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A LOGARITHMIC IMPROVEMENT IN THE
TWO-POINT WEYL LAW FOR MANIFOLDS WITHOUT
CONJUGATE POINTS

by Blake KEELER (*)

ABSTRACT. In this paper, we study the two-point Weyl Law for the Laplace—
Beltrami operator on a smooth, compact Riemannian manifold M with no con-
jugate points. That is, we find the asymptotic behavior of the Schwartz kernel,
Ex(z,y), of the projection operator from L?(M) onto the direct sum of eigenspaces
with eigenvalue smaller than A? as A\ — oco. In the regime where z, y are restricted
to a compact neighborhood of the diagonal in M x M, we obtain a uniform loga-
rithmic improvement in the remainder of the asymptotic expansion for Ey and its
derivatives of all orders, which generalizes a result of Bérard, who treated the on-
diagonal case Ey(z,z). When z,y avoid a compact neighborhood of the diagonal,
we obtain this same improvement in an upper bound for E. Our results imply that
the rescaled covariance kernel of a monochromatic random wave locally converges
in the C'*°-topology to a universal scaling limit at an inverse logarithmic rate.

RESUME. Dans cet article, nous étudions la loi de Weyl a deux points pour
l'opérateur de Laplace-Beltrami sur une variété riemannienne lisse et compacte M
sans points conjugués. Cela veut dire que nous donnons le comportement asymp-
totique du noyau de Schwartz, Ey(z,y), de 'opérateur de projection de L2(M)
sur la somme directe des espaces propres pour des valeurs propres inférieures & A2
quand A — oo. Dans le régime ou x, y sont restreints & un voisinage compact de la
diagonale en M x M, on obtient une amélioration logarithmique uniforme dans le
reste du développement asymptotique pour E) et ses dérivées de tous ordres , ce
qui généralise un résultat de Bérard, qui a traité le cas diagonal E(z,x). Lorsque
xz,y évitent un voisinage compact de la diagonale, on obtient cette méme améliora-
tion en une majoration de E). Nos résultats impliquent que le noyau de covariance
redimensionné d’une onde aléatoire monochromatique converge localement dans la
topologie C'*° vers une limite d’échelle universelle & un taux logarithmique inverse.
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2 Blake KEELER
1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold without bound-
ary, and denote by A, its positive definite Laplace-Beltrami operator. Let
{;}520 be an orthonormal basis of L?(M) consisting of eigenfunctions of
A, with

Agp; =Xos,  llejlliezoan =1,
where 0 = g < A1 < Ay < - are repeated according to multiplicity.
We may, without loss of generality, take the ¢; to be real-valued. We are
interested in the Schwartz kernel of the spectral projection operator
Ey: L*(M) —» €] ker(A, — A%),
A <A

which, in the above basis, takes the form

Ex(z,y) = Y ¢;(@)¢;()
Aj<A
on M x M. This kernel is called the spectral function of A,. In this article,
we investigate the two-point Weyl law for the spectral function, i.e. the
asymptotic behavior of Fy(z,y) in the high-frequency limit A — oco. In the
general case, the “near-diagonal” behavior of E) is known to be given by

A — de
1.1 E = iX(exp, " (¥).£)g R
(1.1) NEXD " /B;Me T + Ra(z,y),

where B M is the unit ball in the cotangent space at x, and for any multi-
indices a, 3,
(1.2) sup  |050) Ra(w,y)| = O~ 1A,

dg(z,y)<e
as A — oo for some ¢ > 0 sufficiently small. Here d, is the Riemannian
distance function, exp, ! is the inverse of the exponential map defined on
a sufficiently small neighborhood of z, and g, denotes the metric at x.
We remark that for the purposes of this formula, we regard exp *(y) and
¢ as elements of T M, rather than T, M to be consistent with standard
conventions in the literature. Throughout this article we will always inter-
pret norms and inner products with the subscript g as operations using the
co-metric on T* M, unless otherwise stated.

A more general version of the above asymptotic was proved for the spec-
tral functions of arbitrary positive elliptic pseudodifferential operators by
Hoérmander in [12], generalizing earlier results of Avakumovic [1] and Lev-
itan [17,18] for the on-diagonal behavior in the case of the Laplacian. We
also remark that the original result was not stated to include derivatives of
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 3

