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OPEN r-SPIN THEORY III: A PREDICTION FOR HIGHER GENUS
ALEXANDR BURYAK, EMILY CLADER, AND RAN J. TESSLER

ABSTRACT. In our previous two papers, we constructed an r-spin theory in genus zero for Rie-
mann surfaces with boundary and fully determined the corresponding intersection numbers,
providing an analogue of Witten’s r-spin conjecture in genus zero in the open setting. In par-
ticular, we proved that the generating series of open r-spin intersection numbers is determined
by the genus-zero part of a special solution of a certain extension of the Gelfand—Dickey hierar-
chy, and we conjectured that the whole solution controls the open r-spin intersection numbers
in all genera, which do not yet have a geometric definition. In this paper, we provide geometric
and algebraic evidence for the correctness of this conjecture.

1. INTRODUCTION

One of the most important results in the study of the intersection theory on the moduli
spaces of stable curves M, ,, is Witten’s conjecture [19], proved by Kontsevich [13], saying that
the generating series of intersection numbers

Fc<t07t17...,€):Z€2g72fg(to,t1,... Z Z

g>0 g>0,n>1 dy,...,dn>0
2g—2+n>0

is the logarithm of a tau-function of the KAV hierarchy. Here, ¢; € H?(M,,, Q) is the first
Chern class of the cotangent line bundle corresponding to the i-th marked point, g, ¢, ... and
are formal variables, and the superscript “c,” which stands for “closed,” is to contrast with the
open theory discussed below.
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/ w 1/,571 ta, - ta,

Witten also proposed a much more general conjecture, the so-called r-spin Witten conjec-
ture [20], which considers the moduli space of stable curves with r-spin structure. On a smooth
marked curve (C; 21, . .., z,), an r-spin structure is a line bundle S together with an isomorphism
S€ = we (= >0 ailz]), where a; € {0,1,...,r — 1} and we denotes the canonical bundle.
of the moduli space of smooth curves with r-spin

structure, and this space admits a virtual fundamental class ¢y € H *(M;,/&hm,an), Q) known

as Witten’s class. In genus zero, ¢y is the Euler class of the derived pushforward (R'm.S)Y,
where 7: C — Ml/r

higher genus, the sheaf R'7,S may not be a vector bundle, and the definition of Witten’s class
is much more intricate; see [16, 9, 14, 12, 8] for various constructions.

There is a natural compactification M;{& L)

...an) 1s the universal curve and S is the universal r-spin structure. In

Witten’s r-spin conjecture, proved by Faber—Shadrin—Zvonkine [11], states that if t% are
formal variables indexed by 0 < a <r — 1 and d > 0, then the generating series

Fretie) =Y S E (L)

920

Z Z g2 | d d
-9 . ... " ai ,, 44n
nl /—l/r cw Y et

g>0,n>1 0<ai,..,an<r—1
29—24n>0  di,...,dn>0

is, after a simple change of variables, the logarithm of a tau-function of the r-th Gelfand—Dickey
hierarchy.

Date: November 30, 2022.
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While curves with r-spin structure generalize the study of Mg,n in one direction, a different
direction was taken up by Pandharipande, Solomon, and the third author in [15], in which the
study of intersection theory on the moduli space Mg,k‘,l of Riemann surfaces with boundary
was initiated. Here, the genus g of a Riemann surface with boundary (C,0C) is defined as the
genus of the closed surface obtained by gluing two copies of C' along the boundary 0C, and the
numbers k and [ are the numbers of boundary and internal marked points, respectively. In [15],
intersection numbers on M, called open intersection numbers and denoted by

