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in extracellular vesicles are novel markers
for detecting traumatic brain injury in a mouse model
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SUMMARY

This study investigates the potential use of circulating extracellular vesicles’ (EVs) DNA and protein con-
tent as biomarkers for traumatic brain injury (TBI) in a mouse model. Despite an overall decrease in EVs
count during the acute phase, there was an increased presence of exosomes (CD63+ EVs) during acute
and an increase in microvesicles derived from microglia/macrophages (CD11b+ EVs) and astrocytes
(ACSA-2+ EVs) in post-acute TBI phases, respectively. Notably, mtDNA exhibited an immediate elevation
post-injury. Neuronal (NFL) and microglial (Iba1) markers increased in the acute, while the astrocyte
marker (GFAP) increased in post-acute TBI phases. Novel protein biomarkers (SAA, Hp, VWF, CFD,
CBG) specific to different TBI phases were also identified. Biostatistical modeling and machine learning
identified mtDNA and SAA as decisive markers for TBI detection. These findings emphasize the impor-
tance of profiling EVs’ content and their dynamic release as an innovative diagnostic approach for TBI
in liquid biopsies.

INTRODUCTION

Traumatic brain injury (TBI) is a significant global cause of death and disability. In the United States alone, the Center for Disease Control and

Prevention reported over 220,000 TBI-related hospitalizations and 60,000 TBI-related deaths in 2021. TBI is a complex neurological disorder

with primary, mechanical injury followed by secondary mechanisms, such as neuroinflammation, excitotoxicity, oxidative stress, cellular

apoptosis, and mitochondrial dysfunction, that collectively contribute to long-termmotor and cognitive deficits.1–4 Current TBI diagnosis re-

lies on neurological exams (GlasgowComaScale) and imaging (CT,MRI), which are inadequate for early and rapid detection, assessment, and

monitoring of severity and specific brain injury components (cell death, neuroinflammation, or blood-brain barrier, BBB, breakdown).5

Several protein biomarkers, including glial fibrillary acidic protein (GFAP), neurofilaments (NFs), S100 calcium-binding protein B (S100B),

neuron-specific enolase (NSE), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and tau, have been proposed for TBI diagnosis through bodily

fluids like blood plasma and cerebrospinal fluid (CSF).6–10 However,measuring their levels in body fluids is challenging due to low abundance,

low BBB permeability, and instability from proteolytic degradation. Consequently, there is growing interest in analyzing circulating extracel-

lular vesicles (EVs) as a potential source of TBI biomarkers.11–15 EVs, ubiquitously released by virtually all cell types, including brain-specific

ones, can traverse the BBB, protect their cargo, and be traced back to their cellular origin, making them a potentially rich source for suitable

biomarkers.11,16 Their enhanced stability allows them to travel long distances within the body, making plasma the richest and most readily

accessible source of EVs.17,18

Previous studies have explored the presence of biomarkers like GFAP, NFs, UCH-L1, and tau in EVs.19 Longitudinal analysis of exosomes

from 21 patients revealed an acute increase in NFL and GFAP.20 Other studies found elevated tau levels in EVs from individuals experienced

repeated TBI incidents.21,22 Some studies usedCD171 (L1CAM)-targetedmagnetic beads to isolate neuronal EVs, identifying increased levels

of Tau, Ab42, and UCH-L1.23–25 Changes in miRNA content of isolated EVs have also been investigated by others.19
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The current study aims to provide a comprehensive analysis of biophysical andDNA/protein content changes in circulating EVs at different

TBI phases: acute, post-acute, and chronic. EVs’ protein content was examined using targetedwestern analysis for known TBI biomarkers and

a global unbiased proteomics approach for the identification of novel biomarkers. Through biostatistical and computational analysis,

including graph machine learning algorithms and protein-protein interaction networks, a wide range of TBI biomarkers encapsulated within

EVs were explored. The study highlights the potential use of TBI-induced changes in serum amyloid A andmitochondrial DNA content of EVs

as emerging biomarkers for diagnosing the acute phase of TBI.

RESULTS

Neurological and imaging assessment confirms moderate/severe TBI model

To induce TBI, we used awell-established, pre-clinical, close-skull, weight dropmousemodel. Thismodel is known for inducing diffuse axonal

injury without the need for prior skull manipulations, and it consistently triggers robust neuroinflammatory responses with high consistency

and reproducibility.26–29 Moreover, the impact to the cranium of unrestricted animals allows for rapid acceleration of the free-moving head

and torso, closely mimicking the most frequent types of human TBIs caused by traffic accidents and falls.30

We used male C57BL6/J mice for the evaluation of TBI at various time points in the acute, post-acute, and chronic phases post-injury,

compared to sham controls (Figure S1A). The severity of TBI was assessed using a modified Neurological Severity Score (NSS),31,32 starting

at 3 h post-injury (hpi) and extended to 30 days post injury (dpi). This assessment revealed severe TBI (NSS>8) in 6, andmoderate TBI (NSS 4–7)

in 2 out of 8 animals at 3 hpi (Figure S1B). Subsequent NSS measurements demonstrated a gradual decrease in scoring, with TBI animals

showing a recovery trend similar to sham animals by 30 dpi. (Figure S1B). Additionally, we investigated the effects of TBI using computed

tomography imaging. Despite of severity of injury, axial and sagittal images revealed only skull fractures (Figure S1C). Moreover, calculated

brain parenchymal volume showed only a slight increase, most likely due to cerebral edema, at 30 dpi (Figure S1D). We concluded that our

model successfully induces moderate to severe TBI, from which animals recover similarly to previous reports.31 However, our data also

confirmed that a combination of neurological examination and imaging testing, which is the current clinical practice of care, provides limited

information regarding the underlying neuropathology induced by TBI, particularly at the early phases post injury. This highlights the need

for further research and the development of more advanced and comprehensive diagnostic methods to better understand and monitor

TBI-induced neurological alterations.