the remainder function, but as mentioned in [7], (1.2) follows directly from
the wave kernel method (e.g. [23, §4], [27]). Complementary to the near-
diagonal result of Hérmander, an estimate on E) when x and y are “far
apart” was obtained by Safarov [19], who showed that if K is any compact
set in M x M which does not intersect the diagonal with the property that
if x,y € K, then z and y are not mutually focal and at least one of z or y
is not a focal point, then
(1.3) sup |Ex(z,y)| = o(\")
z,yeK
as A — oo. Safarov and Vassiliev also obtained some results on the precise
form of the second term in the on-diagonal Weyl law, and we direct the
reader to [20] for more information. In this article, we present improvements
in both (1.2) and (1.3), under the assumption that (M, g) has no conjugate
points. In the fully generic case, it is known that (1.2) is sharp, and this is
easily shown by considering the zonal harmonics on the round sphere S*~!
centered at x and restricting to E(x, ). However, by making assumptions
about the behavior of the geodesic flow, one can often obtain improvements
in the remainder estimate (1.2). For example, Canzani and Hanin showed
that if one assumes that o € M is non-self focal, i.e. the loopset given by
{§£ € S; M : exp,, (t€) = wo for some t > 0} has Liouville measure zero in
the co-sphere fiber S; M, then one can locally improve (1.2) to
sup  [950] Ra ()| = o(An el
z,y€B(x0,rx)
as A — oo, where A — 7y is a real-valued function with ry = o(1) as
A — 00, and B(zg, r)) is the geodesic ball of radius 7, centered at z [6,7].
This result was an extension of the work of Safarov [19], who proved a
pointwise o(A" 1) estimate for the on-diagonal remainder R (z, x) without
derivatives. The same on-diagonal result was later proved independently by
Sogge and Zelditch with an alternative proof [24]. This on-diagonal esti-
mate was itself a generalization of the Duistermaat—Guillemin Theorem for
the eigenvalue counting function [10,15]. A more quantitative improvement
in the Weyl law was obtained by Bérard [2], who showed that under the
stronger assumption of nonpositive curvature, one can obtain a factor of
@ in (1.2) when = = y and |a| = |3] = 0. This result was extended by
Bonthonneau [5] to apply to the case where (M, g) has no conjugate points,
and this was accomplished by proving that certain technical geometric es-
timates required in [2] still hold in this more general setting. In this article,
we generalize this logarithmic improvement by showing that it also holds in
the more delicate off-diagonal case. We also show that adding derivatives
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4 Blake KEELER

in z,y yields the expected change in the remainder bound, which enables
us to obtain a quantitative rate of convergence for the rescaled covariance
kernels of monochromatic random waves in the C*° topology.

THEOREM 1.1. — Let (M, g) be a smooth, compact Riemannian mani-
fold without boundary, of dimension n > 2. Suppose that (M, g) has no con-
jugate points. Then, for any multiindices «, 3, there exist positive constants
Co,p and Ao such that the remainder in the asymptotic expansion (1.1) sat-

isfies
C., ﬁ)\n—1+\a|+|/3\

swp |02 Ra(a,y)| <
dy(z,y)< 3 inj(M,g) log A

for all A > Ag.

An outline of the proof of Theorem 1.1 is given in Subsection 1.1. By
modifying the proof slightly, we also obtain an improved upper bound on
derivatives of FE) itself when z,y are bounded away from each other, in
analogy to Safarov’s estimate (1.3) from [19].

THEOREM 1.2. — For (M, g) as in Theorem 1.1 and any € > 0, there
exist constants Cy g, Ao > 0 such that

Ca A Hlal+H Bl

1.4 sup |0y 8ﬂE <
( ) dg(x,y)>e | A( )| log)‘

for all A > Ag.

The proof of Theorem 1.2 is largely contained within that of Theorem 1.1,
and the necessary modifications are discussed in Remark 4.7.

A straightforward consequence of Theorem 1.1 is an asymptotic for the
spectral cluster kernels defined by

Eo@y) = > ¢i@)e),

X E(LAF1]

for z,y € M. In Section 5, we show that using polar coordinates and the
fact that
. o o=z (Jw])
[ et dr = mp S
S§n 1

|w]| ™

where J, denotes the Bessel function of the first kind of order v and do
is the standard surface measure on S"~!, one obtains the following conse-
quence.
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 5

THEOREM 1.3. — For (M,g) as in Theorem 1.1 and for any multi-
indices «, 3, there exist constants Cqy g, Ao > 0 such that for any x,y € M

A1 J% (Adg(xa y)))

N Cy pAn~1Hlel18]
a:c 85 (E(A,A+1] (z,y) - ( <

X

n—2

2m)% (Adg(x,y))"

log A

whenever A > Ag.

We note that Theorem 1.3 only gives the leading order behavior of
E, s;1y(z,y) when dg(z,y) is very small relative to 1. To illustrate this,
let us take the case where |a| = |§| = 0. By standard properties of Bessel
functions, we have that
Tas (M)

n—2

(Ady(,y)) =

2 _
Hence, if dy(z,y) > M, then

n

< CANH(1 + My (z,y) "

_n—1 n—1
n—1 —n_1 n—1 2 2 A
p] < n— = .
AL+ Ay (2, )T <A (1+(log)\) ) O(logx>

Thus, if d,(x,y) is too large relative to %, Theorem 1.3 simply gives the
same upper bound on E,, . (7,y) that one would obtain by applying
Theorem 1.2 and Cauchy—Schwarz. A similar argument shows that The-
orem 1.1 only gives the leading behavior when dg4(z,y) is smaller than
O (A%—l(logA)%) .

Off-diagonal cluster estimates such as Theorem 1.3 have applications in
the study of monochromatic random waves, which are random fields of the
form

U@ =X YT ap(),
AjENANF1]
for x € M, where the a; are i.i.d. standard Gaussian random variables with
mean 0 and variance 1. Random waves of this form were first introduced on
Riemannian manifolds in [28] by Zelditch, who was motivated by Berry’s
conjecture, which suggests that on manifolds with chaotic dynamics, high-
frequency eigenfunctions should behave like certain stationary Gaussian
fields in Euclidean space (cf. [3,14]).

By the Kolmogorov extension theorem, the statistics of monochromatic
random waves are completely characterized by their covariance kernels, or
two-point correlation functions, which can be computed directly as

COV(Z/}X (Z‘)v 1/)/\ (y)) = /\lan(A)Hrl] (937 y)

TOME 0 (0), FASCICULE 0



6 Blake KEELER

for z,y € M. Theorem 1.3 implies that for any =g € M, we have the
following convergence result for the covariance kernel in rescaled normal
coordinates.

