it is protected via the OS kernel.

Scope. Attacks that exploit a host application’s vulnerability (not
the framework’s vulnerability) are outside of our scope. Attacks tar-
geting machine learning (ML) algorithms (e.g., adversarial example
attacks [6, 9, 15, 21, 61, 74, 95] that exploit the lack of robustness in
ML algorithms) are also out of scope as it is an orthogonal problem
to our approach.

3 MOTIVATING EXAMPLE

We show how FREEPART prevents vulnerabilities in the OpenCV
framework [68] from corrupting critical data in a host application,
OMRChecker [94] (auto-grader)l. It scans input OMR (Optical Mark
Recognition) images using OpenCV, computing scores by compar-
ing the recognized answers with the teacher’s master answer. It
grades multiple submissions and writes the results (e.g., scores) to
a .csv file.

Attack Scenario. A teacher uses OMRChecker [94] to grade mul-
tiple OMR images submitted by students, to obtain an output .csv
file containing answers and scores recognized from the submis-
sions. An attacker (e.g., a malicious student) provides a maliciously
crafted image that exploits a vulnerability [22] in imread () (an
OpenCV API, @) to manipulate the grading process as shown
in Fig. 1-(a) (@). Specifically, template.QBlocks.orig variable
in OMRCheck (@) that defines the coordinates of answer mark
areas in the submission image, represented as red boxes in Fig. 1-
(b). The attacker exploits the vulnerability to corrupt the values
of template.QBlocks.orig, changing the coordinates as shown
in Fig. 1-(c), making the program incorrectly recognize students’
responses (e.g., all the images’ answer B will be considered as answer

"Note that there are variants [84, 93] of OMRChecker (and one of them are registered
in Google Play), sharing the same vulnerability.

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

(a) Code based
API Isolation

(b) Code based

API and Data Isolation (for the entire library)

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

C
OMRCrop inread() (A) > - OMRCrop OMRCrop imread() (A) imshow()

S i e
imread() @ — S [Host App. Code] [Host App. Code] T:’ ¥ §
o) (NG| [i N

P — < | s
IR 5 ~ T T i
inshow() Host App. Code » OMRCrop imread() @ T < -
- LA i
imread() @ : v < 7
Host App. Code Other APIs i » template OMRCrop)
imshow() i {
OMRCrop Host App. Code Writable before | Writable during
— Data Processin data loading APIs | data loading APIs }
template _ Other APIs II Readonly Readonly
_OMRCrop during/after during/after
Other APIs Other API data loading APIs | data processing APIs
Host App. Code template v '
- [Host App. Code]

(c) Library based Isolation (d) Library based Isolation “
(for individual API5s)

(e) Isolation by FreePart

*(1) Q and @represem vulnerabilities. (2) Red background processes mean that they are vulnerable. (3) Memory-based technique is omitted as it does not partition the process.

Figure 2: Illustrations of Existing Techniques on the Motivating Example.

A). In addition, the attacker exploits a vulnerability in imshow ()
(@) to crash the application (@).

Goal. We aim to prevent the exploitation of the two OpenCV APIs
imread () (@) and imshow () (@) from affecting two critical vari-
ables template (coordinates of the answer marks) and OMRCrop
(the input OMR image).

3.1 Existing Techniques

There are three types of existing techniques: code-based, library-
based, and memory-based isolation techniques. We illustrate how
they would partition the program in Fig. 2-(a)~(d) for the motiva-
tion example (except for the memory-based technique that does
not partition a program). Table 1 summarizes the effectiveness of
existing techniques2 and FREEPART.

e Code-based API Isolation [44] (Fig. 2-(a)) isolates APIs (but
not data) by partitioning the host application’s code. For our ex-
ample scenario, there are three isolated processes. The first pro-
cess runs the initialization code (i.e., loading the template) and
imread (). The second process executes imshow (). The third
process runs the remaining APIs. Note that it requires users to
manually annotate how to partition the program and what or
where should the policies be applied, leading to unsystematic
and ineffective protection. For example, the process running im-
read () also includes the template variable without protection,
allowing the memory corruption attack, as shown in Fig. 1 (@).
Worse, it breaks the host application’s functionality as the iso-
lated imshow () creates a GUI window, stored in a global variable,
which is not accessible by APIs in other processes.

e Code-based API and Data Isolation [13, 106] (Fig. 2-(b)) iso-
lates APIs and data by partitioning the host application’s code.
Note that they require an accurate dependency analysis technique
with annotations of variables from the user (e.g., PtrSplit [50],
PM [51] or SOAAP [36]) to effectively partition APIs and vari-
ables. Then, the partitioned variables and code are isolated in

*We focus on the isolation/partitioning mechanism of existing techniques. Our example
does not necessarily represent the full capability of them.

separate processes automatically. In this example, there can be
5 processes: 3 processes for isolating APIs (same as Fig. 2-(a))
and 2 processes to isolate OMRCrop and template, respectively.
While it protects the data better than the code-based API isola-
tion, it incurs non-trivial overhead due to the frequent access of
the isolated template and OMRCrop in hot loops, causing a lot
of IPCs (e.g., more than 800 for each sample input). Note that
[13, 106] aim to isolate privileged data (e.g., secret keys) that are
not frequently accessed, different from our scenario.
Library-based Isolation for Entire Library [10, 33, 63, 105]
(Fig. 2-(c)) separates the host application’s execution from the
library’s execution. It requires users to annotate library APIs’
invocation sites, while it does not require sophisticated depen-
dency analysis, making it more practical than other techniques.
They run the entire library code in a single process. However,
since all the library APIs exist in a single process, once an API
is exploited, other APIs can be compromised, leading to data
corruptions handled by the compromised APIs. For example,
warpPerspective () returns a transformed image of an input
image. If corrupted, it can manipulate transformed images that
are input for other APIs, such as morphologyEx (). Moreover,
[10] further reduces the overhead caused by IPCs by sharing vari-
ables via shared memory (i.e., no IPCs for OMRCrop). However, it
requires sophisticated data-dependency analysis and makes the
shared variables vulnerable.

Library-based Isolation for Individual API [31] (Fig. 2-(d))
also separates the host application’s execution and every library
APTI’s execution. Additionally, each API is isolated in a separate
process, making it more secure than the former approach. Un-
fortunately, it incurs significant runtime overhead due to IPCs
on every API call. The entire data of the API's arguments are
transferred between processes on each API call. For instance, to
process an image (1.7 MB) in our motivation example, there are
203 inter-process data transfers for 355 MB.

Memory-based Isolation [11] protects the critical variables by
assigning memory access permissions (e.g., read-only). It requires
sophisticated data dependency analysis to ensure the correctness

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

Level of Security prevented Isolated APIIsolation Granularityﬂ #of
7 + § P : Performance’
Data APIs Attacks CVEs o Min Max Processes
Apr! o o /C/D 1 479 1 84 3 °
Code-based)
API & Datal [Qo M/C/D 2 37.3 0 84 5 @
Entire Library” o o) /</D 0 60.8 0 86 2 °
Library-based ——————————
Individual APIs [[M/C/D 2 0.1 0 1 87 O
Memory—based5 ® (@) M/&/ 0 = 86 86 1 ()
FREEPART ® ® M/C/D 2 324 0 75 5 [J

@ : Highly effective. ® : Mostly effective. @ : Less effective. O : Not effective. (Each level elaborated in Section A.1.1) *: Level of security in
protecting data. #: Level of security for APIs’ execution. {: Three types of attacks: M for the memory corruption attack on critical data, C for
the program code (i.e., API function’s code) manipulation (i.e., code rewriting) attack, D for the denial of service attack by crashing the
application. Crossed-out letters (e.g., # and €) mean that it failed to prevent the attacks. §: # of APIs with CVEs isolated. : Granularity of
processes w.r.t the # of APIs (Details in Section A.1.3). 1+: Standard deviation of isolated APIs in different processes. %: # of processes required.
99: Level of performance (Details in Section A.1.2). 1: Code-based API isolation (shown in Fig. 2-(a)). 2: Code-based API and Data isolation
(shown in Fig. 2-(b)). 3: Library-based API isolation (shown in Fig. 2-(c)). 4: Library-based API and Data isolation (shown in Fig. 2-(d)).

5: Memory-based data isolation. Green, orange, and red background colors indicate desirable, moderate, and undesirable respectively.

Table 1: Effectiveness of Existing Techniques and FREEPART.

in memory protection. It does not create additional processes
for isolation. However, since APIs’ execution is not isolated, a
denial-of-service attack is possible. Also, it does not protect APIs
from being compromised.

FREEPART. We provide practical solutions for protecting
data and APIs with low overhead. It is based on frame-
work API-based partitioning and isolation with temporal
memory access permission enforcement via framework API
invocations.

3.2 Exploit Mitigation by FREEPART

Fig. 2-(e) shows how FREEPART partitions the host program in the
motivation example. There are 5 processes where 4 processes run
each of the different types of framework APIs. The vulnerabilities
(@) and @) reside in two different processes. The last process
contains the two critical data to be protected and FREEPART controls
the memory access permissions to prevent data corruption from
the exploit. Note that the last row of Table 1 shows the performance
of FREEPART.

Framework API Categorization and Isolation. FREEPART runs
4 different types of APIs (e.g., data loading, data processing, vi-
sualizing, and storing) separately so that the exploitation of each
type’s APIs is confined within an isolated process. In this example,
we categorize 86 APIs as shown in Table 2. We present how we
decide the four API types in Section 4.1 and how we automatically
categorize them in Section 4.2. Fig. 2-(e) shows that @) and @) are
isolated in separate processes.

Data Protection via Temporal Partitioning. Fig. 3 shows how
FREEPART monitors API calls at runtime and changes the access
permissions of the data. The x-axis represents the time of the exe-
cution. The ‘Framework State’ row shows how FREEPART maintains
the current state of execution based on API calls: the initial state is

Type # APIs Examples of APIs

Data Loading 3 cv2.imread(), pd.read_csv()l, json.load()1
Data 75 cv2.GaussianBlur (), cv2.erode (), cv2.Canny(),
Processing cv2.warpPerspective(), cv2.morphologyEx (), ...
Visualizing 6 cv2.imshow(), cv2.moveWindow(), plt.show() 1,
Storing 2 cv2.imwrite(), plt.savefig()’

1: Those framework APIs of pd (pandas [73]), json, and plt (Matplotlib [91])
require our hybrid analysis to categorize them.

Table 2: Framework APIs Categorized for the Motivating
Example.

! “template” variable is Both variables

Exploitation P readonly (protected) D are readonly
A OMRCr
£ § Readonly [V (:op]
S8 template J
S 3 :
& Writeable template OMRCrop j

Framework State | Initialization

Data loading lData processing lVisualizing ’

= e e

template

Figure 3: Timeline of API Calls and Data Protection.

time

API invocation

Variables defined
(i.e., written)

“initialization,” and the state changes on a framework APT’s call. For
example, a call of imread () (a data-loading API) changes the cur-
rent state to data loading. Similarly, calling a data processing API,
e.g., GaussianBlur (), changes the current state to data processing.
As the state changes, FREEPART changes the access permission of
the variables defined in the previous state to readonly. Note that
we require users to define the memory layout of a customized data
structure (e.g., buffer location and size of ‘template’) to set the
memory access permissions.

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

80 e e e e e e e e e s s o a
— —0—0—0—0—0—0—0—0—00—00
=70 ‘
g + ‘ 1.4x increase in overhead.
£ 60
50 + T T T

456789 14 19 24
Number of Partitions

Figure 4: Average Runtime for Different Number of Parti-
tions.

Mitigation of Memory Corruption and DoS. Fig. 2-(e) shows
that the vulnerable function imread() is executed in a separate
process (i.e., data loading process), protecting the template vari-
able from being corrupted. Denial-of-service (DoS) attacks by @3
and @) are mitigated as they only crash the data loading and visu-
alizing processes, respectively. In addition, as shown in Fig. 3-@,
FREEPART makes the template variable readonly on and after the
imread () call, protecting the variable.