Temporal dynamics of circulating in plasma EVs in TBI

In this study, we adhere to the latest guidelines of the International Society for Extracellular Vesicles (ISEV), which classify EVs into small EVs,

large EVs, and apoptotic bodies.33 Our emphasis is on small EVs, encompassing both exosomes (derived from multivesicular bodies) and

microvesicles (generated through pinching of the plasma membrane), owing to their abundance and relatively uniform size.34

Changes in the biophysical properties (number and size) of small EVs (for simplicity we refer as EVs in remainingmanuscript) in bodily fluids

following TBI remain poorly characterized. To address this, we isolated EVs from plasma using ultracentrifugation.35 Nanoparticle tracking

analysis (NTA) revealed amarked 10-fold decrease in EVs numbers at 12 hpi (8.8 x 108/mL) and a 6-fold decrease at 24 hpi (1.8 x 109) compared

to sham controls (both�8 x 109/mL). Interestingly, EVs numbers at 3 and 10 dpi were comparable to sham controls, but a significant decrease

was alsoobservedat 30 dpi (4.0 x 109; Figure 1AandTable 1). Furthermore, EVs sizes showedsignificant increases at 12 and24hpi compared to

sham controls (Figures 1B and 1C, and Table 1). Transmission electronmicroscopy validated the circular shape of isolated EVs consistent with

previous findings,36 and similarly asmeasuredwithNTA, EVs isolated at 12 and 24 hpi exhibited larger size compared to others (representative

close up images are shown in Figure 1D and lower magnification images are showed in Figure S2). Our findings indicated a substantial reduc-

tion in the number of EVs, but an increase in the sizes at the acute TBI phase, suggesting the release of specific EVs subpopulations. Interest-

ingly, the decrease in EVs numbers and increase in EVs sizes were also evident at 30 dpi, suggesting changes in EVs subpopulation are also

apparent during the chronic phase of TBI, reinforcing the notion that TBI represents a chronic condition rather than a singular event.37

Isolated small EVs contain both exosomes andmicrovesicles.33 To investigate TBI-induced temporal changes in the different EVs subpop-

ulations, we examined the expression of CD63, a common exosomemarker,33 and observed a 10-fold increase of CD63+ EVs at the acute TBI

phase (Figures 2A and 2B). Additionally, we tested the levels of CD11b (macrophage/microglia-specific marker) and ACSA-2 (astrocyte-spe-

cific marker).38,39 Remarkably, both CD11b+ EVs and ACSA-2+ EVs exhibited a gradual increase, peaking at 3 and 10 dpi, respectively

(Figures 2A, 2C, and 2D). An upregulation of glial cell reactivity, with microglia and astrocytes playing essential roles in the post-injury pro-

cesses is expected in TBI,1–4 and we have shown for a first time that it can be detected in liquid biopsies. Given that glial cell activation is

closely associated with neuroinflammatory responses, further analysis of specific cargo within these EVs may provide valuable insights into

the neuroinflammatory processes occurring in microglia and astrocytes following injury.

Elevated DNA content of EVs in the acute TBI phase

In comparison to TBI-induced changes inmicroRNAs, the potential ofmeasuringDNAas a TBI biomarker has received less attention. Previous

studies in rat40 and porcine41 models of TBI demonstrated increased amounts of DNA in blood, but specific measurements in EVs were lack-

ing.We reported elevated DNA levels, particularly mtDNA, in blood of human subjects during the acute TBI phase and proposed quantifying

DNA as an independent indicator of TBI severity in liquid biopsies.42 However, howDNA levels within EVs change over time in TBI is currently

unknown.
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Because wemeasured significant changes in EVs number in acute TBI phase (Figure 1A), quantification of DNA content was normalized to

100 million EVs in each sample. Using qPCR with mtDNA and nuclear DNA (nuDNA)-specific primers, we measured marked increase of both

mtDNA and nuDNA at 12 hpi with subsequent decrease at later time points (Figures 3A and 3B). We also tested whether circulating DNA in

plasma was exclusively present in EVs or also in ‘‘free floating form’’. We measured more than 90% of the circulating mtDNA within EVs

compared to their ‘‘free-floating form’’ (Figure 3C). Given the significantly lower amount of nuDNA (3 orders of magnitude less than mtDNA),

detecting differences in nuDNA content between EVs and the ‘‘free-floating form’’ was challenging due to qPCR detection limits.

Together, our findings demonstrate that TBI triggers the release of EVs with enhancedDNA content, particularly mtDNA, during the acute

phase. These results support the potential of examining DNA content in EVs as an independent indicator for TBI detection.

Targeted immunoblotting for temporal alterations of neuronal, microglial, and astrocytic markers in circulating EVs in TBI

We also examined established TBI protein markers, GFAP, NFL, S100B, NSE, UCH-L1, and tau,6–10 with prior EVs analysis limited to NFL,

GFAP, and tau.9,11,20,24,43,44 Given temporal changes in EVs number post injury (Figure 1A), changes in protein levels were assessed using

100million EVs isolated at each time point. Figure 4A shows representative western blots of EVs from two animals of each experimental group

but changes in protein level of these markers were analyzed in EVs isolated from 8 animals per each experimental group. An increased

Figure 1. Altered physical properties of EVs during acute TBI phase

Effect of TBI on (A) number, (B) mean, and (C) mode size measured by NTA. Data based on 10 animals in each experiment group (N = 10) *p < 0.05, **p < 0.01,

****p < 0.0001 based on one-way ANOVA with Dunnett correction for multiple comparisons to sham.

(D) Validation of circular shape and changes in the size of isolated EVs with TEM. Two representative close up images are shown. Marker, 250 nm.

Table 1. Physical properties of isolated EVs following TBI

Sham 3 hpi 12 hpi 24 hpi 3 dpi 10 dpi 30 dpi

Number (x109/mL) 8.1 G 2.8 7.8 G 4.0 0.88 G 0.3 1.8 G 1.5 5.8 G 2.4 7.6 G 2.9 4.0 G 1.4

Mean (nm) 85.8 G 5.6 90.6 G 9.1 133.3 G 9.8 104.4 G 20.2 88.7 G 7.8 82.7 G 7.1 102.1 G 8.6

Mode (nm) 74.4 G 2.8 72.6 G 2.0 103.6 G 14.6 91.5 G 14.6 72.1 G 6.5 69.9 G 7.3 82.5 G 9.1
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presence of NFL (neuronal marker) and Iba1 (microglia marker) was measured at 12 hpi (Figures 4A–4C), while GFAP (astrocyte marker) grad-

ually increased and peaked at 3 dpi (Figure 4D). However, we failed to detect S100B, NSE, UCH-L1, and tau proteins in the isolated EVs at any

time point, although antibody specificities were confirmed using cortex homogenates (Figure S3). This suggests that these proteins are either

not localized within EVs or are present in amounts below the detection limit of western blotting. Together, our analysis revealed cell-type-

specific responses to TBI that can be measured in circulating EVs, with neuronal and microglial reactivity occurring in the acute phase while

astroglial reactivity measured in the acute and post-acute TBI phases.

Discovery of novel TBI markers through EVs proteomics

Previous studies mostly focused on well-defined brain-related targets in circulating EVs. However, recognizing the systemic effects of TBI, we

conducted global unbiased proteomics analysis of 100 million EVs isolated from each experimental time points. Our analysis led to the

Figure 2. TBI induces changes in EVs subpopulations

(A) Example western blot analysis of EVs isolated from 2 animals in each experimental group. Quantification of the changes in the (B) CD63+ EVs (exosomes).