<Td1 = ~lea’“>§, d; >0,

were defined and explicitly computed. Moreover, in [15] the authors proposed a conjectural
description of open intersection numbers in all genera, which can be viewed as an open analogue
of Witten’s conjecture on M,,. A geometric construction of open intersection numbers in all
genera, denoted by <Td1 x -leak>z, was given by Solomon and the third author, hence the
generating function

g—1
F0<t0,t1,...,8,€):Zggilf.;(to,tl,...,(?) = Z c <Td1"'le0k>2td1"'td18k
9>0 9,k,1>0 ’
2g—2+k+20>0
was defined as a direct generalization of F¢; the new formal variable s tracks the number of
boundary marked points. The definition of the all-genus open intersection numbers can be
found in [18], which summarizes the construction of [17]. A combinatorial formula for the
open intersection numbers in all genera was given in [18] and then used in [7] to prove the
open analogue of Witten’s conjecture. By [2], the generating series F° gives a solution of a
certain extension of the KdV hierarchy and is related to the wave function of the KdV hierarchy
(corresponding to the tau-function exp(F¢)) by an explicit formula [3].

It is natural to ask whether these two generalizations of Witten’s conjecture can be combined,
producing an open analogue of Witten’s r-spin conjecture. Toward this end, in [6] we defined

a moduli space of graded r-spin disks Mé{;(ahm’al) as well as an open Witten bundle W and
cotangent line bundles Ly, ..., L; at the internal marked points, and then in [4] we defined the

corresponding open r-spin intersection numbers'
1
(rgteeTgia®) e, 0<a; <r—1, d;>0.
Equipped with these numbers, we defined an open r-spin potential in genus zero by
1o, .4 1 L0 &
Filns)= D, D gmlmamaet) st
kEl>0 0<ai,..,q<r—1 '
k+20>2  di,...,d;>0
We then considered a special solution
¢ = Zggil(bg(t:)a ¢, € C[[t:]]
920

of a certain extension of the Gelfand-Dickey hierarchy and proved a formula for the generating

1
series JF “ in terms of the formal power series ¢y. We will recall the details in Section 2.

While these constructions and results are limited to genus zero, in [4] we conjectured that
for any genus g > 1 there is a geometric construction of open r-spin intersection numbers

=0 .. . . . . .
<T§11 x ~T§ll ak>; generalizing our construction in genus zero. Given such intersection numbers,

!The construction from [15] is recovered as a special case, when r = 2 and all a; are zero.
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1 o
we defined a generating series Fy (t, s) by

L 1 %,o
Filts) =Y i > (e g ) g s

1LE>0 " 0<aq,...,a;<r—1
di,...,d; >0

and conjectured an explicit formula for it in terms of the formal power series ¢,. See Conjec-
ture 1 below for the explicit statement.

In this paper, we study the main conjecture from [4] in more detail. One can expect that

1
2.0 . . .
the numbers <7‘§11 = -TZ Lot >; satisfy a series of natural properties:

(1)
(2)

(3)

In the case r =2 and a; = - - - = q; = 0, it is natural to identify the corresponding open
r-spin intersection numbers with the intersection numbers on mg,k,l-

From the dimension of the moduli space of genus-g r-spin surfaces with boundary and
an expected formula for the degree of an open analogue of Witten’s class, one can see
that the open r-spin intersection numbers should vanish unless a dimension constraint
is satisfied.

From a natural expectation for the behavior of an open analogue of Witten’s class
under thle map forgetting a marked point of twist 0, one can see that the generating

series Fy * should satisfy open string and open dilaton equations. The genus-zero part
of these equations was proved in [4], while analogous equations for the intersection
numbers (7, - - - 7y, ak>z were conjectured in [15] and proved in [7] (a geometric proof
will appear in [17]).

Based on the genus-one topological recursion relations for the intersection numbers
<7‘d1 .. Td crk>(1) conjectured by the authors of [15] and proved by Solomon and the third
author (a geometric proof will appear in [17]), we expect a natural generalization of
these relations to be satisfied by the open r-spin intersection numbers in genus one.

The main result of this paper, proved in Section 3, is that all of these expected properties of
the open r-spin intersection numbers agree with Conjecture 1.

Convention. We use the standard convention of sum over repeated Greek indices.