Mitigation of Code Manipulation. Code manipulation (e.g., code
rewriting) requires a malicious payload to change the memory
permission via system calls such as mprotect (). It is mitigated as
FREEPART only allows system calls required for framework APIs
isolated in each process. Note that each isolated process runs the
same type of framework APIs (typically requiring a similar set of
system calls), enabling the effective system call restriction.’
Choice of Four Partitions. While increasing the number of parti-
tions (i.e., fine-grained partitioning) may increase security, it would
incur performance overhead. To understand the trade-off of the
security and performance regarding the partitions, we conduct ex-
periments for a different number of partitions. From the 4 partitions
(i.e., data loading, data processing, storing, and visualizing), we try
to increase the number of partitions from 4 to 25, resulting in more
than 155K combinations. Specifically, there are 23 APIs and we cre-
ate 7,750 different partitions (randomly created) for each number
of partitions from 5 to 25.

Fig. 4 shows that the average overhead increases 1.4 times when
the number of partitions is increased from 4 to 5. This is because
there are two functions, i.e., cv.rectangle and cv.putText (both
without CVEs), in hot-loop (i.e., frequently executed), sharing a
substantial amount of data. When they are separated into different
partitions, a substantial overhead occurs. Note that the two APIs
in this example do not have known vulnerabilities, meaning that
the finer-grained partitioning does not offer better security in this
example practically. We elaborate on more details in Section A.1.4.

4 DESIGN

Workflow. As shown in Fig. 5, FREEPART takes the source code
of the target host program and the frameworks used by the host
program. It first gets a list of all the framework APIs used in the
program. Then, it runs a hybrid analysis (i.e., static and dynamic
combined) to categorize framework APIs. Finally, we hook the
identified framework APIs and objects used in the APIs at runtime

3Techniques running APIs and the application code together (Fig. 2-(a)~(b)) or diverse
types of APIs together (Fig. 2-(c)~(d)) require diverse system calls to be allowed, making
system call restriction ineffective.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Data Loading Data Processing Visualizing Storing

Name
Avg' M2 TP Avg' M T Avg ME T A M OT
OpenCV 0.6 1 1 0.2 1 1 0 0 0 0 0 0
TensorFlow 0.3 2 2 2.3 12 24 0 0 0 0 0 0
Pillow 0.4 2 2 0 0 0 0.5 1 1 0 0 0
NumPy 0.1 1 1 0.4 1 1 0 0 0 0 0 0
Total 1.4 5 6 29 14 26 0.5 1 1 0 0 0

1: Average # of vulnerable APIs in a single application. 2: Maximum # of vulnerable APIs
in a single application. 3: Total # of vulnerable APIs across all 56 applications.

Table 3: Categorization of Vulnerable APIs in 56 Applications.

to implement communications between the isolated processes and
enforce the protections.

4.1 Studies for FREEPART’s Design

We present two studies that obtain insights for designing our
framework-based partitioning and isolation.

Study 1: Usage of Framework APIs. We manually analyze 56
popular programs (selected by the number of stars of their GitHub
repositories) using data processing frameworks to check whether
the execution of framework APIs can be used to infer temporal par-
titions for the isolation. As shown in Fig. 6, we observe that all the
analyzed applications follow the data loading, data processing, and
visualizing or storing workflow.” Specifically, a program typically
loads an input file, runs an algorithm on the data, and then presents
visualizations or stores the results in files. Some programs, such as
video processing programs, repeat the data loading and processing.
Note that an output of a component is an input of the next compo-
nent, and the next component only reads the input, supporting our
data protection via temporal partitioning.

The pipeline style pattern of framework APIs’ execution moti-
vates the framework-based API partitioning. The observation
that components only read the input motivates us to make
the memory of the previous component readonly when a new
type of framework API is called.

Study 2: API Types and Vulnerabilities. We study 241 publicly
available CVEs (from August 2018 to February 2022) related to data
processing frameworks: TensorFlow (172 CVEs), Pillow (44 CVEs),
OpenCV (22 CVEs), and NumPy (3 CVEs). For each CVE, we identify
which task in Fig. 6 triggers or is being affected by the vulnerability.

Fig. 7 shows the categorized result with types of vulnerabilities
(e.g., DoS and unauthorized file/memory access). Vulnerabilities
exist across all the API types, while the majority of them are in the
data loading and data processing APIs. To better understand the
security implications of the vulnerabilities, we investigate them
further. First, we find vulnerabilities in utility functions such as
CVE-2019-16249 and CVE-2019-15939 can be exploited during the
execution of multiple types of APIs, potentially affecting multiple
processes. Second, we realize that even if there are many vulnerable
APIs in a particular API type, each application only uses a few of
them (e.g., data processing type uses 2.9 vulnerable APIs on average).

*Note that programs without GUI may not use visualizing APIs

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Framework API API Type
= Identification + Categorization
(Section 4.2)

APIsused by ~ Framework

Host Program
the Host Program Source Code

Source Code

A J

(Section 4.3)

Analysis (Offline)

Framework Hook and
Agent Process Creation

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

@ : . Runtime Execute @
Categorized APIs Support feees > oo
7| (Section4.4) | Monitor »m
— and H |
> | @ Lo ost i
+ f restart . program ~|

Hooked Host Program Process A 5
and Agent Processes gent Processes

Runtime (Online)

Figure 5: Workflow of FREEPART (From the Offline Analysis to the Online Runtime Enforcement).

ata in Memory

A
i Slona : 01#
Data Loading ——#1010k——>»| Data Processing |——»1010
(e.g., Reading ololo (e.g., Running 01010

Input File. Input Files) Algorithms) Processed Data
(e.g., Image files) (e.g., Buffer) in Memory

[\
A

Data Visualizing | T Data Storlng I]

(e.g., Displaying = (e.g., Writing

Processed Data, ! Processed Datato | Processed

Plotting) Data on GUI Files) Data in Files

Figure 6: Pipeline Pattern of Data Processing.

59 54
601 :
=
550
20 1
*10 4 11111 3 1111
0 - ‘
g = 5 g = =
5 | § z 5 | § 2
o = e} = =1
5 5
= = =

Data Loading Data Processing

Storing | Visual.

m Unauthorized memory read
m DoS (Denial of Service)

Unauthorized memory write
m Unauthorized file read

Figure 7: CVEs Categorized by Types of Vulnerabilities.

In other words, for individual applications, we only need to isolate
the vulnerable APIs actually used, instead of vulnerable but unused
APIs. Table 3 shows how many vulnerable APIs are used in the
56 applications in our study. Observe that each data loading or
processing agent process only includes 2~3 vulnerable APIs on
average.

Our study on the CVEs shows that vulnerabilities are all
across the four types of APIs. In addition, for a single applica-
tion, there is only a handful of vulnerable APIs in each agent
process as shown in Table 3.

4.2 Automated API Type Categorization

We develop a hybrid analysis (i.e., static and dynamic analyses
combined) to automatically categorize framework APIs based on the
data flow patterns during the execution due to the large number of
APIs (e.g., OpenCV and Caffe have 1,405 APIs [71] and 224 APIs [27]
respectively).

Definitions. To facilitate discussion, we introduce a few formal
definitions describing operations that cause data transfers in Fig. 8.
Data read and write operations are modeled by R(Sg.) and W(Sgsz,

Sast = R(src) | W(SdAtS src)

Operation O =
= MeM | Gur | FILE | DEV | .

Storage S

Figure 8: Definitions for Data Flow Patterns.

Ssre), with Sg. and Sgs: holding the definition of data source and des-
tination, respectively. Storage S defines the origins of data. Specifi-
cally, MEM represents the memory, GUI means variables and objects
that are relevant to GUI (Graphical User Interface): g_windows
and cvNamedWindow (). FILE and DEV represent a file (in the file
system) and a device such as a camera, respectively.

Data Processing APIs Visualizing APIs

Data Loading
APIs

Storing APIs

GUI Objects/Meiﬁods |

‘ Storage/Dcvncc

(e.g., files and camera) Memory

Figure 9: Patterns of Dependencies for Framework APIs.

4.2.1 Data Flow Patterns. Fig. 9 shows data flow patterns that
correspond to the four different types of framework APIs.

@ Data Loading APIs: If an API uses system calls to load data from
storage or devices (e.g., retrieving an image from a camera) to
memory, it is categorized as the data loading API. Hence, APIs
containing “W(MEM, R(FILE or DEV))’ operations are the data
loading type.

@ Data Processing APIs: Most APIs running algorithms are only
reads/writes memory is categorized as the data processing type.
APIs that have “‘W(MEM, R(MEM))’ operations but not others are
the data processing type.

© Visualizing APIs: Visualizing APIs display the content to the
user (e.g., imshow ()). We identify them by detecting APIs that
access the GUI-relevant objects (e.g., g_windows). Specifically,
APIs that have one of the following operations are categorized
as the visualizing type: ‘W(cur, R(MEM))’, ‘W(MEM, R(GU1))’, and
‘R(cur)”.

@O Storing APIs: An AP that stores data to the storage or device
(i.e., W(FILE or DEV, R(MEM)) operation) is categorized as the
storing type.

Memory Copy via Files. APIs can use storage as a space to copy

data. For instance, tf .keras.utils.get_file() in TensorFlow

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

consists of three operations: (1) downloading from the network
(MEMpyf1 = R(DEV petwork)), (2) storing the downloaded data to a file
(W(FILEyp, MEMpyf1)), and (3) reading the file content to a buffer
(MEMpyf2 = R(FILE}p)). The file operations on FILEy,, are to pass
the data from MEMpyf; to MEMpyp. Hence, we reduce the operations
to “MEMpyf=R(MEMp,f1)”, making it a data loading APL

4.2.2 Hybrid Analysis. FREEPART runs a static analysis first to iden-
tify the data flow pattern in a framework API. To handle data flows
missed by static analysis (e.g., APIs having dynamically allocated
objects and indirect calls), we use dynamic analysis.

Static Analysis. We identify system calls that read/store data (e.g.,
read() and write()) to indicate the data flows between stor-
age/devices and the memory. For memory reads/writes, we focus
on assignment statements (e.g., ‘x = y’). APIs that do not have data
loading/storing system calls are categorized as data processing APIs.
For visualizing APIs, FREEPART searches statements or functions
accessing GUI objects or invoking GUI relevant functions. Note
that our static analysis might have false positives and negatives
due to language constructs such as indirect calls and pointers. To
solve the problem, we use dynamic analysis.

Dynamic Analysis. We obtain test cases based on frameworks’
examples and test cases [27, 69, 77, 78], covering most of the APIs’ in
the framework (Table 11 in Appendix A.3). We measure the test runs’
code coverage by using Coverage.py [64] and llvm-cov [20]. For
programs that require user interactions, we use Monkey Tools [8] to
randomly generate user interactions. Table 4 shows a few examples
of the framework APIs with categories (More APIs can be found in
Appendix A.4).

Type Functions / Classes

1

DL imread(), cvLoad (), VideoCapture (), readOpticalFlow(), ..
(>) DP? CascadeClassifier(), cvtColor(),equalizeHist(), ...
éﬁm v setWindowTitle(), getMouseWheelDelta(), imshow(), ...
4 imwrite(), writeOpticalFlow(), VideoWriter(), ..
DL' ReadProtoFromTextFile(), ReadProtoFromBinaryFile(), ...
% DP’ Forward(), Backward(), CopyTrainedLayersFrom(), ...
“ st hdf5_save_string(), WriteProtoToTextFile(), ...

DL' load(),hub.load(),utils.model_zoo.load_url(), ..

argmax (), tensor (), nn.Conv2d(), combinations(), ...

save (), utils.tensorboard.writer.SummaryWriter(), ..

image_dataset_from_directory(),utils.get_file(), ..

nn.conv3d(), nn.avg_pool(), nn.max_pool(), ...

TensorFlow | PyTorch
o
=

preprocessing.image.save_img(), Model.save_weights(), ..

* Caffe, PyTorch, and TensorFlow do not have visualizing type APIs hence omitted.
1: Data Loading. 2: Data Processing. 3: Visualizing. 4: Storing.

Table 4: API Type Categorization Example.