(C) CD11b+ EVs (microvesicles derived from microglia/macrophages) and (D) ACSA2+ EVs (microvesicles derived from astrocytes). Data based on 8 animals (N =

8) in each experiment group. *p < 0.05, **p < 0.01, ***p < 0.001, based on one-way ANOVA with Dunnett correction for multiple comparisons to sham.

Figure 3. Enhanced amount of mtDNA in EVs at acute TBI phase

Quantification of (A) mtDNA and (B) nuDNA using qPCR.

(C) Comparison of the amount ofmtDNA in isolated EVs (pellet, P) and in plasma post EVs isolation (supernatant, S). Data based on 10 animals in each experiment

group (N = 10) except for (C) where 6 animals were used (N = 6). *p < 0.05, ***p < 0.001 based on one-way ANOVA with Dunnett correction for multiple

comparisons to sham.
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identification of approximately 250 distinct proteins and among them, 229 were previously reported in the comprehensive EVs-protein spe-

cific databases: Vesiclopedia, ExoCarta, or both (Figure S4A). Additionally, our study discovered 13 unique proteins specific to our dataset

that were not previously reported in EVs databases. Notably, these proteins include several major urinary proteins and subunits of comple-

ment C (Figure S4B). These findings are not surprising, as TBI also affects renal function,45 while the activation of the complement system is

well reported in TBI.46

We performed a linear correlation analysis using a heatmap based on the Pearson correlation coefficient among the LFQ (label-free quan-

tification) intensity values of each protein in our experimental data. The heatmap demonstrated high correlation within each experimental

group, indicating consistency among our measurements (Figure S4C). Next, we conducted a one-way ANOVA with false discovery rate

correction47 using each protein’s LFQ intensity values. We set the statistical significance level at p < 0.05 and focused on proteins with

fold change of Log(FC) > 2 or Log(FC) < �2 as potential biomarkers, reflecting significant up- or downregulation, respectively. Several pro-

teins met our threshold criteria at different time points: 8 proteins at 3 hpi, 29 at 12 hpi, 8 at 24 hpi, 14 at 3 dpi, 20 at 10 dpi, and 37 at 30 dpi

(Figure 5). Among these, 23 proteins were upregulated and belonged to two major groups: antitrypsin/serine protease inhibitors and apo-

lipoproteins (Figure 5B). However, these proteins were identified atmultiple time points, limiting their value as specificmarkers for distinct TBI

phases. We found three specific proteins that could serve as potential novel biomarkers for acute and chronic phases post-TBI. Notably,

serum amyloid A (SAA) protein was specifically upregulated for the acute phase (12 hpi), while complement factor D (CFD) and corticoste-

roid-binding globulin (CBG) were specific for the chronic phase (30 dpi) (Figures 5A and 5B). Interestingly, the elevated levels of these proteins

were already shown in the plasmaof humanTBI subjects, but whether they localizedwith EVswas not tested.46,48,49 Furthermore, we identified

4 proteins that were downregulated by at least 2-fold with p < 0.05 (Figure 5C). Among these, amarked reduction of haptoglobin (Hp) at 3 dpi

and von Willebrand factor (VWF) at 30 dpi, were previously reported markers of vascular injury in TBI.50 A list of protein that significantly

changes by TBI but did not meet 2-fold increase criteria are shown in Tables S1 and S2.

Together, our proteomic analysis unveiled time-dependent changes in the protein content of circulating EVs in TBI. Among the identified

proteins, SAA, CFD, CBG (upregulated), Hp, and VWF (downregulated) are particularly promising as potential novel biomarkers specific for

the acute and chronic TBI phases.

Computational identification of TBI-specific biomarkers

Proteomics data were further subjected to graph neural network (GNN) analysis, a computational machine learning process, to identify po-

tential biomarkers for TBI by incorporating additional features such as neurological associations, predicted protein-protein interactions, and

time-dependent LFQ intensity values of each protein. By including these parameters, GNN provides a more comprehensive analysis that

Figure 4. Distinctive dynamics of neuronal, microglia, and astrocyte markers in EVs induced by TBI

(A) Examples of western blot analysis of neuronal (NFL), astrocyte (GFAP), and microglia (Iba1) in isolated EVs from 2 animals per experimental group.

Quantification of levels of (B) NFL, neuronal marker.

(C) Iba1, microglia marker, and (D) GFAP, astrocyte marker, in isolated EVs. Data based on 8 animals in each experiment group (N = 8). *p < 0.05,

**p < 0.01,****p < 0.0001 based on one-way ANOVA with Dunnett correction for multiple comparisons to sham.
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better captures the biological context of each identified protein to increase the likelihood of discovering a potential biomarker. We con-

structed a protein-protein interaction (PPI) network using available databases from the STRING tool.51 The identification of potential bio-

markers was formulated as a node classification problem, with node labels representing ranks from 1 to 6. Rank 1 indicated the highest prob-

ability and rank 6 the lowest probability of a protein being a potential biomarker. We performed GNN-based learning techniques to predict

probabilities of individual proteins being potential biomarkers for all nodes in the network using the experimental design shown in Figure 6A.

A time point-specific network with ranks for potential biomarkers for 3 hpi is shown in Figure 6B and for all time points in Figures S5 and S6.We

detected apolipoproteins and inflammatory response-associated proteins were represented across all time points post injury (Figure 6C) that

matched biostatistical analysis (Figure 5). Most importantly, computational analysis ranked SAA as a highly probable potential biomarker for

acute TBI phase (Figure 6C) that further confirmed the potential utility of SAA as an acute TBI phase biomarker.

DISCUSSION

The urgent need to develop novel approaches for detecting andmonitoring the detrimental effects of TBI arises from the increasing number

of brain injuries. Current diagnostic methods, relying on imaging and neurological exams, are time-consuming, resource-intensive, subjec-

tive, and fail to fully capture the complex neuropathology following TBI. Ideal diagnostic markers should reflect disease status, progression,

severity, and potential therapeutic interventions and be readily accessible in liquid biopsies. EVs have emerged as a highly valuable source of

biomarkers in various diseases, including TBI. These small vesicles are actively released by different cell types, including several brain-specific

ones, carrying a diverse cargo of proteins, nucleic acids, and lipids that reflect the physiological and pathological state of their cellular origin.