Acknowledgements. The work of A. B. is an output of a research project implemented as part
of the Basic Research Program at the National Research University Higher School of Economics
(HSE University). E.C. was supported by NSF CAREER grant 2137060. R.T. (incumbent of
the Lillian and George Lyttle Career Development Chair) was supported by a research grant
from the Center for New Scientists of Weizmann Institute and by the ISF (grant No. 335/19).

2. THE GELFAND—DICKEY HIERARCHY AND THE MAIN CONJECTURE

Consider formal variables T; for i > 1. A pseudo-differential operator A is a Laurent series

A= > a0}, a,€Clee [N, To... ]|,

n=—oo

where m is an integer and 0, is a formal variable. Denote

Avi=) a0y,  Al=A-A. resAi=a_y.
n=0

The space of such operators is endowed with the structure of a noncommutative associative
algebra, in which the multiplication, denoted by o, is defined by the formula

i 1) (k= o'
Pof=3 k(k 1) z'<k L+1) mfl o feCle e [T], keZ
1=0 | 1
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We identify z = T}, and in the case A_ = 0 we interpret A as a differential operator acting in
the space of formal power series C|[[T,]] in the obvious way.

For any r > 2 and any pseudo-differential operator A of the form
A=0,+ Z a, o ",
n=1
there exists a unique pseudo-differential operator A+ of the form

Ar =0, + iana;"

n=0
such that (A%>T = A.

Let » > 2, and consider the pseudo-differential operator
r—2
L:=8;+) fid, fie€Cle L]
i=0

For any n > 1, the commutator [(L™"), L] has the form S/_2 h;0% with h; € Cle, e Y[[T.]].
The r-th Gelfand-Dickey hierarchy is the following system of partial differential equations for
the formal power series fy, f1,..., fr_o:

oL

o = (@I nz L

Consider the solution L of the Gelfand-Dickey hierarchy specified by the initial condition

(2.1) Llry,—0 = 0, +¢ "ra.
1.
The r-spin Witten conjecture states that %ﬁﬁ’l = 0 for d > 0, and under the change of variables
d
1 a
T, = tyy, 0<a<r—2, d>0,

(=) 20,

where k =a+1+rd and k!, := H?ZO(CL + 1+ ri), we have

Q2 F e
o n>1, r{n.

Ln/r: 1
res ¢ oner, "7

With L as above, let ®(T,,¢) € Cle,e1][[T.]] be the solution of the system of equations
od

aT,
that satisfies the initial condition (I>|T>2:0 = 1. Consider the expansion

¢:=log®=> ¢, ¢, € C[L]].

gEZL

2.2 LY D, n> 1,
+

1.
Note that by [5, Lemma 4.4] ¢, = 0 for ¢ < 0. Comparing to the formal power series Fj ",

1 o
which depends only on the variables t3, ... ,t§’2, the formal power series Fj" depends also
on ;! and s. We relate the variables T,,, and ¢/, as follows:
1 r—1
Tmr = m(r—2) tm—17 m Z L.

(—r) 2 +D mlpm
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In [4] we proved the following result:
1, 1

FOT \/_—T

Regarding the open r-spin intersection numbers in higher genera, we proposed the following
conjecture.

1
¢0 tg_lHJ%—T(tg_l—réd,os) - /_T,gbo

r—1 1 r—1-
ty Hi—_qjd

Conjecture 1 ([4]). For any g > 1 we have

‘7:9;70 = <_7’)g%¢g

tg_l l—>7\/1_—7‘ (tg_ ! 75(1’07'8)

3. EVIDENCE FOR THE MAIN CONJECTURE

3.1. The case r = 2. Suppose r = 2. In [4] we proved that

(31) <Ta(l]1 e Tc(l)lo-k>§70 = (—2)% <le cee Td10k>g,

where we recall that the right-hand side refers to the intersection numbers on My ;. Regarding
higher genus, in [7] the authors proved that

(3.2) F;<t07t17' . .7S> — (bg‘ tg:td .

té:&d,os
Thus, it is natural to identify

gtk—1 o

(3.3) <TC?1 . ~T§lak>§’o =(=2) = <Td1 . ~leak>g.