COROLLARY 1.4. — Let (M, g) be as in Theorem 1.1, fix xy € M, and
let A — r) be a real-valued function such that ry = O (, / @) as A — oo.
Then, for all «, 3,

u oy el
Cov (¥x (expy, (X)) ¥a (304, (3))) = — 25— + R(w,v, ),
(2m) % u— v|"3

where

sup 0305R(u,v,)\)|—0< 1 ),

Jul,Jo]<ra log A
as A — 00, and we consider u,v as elements of R" = T M when taking
the supremum.

Here the implicit constant depends on the choices of zg and 7y, and
on the order of differentiation. Note that although the radius r) gives a
growing ball in the u, v coordinates, this corresponds to a shrinking ball of

radius 5 = O ( L ) on M, and, as A — oo, this is indeed smaller than

VAlog A

%inj(M ,g) as required by Theorem 1.3. One can prove this corollary by

Taylor expanding the function F(7) = JVT—(,,T), with v = ”T_Q, around 7 =0
and using that dg(z,y) — W—;Ul =0 (‘“;7;"2> . Here, = exp, (u/)\) and

y = exp,, (v/A). In doing this Taylor expansion, we find that if |u — v|* <
@ (@), then the error is smaller than the proposed O (@) bound,
which determines our condition on ry, although we do not claim that this
is the largest possible radius for which the result holds. Corollary 1.4 shows
that the rescaled covariance kernel of a monochromatic random wave locally
converges to that of a Euclidean random wave of frequency 1 at a rate of
@ in the C*°-topology, and hence the limit is universal in that it depends
only on the dimension n, not on M itself. As an interesting application, we
note that a recent work of Dierickx, Nourdin, Peccati, and Rossi utilizes
the quantitative rate of convergence given in Corollary 1.4 in the proof of
a small-scale central limit theorem for the nodal lengths of monochromatic
random waves on surfaces without conjugate points [9, Theorem 1.5].
Under the assumption that zy is a non self-focal point, Canzani and
Hanin proved o(1) convergence in the C%-topology in [6], and then in the
C* topology in [7]. However, without any further restrictions on the geom-

etry, they were unable to obtain an explicit rate of convergence as A — oc.
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 7

Our @ estimate is a first step toward obtaining quantitative asymptotic
improvements on the statistics of monochromatic random waves in the
fairly generic setting of manifolds without conjugate points.

1.1. Outline of the Proof of Theorem 1.1

We first relate the spectral function Ey(z,y) to the Schwartz kernel
K(t,z,y) of the wave operator cos(t\/Zg) using the Fourier transform tak-
ing A — ¢, along with an on-diagonal spectral cluster estimate. We are able
to use on-diagonal results here because we only need upper bounds on the
spectral clusters in this piece of the argument. This is done in Section 2,
although the proof of the relevant spectral cluster estimate is postponed to
Appendix C, since the proof technique is largely a repetition of arguments
from Section 4.

The second step is to approximate K(¢,z,y) using the Hadamard
parametrix, which is done in Section 3. The fact that (M, g) has no conju-
gate points allows us to lift to the universal cover (M ,§), which is diffeo-
morphic to R™ by the Cartan—-Hadamard theorem. We induce a parametrix
on the base manifold by projecting, i.e. by summing over the deck trans-
formation group I', which results in an expansion of the form

o ]
(1.5) K(t,z,y) = Z Z F,(t,Z,~Y) mod C*°,

v=0~€el
where Z,y are some chosen lifts of x,y, and where each F, is the product
of a C* function and a homogeneous distribution of order 2v — n. We do
not reproduce the construction of the parametrix, since it has been done in
great detail in other sources (e.g. [2,13,22]). Instead we focus on identifying
the structure of the distributions which comprise the parametrix and on
proving that the error introduced by approximating K (¢, z,y) by a partial
sum in (1.5) is sufficiently small.

Once we have reduced the proof of Theorem 1.1 to estimating an integral
involving the parametrix, we perform some explicit asymptotic analysis on
the individual terms as A — oco. This is the content of Section 4. It is here
that our techniques make the most significant departure from the work of
Bérard [2], where R (x, z) is estimated. In [2], the leading order behavior is
obtained from the term in the parametrix corresponding to v = Id, and so
dg(Z, ) = 0. This reduces the relevant oscillatory integrals to a very simple
form. In our case, a notable difficulty is that dg(z,y) may be quite small,
but need not be exactly zero, and so the corresponding singularities of the
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8 Blake KEELER

parametrix at ¢ = +d3 (T, y) are very close together, but do not necessarily
coincide. We still obtain the leading order behavior when Z and ¥y are the
closest possible lifts of x,y, which we may assume occurs when v = Id,
but we do not get the same simplifications as in [2] if the distance between
them is nonzero. This requires us to use a very different formulation of the
parametrix terms F},, so that we can track the dependence on this distance,
which yields a more complicated linear combination of oscillatory integrals
to estimate. We obtain somewhat weaker control on these terms, but the
bounds are all smaller than the claimed estimate in Theorem 1.1, and so
the final result still holds. For the case where v # Id, our proof hinges on
the fact that d(Z,~y) is bounded uniformly away from zero, thus allowing
for improved estimates from applying stationary phase.

1.2. Organization of the Paper

Sections 2, 3, and 4 are devoted to the proof of Theorem 1.1. Theorem 1.2
follows from the same techniques, as discussed in Remark 4.7. Then, in
Section 5, we prove that Theorem 1.1 implies Theorem 1.3.