Execution Partitioning with Framework APIs. With the cat-

egorized APIs, FREEPART partitions the execution of the host ap-
L s 6 o

plication and enforces memory permissions . Fig. 10-(a) shows

>Note that the APIs that are not covered by our test cases (i.e., outside of the ‘most’

APIs) are not used by any of our evaluated programs in Section 5.
*We leverage mprotect () to change memory permissions.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

a slightly modified version of a facial recognition program [67]
which is the host application. It initializes a VideoCapture object
to read image frames from a camera (line 1) and a classifier for
facial recognition (line 3). It also loads user profiles that contain
personal information related to the facial recognition models (line
4). The program starts a loop that fetches frames from the camera
(line 5). For each frame, it runs the facial recognition algorithm
(cascade.detectMultiScale()) (lines 7~10). At line 12, it sends
out the detection results to another server. Finally, it shows the
current frame on the screen (line 14) and writes the current frame
to a file if the ‘s’ key is pressed (line 16). The program terminates if
the ‘q’ key is pressed (lines 17~19).

Framework APIs with the same type are grouped and annotated

by the circled letters:), @, @, and @) for the data loading, data
processing, storing, and visualizing respectively. Fig. 10-(b) and (c)
are the modified source code of the library interface and implemen-
tation of the agent process.
Type-neutral Framework APIs. We observe that there are frame-
work APIs that do only memory-to-memory operations and are
frequently used together with different types of APIs. Unfortu-
nately, when such two APIs with different types also share the data,
it may cause substantial overhead via IPCs between the agent pro-
cesses. For instance, cvtColor () is a data processing API which
is frequently used together with detectMultiScale() (object de-
tection algorithm; data processing API) to create a gray scale image
and imshow() (a visualizing API). Utility APIs such as cvCre-
ateMemStorage () and cvAlloc() are also used together with
different types of APIs. Since their semantics are dependent on the
calling context, we consider the type of such APIs is also flexible
or neutral. To this end, we call them type neutral APIs, and their
types are determined by the types of other APIs used together. To
this end, we run them in an existing agent process together. For
example, if cvtColor() is used right after the data loading pro-
cess API imread (), we run the cvtColor () on the data loading
agent process. Similarly, if cvtColor () is used in the middle of
the data processing APIs (e.g., GaussianBlur ()), we run it in the
data processing agent process.

4.3 Framework Hook and Agent Process
Creation

FREEPART automatically instruments the categorized APIs and data
structures used in the APIs (as an argument or return). For frame-
work APIs, we use the LD_PRELOAD trick [59] to hook the APIs
since all the frameworks we support use dynamic libraries by de-
fault’. Each hooked API function then intercepts the API calls and
runs the APT’s code in an agent process (i.e., essentially making
a remote procedure call to the agent process). Our API hooking
seamlessly redirects the program execution without affecting the
correctness of the program (i.e., we do not change input/output of
the APIs except for enforcing security policies). Note that we as-
sume symbols of the framework and library functions are presented,
which is typical. FREEPART also hooks data structures and objects’
methods by redefining them. For instance, Mat is a frequently used
data structure for image data in OpenCV. The image data in Mat
are stored in a heap buffer. Since a framework API takes or returns

7 . T .
For frameworks using static libraries, we hook APIs in source code.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

o 1 VideoCapture cam(9);

| 2 | Mat frame, img, gray; 123
3 CascadeClassifier cascade("classifier.xml")s=---7 124
4 | fread(fopen("userprofile.xml", ...), ...);
5 while(cam.read(frame)) {
6
7
8

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

---emmmemmeeeee---2 22 | enum { LOADING=@, PROCESSING, VISUALIZING, STORING, 43 | void recv_agent_request(int cmd) {
ID_VideoCapture_4, ...

, ID_CascadeClassifier_2, ...,
ID_CascadeClassifier_detectMultiScale, ...

, ID_VideoCapture_read, 44 switch (cmd) {
----»case ID_VideoCapture_4:

{

-------------- ¥ VideoCapture* p =
. new VideoCapture(agent_arg(9));
cvtColor(frame, gray, COLOR_BGR2GRAY); i VideoCapture: :VideoCapture(int n) { | ;=49 agent_ret(map_set(p));
resize(gray, img, ...); i 129 —» request (LOADING, ID_VideoCapture_4, n); ----- } break;
9 equalizeHist(img, img); | 30 m_obj = agent_ret(); -~ case ID_CascadeClassifier_2:
10 cascade.detectMultiScale(img, faces, ...);ii 31 }
11 for (size_t i = 0; i < faces.size(); i++) { i} 32 CascadeClassifier* p =
12 send(server, "notification", ...); i 33 | CascadeClassifier::CascadeClassifier(String& fn) { new CascadeClassifier(agent_arg(0));
13 } i--34----» request (PROCESSING, ID_CascadeClassifier 2, fn); 55--rmmmmn agent_ret(map_set(p));
14 imshow(..., frame); 35 m_obj = agent_get(); 156 } break;
| 15 if (pollKey() == 's') { 36 |} jmmmmmmm— 57-----» case ID_VideoCapture_read:
916 imwrite("...", frame); 37 ; 58 {
17 } else if (pollKey() == 'q’) { 38 | bool VideoCapture::read(OutputArray image) { | 59 | VideoCapture* p = map_get(agent_arg(e));
18 destroyAllWindows(); ---39-----prequest(LOADING, ID_VideoCapture_read, --------! H 60 OutputArray image = agent_arg(1);
19 break; 40 m_obj, image); i 61 agent_ret(p->read(image));
20 } 41 return agent_ret(); TV R agent_update_arg(1, image);
2]} 42 |} 63 } break;

(a) Target Program

(b) Hooked Interfaces (Functions and Objects)

(c) Request Handler in an Agent Process

Figure 10: Example API Categorization, Interface Hooking, and Agent Processes.

a reference (i.e., address) of a Mat object (not the heap buffer), we
implement a deep copy of the object when its reference is passed
to or returned by APIs.

FREEPART as RPC. FREEPART’s API hooking essentially imple-
ments a remote procedure call (RPC). Specifically, FREEPART im-
plements the “exactly-once” semantic, meaning that a request to
execute an API on an agent process will be delivered to the agent
process and executed exactly once.

4.3.1 Hook Interfaces and Agent Processes. Fig. 10-(b) shows an
example of how FREEPART hooks methods and connects them to
the agent processes. Note that it is automatically instrumented ac-
cording to the definition of the original framework APIs. Arrows
between Fig. 10-(a) and (b) indicate control flow transfers from the
host program to the hooked interfaces. request () (at lines 29, 34,
and 39) sends a framework API execution request with arguments
to the agent process.8 Lines 22~26 define constant identifiers used
in the program. request ()’s arguments include (1) the API type
(e.g., LOADING for the data loading), (2) the id of the target function,
and (3) arguments of the target function (including its object refer-
ence). Fig. 10-(c) shows the source code of an agent process. The
agent process accepts requests, runs the requested APIs (with the
command id through the cmd and the arguments retrieved through
agent_arg() and agent_arg()), and copies the results back to
the host application (via agent_ret () at lines 49, 55, and 61~62).

4.3.2 Lazy Data Copy for Optimizing IPCs. We observe that in
typical data-processing programs, results returned by a framework
API are often immediately used by another framework API. FREEP-
ART leverages the observation to reduce IPCs by directly copying
the data between the agent processes, without going through the
host application’s process. We call this optimization ‘Lazy Data
Copy (LDC), which reduces the unnecessary data copy, only if data
loaded by a framework API are directly fed to another framework
API in a different agent process. LDC essentially postpones data
copy operations until the data are dereferenced by a concrete agent
process. Then, LDC allows the agent process to copy data directly.

Swe implement IPC (Inter-Process Communication) between processes using shared
memory. It uses ring buffers and futex for synchronization.

@ Q Process Q
é? o o

Data Data Data Data
Loading ¢, Processing Loading Processing

Agent Agent Agent Agent
Process ° Process Process Process

(a) Object directly copied between
the Agent Processes (with LDC)

‘ Q Object Data

(b) Object copied through
the Host Program Process (without LDC)

Object Reference Process Containing
(without Data) the Data

Figure 11: Inter Process Data Flow with the Lazy Data Copy.

Fig. 11-(a) and (b) show examples of data flows with and without
the LDC, respectively.

@ The host program process calls imread (), passing all the ar-
guments of the function to the data processing agent process.
With LDC, it passes the references of the objects. Without LDC,
it passes all the data of the objects. The reference only contains
the origin9 of the object’s data.

@ The data loading agent loads the data and returns it to the
host program process. After the function, all the arguments (as
they might be modified) and the return values are copied back.
Without LDC, the entire data of objects are passed, even though
the host program process does not access the data. With LDC,
the references are passed.

@ The host program calls equalizeHist () (i.e., data processing
API), which sends a request to run the API with the loaded object
in the data processing agent process. Again, the references are
passed with LDC while the entire data of objects are passed
without LDC.

@ The data processing agent process runs the equalize Hist()
AP], beginning to access the data. With LDC, since only the
references were passed, it copies the data directly from the

*The agent process’s process id (PID) and the identifier of the buffer (e.g., a hash value

of the buffer’s address) that contains the data.

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

APIs / Objects Required System Calls

CascadeClassifier::load() openat, close, brk, fstat, read, lseek,

VideoCapture: :VideoCapture() openat, close, ioctl, mmap

VideoCapture::read() brk, ioctl, select

(a) Required System Calls for OpenCV in Fig. 9’s Program
openat, close, brk, fstat, read, lseek, ioctl, mmap, select

(b) Data Loading Agent Process for Fig. 9’s Program.

Figure 12: Obtaining Required System Calls.

data loading process at this time. Without LDC, the data were
already passed at @).

@ The resulting object is returned to the host process. Without
LDC, the data of the resulting objects are copied back.

4.4 Runtime Support

FREEPART’s runtime support consists of a loader and a dynamic
library. The loader is a standalone program that initializes the host
and agent processes. The dynamic library hooks framework APIs
and data objects, initializes the IPC channels, monitors the execu-
tion and enforces security policies.

4.4.1 Restricting System Calls. Each framework API does not need
to access all the system calls. For example, to run a data-loading
framework API in OpenCV, around 5~6 system calls are needed
on average [30] (Syscalls Per API). Hence, FREEPART restricts sys-
tem calls unnecessary for executing framework APIs. For example,
Fig. 12-(a) shows the system calls required for the data loading APIs
used by the program shown in Fig. 10. Then, we create an allowed
system call list by taking the union of required system calls for all
framework APIs within an agent process as shown in Fig. 12-(b).
Identifying Required System Calls. We use the hybrid analysis
described in Section 4.2.2 to identify required system calls for each
framework API Note that our hybrid analysis has a high code
coverage of the framework APIs (as reported in Table 11), resulting
in high-confidence results.

Overlapping System Calls Between APIs. On average, we find
that 6 system calls are required per APL. Among them, 4 system
calls (e.g., openat, fstat, brk and read in the data loading agent
process) commonly appear across the APIs of the same type. FREEP-
ART allows the superset of system calls used by APIs in the agent
process.

System Call Restrictions. We use seccomp-BPF [72] to permit
system calls in the allowed list. The allowed list ensures that the
system call restriction also prevents system object interface attacks
(e.g., restricting shm_open and mprotect to manipulating shared
memory or re-writing memory permissions). To protect FREEP-
ART from attackers reconfiguring seccomp-BPF to tamper with
the system call restriction, we use PR_SET_NO_NEW_PRIVS which
prevents configuration changes. In addition, system calls, such as
ioctl, require an additional restriction on their arguments because
they can access diverse devices (e.g., a camera to retrieve images
or a network device for communication) depending on their argu-
ments. For such APIs (e.g., ioctl, connect, select, and fcntl),
FREEPART checks their file descriptors to ensure they operate only
on the designated files.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

System Calls Required During the Initialization. A few security-
critical system calls such as mprotect and connect are used by

framework APIs but only in their first execution. Our manual analy-
sis result shows that they are only required for the initialization.

For instance, connect is used only once during the first execution

of a visualizing API to initialize a socket to communicate to a GUI

subsystem and mprotect is used to load library modules on its first

execution. Since those system calls are not required after the first

execution of the APIs, FREEPART first executes all the framework

APIs and then restricts them afterwards.

4.4.2 Restarting Agent Processes. Server programs (e.g., web servers)
often prioritize availability over security, automatically restarting

the process when it crashes. For them, FREEPART provides function-
ality to restart agent processes so that FREEPART does not break

the original workflow. If a user prioritizes security over availability,

one can opt out of it. Note that since a separate process restarts the

agent processes, a compromised agent processes cannot influence

the restarting functionality.