Indeed, note that the factor 2~ T s forcibly included in the definition of the intersection

numbers <Td1 C T ak>2. Also, note that the intersection number <Td1 . -leak>2 is zero unless
g+ k is odd. Thus, changing the orientation of M, 4; by (—1)%1;1 when g+ k is odd gives the

additional factor (—l)gH;l. This confirms Conjecture 1 in the case r = 2 after setting t} = 0.

3.2. Dimension constraint. It is natural to expect that the open r-spin intersection number
1
(i 7pt)2

is zero unless
(g+k—1)(r—-2)+2> o
r
Indeed, the right-hand side is the dimension of the moduli space of r-spin genus-g surfaces with
boundary, while the left-hand side is the virtual dimension of the purported open analogue
of the virtual fundamental cycle that should correspond to the intersection problem. This is
equivalent to the constraint

(3.4) Z(%M_l)_ﬁ:w_

T r r

+2) di=3g-3+2l+k

aan¢g
1...9+9n
Pl Dtan | o

> (% +d; — 1) = w. We see that if Conjecture 1 is true then this gives exactly the
expected constraint for the open r-spin intersection numbers.

On the other hand, in [5, Lemma 4.4] we proved that the derivative is zero unless
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3.3. Open string and open dilaton equations. One would expect the formal power se-

ries ]:g ? to satisfy the open string and the open dilaton equations

OFT" OF ;"
(3.5) 3;8 Ztn+1 ra + 04,08,

0F;° OF;C  0F;° 1
(36) g~ W) *;0% e S ps o3

Indeed, in the case r = 2 and t} = 0, using the identification (3.3), these equations become
exactly the open string and the open dilaton equations for the generating series JF;, which
where conjectured in [15], proved there in genus 0 using geometric technique, and proved in all
genera in [7] using a matrix model (a geometric proof will appear in [17]).

In [4, Proposition 5.2], we proved equations (3.5) and (3.6) in genus zero for any r > 2.
Although this was done using an open-closed correspondence and open string and open dilaton
equations for the closed extended r-spin intersection numbers, we could also prove them geo-
metrically, imitating the proofs in [15]. In particular, we expect the geometric proof to work
in all genera and all » > 2, given a construction of an open virtual fundamental cycle for the
higher-genus Witten bundle that satisfies certain expected properties (being pulled back from
the moduli without markings of twist zero, for example, and boundary behavior similar to that
of canonical sections in genus zero).

By [1, Theorem 1.2] (see also [5, Lemmas 4.5]) we have

¢ 0o _
atg th atj + 0g0th .

If Conjecture 1 is true, then this implies the expected equation (3.5). The expected equation
(3.6), on the other hand, is implied by Conjecture 1 by way of the following proposition.

Proposition 3.1. We have

&b 1
(3.1) - =20 et et
Proof. In the variables T}, equation (3.7) looks as follows:
1 0 0 0 1
3.8 — —e—— > T— =_.
(38) <r+18Tr+1 “ e ; 8Ti>¢ 2

Before we proceed with the proof, let us recall more facts from the theory of the Gelfand—Dickey
hierarchy (see, e.g., [10]).

Consider a pseudo-differential operator A =3>"" __ a,(T.,&)0?. The Laurent series

AT, e, 2) = Z an(Ty,€)2"

in which z is a formal variable, is called the symbol of the operator A. Suppose an operator L is
a solution of the Gelfand—Dickey hierarchy. Then there exists a pseudo-differential operator P

of the form
P=1+> pu(T.,)d

n>1
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satisfying L = P o d% o P! and
orP
or,

The operator P is called a dressing operator of the operator L.

—en1 (L"/r)_ oP, n>1.