Appendix A contains an estimate on summations involving factors which
localize the summand to a A-dependent region. This estimate is used in the
proof of Proposition 2.2, but the method of its proof is not particularly
instructive, and so we relegate it to an Appendix. Appendix B contains the
proofs of some technical differential geometry results regarding quantities
appearing in the construction of the parametrix, which are essential for
including derivatives in the main result. We rely heavily on Jacobi field
techniques similar to those contained in [4, §3]. Finally, in Appendix C we
prove the on-diagonal spectral cluster estimate used in Section 2. The main
components of the proof are extremely similar to arguments presented in
Section 4, so we simply sketch the key points.
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2. The Spectral Function and the Wave Kernel

Since the spectral function E)(z,y) is difficult to work with directly, we
instead study its behavior by relating it to the kernel of cos(t\/gg) via the
Fourier transform, following techniques similar to those found in [22]. To
accomplish this, let us note that

Ex(z,y) = > LanA)ei(@)e; ),
=0

where 1_, 5 denotes the characteristic function of the interval [—, A].

. . . . . A
Since this characteristic function has Fourier transform [~ NG T dr =
2sin(t\)
t

(2.1) Ex\(z,y) = Z%/w Sin(t) cos(tA;) wj(z)p;(y) dt,
j=0" 4=

, which is even, we can write

t

where we can interpret the above integral as

lim © /_ BT R G

cos(tA;)dt

N—oo T t

for any even function 8 € C°(R) with 8(0) = 1. This interpretation tech-
nically requires that A% does not belong to the spectrum of Ay, since

lim /_OO B(t/N) sinit)\) cos(tA) dt = 1’

N —oc0 2

if 8 is even, and so the limit does not actually recover 1_y xj(A) (cf. [22]).
Thus, we will assume throughout the rest of this argument that A2 is not
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an eigenvalue. To justify this assumption, let us define the spectral cluster
operator F(y x4 4) for 0 < A <1 to be the orthogonal projection

E,aia: LQ(M) — @ ker(Ag—)\?)
A EMA+A]
and so the corresponding Schwartz kernel is
(2.2) Eqan@y) = D 9i@)ei).
A e(MA+A]
We then have the following estimate on derivatives of E(y x4 4] restricted

to the diagonal, which is a generalization of results from [2,22].

LEMMA 2.1. — Let (M, g) be as in Theorem 1.1. Then there are con-
stants Ao, C1,Cy > 0 such that

sup [0805 E s (0],

< o2l [AAH +eC2/4 Amax{\"T, AH}}

for all A > Mg and all 0 < A < 1. In particular, if A = ﬁ with ¢ > 0
sufficiently small, then after possibly increasing \g, we have

)\n—1+2|a\
} o
sup 070y By som (@,9)] | < “Togn
for all A > \g and for some C > 0.
In the case where |a] = 0 and (M, g) has nonpositive curvature, this

bound was formally stated in terms of spectral clusters in [22], although
the techniques required to prove it were first presented in [2]. The result
of [5] can be easily used to extend the |a|] = 0 estimate to the case of
manifolds with no conjugate points. The addition of derivatives is a new
result, but we will postpone the proof, since it is largely a repetition of
arguments found in Section 4.

It follows from Lemma 2.1 that if A? is in the spectrum of A, we can shift
to some slightly larger x? which is not an eigenvalue. The error introduced
in doing so then satisfies

1/2 1/2
0002 (By(z,y)— Ex(z,p)| < | D 10%¢,(@) > 100 ei(w))?
Aj€(ul Aje(ul
O\ 1+l +]8]
log A ’

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 11

provided that |p — A| < A for A as above, which is always possible since
the spectrum of A, is discrete.

Now, formally interchanging the summation and the integral in (2.1) we
would have

(23) Ba) =+ [ T kg ar,

—00

where

K(t,z,y) = Zcost/\ v (x)e;(y)

is the Schwartz kernel of cos(t\/Kg). This interchange is justified at the
level of operator kernels if we allow FE)(z,y) to act on a C*° function
f by integration in y. In this case the summation involves the Fourier
coefficients of f, which have sufficient decay to guarantee that the sum
converges absolutely, and thus we are justified in interchanging the sum
and the integral.

At this point it is convenient to introduce a smooth, even cutoff function
p which will allow us to restrict the support of the integrand in (2.3) to
a region where we can approximate K (t,z,y) by a parametrix. The error
introduced in doing so can be controlled as follows.

PROPOSITION 2.2. — Let (M,g) be as in Theorem 1.1 and let p €
C2°(R) be an even function with p(t) = 1 for all |t| < 3inj(M,g) and
with support in [—L, L] for some L < inj(M,g). Then, there exist con-

stants ¢, C, \g > 0 so that if A= —— we have

clog A\’
1 [ tA
(24) sup |0207 (Ek(x,y)— / san SN )K(t,x,y)dt>
z,yeM T J—co t
O\~ 1+lal+18]
log A

for all A > \g.

Proof. — We prove this result first for the case where |a| = |8 = 0.
Observe that

25 Bww) -+ [ o™k, n) a

T™J-

—ZhAA (@);(y),

TOME 0 (0), FASCICULE 0



12 Blake KEELER

where

1 [ 5
(2.6) haa(r) = 1y (r) — © / A(At) b”;“ costr dt
™

— 00

for 7 € R. We claim that hy 4 satisfies the bound
_ -N
(27) [hxa(m)l < On (L+ A7 |7] = A])

when A > 1, for any N =1,2,3,.... To prove this, we note that if p is the
inverse Fourier transform of p, then p is an even Schwartz-class function
with [ pdt = p(0) = 1. Therefore,

1 [ sintA 1 (1-s
;/ p(At) ; costTdt:[ Ap<A> T_an(s)ds

- ey
A
= / p(s)ds.