FrREEPART as RPC. In terms of RPC, FREEPART implements the

restarting agent process via “at-least-once,” meaning that for crashed

processes, FREEPART may re-execute APIs multiple times. Note that

this is acceptable as most framework APIs are stateless. There are

a few stateful APIs. For them, we periodically store the states. We

elaborate it on Appendix Section A.2.4.

4.4.3 Deriving and Enforcing Memory Access Permissions. As shown
in Fig. 3 (in Section 3) FREEPART enforces memory access permis-
sions (e.g., read-only) when the framework changes its state. Specif-
ically, it requires a user to annotate a data structure to be protected,
including the functions that create the data (e.g., the constructor of a
class if the data is an object) and access the data (e.g., read/get meth-
ods of the data object). FREEPART supports the definitions of such
functions for popular data structures in supported frameworks such
as Mat in OpenCV. However, for the user-defined data structures,
the definitions should be manually provided.

Given the definitions, FREEPART’s runtime infers the current
framework’s state by monitoring which type of framework API is
invoked. The current framework state is essentially reflecting the
last framework APT’s type. There are 5 framework states: Initializa-
tion, Data Loading, Data Processing, Visualizing, Data Storing. The
initialization state represents the initial state before any framework
APT’s invocation.

When the framework state is changed (e.g., the program starts
to call a data processing API, after calls to data loading APIs), it
enforces the memory access permissions of all the data objects
defined in the previous state read-only. For example, if the state just
changed to the data processing from the data loading, all the data
objects defined (i.e., created/allocated) during the data loading state
will become read-only.

5 EVALUATION

Implementation. The prototype of FREEPART is implemented with
3,829 SLOC. We use LLVM [90] to categorize framework APIs by
analyzing their data flow patterns and to instrument the frame-
works written in C/C++. In addition, we use PyCG [80] to conduct

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Vuln. Type CVE IDs Vuln. Samples1 Type
Unauthorized CVE-2017-12604, CVE-2017-12605, 19 10,12 DL
Mem. Write CVE-2017-12606, CVE-2017-12597 T
Remote Code CVE-2017-17760 1,7,10, 12 DL?
Execution CVE-2019-5063, CVE-2019-5064 1,9, 10 pp®
CVE-2017-14136, CVE-2018-5269 1,7,9,10,12 DL2
CVE-2019-14491, CVE-2019-14492, 1.9 10 DPS
CVE-2019-14493 T
3
Denial-of- CVE-2021-29513 21,23 DP
Service (DoS) CVE-2021-29618 23 pp?
CVE-2021-37661 21, 22,23 DP3
CVE-2021-41198 20, 22 DP3

1: Sample IDs having the vulnerability. 2: Data Loading. 3: Data Processing.

Table 5: List of CVEs used for Evaluation.

static analysis on Python programs. Our runtime support is written
in C++.

Experimental Setup. All the experiments were done on a machine
with Intel i7-9750H, 2.6GHz, 32GB RAM, and 64-bit Ubuntu 18.04
with a GeForce RTX 2060. We use a commercial off-the-shelf (COTS)
system without any modifications.

Program Selection. We search open-source repositories to find 30
popular applications (i.e., by the number of GitHub stars [32]) using
the data processing frameworks that we support: OpenCV, Caffe,
PyTorch, and TensorFlow. From the searched result, we sort them
by the number of source lines of code (SLOC) to filter trivial projects.
In addition, if there exist multiple similar programs (e.g., there are
many facial recognition applications with a similar code structure),
we only select one project that has versatile functionalities and
ignore similar applications. To this end, we choose 23 programs
(out of 30) as shown in Table 6: 9 for OpenCV (and OpenCV based),
3 for Caffe, 10 for PyTorch, and 4 for TensorFlow. Some applications
use multiple frameworks together (e.g., Face_classification [5] uses
OpenCV and Keras together).

Vulnerability Selection and Attack Construction. We searched
the CVE database to find vulnerabilities on OpenCV, Caffe, Torch
(for PyTorch), and TensorFlow reported in the last five years that
are also used by the selected 23 programs. We successfully repro-
duce 18 vulnerabilities, that form the set of CVEs we use in this
evaluation. Table 5 shows the vulnerability type and the selected
CVEs that we use in this evaluation. The third column shows sam-
ple program IDs (shown in Table 6) that have the vulnerability
(hence affected). The last column shows the different types of vul-
nerable framework API (also representing which agent process it
will belong to). Then, we create attacks by constructing exploits
for the selected vulnerabilities, either by improving already pro-
vided Proof-of-Concept (PoC) exploits or by creating our own from
scratch. We use Metasploit [79] to create malicious payloads (e.g.,
ROP payloads and shellcodes).

Correctness of FREEPART. We apply FREEPART to all 23 programs.
For all programs, we use their respective test suites (linked each on
our website [30]) publicly available as inputs to test the functionality.
We observe that all the test cases are correctly executed, without

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

10

detecting any attacks incorrectly (i.e., no false positives). We also
conduct 8 attacks by reproducing 18 CVEs (shown in Table 5) and
6 attacks used in case studies (Section 5.4 and Section A.7) on the
23 programs. They are all successfully mitigated, meaning that
we did not observe false negatives. We further manually inspect
the API categorization of the 23 programs and confirmed that all
partitioned APIs were correctly categorized conforming to the data
flow patterns outlined in Section 4.2.1.

5.1 API Type Categorization Result

The 7th~14th columns of Table 6 show the numbers of framework
APIs categorized to each type. “Unique” shows the unique number
of APIs used in the application and “Total” shows the number of
API call instances of each type.

Categorized APIs. The data loading type has the smallest num-
ber of framework APIs used in the programs. However, since they
are the interface functions that directly handle untrusted user in-
puts, they are major targets of attacks (and have many vulnerabili-
ties). The data processing type has the most framework APIs (both
Unique and Total). Note that in the data processing APIs, the total
numbers are significantly larger than unique numbers, suggesting
there are multiple call sites of a single framework API. Our manual
inspection reveals that those programs have many duplicated code
snippets to implement multiple optimized versions for different
workloads.

<5 45
SR 39 41394354 57 40 39,5413937
z 3233 3.2 3330, 333132 i
g3 826
E
g2
S

1

MY YO 0N DS NSNOIL LRI H

Figure 13: Normalized Runtime Overhead of FREEPART.

5.2 Runtime Performance Overhead

We measure the runtime performance overhead of FREEPART with
the 23 programs in Table 6. Specifically, we run the original pro-
grams and the FREEPART protected programs with various work-
loads and compare the performance results. We collect the work-
loads as follows. First, for applications that provide demo and
test workloads [65, 66, 70], we use them. Second, we additionally
use non-trivial image/video data sets (144GB) collected from Im-
ageNet [24] and text data (a few MBs) for image/video and text
processing applications [62].

Fig. 13 shows the results: the average overhead is 3.68%. The
hybrid analysis for each application took 1 hour on average. We
observe that our low overhead is largely due to partitioning depen-
dent APIs together in the same process (i.e., avoiding data copies
on each RPC).

Lazy Data Copy. To understand the effectiveness of our lazy data
copy, we measure the overhead of FREEPART without lazy data copy
support, which is 9.7% for 23 programs on average. We observe that

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

D Frame- Name Lang. SLOC Size Lofding* Proiessing+ Vistlalizing Stj’ ring Description
work Uniq' Total Uniq' Total Uniq' Total Uniq' Total

1 OpenCV1 Face_classification [5] Python 7,082 280K 4 4 5 10 4 4 1 1 Face, emotion, gender detection

2 OpenCV FaceTracker [48] C/C++ 3,012 588K 2 5 19 99 3 3 3 6 Real-time deformable face tracking

3 OpenCV Face_Recognition [2] Python 3,205 14.8M 1 8 5 26 3 15 2 3 Face recognition application

4 OpenCV Ibpcascade_anime [62] Python 6,671 224K 1 1 4 4 3 3 1 1 Image classification/object detection

5 OpenCV EyeLike [92] C/C++ 742 44K 5 5 21 100 4 18 1 2 Webcam based pupil tracking

6 OpenCV Video-to-ascii [42] Python 483 48K 4 7 2 2 1 1 Plays videos in terminal

7 OpenCV Libfacedetection [111] C/C++ 14,016 8.8M 4 6 14 62 4 4 1 1 Library for face detection

8 OpenCV OMRChecker [94] Python 1,797 6.2M 2 4 42 88 4 5 1 1 Grading application

9 Caffe? EmoRecon [87] Python 1,773 53K 6 10 11 32 5 6 1 1 Real-time emotion recognition
10 Caffe? Openpose [14] C/C++ 459,373 6.8M 10 12 44 171 2 2 Real-time person keypoint detection
11 Caffe? MTCNN [46] Python 425 129K 1 1 11 18 2 2 MTCNN face detector
12 PyTorch3 SiamMask [102] Python 39,999 1.4M 2 9 19 103 4 10 2 11 Object tracking and segmentation
13 PyTorch CycleGAN-pix2pix [116] ~ Python 1,963 7.64M 5 7 50 103 1 2 Image-to-image translation
14 PyTorch FAIRSEQ [28] Python 39,800 5.9M 8 19 20 65 4 4 Sequence modeling toolkit
15 PyTorch PyTorch-GAN [26] Python 6,199 31.IM 3 105 41 1,747 1 37 PyTorch implementation of GANs
16 PyTorch YOLO-V3 [96] Python 2,759 1.98M 3 9 68 254 3 3 2 6 PyTorch implementation of YOLOv3
17 PyTorch StarGAN [18] Python 740 2.07M 1 2 32 105 1 4 PyTorch implementation of StarGAN
18 PyTorch EfficientNet [57] Python 2,554 2.48M 4 8 37 86 2 2 PyTorch implementation of EfficientNet
19 PyTorch Semantic-Seg. [115] Python 3,699 5.53M 2 2 136 304 1 3 Semantic segmentation/scene parsing
20 TensorFlow DCGAN-TensorFlow [88] Python 3,142 67.4M 3 6 54 137 1 1 TensorFlow implementation of DCGAN
21 TensorFlow See in the Dark [16] Python 610 836K 1 8 31 244 2 10 Learning-to-See-in-the-Dark (CVPR’18)
22 TensorFlow CapsNet [39] Python 679 486K 1 8 43 108 4 6 TensorFlow implementation of CapsNet
23 TensorFlow Style-Transfer [56] Python 731 1M 3 4 37 61 3 5 Add styles from images to any photo

*: Data Loading. +: Data Processing. : Unique. 1: Uses OpenCV (main) and Keras (secondary) APIs. 2: Uses Caffe (main) and OpenCV (secondary) APIs.

3: Uses PyTorch (main) and OpenCV (secondary) APIs.

Table 6: Applications used for Evaluation.

about 95% of the data copy operations are lazy data copies, indicat-
ing the target applications mostly have data flows only between
the framework APIs. More details can be found in Appendix A.5.

5.3 Security Analysis on Attack Scenarios

We present an analysis of FREEPART under typical attack scenarios:
(1) data exfiltration and (2) data corruption attacks.

The data exfiltration attack represents a typical scenario of steal-
ing sensitive information (i.e., information leak). We assume a pow-
erful attacker who is capable of identifying the exact memory ad-
dresses of the buffer containing sensitive data. Given a memory
address of a buffer to leak, the attack aims to send the critical in-
formation to attacker-controlled servers via network APIs such as
send ().

The data corruption attack corrupts critical data in the program,
such as outcomes of the algorithms or other metadata used in the
program (e.g., sensitive user profiles). We assume that the attacker
already knows the exact memory addresses to compromise (i.e.,
memory addresses of buffers containing sensitive information).
Then, the attacker leverages the RCE vulnerability (e.g., CVE-2019-
5063) to overwrite critical data.

We launch the two attacks to all vulnerable programs as shown
in Table 5. We then analyze what information can be stolen or what
damages can be made by the attacks.

Analysis of Data Exfiltration. For all the programs we evaluate,
we find that most sensitive information stays within the target
program process. Since all the vulnerabilities we tested are in the

data loading or data processing processes, attacks could not access
sensitive information that exists in the target program process.
In the data loading process, if a target program processes inputs
from multiple users (e.g., a server program that detects objects
in pictures provided by remote users), other users’ inputs can be
considered sensitive. In the data processing process, the processed
outcomes (e.g., facial recognition results of a specific person) might
be sensitive.