Denote by G, the shift operator that acts on a formal power series f € Cle, e ][[T1, T5, . . .]]
as follows:

1 1 1
G, Ty, Tsy .. )= f (T — =Ty — —— Ty — ——— ...
(N, T3, Ts, ) f<1 S0 T2 T 9,2773 7 32,3 )

Let P =1+ - pu(T%,€)0, ™ be a dressing operator of some operator L satisfying the Gelfand-
Dickey hierarchy. Then there exists a series 7 € Cle, e |[[Ty, Ty, T3, . . .]] with constant term
T|p—o = 1 for which
G.(1)

—
The series 7 is called a tau-function of the Gelfand—Dickey hierarchy. The operator L can be
reconstructed from the tau-function 7 by the following formula:

P=

2
1on© logT’ N>
01107,

res LT = ¢

Denote the linear differential operator in the brackets on the left-hand side of equation (3.8)
by O. Let L be the solution of the Gelfand—Dickey hierarchy specified by the initial condi-
tion (2.1). Let us show that

0 ~ ~
3.9 — +O|L=rL.
(3.9) (z P + ) r
Witten’s r-spin conjecture [20], proved by Faber—Shadrin-Zvonkine [11], says that the formal

power series T = exp(F %’c) is a tau-function of the Gelfand-Dickey hierarchy corresponding
to the operator L. Therefore, a dressing operator P of the operator L is given by

~ @G, e

P = ¥.
Tr°

The function 7+ satisfies the dilaton equation

1. r—1 l,c
Or° = o T
We compute
(zﬁ + o) G.(r) = G.(0r) = " La (o)
82’ z z 24 z 9

and, thus,

(zﬁm) P (zﬁm) G _y,
0z 0z e

Note that the commutation relation [O, aiTl] = aiTl implies that if (z% + O) A = aA and

(z% + O) B = bB for some pseudo-differential operators A, B and a,b € Z, then (2% + O) Ao B =
(a+ b)m. Since L = P o 9% o P!, we conclude that equation (3.9) is true.

Note also that we have

8 —_— —_—
(3.10) <Za— + O) Ln/r =nLn/r, n>1,
z
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and that for any pseudo-differential operator A and f € C[[T.]] we have
D) -
(3.11) O(ALf)=AL(Of) + ((zaJrO) Ay ) I
20y

Let us finally prove equation (3.8). Equivalently, we have to prove that O® = %@. We
compute

-1
Lr =0, +e 20,7 — T—g—fa;" +...,
TZQZO 2
r 1
(L - )t =0 4 (r+ e 20, + I e,
T52=0 2
Taking into account that ®[r.,—o = 1, we obtain
1 09 e" Traiy 1
(3.12) OV, = —— = (L )4 =_.
T52=0 r+ 107,41 Tus=0 r+1 =T =0 2

We also have
0
oT,
We see that the formal power series O® satisfies the same system of PDEs (2.2) as the formal
power series ®, with the initial condition (3.12). Thus, O® = $® and the proposition is
proved. U

egs. (3.10),(3.11)

(02) = (0 = 1)(e" H(L""),.@) e (L) 4 (09).

Clearly, if Conjecture 1 is true, then the proposition implies the expected equation (3.6).

3.4. Open topological recursion relations in genus one.

Theorem 1. We have

2 %76 9
8(;451 = afoua¢1/1 aﬁbj 8?—11 1 2@57(3_1’ 0<a<r-—1, p=>0.
8tp+1 ptv=r—2 8tp ato 8150 atp ato 2 8tp 8t0

Before proving the theorem, let us discuss some consequences.

Corollary 3.2. The generating series of intersection numbers on My, satisfies the relation
OF,  OF§ OF) = OF§OFy 102]:8 >0

Ot,er  OLOL, Oty | O, Os | 20L,0s =
Proof. This follows from the theorem and equation (3.2). O

(3.13)

The system of relations (3.13) was conjectured by the authors of [15] and called the open
topological recursion relations in genus one. A geometric proof will appear in [17].