T—A
A

When |7| > A, we use the fact that p is rapidly decaying and 1_y x(7)
is zero. When A > |7|, we use that p decays rapidly and integrates to one
and that 1[_ yj is identically one on its support. These facts combine to
give (2.7).

We can therefore control the right-hand side of (2.5) using bounds on
h,a,along with Lemma 2.1. For this we break the summation into intervals
of size A as follows. For each N > 0, there exists a Cy > 0 so that

(28) D haa(Ay)e;(@)e;(y)
=0

<SS v AT A=A N s (@)e; ()]

k=0 X;€[kA,(k+1)A]

by (2.7). In each interval, we can write \; = As; for some s; € [k, k + 1],
and hence

A4+ATTN= )V =1+ AN =)V <Ov(A+ AN = k)Y,

for some possibly larger Cy > 0, so we can use the triangle inequality to
bound the right-hand side of (2.8) by

o0

(2.9) Do ONAHATIAKDTY X Jes(@)ei(y)

k=0 N E[kA, (k+1)A]

Next, we seek to apply Lemma 2.1 to each of the sums over \; € [kA, (k+
1)A] with A = kA. However, we must first discard all terms for which

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 13

kA < Ao, where )\g is as in the statement of Lemma 2.1. To see that this is
possible, observe that

(210) Y- > |05 (2); (y)]

ke[0,22] As€lkA, (k+1)A]
C
<Y Y le@ewi<s
ke[0,22] Ai €[0: A0 +1]

for some constant C' > 0, since (k+1)A < X\g+1, the set {j : A\; < Ag+1}
is finite, and each ¢; is bounded. Note that here C' may depend on Ag, but
not on A.

Then, for all k with k > %, we have by Lemma 2.1 and Cauchy—Schwarz
that

(2.11) > lpj()ei(y)l
X E[kA, (k+1)A]

<G [A”k”*l +eC2/A max{A

n+ n—1

21k- 5 7An72kn73} .

By Corollary A.2 we have for sufficiently large N that

> On(L+[ATIN = k) TNAM T < Oy AT (ATIN) T = Cy AN,

k20

for some Cy > 0. This is because the factor of (1 + |A7IX — k|)™ serves
to localize the sum to the region where k& ~ A~!')\. Analogously, after
potentially increasing C, we have

o0

ST ON(L+[ATIN k)TN e AT BT < Oy AeC /A

A

n—1
2

S}

k>

>}

and

On(1+ AN = k)N eC2/A An =253 < Oy AeC2/A N3,

[M]8

>
=

k

\Y,
2

Therefore, by the above estimates and (2.11), there is some Cn > 0o
that

oo

On(L+ATN=K)V D lp(@)e;(v)]

2 N E[RA, (k+1)A]

>

k>

< Cy {A)\"_l + AeC2/A maX{)\anl,)\"_‘?} .
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Now, if we take A = clog)\ for ¢ > 0, we have that e©2/4 = \¢“2_ Hence,
if ¢ is chosen small enough, and if we increase \g so that A = ﬁ <1
when A > A\g, we have
© ~ \n—1
(2.12) ON+[ATA=R)™ D [oi(@)esy)] | < ON ooy
k}TO A ERA, (k+1)A] 8

for all A > )\ after possibly once again modifying Cy. Picking some fixed
N large enough and combining (2.12) with (2.10), we obtain

n—1

~ A
< 1
ZhAA (@)e;(y) ONlog)\ + Clog A

Note that since n > 2, the O (10 )\) term
g

dominates the O(log A) term as A — oo, and hence we can choose some
/\0 Ao such that

: _ 1
when A > Ag, since A = Togx-

S ox!
E N s . <
= h)MA()\])SDJ (x)@] (y) ~ log)\

for all A > Xo and some C > 0.
To include 8;‘85 , we simply apply the estimate from Lemma 2.1 to obtain
the appropriate modification of (2.11), which is given by

> 102ei@dfes)]
A €lkA, (k+1)A]
< Cpalel+IB [A”k”*l 4 eCo/A max { AT KT, A2k
which only serves to increase the relevant powers of A by |a| + |8], and
hence the proof goes through with no further adjustments. O

With Proposition 2.2 in hand, it now suffices to show that the integral
in (2.4) has the asymptotic behavior that we claimed in Theorem 1.1. To
accomplish this, we use the Hadamard parametrix to approximate the co-
sine kernel, which we discuss in the following section.

3. Approximation via the Hadamard parametrix

Given Proposition 2.2, the proof of Theorem 1.1 would be complete if
we could show that for every «, 8, there exists C, ¢ > 0 such that for all A

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 15

sufficiently large, the remainder

B Relyy) = [ plan™E

— 00

K(t,z,y)dt

__1 / Giexps @), dE
2m)" Jie) < Vdet g,

satisfies
O n—1+lal+8]
(3.2) sup |8°‘85RK (2,9, )| < ———+—
dy(@,y)< 3 inj(M,g) log A
when A = ﬁ. However, since it is not possible to compute K(¢,z,y)

exactly, we instead approximate it using the Hadamard parametrix. In fact,
as in [2], we will use the assumption of no conjugate points to lift to the
universal cover of M to ensure that the parametrix exists for large [¢|.
Our ability to control the parametrix for timescales on the order of log A
is what Will allow us to estimate the integral involving K (¢,z,y) in (3.1)
for A = _ 5, since the integrand is supported where ¢ € [-1/4,1/A] ~
[—log A log )\] The first part of this section consists of a summary of results
about the Hadamard parametrix which are proved in other works, and we
refer the reader to the appropriate sources which contain the corresponding
details. Afterward, we prove that the error introduced in replacing K (¢, x, y)
by a partial sum of the parametrix in (3.1) is sufficiently small, and we
discuss some particular formulas for the parametrix terms which will be
very useful when we wish to do the explicit asymptotic analysis in Section 4.