While the attacks can access those, both data loading and data
processing processes do not allow system calls that can write data
to the disk or other devices (e.g., write or send), meaning that it
is difficult to send the stolen information to outside. Table 7 shows
a few allowed system calls for each API type. Note that all the API
types are for OpenCV.

Type Allowed system calls

Loading (43)

bind, fstat, futex, getcwd, getpid, listen, mkdir, openat, recvfrom, ...

Processing (22) getrandom, gettimeofday, open, openat, read, close, clock_gettime, ...

Visualizing (56)
Storing (27)

access, connect, eventfd2, futex, getuid, 1seek, select, sendto, ...

accept, close, dup, exit, 1stat, mkdir, umask, uname, unlink, ...

Table 7: System Calls Allowed for Each API Type.

Analysis of Data Corruption Attack. If the attack happens in
the data loading process, the attack may corrupt previous inputs
of the program. However, since it is already passed to the data

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

processing process and processed, corrupting previous inputs has
practically no impact. An attacker may corrupt the data, which will
be passed to the next process (i.e., to another API type). However,
this is essentially providing a crafted input. In the data processing
process, an attacker may corrupt the data currently processing.
However, it is difficult in practice, as the corrupted values are likely
to be overwritten during the algorithm, meaning that the attacker
has limited controllability. In addition, an attacker may target ML
models and configurations on the memory. However, we observe
that compromising them in the middle of computation mostly leads
to wrecking the result.

5.4 Case Study

5.4.1 Autonomous Object Tracking Drone. We use FREEPART to
mitigate attacks on an autonomous drone project [17] that keeps
tracking an object using an object recognition technique via a
camera attached to the drone. The drone follows the recognized
object as it moves. The program fetches images from the camera and
uses imread () (which has the vulnerability) to load and process.
We prepare two attacks: (1) a DoS attack that crashes the drone
program and (2) a data corruption attack that modifies the speed of
the drone by overwriting a configuration variable.

|

Even dfter the data loading process crashes, the drone is alive and
operatable as long as the target process is alive.

Data loading process is
needed for recognizing and
tracking the object. _ ° Images from Camera

%g Controlling Drone 1

B} Configurations
(self.speed)

1 0—@ OpenCV

(b) Data Loading Process

(a) Target Program Process
Figure 14: FREEPART Protected Autonomous Drone [17].

DoS Attack. An attacker exploits CVE-2017-14136 and CVE-2019-
14491 vulnerabilities, which can crash the entire drone program.
Without FREEPART, the entire program crashes, and the drone will
halt its operation and fall to the ground. As shown in Fig. 14, with
FREEPART, the crash happens in the data loading process (in im-
read()), crashing the process. Note that even if FREEPART does
not restart the crashed process, the target program process is still
alive, making the drone alive. Before it restarts the process, it may
not handle new images from the camera. However, the user can
safely land the drone as all other functionalities (e.g., controlling
the drone) are not affected. With the process restarting, FREEPART
can seamlessly mitigate this DoS attack, while the drone might be
a little sluggish due to the restarting of the isolated process.
Data Corruption Attack. An attacker exploits CVE-2017-12606
vulnerability to corrupt a specific configuration variable that defines
the speed of the drone. Specifically, the drone’s speed is stored in
the self.speed variable. The default speed is 0.3, and changing it
to ‘=0.3” will make the drone move in the opposite direction (i.e.,
not following the object but moving away from the object). Without
FREEPART, the attacker can access the variable and modify its value.
With FREEPART, the exploitation is contained within the data
loading process (@ in Fig. 14), while the variable self.speed
exists in the target program process.

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

12

5.4.2 Information Leak in an Image Viewer. MComix3 [53] is an im-
age viewer program which is forked from the MComix [60] project.
The program has a menu listing recently loaded files’ names. An at-
tacker aims to leak the recent file names which might be sensitive in-
formation. They are stored in self . _window.uimanager.recent
and Gtk: :RecentManager which is a part of the GTK library (i.e.,
a GUI framework).

An attacker can use CVE-2020-10378 to read the variables. Then,
it can send the information through network APIs such as con-
nect () and send (). With FREEPART, the attack will fail because
the exploitation happens in the data loading process while the
self._window.uimanager.recent exists in the target program
process, and Gtk: :RecentManager exists in the visualizing pro-
cess. Attempts to access the variable in the target program process
and in the vizualizing process (@ in Fig. 15) fail. Moreover, send-
ing the information through the network will be prevented by the
system call restriction.

: = Recent file names

(a) Target Program Process .
aéa Input images

| « — Recent file names

(b) Data Loading Process (c) Visualizing Process

Figure 15: FREEPART Protected MComix3 Program.

6 DISCUSSION

Restoring States of Crashed Process. When a process crashes,
FREEPART intentionally decides not to restore values of variables
in the crashed process after restarting the crashed process. This is
because the crash might be caused by an attack with a malicious
payload. Note that this may cause state discrepancies between
processes after the isolated process is recovered from a crash.
Impact of API Miscategorization. If our hybrid analysis (in Sec-
tion 4.2.2) fails to identify data flows (false negative) or incorrectly
detects bogus data flows (false positive) described in Fig. 9, frame-
work APIs can be miscategorized. Miscategorization would cause
two major consequences. First, when a vulnerability in a miscate-
gorized API is exploited, it can have access to sensitive data that
should not be allowed access. Second, miscategorized APIs can
cause many unnecessary IPC communications as they frequently
access variables that do not exist in the same process. This is because
FREEPART uses a separate process to run each type of framework
APL

Impact of Intra-Process Attacks. While partitioning using FREEP-
ART reduces the attack surface, it is still vulnerable to intra-process
attacks. For instance, an attacker can arbitrarily execute malicious
code in the vulnerable process. However, FREEPART reduces the
attack surface by limiting capabilities (e.g., by employing syscall
restriction), restricting the privileges of the compromised API (i.e.,
same memory-access privileges as the API type). In addition, an at-
tacker can attempt control flow hijacking attacks. However, one can
employ CFI [98] and debloating solutions [108] to mitigate them.

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

On the other hand, an attacker can also influence other APIs or
memory (stack and heap) within the compromised process. For this,
one can employ other intra-process partition techniques [38, 41] to
the agent processes to mitigate or reduce the effects of the attack.
Note that, applying security techniques to isolated processes is an
orthogonal problem.

Partitioned Processes and Multi-threading. FREEPART executes
with fives processes (1 host program process and 4 agent processes).
Each partitioned process has its independent stack and heap (miti-
gating all memory corruption attacks across partitions while cor-
rupting a compromised agent process’s local stack is possible and is
our limitation). For multi-threading processes, each thread will have
its own set of four agent processes, hence avoiding race conditions.

7 RELATED WORK

Software Fault Isolation (SFI). Program partitioning and SFI are
closely related to FREEPART. [101] is one of the earliest software-
based fault isolation approaches, which instruments a target pro-
gram to detect unsafe memory accesses. Since then, SFI has been
applied to various targets, including OS kernels [113], system appli-
cations [12], web applications [25, 40, 110], and mobile apps [7, 75],
to partition the existing system into sub-components by functional-
ity. [105] needs developers to manually write wrappers for the
target untrusted library to partition and isolate libraries while
FREEPART does it automatically to prevent attackers who can com-
promise the user mode program’s memory. Existing works have
used diverse partitioning approaches, such as static analysis and in-
strumentation [25], compiler modifications [12], runtime primitive
(e.g., sandboxing) [7, 105, 110], and additional language primitive
support [40, 75]. A key difference is that existing approaches fo-
cus on partitioning a target program, while FREEPART focuses on
partitioning from frameworks.

Automated Program Dependence Analysis. Program depen-
dency analysis aims to identify program statements and data that
are required for the correct execution of other statements. Re-
searchers have used static analysis [13], dynamic analysis [45,
47, 107], and hybrid methods [54] to perform dependency anal-
ysis for program partitions. In addition, source code-based tech-
niques [19, 112] can leverage annotations to help with the analysis.
Program slicing techniques [3, 104, 114] are proposed to identify a
set of program statements required to execute a certain function-
ality. There are slicing techniques for concurrent programs [29],
source code locality identification [43], and clustering-based pro-
gram component decomposing [58]. For example, BCD [43] uses
static analysis to extract the code locality, data references and func-
tion calls. Bunch [58] uses clustering to decompose applications.
Advanced techniques can further optimize FREEPART’s API type
identification and partitioning.

Intra-process Isolation. Recently, intra-process isolation tech-
niques have been proposed to isolate a part of the program from
the remainder to enhance security. Note that these techniques are
orthogonal to our approach and can be adapted to complement
FREEPART. Recent techniques such as Hodor [38] and SeCage [55]
utilize virtualization to enable different memory views for each

13

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

program part, isolating data and code. Meanwhile, other tech-
niques [34, 82, 97, 100] utilize PKU-based memory isolation tech-
nique to protect critical data. They focus on enhancing memory
security for data on heap memory, while they may not be effective
in preventing attacks on stack memory or non-memory attacks.

Endokernel [41] attempts to solve the problem by mapping their
virtual machine abstraction to system-level objects. It provides
programmable security abstractions that can be used to monitor
and secure the system against low-level attacks with low overhead.
In addition, Jenny [81] employs the system call filter rules necessary
for protecting the former PKU-based isolation domains. Note that
Endokernel and Jenny provide practical security primitives that
can be used to enhance FREEPART. However, to apply them, one
needs to partition the target application first, which may require
sophisticated data-dependency analysis. Our technique provides
a practical partitioning approach for data-processing applications
without requiring complex dependency analysis.

8 CONCLUSION

We present FREEPART which mitigates the impact of vulnerabilities
in data processing frameworks onto its host applications. It lever-
ages framework-based software partitioning to identify API types
of a target program and isolate each framework API belonging to a
certain API type into a separate process. FREEPART effectively con-
fines the exploited execution, preventing it from escaping from each
partitioned process and damaging the system. Our experiments on
23 applications on four widely used frameworks (OpenCV, Caffe,
PyTorch, and TensorFlow) and 18 vulnerabilities show that it effec-
tively prevents attacks with negligible overhead (3.68%).

ACKNOWLEDGMENT

We thank the anonymous referees for their constructive feedback.
The authors gratefully acknowledge the support of NSF (1908021,
1916499, 2145616, and 1955719), and DARPA (N6600120C4020). This
research was also supported by a Google Faculty Fellowship and
a gift from Cisco Systems. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] R.P. Abbott, Lawrence Livermore Laboratory, Institute for Computer Sciences,
and Technology. Security Analysis and Enhancements of Computer Operating
Systems: The RISOS Project, Lawrence Livermore Laboratory. U.S. Department of
Commerce, National Bureau of Standards, 1976.

[2] Adam Geitgey. The world’s simplest facial recognition api for Python and the
command line, 2020. https://github.com/ageitgey/face_recognition.

[3] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. SIGPLAN
Not., 25(6):246-256, June 1990.

[4] Tonut Arghire. Serious Vulnerabilities Patched in OpenCV Computer Vision
Library, 2020. https://www.securityweek.com/serious-vulnerabilities-patched-
opencv-computer-vision-library.

[5] Octavio Arriaga, Matias Valdenegro-Toro, and Paul Ploger. Real-time convo-
lutional neural networks for emotion and gender classification. arXiv preprint
arXiv:1710.07557, 2017.

[6] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
July 2018.

[7] Elias Athanasopoulos, Vasileios P Kemerlis, Georgios Portokalidis, and Ange-
los D Keromytis. Nacldroid: Native code isolation for android applications. In
European Symposium on Research in Computer Security, pages 422-439. Springer,
2016.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

—
o

]
[9]

(10]

[11

[12

(13

=
&

=
2

I
=

[
—

[22

(23]

[24

[26

[27

[28

[29

[30

Autoit. Autoit. https://www.autoitscript.com/site/.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex
stochastic optimization via conditional gradient and gradient updates. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, page 3459-3468, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Markus Bauer and Christian Rossow. Cali: Compiler-assisted library isolation. In
Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security, ASIA CCS ’21, page 550-564, New York, NY, USA, 2021. Association
for Computing Machinery.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting
applications into reduced-privilege compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation, NSDI'08,
pages 309-322, USA, 2008. USENIX Association.