Notably, EVs can cross the BBB, facilitating the transfer of critical information from the brain to the periphery. This unique feature makes EVs

accessible in peripheral blood samples, allowing for non-invasivemonitoring of TBI-induced changes. The dynamic alterations in EVs compo-

sition during TBI, such as changes in protein and DNA content, may provide valuable insights into the underlying pathophysiological pro-

cesses in TBI progression. Most importantly, the inherent stability of EVs in various bodily fluids offers promise for the development of sen-

sitive and specific biomarkers, enabling early diagnosis, prognosis, and treatment monitoring for TBI patients. In addition, changes in the

biophysical properties of EVs (number, size) can provide additional valuable insights into the complex cellular responses following injury

and may open new avenues for developing EVs-based biomarkers and therapeutics for TBI management.

In this study, we investigated changes in biophysical properties of circulating EVs and their DNA/protein content during different

phases of TBI using a weight drop mouse model. Our findings revealed significant alterations in the number and size of circulating EVs

during the acute TBI phase, suggesting injury-specific changes within the EVs subpopulations. Specifically, we observed a marked reduc-

tion in the number of EVs but an increase in their size at this stage (Figure 1). Subsequently, we measured an increase in the exosomal

marker, CD63, during the acute phase (Figure 2). Furthermore, in both the acute and post-acute TBI phases, we observed a dynamic in-

crease in markers of microvesicles derived from microglia (CD11b) and astrocytes (ACSA-2) (Figure 2). These data highlight the dynamic

release of specific EVs subpopulations in TBI. There have been limited reports investigating the longitudinal changes in the biophysical

properties of EVs in liquid biopsies in TBI. In a mouse model of controlled cortical impact (CCI), an increased number of EVs was observed,

accompanied by a decrease in their size, which was measured up to 24 hpi.52 Similarly, in human CSF, an increased number of EVs was

detected at 1 dpi, but changes in their size were measured after 4 dpi.53 Discrepancies between these findings and our study might be

attributed to differences in the TBI model used or the methods employed for EVs detection. Further investigation is needed to elucidate

these differences. Moreover, similarly to our study, enhanced levels of microglia-derived microvesicles in blood were previously detected

at 24 hpi in CCI mouse model.52,54 No previous studies investigated the changes in the astrocytes-derived microvesicles in circulation in

TBI. Nevertheless, our data supported by these reports underscore the critical importance of measuring the rapid dynamics of different

EVs subpopulation release post injury.

Mitochondrial dysfunction is a key feature of TBI. However, the quantification of extracellular mtDNA in body fluids, which is a powerful

indicator of mitochondrial dysfunction,55 has been relatively overlooked in TBI research. Studies have shown a significant increase in mtDNA

levels in the blood during the acute phase of TBI in pigs,41 and in the cerebrospinal fluid of pediatric patients.56 General increase in circulating

cell-free (ccf) DNA has also been observed in rat plasma during the acute phase of TBI without discrimination betweenmtDNA and nuDNA.40

These studies are similar to our measurements of an increased amount of particularly mtDNA in acute TBI phase (Figure 3). We recently re-

ported an increased amount of ccf-DNA in human serum at acute TBI phase.42 Moreover, these findings highlight the potential use of ccf-

DNA as an independent marker of TBI detection. We observed a specific increase in mtDNA during the acute phase of TBI, with more

than 90% of ccf-mtDNA found within circulating EVs (Figure 3). From a detection and stability perspective, this is significant because blood

contains high levels of DNases activity. The protective nature of circulating EVs enables the detection of DNA even with a limited sample

volume and allows for continuous monitoring of TBI progression. This can be accomplished by classical qPCR approach or the use of a novel

fluorescent-based method that we have developed and validated.42

Figure 5. Proteomic profiling of EVs uncovers promising novel TBI biomarkers

(A) Volcano plots showing proteomics data for each experimental group in comparison to sham controls. Dashed horizontal line shows the p values cutoff

(p < 0.05). Two dashed vertical lines indicate up/downregulated for 2-fold cutoff. Red dots represent proteins that are downregulated and green dots that

are upregulated meeting threshold of p < 0.05 and <-2 or > 2-fold change (FC). The most promising novel biomarkers are labeled as SAA, serum amyloid A;

CFD complement factor D (CFD), CBG, corticosteroid-binding globulin; Hp haptoglobin; VWF von Willebrand factor. List of proteins (B) upregulated and

(C) downregulated with p < 0.05 and <-2 or > 2-fold FC, respectively. Data based on 10 animals in each experiment group (N = 10).
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Initially, brain-specific protein targets were explored, and biomarkers such as GFAP, NFs, S100B, NSE, UCH-L1, and tau were proposed for

independent TBI diagnosis.6–10 However, measuring their levels in body fluids has limitations and yields conflicting results. Thus, EVs as a

source of protein biomarkers have garnered attention in TBI research due to their intrinsic stability and ability to cross BBB and cell-type-spe-

cific content reflecting cellular processes. The levels of NFL and GFAP in EVs have been extensively studied.9,11,20,24,43,44 Higher plasma NFL

levels in exosomes isolated from TBI patients have highlighted its potential as a TBI biomarker.19,20 Similarly, enhanced levels of GFAP in exo-

somes isolated frommoderate/severe TBI patients have been reported.20 Persistent GFAP increase has also been linked to long-term cogni-

tive deficits in TBI veterans.57,58 Interestingly, chronically elevated NFL levels in EVs were observed in military personnel with multiple mild

TBIs,11 while elevated GFAP levels (but not NFL) were found in the civilian population with TBI.43 The reasons for these differences, whether

related to the type and frequency of TBI or the presence of GFAP/NFL in different EVs subclasses, remain unknown.

In this study, we employed two approaches, targeted immunoblotting and global proteomics, to analyze protein content of EVs isolated

from blood. Consistent with previous findings, we observed a significant increase in the levels of NFL during the acute TBI phase (Figure 4).

Notably, NFL levels decreased during the post-acute phase (3–10 dpi) but increased in the chronic phase (30 dpi). While the presence of the

microglia marker Iba1 in EVs has not been previously reported, similar to NFL, it exhibited a marked increase during the acute TBI phase,

followed by a reduction in the post-acute phase and an enhancement in the chronic TBI phase (Figure 4). In contrast, the astrocyte marker

GFAP displayed a different profile within EVs.We observed a gradual increase in the level of GFAP which peaks at 3 dpi and remains elevated

at chronic TBI phase (Figure 4). In this study, we were unable to detect the presence of S100b, NSE, UCH-L1, and tau in isolated EVs, despite

their abundance in the mouse cortex. We speculated that these proteins may exist in a ‘‘free-floating form’’ in the blood, making them sus-

ceptible to proteolytic activity, thereby rendering their levels unstable and leading to variability in their detection in different studies due to

sample processing. An alternative explanation may be their levels are below detection limits of western analysis. Consequently, it is not sur-

prising that most studies primarily focus on NFL andGFAP, as they are protected by the lipid layers of EVs, providingmore stable and reliable

measurements. Nevertheless, further investigations are warranted to better understand these findings.