We expect the following topological recursion relations for the genus-one open r-spin inter-
section numbers for any 0 < a <r—1 and p > 0:

1, N 1 ex 1, 1, 1, 1,
(3.14) oF OPFg OF) OFy" ’ OF]’ n OFy" OF N 182}"0“
) a a v o r—1 a a J
ot i s oty Oty ote ot oty 0Os 2 0tg0s
1 ex . . . . .
where F;’ t(tfz, ..., 1"71) is the generating series of genus-zero closed extended r-spin intersec-

tion numbers defined in the same way as the usual genus-zero r-spin intersection numbers, but
where exactly one of a;-s is equal to —1. In [5, Theorem 4.6], we proved that

1
]:or’eXt = V=T

r—1 1 r—1 -
ty — Trtd
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The geometric proof of (3.13) from [17] cannot work for the new system (3.14), due to the lack
of a rigorous construction of the open virtual fundamental cycle. Still, as in the case of the
open string and dilaton equations, the claim is expected to be true, and with a similar proof,
under some mild assumptions on the open virtual fundamental cycle.

It is easy to see that if Conjecture 1 is true, then Theorem 1 implies the system of rela-
tions (3.14).

Proof of Theorem 1. Equivalently, we have to prove that

(3.15)

S
AV
—_

(elol) _z_: a+r 32]:0%’6 0oy +a+r6¢08¢1 a+r 0%
T, b(r —b) 01,01, 0T,y r  JT, 0T, 2r O0T,0T,’

In [5, Lemma 4.2], we proved that the operator L has the form

r—2
L=0+3 > o, 7 eCL)

i=0 >0
Denote
r—2 r—2
Lo=0,+Y f0L, L= ol ()W =k
=0 =0

—~

For any a > 1, the Laurent series L] has the form

— a

Li = 3 B((f))2,

1=—00

where P; are polynomials in (fj[o])(k) for 0 < j <r—2andk > 0. Let us assign to (fj[o})(k)
differential degree k. Then we can decompose the polynomials P;(( fio})(*)) as P;(( f*[o])(*)) =

> m>0 Lim((f *[0])(*)), where a polynomial P, ,, has differential degree m. Introduce the following
notations:

(1) - Xiﬂmf““ (1) =3 Pl
+,m i=0

Lemma 3.3. For any a > 1 we have
8 ~a T ~a /\2 a ~Qa -~
s16) 20— (0. (1F) + %) %(m)%éa) +—(%]LQ]
- + w1 T -
0

oT,
where 0, denotes the partial derivative 7.

Z:(¢0)x

Proof. We have 8— =g I(LWGTJ The operator L+ has the form L+ = 3¢ _ R;0%, where
Ri=3 06 RZ], R; ; € C[[T.]]. We have to check that

i e?

a—1 T
(3.17) Coef.o le Z;Ri o

oo (80), + O (5) (1) 4 ()

O3l
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By the induction on 1, it is easy to prove that

mi,ma,. >O]>1

Z]m]—l

We have

7o)t + e i)y H(d1)e + O(e7™F?), if my =4 and mzy = 0,
H(@;gb)mﬂ = 8_i+1(¢0)2_2(¢0)m —+ O(g_i+2), if my = 1 — 2, meo = 1 and m>3 = O,
721 O(e~2), otherwise.
As a result,

die? R i1 () i i(i—1 . »
= o (it 00 + G 0w ) + 0
and
(3.18)
Ot e? - D i(i—1 . - .
COGfEO [ ol ZR = RLO (Z(gbo)zm_l(gbl)x + ( 9 )(QSO)?E_Q(QZ)O)MU) + Rz;l(ébo)i«-
i=0 1=0

Note that

Soros = (B), Soras= (1) +%(E'E)
i=0 + i=0 +.1 +

We can see now that the first sum on the right-hand side of (3.18) gives the first and the second
terms on the right-hand side of (3.17). The second sum on the right-hand side of (3.18) gives
the third and the fourth terms on the right-hand side of (3.17). This completes the proof of
the lemma. U

In [5, Lemma 4.7], we proved that

o (),

which implies

Poy 0
o, 0T,  OT.