Ajay Brahmakshatriya, Piyus Kedia, Derrick P McKee, Deepak Garg, Akash Lal,
Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik Bhatu. Confllvm: A
compiler for enforcing data confidentiality in low-level code. In Proceedings of
the Fourteenth EuroSys Conference 2019, pages 1-15, 2019.

David Brumley and Dawn Song. Privtrans: Automatically partitioning programs
for privilege separation. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, page 5, USA, 2004. USENIX Association.
Zhe Cao, T. Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d
pose estimation using part affinity fields. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1302-1310, 2017.

Nicholas Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. 2017 IEEE Symposium on Security and Privacy (SP), pages 39-57, 2017.
cchen156. Learning-to-See-in-the-Dark. https://github.com/cchen156/Learning-
to-See-in-the-Dark.

Mohamed Chaabane. Autonomous-flight-of-the-drone-AR Drone-1.0.
https://github.com/MedChaabane/Autonomous-flight- of- the-drone-
AR.Drone-using-OpenCV.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. StarGAN: Unified Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng,
and Xin Zheng. Secure web applications via automatic partitioning. SIGOPS
Oper. Syst. Rev., 41(6):31-44, October 2007.

Chris Lattner and Vikram Adve. llvm-cov tool shows code coverage information
for programs, 2020. https://llvm.org/docs/CommandGuide/llvm-cov.html.
Kenneth T. Co, Luis Mufioz Gonzélez, Sixte de Maupeou, and Emil C. Lupu. Pro-
cedural noise adversarial examples for black-box attacks on deep convolutional
networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 19, page 275-289, New York, NY, USA, 2019.
Association for Computing Machinery.

CVE. CVE-2017-12597. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-12597.

CVE. CVE-2019-19781 - Vulnerability in Citrix Application Delivery Con-
troller, Citrix Gateway, and Citrix SD-WAN WANOP appliance, 2019. https:
//support.citrix.com/article/CTX267027.

Jia Deng, R. Socher, Li Fei-Fei, Wei Dong, Kai Li, and Li-Jia Li. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 00, pages 248-255, 06 2009.
Adam Doupé, Weidong Cui, Mariusz Jakubowski, Marcus Peinado, Christopher
Kruegel, and Giovanni Vigna. dedacota: toward preventing server-side xss via
automatic code and data separation. pages 1205-1216, 11 2013.

Erik Linder-Norén. PyTorch implementations of Generative Adversarial Net-
works., 2020. https://github.com/eriklindernoren/PyTorch-GAN.
Evan Shelhamer. Caffe Deep learning framework.
//caffe. berkeleyvision.org/.

FaceBook. Facebook AI Research Sequence-to-Sequence Toolkit written in
Python., 2020. https://github.com/pytorch/fairseq.

Moreno Falaschi, Maurizio Gabbrielli, Carlos Olarte, and Catuscia Palamidessi.
Slicing concurrent constraint programs. In International Symposium on Logic-
Based Program Synthesis and Transformation, pages 76-93. Springer, 2016.
FreePart. FreePart Code Release, 2020. https://github.com/freepart2022/
FreePart-22.

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. Enclosure: Language-based restriction of untrusted libraries. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 21, page 255-267,
New York, NY, USA, 2021. Association for Computing Machinery.

GitHub. GitHub Stars, 2020. ttps://stars.github.com/.

Google. Google/sandboxed-api: Generates sandboxes for c/c++ libraries auto-
matically. https://github.com/google/sandboxed-api.

Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. EPK: Scalable and
efficient memory protection keys. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 609-624, Carlsbad, CA, July 2022. USENIX Association.

https:

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

14

[35]
[36]

[37

[38]

[39
[40

(41

[42
[43

[44

[45

[46
[47

[48
[49

[50

[51

[52

[53
[54

[55

[56

[57

[58

[59]
[60]

[61

guanshuicheng. Invoice, 2021. https://github.com/guanshuicheng/invoice.
Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. Clean
application compartmentalization with soaap. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, page
1016-1031, New York, NY, USA, 2015. Association for Computing Machinery.
Ankit Gupta. What is OpenCV and why is it so popular?, 2019. https:
//medium.com/analytics-vidhya/what-and-why-opencv-3b807ade73a0.
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process isolation
for High-Throughput data plane libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 489-504, Renton, WA, July 2019. USENIX
Association.

Huadong Liao. CapsNet. https://github.com/naturomics/CapsNet-Tensorflow.
Casen Hunger, Lluis Vilanova, Charalampos Papamanthou, Yoav Etsion, and
Mohit Tiwari. Dats-data containers for web applications. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 722-736, 2018.

Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo Vahldiek-
Oberwagner, and Nathan Dautenhahn. The endokernel: Fast, secure, and pro-
grammable subprocess virtualization. CoRR, abs/2108.03705, 2021.

Joel Ibaceta. Video to Ascii. https://github.com/joelibaceta/video-to-ascii.
Vishal Karande, Swarup Chandra, Zhigiang Lin, Juan Caballero, Latifur Khan,
and Kevin Hamlen. BCD: Decomposing Binary Code Into Components Using
Graph-Based Clustering. In 13th ACM ASIA Conference on Information, Computer
and Communications Security, Songdo, Korea, June 2018.

Douglas Kilpatrick. Privman: A library for partitioning applications. In 2003
USENIX Annual Technical Conference (USENIX ATC 03), San Antonio, TX, June
2003. USENIX Association.

Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and
Dongyan Xu. Dual execution for on the fly fine grained execution comparison.
SIGARCH Comput. Archit. News, 43(1):325-338, March 2015.

kuangliu. MTCNN with pycaffe. https://github.com/kuangliu/pycaffe-mtcnn.
Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Ldx: Causality inference
by lightweight dual execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, page 503-515, New York, NY, USA, 2016. Association for
Computing Machinery.

Kyle McDonald. Real time deformable face tracking in C++ with OpenCV 3.
Lindsey O’Donnell. Chinese Hackers Exploit Cisco, Citrix Flaws in Massive
Espionage Campaign, 2020. https://threatpost.com/chinese-hackers-exploit-
cisco-citrix-espionage/154133/.

Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general pointers
in automatic program partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2359-2371, 2017.
Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCa-
mant, Trent Jaeger, and Gang Tan. Program-mandering: Quantitative privilege
separation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1023-1040, 2019.

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li. Stegonet:
Turn deep neural network into a stegomalware. In Annual Computer Security
Applications Conference, pages 928—938, 2020.

W] Liu. MComix3. https://github.com/multiSnow/mcomix3.

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 15, page 1607-1619, New York, NY, USA, 2015. Association
for Computing Machinery.

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 15, page 1607-1619, New York, NY, USA, 2015. Association
for Computing Machinery.

Logan Engstrom. Style transfer.
transfer.

lukemelas. A PyTorch implementation of EfficientNet, 2020. https://github.com/
lukemelas/EfficientNet-PyTorch.

Spiros Mancoridis, Brian Mitchell, Yih-Farn Chen, and Emden Gansner. Bunch: A
clustering tool for the recovery and maintenance of software system structures.
04 1999.

Linux manual page. Linux Programmer’s Manual dynamic linker/loader. https:
//man7.org/linux/man-pages/man8/ld.so.8.html.
MComix. MComix: GTK+ comic book viewer.
mcomix/wiki/Home/.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2574-2582,

https://github.com/lengstrom/fast-style-

https://sourceforge.net/p/

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

(62]

[63

S
=

"%
o)

% =
)

%
0,

[94

(95]

2016.

Nagadomi. A Face detector for anime/manga using OpenCV, 2018. https:
//github.com/nagadomi/lbpcascade_animeface.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. Retrofitting fine grain isolation
in the firefox renderer. In 29th USENIX Security Symposium (USENIX Security
20), pages 699-716. USENIX Association, August 2020.

Ned Batchelder. Code coverage measurement for Python, 2020.
//github.com/nedbat/coveragepy.

OpenCV. Extra data for the OpenCV library . https://github.com/opencv/
opencv_extra.

OpenCV. Test code for the OpenCV library . https://github.com/opencv/
opencv/tree/master/modules/core/test.

OpenCV. OpenCV object detection example. https://github.com/
opencv/opencv/blob/master/samples/python/tutorial_code/objectDetection/
cascade_classifier/objectDetection.py.

OpenCV. OpenCV Project. https://opencv.org/.

OpenCV. Performance testing in OpenCV. https://github.com/opencv/opencv/
wiki/HowToUsePerfTests.

OpenCV. Samples for the OpenCV library. https://github.com/opencv/opencv/
tree/master/samples.

OpenCV. Open Source Computer Vision, 2020. https://docs.opencv.org/4.1.0/
d2/d75/namespacecv.html.

Linux Kernel Organization. Seccomp BPF (SECure COMPuting with filters).
https://www.kernel.org/doc/html/v5.0/userspace-api/seccomp_filter.html.
The pandas development team. pandas-dev/pandas: Pandas, February 2020.
Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 372-387, 2016.

Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid:
Privilege separation for applications and advertisers in android. In Proceedings of
the 7th ACM Symposium on Information, Computer and Communications Security,
pages 71-72, 2012.

PyTorch. PyTorch. https://pytorch.org/.

PyTorch. Training a Classifier. https://pytorch.org/tutorials/beginner/blitz/
cifar10_tutorial.html.
Suriyadeepan Ramamoorthy.
torchtest, 2019.

Rapid7. Metasploit, 2020. https://www.metasploit.com/.

Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. Pycg: Practical call graph generation in python. In 43rd
International Conference on Software Engineering, ICSE °21, 2021.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. Jenny:
Securing syscalls for PKU-based memory isolation systems. In 31st USENIX
Security Symposium (USENIX Security 22), pages 936-952, Boston, MA, August
2022. USENIX Association.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain keys — efficient
In-Process isolation for RISC-V and x86. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1677-1694. USENIX Association, August 2020.
Scikit-learn. Scikit-learn: Machine Learning in Python, 2020. https://scikit-
learn.org/stable/.

Shreyas. OMR Checker. https://github.com/letssolvetogether/OMRChecker.
SolarWinds MSP. RCE: Remote Code Execution Explained, 2019. https://
www.solarwindsmsp.com/blog/remote-code-execution.

Steve Zurier. TensorFlow revokes support for YAML because of arbitrary code
execution vulnerability, 2021. https://www.scmagazine.com/analysis/devops/
tensorflow-revokes-support-for-yaml-because- of-arbitrary-code-execution-
vulnerability.

Sushant. Real-Time Facial Emotion Recognition with Convolutional Neural
Nets, 2017.

Taehoon Kim. DCGAN Tensorflow. https://github.com/carpedm20/DCGAN-
tensorflow.

TensorFlow. Tensorflow: An end-to-end open source machine learning platform,
2020. https://www.tensorflow.org/.

The LLVM Foundation. The LLVM Compiler Infrastructure Project. https:
/Mlvm.org/.

The Matplotlib Development team. Matplotlib - Visualization with Python, 2022.
https://matplotlib.org/.

Trishume. A webcam based pupil tracking implementation., 2019.

Udayraj Deshmukh. An android application for validating images of OMR
sheets before they are sent for processing, 2019. https://github.com/Udayraj123/
AndroidOMRHelper.

Udayraj Deshmukh. Grade exams fast and accurately using a scanner or your
phone, 2020. https://github.com/Udayraj123/OMRChecker.

Jonathan Uesato, Brendan O’Donoghue, Aéron van den Oord, and Pushmeet
Kohli. Adversarial risk and the dangers of evaluating against weak attacks. In

https:

torchtest. https://github.com/suriyadeepan/

15

[96
[97

[98

[99

[100

[101

[102

[103]

[104

[105

[106

[107

[108

=
= o
2.8

— o
[N

[113

[114

[115

[116]

A

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

ICML, 2018.

Ultralytics. YOLOv3 in PyTorch. https://github.com/ultralytics/yolov3.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. ERIM: Secure, efficient in-process isolation
with protection keys (MPK). In 28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 1221-1238, Santa Clara, CA, August 2019. USENIX Association.
Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical context-sensitive
cfi. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’15, page 927-940, New York, NY, USA, 2015. Association
for Computing Machinery.