Since (M, g) has no conjugate points, we know that for a fixed g € M
the exponential map

p=exp,, : oM — M

is a covering map, and hence M = Ty, M = R™ is the universal cover of
M when equipped with the metric ¢ = p*g. If we denote by I' the deck
transformation group of isometries on M corresponding to p, the work
of [2] shows that the wave kernel K (¢, z,y) on the base manifold M has an
expansion of the form

(3.3) K(t,x,y) ZZ“” Z,7Y)0: W, (t,dg(z,vy)) mod C*,

v=0~€l

TOME 0 (0), FASCICULE 0
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where T,y are any chosen lifts of ,y € M. The coefficient functions u, are
defined for any x,y € M by

u(7,5) = 072 (,7)
1
(3-4) uw (@ 7) = @_%(f,@/ s OV (T, azg(s))
0
X Agguy—1(7, az5(s))ds, v =1,

where O(Z,y) = |detDCXp;1(g

geodesic in (M ,g) connecting T and y parametrized by arc length, which

)expj\ and azg is the unique minimizing

exists because the metric on M is uniquely geodesic. In R”, the distributions
W, for v =0,1,2,..., are defined by
(3.5)

V! : : . e
Wt u]) = m [ e eR (7 i) g,
R’VL

A |
(27T)"+1 z—:—l>0Jr
for w € R™ and ¢t > 0. At t = 0, we have

W0+, wl) = Jim W, (8, w]) =

for all v > 0 by [22, Proposition 1.2.4]. We then extend each distribution
to t € R by imposing the condition W, (—t, |w|) = =W, (¢, |w|) so that W,
is odd in t. It is clear from the definition that W, depends only on the
norm of w, since it is the inverse Fourier transform of a radial distribution
in & It is also easy to verify from (3.5) that W, is homogeneous of degree
2v —n+ 1. Furthermore, as v increases, the extra decay of the integrand in
(1,€) results in additional regularity in (¢,w). In particular, we have that
if v > k4 2L for some integer k, then W, is a continuous function whose
derivatives up to order k are continuous [13, §17.4]. One can then pull back
via geodesic normal coordinates centered at x € M to obtain distributions
W, (t,d5(%, 7)) defined on R x M x M (see [13, §17.4] and [22, §2.4] for
details). Note that we use 9;W,, in (3.3), rather than W, itself. This is due
to the fact that the parametrix construction is generally done first for the
kernel of Sm%) and then the parametrix for cos(tv/A,) is obtained by
differentiating in ¢.

The sum over v € I' in (3.3) is finite for any fixed ¢, since the wave
equation has finite speed of propagation. Indeed, is a consequence of the
Paley-Wiener theorem that W, (t,ds(Z,y)) is supported in the light cone
{(t,7,7) e Rx M x M : dj 3(Z,y) < [t|}. Additionally, by [26, Lemma 6],
we have that for any z,vy € M,

(3.6) #{y el dg(z,vy) <|t|} < C4 eCultl,

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 17

where C7,Cy are positive constants which are independent of z,y. There-
fore, at most C1e€2!l terms in the sum over v € T in (3.3) are nonzero for
any fixed t. We note that this result was stated in [26] for (M, g) having
negative sectional curvature, but the proof only depends on the fact that
the Ricci curvature of (JT/.f ,g) is bounded below.

Since we wish to use the parametrix instead of the exact wave kernel in
the integral in (3.1), we must estimate the difference between them. For
any fixed N > 0 and x,y € M, define

N

(3.7) Kn(t,z,y) = ZZ””(%’ YY) W, (t, dg(Z,vY)).

v=0~el

The following proposition estimates the error introduced by using Ky in
place of K in (3.1), which is generalizes a result from [2] to include deriva-
tives in z and y.

PROPOSITION 3.1. — Let (M, g) be as in Theorem 1, and let p € C°(R)
be as in Proposition 2.2. Let K be the kernel of cos(t\/A,) and let Ky
be defined by (3.7). If a, 3 are multi-indices and if N > m + |a| + 5% for
some integer m > 5 +|f| —1, then there exist constants Cy,Co > 0 so that
for any 0 < A < 1, we have

1 [ . sinth_,
38) s |2 [ 50T R080] (Kt ay) — Klt,,) dt
T,y — 00
< Cpef2/A
for all A > 0.