It isessential toclarify that various reportshaveused the terms ‘‘EVs’’ and ‘‘exosomes’’ interchangeably. Inaccordancewith the latestguidelines

fromthe ISEV,our reportadopts thenomenclatureofexosomesandmicrovesicles tospecify their origin, eitherderived frommultivesicularbodies

orplasmamembranepinching, respectively.34,59 The isolatedEVs in this studyprimarily consist of small EVs, referred to simply asEVs, comprising

amixture of exosomes andmicrovesicles. However, using the widely used exosomemarker CD63, we observed a significant increase during the

acute TBI phase, while a general decrease in the total number of EVs was observed. Furthermore, we investigated EVs derived from microglia/

macrophages (CD11b+EVs) andastrocytes (ACSA-2+EVs) sincemicrovesiclesbearcell-type-specificmarkerson their surface.Wefoundagradual

increase in thesespecificEVsubpopulationsduringboth theacuteandpost-acuteTBIphases, returning tobaseline levels in thechronicTBIphase

(30 dpi) (Figure 2). These findings support ongoing glial activation beyond the acute TBI phase. Collectively, these data strongly indicate distinct

dynamics in the release of various EVs subpopulations in TBI, offering additional valuable insights. Future analyses should focus on investigating

the cargo of these different EVs subpopulations, which may closely reflect cell-type-specific processes following injury.

Our computational and biostatistical analysis of proteomics data identified several proteins as potential biomarkers for TBI. Apolipopro-

teins (Apo), alpha-acid glycoproteins (Orm), thrombospondins, and antitrypsin (Serpina) were the most abundantly present in circulating EVs

but their elevated levels could not be attributed to specific TBI phase as they were present in all tested TBI phases. However, we identified

significantly increased level of SAA, specifically at the acute phase (Figures 5 and 6). SAA are small proteins with interesting association with

acute phase response to chronic inflammation.60 The increased level of SAA in serum was detected during infection,61 rheumatoid arthritis,62

and COPD.63 SAA has been previously identified as potential biomarkers for intracranial and extracranial clinical severity in TBI64 and have

shown predictive value for the severity of injury.48,65 However, none of these limited reports identified SAA within EVs. Thus, based on our

data and supported by others, we postulate that measuring the level of SAA in EVs present in circulation as novel, independent readout

for TBI detection. Finally, while most of the biomarkers identified through biostatistical and computational analyses are similar, we have

observed some differences between them. These disparities could be attributed to several factors. The computational analysis incorporates

additional topological information in the form of the PPI network using a GNN-based approach, a feature not accounted for in the

biostatistical approach. Furthermore, the effectiveness of both methods could potentially be enhanced with more extensive data. For

instance, employing a more comprehensive protein network database to construct the PPI network could aid in better training the predictive

model. Similarly, a larger sample size might improve the confidence scores of the biostatistical results.

In this study, we comprehensively analyzed DNA and protein content of circulating EVs in blood as potential TBI biomarkers. Our findings

highlight the presence of DNA, particularly mtDNA, and SAA within EVs circulating in plasma as novel, stable, and reliable targets for TBI

Figure 6. Computational identification of TBI-specific biomarkers

(A) Analysis flow using STRING to build initial protein-protein interaction (PPI) network followed by graph neural network (GNN)-based framework.

(B) GNN enrichment analysis for potential biomarkers for 3 hpi. Each protein is highlighted as a node with interactions between proteins represented as

connections. Sliding color scale represents the confidence level of interaction between proteins as calculated from GNN. Rank of potential biomarkers is

listed 1–6 with corresponding colors.

(C) List of potential biomarkers broken down per time point ranked 1–6. Orm1, Alpha-1-acid glycoprotein 1; APOA1, Apolipoprotein A1; Saa, Serum Amyloid A;

Aldob, Aldolase; Serpina, Alpha-1-Antitrypsin; Cir1, Corepressor Interacting With RBPJ; Apoc3, Apolipoprotein C-III; Thbs, Thrombospondin; Psma4,

Proteasome 20S Subunit Alpha 4; Hspa, HSP70; Rpl7, Ribosomal Protein L7; C1, Complement C; Amy, Amylase; Mup, Major Urinary Protein; Lcat, Lecithin-

Cholesterol Acyltransferase; Acta, Actin Alpha 2; F7, Coagulation Factor VII; Cat, Catalase; Ces3a, Carboxylesterase 3; Aldi, Aldehyde dehydrogenase; Prdx,

Peroxiredoxin.
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detection. Additionally, we validated NFL and GFAP, along with Iba1 as potentially promising emerging biomarkers of TBI. Furthermore, our

investigation revealed the dynamic release of diverse subpopulations of EVs in TBI, including those originating from brain, as potential

markers of detrimental processes occurring in brain post injury. Our study highlights the significance and potential of EVs as a valuable source

of novel TBI biomarkers. Moreover, our study indicates that future diagnostic platforms should measure biophysical properties of EVs and

incorporate combination of specific DNA and protein probes to fully assess TBI.

Limitations of the study

There are several limitations of the study. Our investigation focused only on one type of TBI. Our preclinical weight-dropmodel replicates one

of the most common types of TBI in motor vehicle accidents, accurately recapitulating the blunt force trauma and rapid acceleration and

deceleration of rotational energy of the unrestricted head and torso. However, other models like CCI, FPI, and blast TBI imitate completely

different injury mechanisms, thus resulting in potentially different protein biomarkers. Another limitation is the use of only male mice in our

study. To the best of our knowledge, there are no studies addressing sex-specific TBI biomarkers, but previous studies have suggested sex

differences response to TBI.66 A meta-analysis examining outcomes, severity, and possible pathophysiology reasons for these differences

found contradictory evidence between sexes in humans versus animal models.66 The study reports while human females recover worse

than their male counterparts, the exact opposite is true for females in animal models.66 However, epidemiological studies have consistently

reported males make up the majority of TBI cases.67,68 Taking into account that our study adds to the growing body of knowledge for pre-

clinical weight-dropmodels, the potential for sex-specific biomarkers creates an opportunity to potentially advance the field with better treat-

ment options and therapeutic strategies.Moreover, this study also did not correlate EVsmarkers withmotor/cognitive deficits inducedby TBI.