Vidita V Koushik. Uncovering critical vulnerabilities in real-time computer
vision library, OpenCV, 2020. https://www.secpod.com/blog/opencv-buffer-
overflow-vulnerabilities-jan-2020/.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. You
shall not (by)pass! practical, secure, and fast pku-based sandboxing. In Proceed-
ings of the Seventeenth European Conference on Computer Systems, EuroSys *22,
page 266-282, New York, NY, USA, 2022. Association for Computing Machinery.
Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L. Graham. Ef-
ficient software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages 203-216, 1993.

Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast
online object tracking and segmentation: A unifying approach. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1328-1338,
2019.

Jinpeng Wei and Calton Pu. Tocttou vulnerabilities in unix-style file systems: An
anatomical study. In Proceedings of the 4th Conference on USENIX Conference on
File and Storage Technologies - Volume 4, FAST’05, page 12, USA, 2005. USENIX
Association.

Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, page 439-449. IEEE Press, 1981.

Yongzheng Wu, Sai Sathyanarayan, Roland HC Yap, and Zhenkai Liang. Codejail:
Application-transparent isolation of libraries with tight program interactions. In
European Symposium on Research in Computer Security, pages 859-876. Springer,
2012.

Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically partition
software into least privilege components using dynamic data dependency anal-
ysis. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 323-333. IEEE, 2013.

Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically partition
software into least privilege components using dynamic data dependency anal-
ysis. In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE’13, page 323-333. IEEE Press, 2013.

Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. Subdomain-based
generality-aware debloating. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 20, page 224-236, New
York, NY, USA, 2021. Association for Computing Machinery.

xming521. CTAL 2020. https://github.com/xming521/CTAL

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Commun. ACM, 53(1):91-99,
January 2010.

Shiqi Yu. an open source library for CNN-based face detection in images., 2020.
Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.
Secure program partitioning. ACM Trans. Comput. Syst., 20(3):283-328, August
2002.

Weijuan Zhang, Xiaoqi Jia, Shengzhi Zhang, Rui Wang, and Peng Liu. Running
os kernel in separate domains: A new architecture for applications and os
services quarantine. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), pages 219-228, Dec 2018.

Xiangyu Zhang and Rajiv Gupta. Cost effective dynamic program slicing. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, PLDI *04, page 94-106, New York, NY, USA, 2004.
Association for Computing Machinery.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. Semantic understanding of scenes through the ade20k
dataset. International Journal on Computer Vision, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networkss. In Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.

APPENDIX

A.1 Motivating Example Data

A.l1

Level of Security in Table 1. In Section 3, we compare FREEP-

ART to existing techniques in terms of security. We use the metric

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

“Security Level” in Table 1, which we define as follows. Specifically,
we rank them from ‘Highly effective’ (@) to ‘Not effective’ (O). The
detailed rubrics are in Table 8.

A.1.2 Performance in Table 1. In Table 9, we show the performance
breakdown of FREEPART and related approaches. Specifically, the
overall performance presented in Table 1 is computed by consid-
ering the total runtime overhead (in seconds) shown in the third
column of Table 9. The number of IPCs and the amount of trans-
ferred data between processes are presented in the first and second
columns.

Data
e ® & O
Memory-corruption on OMRCrop is mitigated @]
Memory-corruption on template is mitigated 00
Memory permissions enforced to avoid unauthorized writes on OMRCrop 0O 0
Memory permissions enforced to avoid unauthorized writes on template 0O 0O
OMRCrop memory is not shared with APIs 0O 0O
template memory is not shared with APIs 0O 0O
API
e ® 0 O
Code-rewriting attack on other API code mitigated @]
Vulnerable imread () isolated (@]
Vulnerable imshow () isolated 00
APIs distributed in 5 or more processes 00
APIs isolated in individual processes (286 processes) 0O 00

Table 8: Ruberic for Level of Security of Data and APIs.

#0of IPC* Data” (GB) Time* (seconds) Overall
APT! 169 0.1 543 °
Code-based)
API and Data 6,854 219 88.8 o
Entire Lib> 12,411 0.0 54.9 °
Library-based 2
Individual APIs 12,411 42.7 121.8 [e]
Memory-based” 0 0.0 54.1 °
FREEPART 12,411 04 55.6 °

+: Total number of IPC calls. #: Total data transferred between processes. : Overall overhead. @ : Low
Overhead (<10% increase). ® : Moderate Overhead (>50% increase). O : High Overhead (>100% incr-
ease). *: Total time taken. 1: Code-based API isolation (shown in Fig. 2-(a)). 2: Code-based API and Data
isolation (shown in Fig. 2-(b)). 3: Library-based isolation for the entire library (shown in Fig. 2-(c)).

4: Library-based isolation for individual APIs (shown in Fig. 2-(d)). 5: Memory-based data isolation.

Table 9: Overhead of Existing Techniques and FREEPART.

A.1.3 Granularity of Isolation of Existing Techniques and FREEPART.
Table 10 shows the granularity of API isolation of existing tech-
niques mentioned in Section 3 and FREEPART. Each value in the
table shows the number of framework APIs in each partition (or
isolated process).

A.1.4 Partitioning Beyond Four Partitions. In this section, we elab-
orate on our analysis of finer-grained partitioning beyond the four
partitions used in FREEPART. In particular, we try to reason by fur-
ther partitioning the existing four partitions, particularly the data

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

16

processing agent, which contains 74 framework APIs, as shown
in Table 10. To split the partition (with 74 APIs in data processing
APIs), there are more than 1.8e+22 ways. We tried (i.e., subsampled)
155K combinations of partitions by randomly choosing APIs for
the new partitions. To this end, we find an average overhead in-
crease of 16 times in the worst case. This is because there are two
frequently executed APIs: cv.rectangle and cv.putText in the
data processing agent.10 If the new partitioning separates the APIs
into different partitions, they cause significant overhead.

Note that they two follow the pipeline style pattern of data
processing that FREEPART leverages, avoiding such overhead.

Process Number

1 2 3 4 5 >6

APT! 101 84 - - -
Code-based 2
API and Data’ 1 1 8 0 0 -
Entire Lib.? 0o 8 - - - -
Library-based 1

Individual APIs 1 1 1 1 1 1
Memory—based5 86 - - - - -
FREEPART 3 75 6 2 0 -

1: Code-based API isolation (shown in Fig. 2-(a)). 2: Code-based
API and Data isolation (shown in Fig. 2-(b)). 3: Library-based
isolation for the entire library (shown in Fig. 2-(c)). 4: Library-
based isolation for individual APIs (shown in Fig. 2-(d)).

5: Memory-based data isolation.

Table 10: API Isolation Granularity.

A.2 Extended Design

A.2.1 Handling Complex Control Structures. There are many chal-
lenges in applying application-based partitioning to target pro-
grams because of complex control structures. We provide a few
examples of them.

Try-Catch Structure. Fig. 16-(a) shows a code snippet taken from
the readResponse () function mentioned in Section 3 (Motivation).
Note that there is a try-catch structure that surrounds the state-
ments from lines 4 to 8. A desirable partitioning in this example is
to partition the show () function at line 8 from other statements be-
cause show () is a GUI relevant function and others (e.g., resize_-
util ()) calls data processing functions (e.g., cv2.resize()).

Fig. 16-(b) shows two functions that are partitioned (partition1 ()
and partition2()). Lines 4~7 are partitioned to partition1()
(lines 18~21) and line 8 is partitioned to partition2() (line 35).
There are also IPC functions added to communicate between the
partitioned programs (lines 22~24, 33~34, and 36), highlighted in
gray.

Observe that the try-catch statements are copied to both par-
tition1() and partition2() (denoted by @ and @ respec-
tively). Otherwise, runtime exceptions in a partitioned function
will not be preserved, breaking the target program’s functionality.

10
They are used to annotate different answers in an input image.

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

1 def readResponse(...):

2 try: ...
3 .. k
4 img = resize_util(img, ...)

5 morph = img.copy()

6 P

7 if(config.showimglvl>=4):

8 show("morphl",morph,0,1)

9 I

10 except Exception as e:

11 exc_type, exc_obj, exc_tb = sys.exc_info()

12 fname = os.path.split(...)[1]

13 print("Error from readResponse: ", e)

14 print(exc_type, fname, exc_tb.tb_lineno)

(a) Original Program

15 @ def partitioni(...):

16 try:

17 ves

18 img = resize_util(img, ...)

19 morph = img.copy()

20 e

21 if(config.showimglvl>=4):

22 IPC.enqueue(morph)

23 IPC.signal(sig_partition2)

24 IPC.waitfor(sig_partition2_done)

25 oo

26 except Exception as e:

27 exc_type, exc_obj, exc_tb = sys.exc_info() §
28 fname = os.path.split(...)[1] o
29 print("Error from readResponse: ", e)

30 print(exc_type, fname, exc_tb.tb_lineno)

31 | def partition2(...):

32 try: ...
33 IPC.waitfor(sig_partition2) k
34 IPC.dequeue(morph)

35 show("morphl",morph,0,1)

36 IPC.signal(sig_partition2_done)

37 .

38 except Exception as e:

39 exc_type, exc_obj, exc_tb = sys.exc_info() J
40 fname = os.path.split(...)[1] e
41 print("Error from readResponse: ", e)
42 print(exc_type, fname, exc_tb.tb_lineno)

(b) Partitioned Program (Application based Partitioning)

Figure 16: Challenges in Application-based Partitioning,.

FREEPART handles this by catching and redirecting exceptions that
happen in the framework APIs. Note that since FREEPART does
not change the target programs’ code, exceptions in the target
programs’ code are not affected.

Loop Structure and Function Call Chain. Fig. 17-(a) shows
another code snippet from the readResponse () function which
is a for loop calling saveOrShowStacks (). Note that saveOr-
ShowStacks () should be partitioned because it can eventually
call framework APIs that belong to two different API types (data
processing and Visualizing).

This example shows two challenges. First, to partition a target
function that calls framework APIs belonging to different process,
one needs to analyze all the functions called in the target function
until all the framework APIs belong to a single API type, hence
single process. Second, when a target function for partitioning

17

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

is inside a loop, the partitioned code should preserve the loop
structure.

1. A function calling APIs belong to different API types: Since to
partition the line 3, we analyze and partition statements in saveOr-
ShowStack(). Since resize_util() calls a data processing API
(cv2.resize()) and saveImg() invokes a storing process API
(cv2.imwrite()), we partition the second function, saveImg(),
and isolate it in another process. This is done in saveOrShow-
Stacks_partitionl() and saveOrShowStacks_partition2()
(lines 21~23 and 26~30 respectively).

However, show() calls multiple framework APIs that belong
to different API types: Visualizing (e.g., imshow()) and data pro-
cessing (resize_util()). To partition the function, one needs to
analyze statements in show () as well. show_partition3() and
show_partition4() show the resulting partitioned function.

2. Partitioning code in a loop: Note that there are two while state-
ments at lines 27 and 42 that do not exist in the original program.
Those are added because of line 2. Specifically, in the original pro-
gram saveOrShowStacks () is expected to be executed multiple
times (since it is in a loop), meaning that APIs called by the function
will be invoked multiple times as well. If the partitioned functions
do not have the while loop, it has to create a new process every
time, which will cause significant performance overhead. The loop
essentially makes the partitioned process alive to handle multi-
ple requests if framework APIs are called in a loop in the original
program.

Observe that the analysis must remember whether a target state-
ment for partitioning might be in a loop (i.e, any callers of the
statement are in the loop). The analysis is challenging because it
needs to analyze all the caller functions of the statement. Worse, it
is more challenging if one of the callers is an indirect function call
(via a function pointer).

A.2.2 Performance. We observe that the framework instrumenta-
tion approach is resulting in less overhead as the instrumenting
of a target program often ends up creating more duplicated data
values across the processes. In typical cases, it also causes more
inter-process data transfers between the processes. While it can be
mitigated by a precise and accurate program analysis technique,
state-of-the-art program dependency analysis techniques and imple-
mentations are difficult to handle complex real-world applications.

A.2.3 Scalability. Even if the instrumentation is possible, target
applications, in practice, are written in various languages, and it is
challenging to develop instrumentation tools for all such diverse
languages.