@;) + Z(qso)j B <(¢0)”az (Z‘;> + 9.Lo + 5, (Z‘;> + 89”20)

Therefore, equation (3.15) is equivalent to

¢y _Tz‘i atr PFIC e L a0y 90
OT,yy “— b(r — b) 9T,0T;, 9T, r T, oT,

+ a2+ r ((%)m 2 <E()%)Jr 8220 +0 <E§>+ amio) ‘

2=(¢0)x
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By formulas (3.16) and (3.19), this is equivalent to the equation
~atr ~atr /GE AL~
(0.0 (Lg7) + e (237 (Lo“ ) + (I =
+ 2 - 1 r
Lc
+r O*F;

st e |0 (57), + e (7) +|(57) | (),

((bO)mm
2

_l’_

—_

o
[

1

a+rA

[«m 0.5+ @egp 7

. a+7“ <<¢0)m ) (E§)+azio+ d. (E§)+amio)

where we should substitute z = (¢g),. Collecting together the terms marked in the same way,
we see that this equation is a consequence of the following four equations:

r—1 1e
~atr a+r OPF; b a+r [~o ~
3.20 0, (L g ) - 0, (L - ) (L) 9. Lo,
(3:20) o )y blb('r’—b)@T@Tb 0 ++ r 0, =0
r—1 Le
~atr a+r O*F] = a+r [~o -~
3.21 o2 (L G ) - 0_ g2 (L . ) (L) 0°L
(3:21) AN — b(r —b) 01,01}, ~ 0 ++ r 0) 7% ot
42T, (Eg) 9. Lo,
r
— r—1 Le —_—
atr atr OPF) rb a+r, (e ~
(3.22) <LOT ) — 0 <L0T ) +2 0, (Lg) 8, Lo,
w1 = b(r =) 0T, 0T, o 2r +
r—1 Le
a+r [~a~ at+r OPF] r—b (ot~ a+r o\ o~
3.23 (LTL) - 0 (L TL) (L) L.
(3.23) r 0= bZlb(r—b)@TaaTb r 0 = ++ r 0)

In [5, equation (4.19)], we proved that
r—1

1(L7), Zl b(C;J:Tb g;};))de (L;Tb>+ + (Z5), dzo.

from which equation (3.20) clearly follows. Applying the derivative J, to both sides of (3.20),
we get equation (3.21). Equation (3.23) follows from the property [5, equation (4.22)]

r—1

| 2F)C
>_ _ZEaT 8TbL°

b
T

el

Osle

(3.24) (E

[t remains to prove equation (3.22). Let us first prove that for any a > 1 we have

(3.25) (L(}) G T)L 2.0, Lo.
1 2r2
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It is easy to see that

~r—=1 /\1 ~ ~ ~
:TLO " <L6) + iLalazLoamLo =
1

~r=1 /\1 — 1~ ~ ~
Ly (Lg) +T7L0—182L08$L0.
1

Since we obviously have ((Li) ) = 0, equation (3.25) is proved for a = 1. For an arbitrary

1
a > 1, we compute

1 7=0
a—1
a(l—r)~e s ~ Joae o~ o
== 27“2 LO 8ZL0(9$L0 + ﬁLO @LO&DLO -
=0
ala—r)ra g~ _ ~
=T L 0. Lod Ly
Thus, equation (3.25) is proved.
Let us rewrite formula (3.25) in the following way: (Lg ) = %@EO% “'9,Lo. Then we see
1

that equation (3.22) is equivalent to

r—1

Z a+r 82.7:0;’0
2rb 8Ta8Tb

a+r
r

(3.26) (8ZE§ 6xio>+ = (@ES g&cfo> T

We obviously have

a—+r ~a o~ a-+r ~a ~ a-+r ~a ~
aeraxL) Y <L> 0,1 0, (L) 0,1
2r < 05 )T 2 6), Ghot =, 0)_ Two

r

+

Note that the underlined term here cancels the underlined term on the right-hand side of (3.26).
Therefore, equation (3.26) is equivalent to the identity

r—1 e
~a ~ 1 0%F; N
o, (L) 0,0, =S 22l (aZL "9, ) ,
( ) °>+ ;bGTGGTb o)
which follows from equation (3.24). The theorem is proved. O
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