TBI severity was determined using only NSS, and amore comprehensive assessment of TBI would requiremore comprehensivemotor/behav-

ioral/cognitive tests.
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Egea, J., and Lagares, A. (2020). Serum
Amyloid A1 as a Potential Intracranial and
Extracranial Clinical Severity Biomarker in
Traumatic Brain Injury. J. Intensive Care Med.
35, 1180–1195. https://doi.org/10.1177/
0885066619837913.

65. Farré-Alins, V., Palomino-Antolı́n, A., Narros-
Fernández, P., Lopez-Rodriguez, A.B.,
Decouty-Perez, C., Muñoz-Montero, A.,
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bartosz Szczesny

(baszczes@utmb.edu).

Materials availability

All reagents were purchased commercially. This study did not generate new unique reagents.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Iba1 Abcam (Abcam Cat# ab283319, RRID:AB_2924797)

Rabbit anti-NFL Abcam (Abcam Cat# ab9035, RRID:AB_306957)

Mouse anti-GFAP Abcam (Abcam Cat# ab279290, RRID:AB_2920668)

Rabbit anti-PGP9.5 (UCHL-1) Abcam (Abcam Cat# ab108986, RRID:AB_10891773)

Rabbit anti-CD11b Abcam (Abcam Cat# ab133357, RRID:AB_2650514)

Rabbit anti-S100b Abcam (Abcam Cat# ab41548, RRID:AB_956280)

Rabbit anti-Tau Abcam (Abcam Cat# ab254256, RRID:AB_2894402)

Rabbit anti-ACSA2 Abcam (Abcam Cat# ab133664, RRID:AB_2943489)

Rabbit anti-CD63 Thermo Fisher (Thermo Fisher Scientific Cat# PA5-92370,

RRID:AB_2806456)

Rabbit anti-NSE Cell Signaling (Cell Signaling Technology Cat# 8171,

RRID:AB_11178392)

Biological samples

Blood harvested from C57BL/6J mice This study N/A

Critical commercial assays

Qiagen DNEasy Blood and Tissue Kit Qiagen #69504

Maxima SYBR Green/ROX qPCR Master Mix Thermo Fisher #K0221

Experimental models: Organisms/strains

Mice: C57BL/6J Jackson Laboratories RRID:IMSR_JAX:000664

Oligonucleotides

mtDNA (COXIII) Forward: 5’-CCC AGC TAC TAC CAT CAT TCA AGT-3’ Integrated DNA

Technologies (IDT)

N/A

mtDNA (COXIII) Reverse: 5’-GAT GGT TTG GGA GAT TGG TTG ATG T-3’ IDT N/A

nuDNA (ACTB) Forward: 5’-TTT GCT CCT GGG CCT CCA AGT T-3’ IDT N/A

nuDNA (ACTB) Reverse: 5’-AGC CCG TGA CTG CCA CAA ATC A-3’ IDT N/A

Software and algorithms

MaxQuant v 1.5.2.8 GitHub https://www.maxquant.org

Perseus GitHub https://www.maxquant.org/perseus/

STRING PPI STRING https://string-db.org

Prism 10 GraphPad https://www.graphpad.com/
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This paper does not report original code.

Any additional information needed to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal model and procedures

Mouse model of traumatic brain injury (TBI)

All animal procedures were conducted in accordancewith the guidelines of the Institutional Animal Care andUseCommittee at the University

of Texas Medical Branch and adhered to the US National Institutes of Health guidelines. C57BL6J male mice (The Jackson Laboratory,

#000664), aged 10-14 weeks, were housed in a controlled environment with a 12-hour light/12-hour dark cycle at a temperature of

21-23�C, and they had free access to water and a standard chow diet.

To induce TBI, a non-penetrating, closed-skull weight-drop model was employed on unrestricted mice, adapted from previously pub-

lishedmethods.26,27,69 Briefly, mice underwent general health assessments and handling for 10 minutes the day prior to the injury to minimize

stress related to handling.On the day of the injury, micewere anesthetizedwith 3-5% isoflurane until the righting reflexwas lost, and they were

immediately placed in a prone position on top of a tin foil with slits, with the craniumdirectly underneath a plunger with a brass disc at the end.

A 150 g weight was dropped from a height of 1.5 meters. The impact from the plunger caused the mice to break through the aluminum foil

barrier and undergo a 180-degree flip while falling 10 cm onto a foam cushion. After injury, mice were placed on a warm pad until they re-

gained consciousness and attained a prone position. Sham animals underwent anesthesia without injury. At various time points post-injury,

mice were euthanized, and blood samples were collected for further analysis.

Blood plasma harvest

Mice were anesthetized with 3-5% isoflurane until the righting reflex was lost and then placed in a supine position with their head in a nose

cone, with a continuous flow of isoflurane administered throughout the procedure. An incision wasmade in the skin from the bottomof the rib

cage to expose the chest cavity, ensuring that the intrathoracic pressure remained intact. The heart was located and a 1mL syringe with a 25G

x 5/8 in. needle (BD, #309626) was carefully inserted at a 45-degree angle to puncture the apex of the left ventricle. Blood plasma was then

slowly extracted, and the animals were humanely euthanized by cervical dislocation followed by decapitation.

Neurological Severity Score (NSS)

For the assessment TBI severity, we utilized a modified Neurological Severity Score (NSS) testing method, adapted from a previously estab-

lished protocol.31,32,69 Briefly, all mice were handled for 5 minutes and acclimated to the NSS testing setup for 10 minutes. Baseline scores

were recorded 24 hours before inducing the TBI, followed by subsequent testing at different time points after the injury. The NSS test con-

sisted of evaluating various neurological parameters, including exit circle behavior, seeking behavior, monoparesis/hemiparesis (partial pa-

ralysis of one limb or one side of the body), paw grip/grip strength, straight walk, startle reflex, beam balancing on beams of 3 cm, 2 cm, and

1 cmwidth, and round stick balancing. TheNSS scores were used to classify the severity of TBI. A score ranging from 1 to 3 indicatedmild TBI,

4 to 7 indicated moderate TBI, and scores above 8 indicated severe TBI.