A.2.4 Restoring States for Restarted Agent Processes. When FREEP-
ART restarts an agent process, it needs to retain states for stateful
APISs (i.e., APIs that behave differently depending on states stored
internally). When an agent process crashes, FREEPART needs to
restore the states. We analyze the framework APIs and identified
1,841 stateful APIs across four frameworks including OpenCV, Caffe,
PyTorch, and TensorFlow. We further analyze them and identified
that they are APIs for initialization, visualization (i.e., GUI), and
data processing.

e Initialization. These are APIs that are used during the ini-
tialization of the program (e.g., cv: : setNumThreads). We

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

1 def readResponse(...): 4 | def saveOrShowStacks(...): 11 def show(...):

2 for i in range(...): 5 if(...) 12 if(...)

3 saveOrShowStacks(...) 6 result = resize_util(result, ...) 13 cv2.destroyAllWindows ()

: 7 if (... 14 .
8 saveImg(..., result) 15 img = resize_util(orig, ...)
9 else: 16 cv2.imshow(name, img)
10 show(..., result, ...)
(a) Original Program

17 | def saveOrShowStacks_parti(...): 26 | def saveOrShowStacks_part2() i 32 | def show_part3(...): 41 def show_part4(...):
18 if(...) 27 while True: <+ 33 if(...) 42 while True: <
19 result = resize_util(result, ...) 28 IPC.waitfor(sig_part2) 34 cv2.destroyAllWindows () 43 IPC.waitfor(sig_part4)
20 if (...0): 29 IPC.dequeue(result) 35 cee 44 IPC.dequeue(orig)
21 IPC.enqueue(result) 30 saveImg(..., result) 36 IPC.enqueue(orig) 45 img = resize_util(orig, ...)
22 IPC.signal(sig_part2) 31 IPC.signal(sig_part2_done) 37 IPC.signal(sig_part4) 46 IPC.enqueue(img)
23 IPC.waitfor(sig_part2_done) 38 IPC.waitfor(sig_part4_done) 47 IPC.signal(sig_part4_done)
24 else: 39 IPC.dequeue(img)
25 show_partition3(..., result, ...) 40 cv2.imshow(name, img)

(b) Partitioned Program (4 partitioned functions). The loop (for at line 2) affects the partitioning of sub functions (e.g., show()’s infinite loop).

Figure 17: Challenges in Application-based Partitioning,.

observe that they set the state once and do not change it, Application Lazy Data Copy Non Lazy Data Copy
meaning that we do not need to store the states. After restart- Face classification 18,722 2,993
ing the .agent process, simply re-executing the initialization FaceTracker 252,892 5.987
code will restore the state. —
e GUI APIs. GUI APIs maintain the states for GUI compo- Face_Recognition 22,116 8,964
nents, while those can be restored by running them again. Ibpcascade_animeface 1,910 342
For example, after a visualization agent process crashed, ex- EyeLike 29,638 995
ecuting 1mshov.v() again without restoring the GUI states Video-to-aseil 6.788 1,997
does not cause issues.
o Data processing APIs. Data processing APIs maintain the OMRChecker 7,914 2,357
states internally, and FREEPART has to store and restore them, Libfacedetection 109,258 3,970
otherwise, they would lead to an incorrect execution. For ex- EmoRecon 43,698 2,981
ample, tf.estimator. DNNC.1a351f ier.train maintains OpenPose 369,822 11,958
the current state of the training data of a model. For them,
s Py : . MTCNN 1,818 202

we store their states periodically. We find 1,056 APIs in this
category. SiamMask 20,650 111
CycleGAN-and-pix2pix 25,382 2,985
A.3 API Coverage FAIESEQ 21,818 2,992
Table 11 gives the coverage of dynamic analysis on different APIs. PytorchGAN 136,602 29,733
YOLO-V3 8,678 333
StarGAN 60,482 2,983

Framework API Coverage Code Coverage -

EfficientNet-Pytorch 2,668 168

OpenCV 80.4% (424/527) 91% Semantic-Segmentation 11,278 276

PyTorch 82.8% (111/134) 84% D COAN Tomeort] - -

-lensorriow N
Caffe 91.9% (103/112) 76% _
TensorFlow 82.6% (2,236/2,704) 73% See in the Dark 6,832 149
CapsNet 4,252 78
Style-Transfer 2,187 128
Table 11: Coverages of Dynamic Analysis for API Categoriza- Total 1,170,660 (95.08%) 82,789 (4.92%)

tion.

Table 12: Statistics of Lazy Data Copy Operations.

A4 List of Categorized APIs

In Section 4.2, Table 4 shows a few examples of framework APIs
with their categories. We list the full list of APIs on GitHub [30].
18

FREEPART: Hardening Data Processing Software via Framework-based Partitioning and Isolation

A.5 Lazy Data Copy

Table 12 shows the number of lazy data copy and non-lazy data
copy operations observed during our evaluation. As shown in the
table, the lazy data copy occupies 95.1% of the total data copy oper-
ations, meaning that it significantly contributes the performance
optimization.

A.6 Additional Discussion

Handling Unauthorized Backward Data Flow. If a target ap-
plication has a complicated backward data flow that cannot be
detected by state-of-the-art static analysis techniques, FREEPART
may fail to identify them, and functionalities that depend on the
undetected backward data flow may break. During our experiments,
we do not encounter complicated backward data flow cases that
break our static analysis. In addition, our empirical study on 56 pop-
ular applications (mentioned in Generality paragraph) shows that
applications typically follow the unidirectional data flow pattern.
Stateful APIs across Agent Processes. A stateful API stores its
state during an invocation (on global variables or heap buffers), and
the stored state affects the behavior of the API calls in the future
(e.g., strtok is an example). There are two types of stateful APIs:
(1) an API that does not share the state with other APIs and (2)
an API that share the state with other APIs. For the first type, as
long as all the API calls are made by the same process, it does not
cause any problems. For the second type, if such APIs are executed
in different processes, the states will not be shared, breaking the
behavior of the target program. To ensure that this would not
happen, we run our hybrid analysis to find APIs that access the
same memory space (e.g., via arguments, heap buffers, and global
variables). To this end, we identify 4,778 and 21 APIs that belong to
the data-processing and visualization process, respectively. Among
them, we check if there are APIs sharing the states categorized
into different processes. We find that debugging/profiling APIs
(e.g., tf.debugging.experimental.enable_dump_debug_info()) follow
the pattern. Note that such APIs are only reading the profiling
data, while other APIs write the data. Our separation essentially
separates the profiling data. It does not break the functionality while
the profiling data will be collected and reported in each process
separately.

Finer-grained System Call Restriction. Observe that our per-
agent process system call restriction might be coarse-grained if
there are many framework APIs belonging to an agent process.
For example, Fig. 12-(c) shows that 9 system calls are permitted
in the data loading agent process. In this case, if a vulnerability in
CascadeClassifier::load() is exploited, the attacker can also
access the ioctl system call while the system call is not required
for the framework API. If the restriction is applied per framework
API, the attacker has to exploit one of the two methods in Video-
Capture to access the ioctl.

However, implementing the per API system call restriction is
not trivial with seccomp. Specifically, FREEPART uses PR_SET_-
NO_NEW_PRIVS, meaning that only one allowed system call list
can be applied for a process. Hence, to support n framework APIs
with different required system calls, FREEPART needs to run n
different processes. For example, Fig. 12-(b) shows three frame-
work APIs that require different sets of system calls. To apply

19

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

per framework API system call restriction, we need to have three
separate agent processes for each API. Unfortunately, running
each framework API in a separate process often causes a num-
ber of additional IPCs, leading to significant overhead. For exam-
ple, two data loading APIs in PyTorch, i.e, datasets.MNIST and
torch.utils.data.DataLoader, are operating on the same data.
In particular, torch.utils.data.DataLoader () takes data re-
turned by datasets.MNIST() "1 If the two APIs are executed in
separate processes, there will be an additional IPC between the two
processes. In Fig. 12-(b), the two methods of VideoCapture share
various data, meaning that running them in separated processes
would substantially increase the number of IPCs due to the shared
data.

Note that while FREEPART applies the system call restriction for
each agent process, not for each framework API, it does not mean
that FREEPART cannot further partition each agent process. FREEP-
ART supports multiple sub-partitioned agent processes (e.g., 3 agent
processes where each of the processes runs a single framework
API in Fig. 12-(b)). An alternative can be assigning multiple closely
related framework APIs to a single agent process. Intuitively, meth-
ods of the same class share more data than methods of different
classes. Hence, instead of having 3 data loading agent processes for
Fig. 12, we can have 2 data loading agent processes: the first process
for CascadeClassifier: :1load() and the second process for the
two methods of VideoCapture. This would minimize the overhead
caused by additional IPCs while providing better security. However,
further partitioning the agent process requires manual effort. To
this end, FREEPART allows the execution of sub-partitioned agent
processes if one manually partitions it.

Framework/Program Updates. When a target program is up-
dated, a user needs to reapply FREEPART on the updated target
program and framework. If the framework is not updated and the
target program does not use new framework APIs, the reapplying
process simply inserts a few lines of code to hook data objects and
functions, which does not cause compatibility issues. If a framework
is updated, it should be analyzed again.

Impact on Timing. FREEPART changes timings of execution since
the target program needs to communicate with isolated processes.
However, while it can introduce performance overhead at runtime,
FREEPART does not introduce logical vulnerabilities such as TOC-
TOU (Time-of-Check to Time-of-Use) [1, 103]. Note that if a target
application already has them, FREEPART may affect the chance of
the exploitability of the vulnerability due to the performance over-
head. In any case, the vulnerability will be contained within one
isolated process.

A.7 Additional Case Study: StegoNet Trojan
Attack

Liu et al. [52] propose an evasive attack that delivers malicious
payload in DNN (Deep Neural Network) models. The attack is
stealthy because it uses model parameters as a payload injection
channel. We decide to use this attack to show FREEPART’s effective-
ness, particularly against the new stealthy and evasive attacks. We
use PyTorch [76] to reproduce the attack. Specifically, we create
a malicious DNN model containing malicious code. The model is

11r=c1atase1:s .MNIST(...); torch.utils.data.DatalLoader(r,...)

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

loaded by torch.load (). Note that loading a DNN model belongs
to a Data Processing process because data processing APIs depend
on the loaded model.

Mitigation. Since the model is loaded and executed in the Data
Processing process, the malicious payload is contained. The original
StegoNet paper uses a fork bomb as an example malicious payload.
Our analysis shows that none of the data-processing APIs in the
frameworks we support requires fork (), meaning that FREEPART
restricts the use of fork system call. The attack is successfully
prevented.

Mitigation on Other Applications using PyTorch. We also
pick two real-world programs to understand the effectiveness of
FREEPART in mitigating StegoNet attacks. Specifically, we pick a
program that analyzes a medical image (i.e., CT image [109]) and
another program that does OCR (Optical Character Recognition)
on the tax invoices [35].

Ali Ahad, Gang Wang, Chung Hwan Kim, Suman Jana, Zhigiang Lin, and Yonghwi Kwon

20

The first program contains several sensitive pieces of informa-
tion: the patient’s CT image, name, age, and phone number. With
FREEPART, the patient’s name, age, and phone number exist in the
target process. The patient’s CT image exists in the data loading pro-
cess. However, the data loading process does not store previously
loaded CT images, meaning that it does not contain other users’
CT images. Exploitations can happen in both data loading and data
Processing processes. However, as discussed above, sensitive data
are not accessible.

The second program contains tax images and personal informa-
tion extracted from the image, such as an address, taxpayer ID, and
bank account number. Similar to the first program, input images
exist in the data Loading process. However, it only has the currently
processed image. Moreover, all other sensitive data exist in the tar-
get program process, which is not accessible from the data loading
and data processing processes, where exploitations can happen.

	Abstract
	1 Introduction
	2 Threat Model
	3 Motivating Example
	3.1 Existing Techniques
	3.2 Exploit Mitigation by FreePart

	4 Design
	4.1 Studies for FreePart's Design
	4.2 Automated API Type Categorization
	4.3 Framework Hook and Agent Process Creation
	4.4 Runtime Support

	5 Evaluation
	5.1 API Type Categorization Result
	5.2 Runtime Performance Overhead
	5.3 Security Analysis on Attack Scenarios
	5.4 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 Motivating Example Data
	A.2 Extended Design
	A.3 API Coverage
	A.4 List of Categorized APIs
	A.5 Lazy Data Copy
	A.6 Additional Discussion
	A.7 Additional Case Study: StegoNet Trojan Attack