Proof. — Since p(At) is uniformly bounded and equal to zero outside
the interval t € [-1/A,1/A], the above estimate would follow immediately
from the bound

(3.9) sup 18386 (Kn(t,z,y) — K(t,z,y))| < Cpe®lt
x,yeM t Y
We prove this bound using some standard energy inequalities for the wave
equation and a Sobolev embedding, along with some pointwise bounds on
derivatives of u, and 9;W, which are direct consequences of results from
Appendix B. The Hadamard parametrix construction in [2] shows that the
remainder

RN(taxa y) = KN(tvxay) - K(t7$7y)
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satisfies an inhomogeneous wave equation of the form

(8,52 + Ag,y)RN(t7$,y) = FN(t,Jj, y)7
RN(O,SC,:U) =0
atRN(vavy) = Oa

where Fi (t,2,y) = C 3 cp(Ag5un(Z,79))0: Wi (t, dg(Z,vy)) for any lifts
Z,7 of z,y and some constant C, and Fy is of class "t provided
N > m+ |a| + %+, Noting that derivatives in  commute with Ay, we
have that

(07 + Dgy) (05 Ry (t,2,y)) = 0g Fi (t, z,y)
at (a(erN(Oa ‘T7y)) =0.

A standard energy inequality for wave equations with vanishing initial
data (see [25, Ch. 47]) yields that for any x € M and t > 0,

t
(310) ||8§RN(t,1',')||Hm+1(M) < Cl ngt/ ||axaFN(Su(E7')HH"L(M) dS,
0

for some constants Cy,Cy > 0, where H™(M) is the standard L?-based
Sobolev space of order m. By hypothesis, m + 1 > % 4 |3/, and hence by
Sobolev embedding, we have

t

(3.11)  sup 970 R (t.2,y)| < Cy ecﬁ/ 02 Fn (s, 2, )| (ary ds,
yeM 0

for some possibly different Cy,Cy > 0.

In order to analyze 0% Fn(t,x,y), we must first identify 0% with an op-
eration on the cover, which we can accomplish by locally pulling back via
the covering map p. To be more precise, if we fix = € M , we can identify a
small enough coordinate patch Uz containing & with a coordinate patch on
M, since p|y, is an isometry, and therefore invertible, if Uz is small enough.
Thus, if 0% indicates differentiation in the coordinates on M, we can iden-
tify it with an operator P; involving only differentiation in the coordinates
on M and derivatives of p|6j Since p is a local isometry and M is com-
pact, we have that P; € Diff(M), where Diff(M) denotes the algebra of

C*>°-bounded differential operators on M, defined as in [21, Appendix A.1].
That is, we say that P; is a C°°-bounded differential operator of order k if

for some fixed r € (0,inj(M)), we can express P; as

> aq ()0

lo|<k

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 19

in any canonical coordinate neighborhood of radius r, where the a, are
smooth functions with |0%a,(Z)| < C,, for all «, and the constant is inde-
pendent of the choice of coordinate neighborhood. Thus, we may interpret
agFN(ta z, y) as
C > P [(Ag.5un(@,79) W (t, dg(F,79))] -
el

Recalling (3.6), the definition of H™, and the fact that 9;Wy is supported
where dz(Z,y) < |t|, we have that for ¢ > 0,

(312) 198 F (1, )l
<OY|0+ 25)™ 2 Pa (g, (F. 40 (1, dy 7,7

yel’

Cot
< Cre™?

L2(M)

(14 Ag.9)" 2 P [(Ag gun (T, )0 W (t, dy (T, ~))]’

L2(M)’

since Ay 5 commutes with isometries acting in the y variable. We claim
that the function inside the L? norm on the right-hand side is bounded
pointwise by a constant multiple of e©3* 1io,5(dz(Z,-)) for some C3 > 0.
Since Az 5 € Diff (M), it will suffice to show that for any P;, Qg € Diff (M),

(3.13) |PsQgun (7, §)| < €' 40,
and
(3.14) |PaQy0i Wi (s, d3 (3, )| < €' e 1o 4(dy (3, 7)),

for some C’, C” > 0 which may depend on N, Pz, and Q3. Inequality (3.13)
is exactly the content of Lemma B.1, which is proved in Appendix B, so
we need only show (3.14). For this, we use the observation from [13 §17.4]

that Wy (s,dz(7,9)) is a constant multiple of (s* — dz(z,7)? ) 7 Ow
hypotheses ensure that N is sufficiently large so that Wy remains a con-
tinuous function after applying 9y, Pz, and Qj. Since factors of dg(Z, y)?
may appear due to the chain rule, we must apply Lemma B.2 to control
the derivatives of these factors. We then have that P;Q;0,Wn (s, d3(Z, 7))
exhibits at most exponential growth in dg(Z,y) and depends polynomially
on s. Recalling that W is supported where d3(Z,7y) < s gives (3.14).
Combining (3.13) and (3.14) with (3.11) and (3.12), we obtain

t
sup |92:0] Rov (6,2, < Cae® [ e 1, (d3(@. ) s g7 0
yeM 0

Since the curvature of M is bounded below, the volume of the geodesic
ball centered at x of radius s can grow at most exponentially fast in s with
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constants independent of Z, and hence we have

sup |8§85RN(t,x, y)| < O et
z,yeM
after possibly increasing C; and Cs. Recalling that Ry and 9, Ry vanish
as t — 07 and that Ry is even with respect to ¢, we can also write

1
sup fagayﬁRN(m,y) < O el
z,yeM t

for t € R, which is exactly (3.9), and so the proof is complete. O

Before we explicitly estimate the integral involving K (¢, z,y) in (3.1),
we take note of another formula for 0;W,. By (3.5) and standard Fourier
transform techniques, we have that Wy (¢, |w|) for w € R™ solves

(07 + Arn)Wo(t, [w]) = 0

with initial conditions Wy (0, |w]) = 0, 9;Wy(0, |w|) = é(w), where § is the
Dirac distribution centered at w = 0. Since Wy (¢, |w|) is supported in the
union of the forward and backward light cones, we have by uniqueness of
solutions to the wave equation that

L[ e sinltE)
Wotsful) = oy [ &9 Tig e
and thus

(3.15) DWo(t, ) = (Qi)n /}R M) cos(t]¢]) de.