CT imaging and quantification of total brain parenchymal volume

Mice were anesthetized with 3-5% isoflurane for 5 minutes in a chamber and then placed into the Inveon Preclinical CT scanner (Siemens). CT

scans were performedwith a field of view (FOV) of 5 x 8 cm and 520 projections. The reconstructed image resolutions were 512 x 512 x 768 with

an isotropic resolution of 0.1 mm, utilizing the Feldkamp reconstruction algorithm, beam hardening correction, and Hounsfield units calibra-

tion. To analyze brain parenchymal volume, the Inveon’s Research Workplace software was used. Singular images from axial, coronal, and

sagittal slices were selected, ensuring consistent anatomical landmarks were used to obtain the largest brain volume per slice. For axial slices,

the mandible bone was used as the landmark; for coronal slices, the tip of the nasal bone with the widest skull diameter was used; and in

sagittal slices, the appearance and location of the C2 spinal vertebrae served as the landmark. Using the ROI (Region of Interest) function,

brain parenchymal volumewas calculated by highlighting the space within the skull for each slice. This analysis allowed for precise assessment

of brain parenchymal volume and ensured consistent measurements across different image slices.

METHOD DETAILS

Isolation of extracellular vesicles (EVs)

To isolate the total pool of circulating small extracellular vesicles (EVs) in plasma, we employed a previously established ultracentrifugation

method.35 Blood plasmawas collected andmixed with an equal volume of sterile dPBS in Vacutainer K2 EDTA collection tubes (BD, #367841).

The tube was inverted seven times to ensure proper mixing. All subsequent centrifugation steps were performed at 4�C. The tubes were first

centrifuged for 30 minutes at 2,000 x g to remove circulating cells and large cellular debris. The supernatant was carefully transferred into a

fresh 1.5mL centrifuge tube and centrifuged for 45minutes at 12,000 x g to remove any remaining large cellular debris. To pellet small EVs, the

supernatant was subjected to ultracentrifugation for 3 hours at 150,000 x g using the FiberLite F50L-24 x 1.5 Fixed-Angle Rotor (ThermoFisher).

After the ultracentrifugation step, the supernatant and pellet fractions were stored at -80�C for subsequent analysis.
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Nanoparticle Tracking Analysis

The biophysical properties (number and size) of EVs were determined using Nanoparticle Tracking Analysis (NTA) with a NanoSight NS300

instrument (Malvern Analytical), employing the following settings: camera level 7 and screen gain 10. Briefly, EVs were isolated from 100 mL of

precleared plasma through ultracentrifugation and then resuspended in 1 mL of sterile dPBS. A 1:100 dilution was prepared by adding 10 mL

of the resuspended pellet to 990 mL of sterile dPBS. Using a 1 mL syringe (Henke Sass Wolf #4010-200V0), the diluted sample was slowly

pushed through the fluid lines, and videos of the samples were recorded for 60 seconds each for subsequent image analysis. To ensure ac-

curacy, three technical replicates were generated for each sample by advancing 100 mL of the sample between each recording.

Transmission electron microscopy (TEM)

Isolated EVs were visualized and characterized using TEM. The EVs’ pellet was resuspended in 100 mL of dPBS, and 10 mL of the sample was

further diluted with 90 mL of dPBS. Ten mL of the diluted EVs was placed onto a parafilm strip and then incubated with a graphene oxide on a

holey carbon copper mesh grid (Electron Microscopy Sciences, #GOHC300Cu10) for 5 minutes. Excess sample was removed using filter pa-

per, and the grid was subsequently incubated with 1 drop of uranyl acetate (Electron Microscopy Sciences, SKU #22400). Any excess uranyl

acetate was removed using filter paper. Images of the EVs were captured using a Philips CM-100 transmission electron microscope at 60 kV,

equipped with an Orius SC2001 digital camera (Gatan).

Quantitative real-time PCR (qPCR)

Each sample volume was standardized to 100 million EVs, as determined by Nanoparticle Tracking Analysis (NTA). EVs were isolated using

ultracentrifugation, and the total DNAwas extracted from the isolated EVs using theQiagen DNeasy Blood and Tissue Kit (#69504), following

the manufacturer’s protocol. To assess the amount of mitochondrial and nuclear DNA (mtDNA and nuDNA), quantitative real-time PCR

(qPCR) was performed with Maxima SYBR Green/ROX qPCRMaster Mix (Thermo Scientific #K0221) and specific mouse primers. The primers

used were as follows:

mtDNA Forward: 5’-CCC AGC TAC TAC CAT CAT TCA AGT-3’

mtDNA Reverse: 5’-GAT GGT TTG GGA GAT TGG TTG ATG T-3’

nuDNA Forward: 5’-TTT GCT CCT GGG CCT CCA AGT T-3’

nuDNA Reverse: 5’-AGC CCG TGA CTG CCA CAA ATC A-3’

The qPCR reactions were carried out using the CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad) with the following thermal

cycle: 95�C for 10minutes, followed by 40 cycles at 95�C for 15 seconds and 60�C for 1minute. Each qPCR reaction was performed in technical

duplicates.

To compare the amount of DNA in EVs with that in the "free-floating" form, each sample volume (100 ml) was normalized to 100million EVs,

as determined by NTA. EVs were then isolated by ultracentrifugation as described above, and the EVs pellet was resuspended in 100 ml of

dPBS follow byDNA isolation and qPCR. A total of 100 ml of the supernatant was used for total DNAextraction and qPCR, as described above.

Western blotting

Each EVs sample was standardized to 100 million EVs, as determined by NTA. The EVs were then resuspended in Laemmli sample buffer,

denaturated at 95�C for 2 minutes, and loaded into a NuPAGE 4-12% Bis-Tris gel (Invitrogen, #NP0322). The separated proteins were trans-

ferred to 0.2 mm nitrocellulose membranes (Cytiva Amersham Protran, #10600011). The membranes were washed in TBS-T (Tris-buffered sa-

line containing 0.5% Tween), blocked in 5% milk TBS-T for 1 hour at room temperature, and then incubated with primary antibodies at a

1:1,000 dilution in 5% milk TBS-T overnight at 4�C. The following primary antibodies were used: Mouse anti-Iba1, #ab283319; Rabbit anti-

NFL, #ab9035; Mouse anti-GFAP, #ab279290; Rabbit anti-UCH-L1, #ab108986; Rabbit anti-CD11b, ab133357; Rabbit anti-S100b, ab41548;

Rabbit anti-Tau, ab254256; (all from Abcam); Rabbit anti-ACSA2, #130-123-284 (Miltenyi Biotec), Rabbit anti-CD63, #PA5-92370 (Thermo

Fisher); Rabbit anti-NSE, #8171 (Cell Signaling). Subsequently, the membranes were incubated with secondary antibodies (goat anti-Rabbit

HRP-linked, #7074, or horse anti-Mouse HRP-linked, Cell Signaling Technologies, #7076; both from Cell Signaling) conjugated with HRP at a

1:1,000 dilution in 5% milk TBS-T for 1 hour at room temperature. Finally, the membranes were probed with ECL reagent (Cytiva Amersham,

#RPN3243) or ECL Femto reagent (SuperSignal West Femto Maximum Sensitivity Substrate; Thermo Fisher, #34095). Images were captured

on G-Box (Syngene), and the signal intensity was quantified using GeneTools software (Syngene). For quantification, the signal for sham sam-

ples from each blot were averaged and arbitrarily set as 1. All experimental group values were normalized to the average value of the sham

samples to determine the relative abundance of the target protein.

Proteomics

The proteomics analysis of EVs isolated frommouse plasmawas performed as describedpreviously.70–73 Briefly, the proteins in the 100million

EVs were dissolved in 20 mL of 9M urea, were reducedwith 10mMDTT for 30min, followed by alkylation with 30mM iodoacetamide for 60min

in the dark. The sample was diluted 10:1 with 50 mM ammonium bicarbonate and digested with 1.0 mg trypsin for 16 h at 37�C. The digestion

was stoppedwith 10% trifluoroacetic acid. The peptides were desalted on a reversed-phase SepPakC18 cartridge (Waters, #WAT036945) and

eluted with 80% acetonitrile. The eluate was dried in a SpeedVac, and the peptides were acidified with 2% acetonitrile-0.1% trifluoroacetic

acid. A nanoflow ultra-high-performance chromatography Easy nLC instrument (Thermo Fisher Scientific) was coupled to a Q Exactive
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mass spectrometer (Thermo Scientific) with a nanoelectrospray ion source (Thermo Scientific). Peptides were loaded onto a C18 reversed-

phase column (25 cm long, 75 mm inner diameter), and separated with a linear gradient of 5–35% buffer B (100% acetonitrile in 0.1% formic

acid) at a flow rate of 300 nL/min over 120 min. Mass spectrometry (MS) data were acquired using a data-dependent Top15 method dynam-

ically choosing themost abundant precursor ions from the survey scan (400–1400m/z) using HCD fragmentation. Survey scans were acquired

at a resolution of 70,000 at m/z 400. The isolation window was set to 3 Da and fragmented with normalized collision energies of 28. The

maximum ion injection times for the survey scan and MS/MS scans were 20 ms and 60 ms, respectively, and the ion target values were set

to 2E6 and 1e5, respectively. Selected sequenced ions were dynamically excluded for 10 s. Data were acquired using Xcalibur software.

Mass spectra were analyzed using MaxQuant software version 1.5.2.8 using the default setting.74 Enzyme specificity was set to trypsin,

defined as C-terminal to arginine and lysine excluding proline, and a maximum of two missed cleavages was allowed. Carbamidomethylcys-

teine was set as a fixed modification and methionine oxidation as a variable modification. The spectra were searched with the Andromeda

search engine against the mouse SWISS-PROT sequence database (containing 17,000 mouse protein entries) combined with 248 common

contaminants and concatenated with the reversed versions of all sequences. Protein identification required at least one unique or razor pep-

tide per protein group. Quantification in MaxQuant was performed using the built-in XIC-based label-free quantification (LFQ) algorithm.74

The required false positive rate for identification was set to 1% at the peptide level and 1% at the protein level, and the minimum required

peptide length was set to 6 amino acids. Contaminants, reverse identification, and proteins only identified by modified peptides were

excluded from further data analysis. The ‘match between runs’ feature of MaxQuant was used to transfer identifications to other LC-MS/

MS runs based on their masses and retention time (maximum deviation 0.7 min), and this was also used in quantification experiments. The

MaxQuant results were further analyzed using the Perseus platform.75 The LFQMS intensities were log2-transformed. After filtering (at least

two valid LFQ values in at least one group), the remainingmissing LFQ valueswere imputed from a normal distribution of log2 LFQ intensity of

proteins in each sample by shrinking the distribution of 0.3 of standard deviation and shifting it down by 1.8 of standard deviation. The impu-

tation was performed only once.

QUANTIFICATION AND STATISTICAL ANALYSIS

Biostatistical analysis

R version 4.2.2 was used to perform the proteomics data analysis. Initially, one-way ANOVA was used to analyze the results. Then, the False

Discovery Rate47 method was performed to correct for multiple comparisons testing. For paired comparisons between the Sham control

group and TBI groups, Dunnett post-hoc test was used; for comparisons between only TBI groups (excluding the control group), Tukey

post-hoc test was used. Statistical significance was determined with a p-value of < 0.05. Additionally, heat maps were generated by calcu-

lating the Pearson correlation coefficient among experiments. The figure legends indicate the sample sizes and statistical tests used for

each experiment. Fold change (FC) values were transformed and expressed in logarithmic form from LFQ intensities of each protein resulting

from unbiased global proteomics. Simply, LOG(FC) = LOG(Avg. LFQ intensity protein X in TBI group/Avg. LFQ intensity protein X in Sham

Control group).

Graph Neural Network (GNN)

Each round of proteomics data was manually refined by eliminating duplicate entries of the same proteins. This total list of proteins was up-

loaded into the STRING database to create a Protein-Protein Interaction (PPI) network by mapping proteomics results to existing entries

within the STRING database. Each protein represents a node and the interactions between individual protein molecules constitute the

links/edges of PPI network. LFQ intensity values captured over different time points are pre-processed and attributed as node features.

This helps to incorporate the temporal structure among LFQ intensity values of proteins within the GNN framework. All STRING runs were

performedwith default setting parameters and a confidence level of 0.9. Identification of potential biomarkers was formulated as a node clas-

sification problem, where the node labels represent the ranks (between 1-6) of corresponding protein being a potential biomarker. Rank 1

represents the highest probability, and Rank 6 represents the lowest probability of a protein being a potential biomarker. This flow is illus-

trated in Figure 4A. A small fraction (< 5%) of nodes are labeled based on prior domain knowledge and inputs from existing databases.

Once the graph is constructed, GNN-based learning techniques are implemented to predict the labels (i.e., probability of individual proteins

being potential biomarkers) for all the nodes in the network. GraphSAGE was used as an inductive node embedding approach that concur-

rently learns both the topological structure and distribution of features for a node in its local neighborhood. The operation executed at i th

node embedding layer is given by Equation below.

hðiÞ
u = f ðiÞ

�
hði� 1Þ
u ;hði� 1Þ

NðuÞ = g
h
q
ðiÞ
C hði� 1Þ

u + q
ðiÞ
A
~A
�
hði� 1Þ
NðuÞ

�i

Here, h
ðiÞ
u represents the node embedding of node u at i th layer; ~A denotes the aggregation operation; qC and qA are the parameters of the

combination and aggregation operation of GNN, respectively;NðuÞ describes the neighborhood of node u; and g½ $� denotes the activation

function.
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