It is a straightforward calculation to see from (3.5) that 0;W, = %Wy,l

for any v > 1, and hence one can use integration by parts and induction to
show that

cE, ,
(3.16) aWu(tlw)= > D e [ etwase g rkag,
RTL

j+k=v—1 *

where j, k are nonnegative integers, the C'ji’,c are some constants depending
only on j, k, and v [22, Remark 1.2.5]. Here we interpret each term in
the sense of Fourier integral operators. We note that the above formula is
singular at & = 0, but this is of little consequence for our application. To
see this, we may introduce a smooth cutoff function x € C°(R) such that
X =0on [-1,1] and x = 1 outside [—2,2]. Then

(3.1) [ e el ag

is the inverse Fourier transform of a family of compactly supported dis-
tributions in ¢ which depends in a smooth and bounded way on t € R.
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Recall that the Fourier transform maps &’ (R™) — C*°(R") and ./(R") —
S (R™), where &'(R™) denotes the space of compactly supported distri-
butions and ./(R™) denotes the space of tempered distributions. Since
(1 — x(|€])[€] 7V~ lies in the intersection of & and .7/, we see
that (3.17) is therefore a smooth and tempered function of (¢,w). Thus,
we can write

(3.18) W, (t,|w|) = Y Z J’

j+k=v—1 =+
X/ el W OEIEl 4 +1 | =v—Fy (|¢]) dE + £, (¢, w),

for some f, : R x R® — C which is smooth and tempered as a function
of (t,w). Pulling back via the inverse exponential map exp~ M — T*M
then gives

(3.19) aW.(t, ~(~,177)

Z Z J k / 1(exp;1(;),£)§:tit\£\ tj+1|§|g—u—k X(|£D df
jtk=v—1 =+ \% detgi
+ fult,expz (7))-

Here we recall that (-,-); and | - |; are taken to mean the inner product
and norm on the cotangent fibers, respectively. Similarly pulling back the

formula for 9;W,, we obtain
1
(2m)n

/ oi(exp (©),6)s cos(t|¢l;) df
T M

9|

(3.20) O Wo(t,dy(7,9)) =

We make extensive use of formulas (3.19) and (3.20) in Section 4.

4. Explicit Asymptotics

By taking A = ﬁ in Proposition 3.1 for ¢ small enough and com-
bining it with Proposition 2.2, we have reduced the proof of Theorem 1.1

to showing that the following estimate holds. This is because the Cy e©2/4 =

)\n—1+|a\+\6\)

C12°C2 error bound in Proposition 3.1 is much smaller than O ( Tog

for ¢ small and A large.

PROPOSITION 4.1. — Let (M,g) be as in Theorem 1.1 and fix p €

C2°(R) as in Proposition 2.2. Then, for any integer N > 0 and any multi-
1

indices «, 3, there exist positive constants c¢,C, \g so that if A = oz x’
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then

(4.1) % / h f)(At)Sinit)\)KN(t,x,y) dt

— 00

_ L/ elMexp; ! ().6)g _dg + Ry a2, y, M),
B:M

(2m)m Vdet g,
where
o\~ 1+lal+B
sup ‘33353N,A(96,y7)\)| < ﬁ
dg(z,y)< 3 inj(M,g) 0g

for all A > Ag.

Recalling the definition of Ky from (3.7), we have that the left-hand side
of (4.1) can be written as

N > sin tA
@2 XY wu@an [ a0, b ds(E )

t
y€Tl v=0

for any choice of lifts z,y € M of z,y € M. To prove Proposition 4.1,
we show that as long as dg(x,y) is small enough, there is one term in the
above summation which contributes the leading order asymptotics, and
the rest are smaller than the claimed remainder bound. In particular, the
leading term will be the one for which v = 0 and d3(z,vy) = dy(x,y).
The following lemma demonstrates that when z and y are close enough
together, this occurs for a unique 7, and that by choosing the lifts z, %y
properly, we may assume that this occurs exactly when v =1d.

LEMMA 4.2. — Let z,y € M with dy(z,y) < %inj(M, 9), and fix a lift
Z € M of z. Then, there exists a unique lift § € M for which d;(T,y) =
dg(z,y). Additionally, if v is a nonidentity element of the deck transforma-
tion group, then dz(z,~vy) > %inj(M, q)-

Proof. — The existence of such a lift 3 follows immediately from the
fact that p is a local isometry in a ball of radius § inj(M, g) around . To
show uniqueness, let z,y,y be as above, and note that any other lift of
y must be of the form ~y for some v # Id. Then dg(y,~vy) is the length
of a nontrivial closed geodesic in M starting and ending at y. Since M is
compact, there exists a positive minimum of the lengths of such geodesics
which is independent of y. In fact, we have that 0 < inj(M, g) < d3(¥, vy).
Thus, by the triangle inequality, we have

)

0 < inj(M, g) < dz(y,7y) < dg(y, ) + dg(Z,vy) = dy(x,y) + dg(T,vy)
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since dg(Z,y) = dgy(z,y). Using that dgy(z,y) < %inj(M, g), we have

1. . ~
0 < dy(x,y) < 5 inj(M, g) < dg(Z,7y),
which demonstrates that dj(Z,vy) # dg4(z,y), and also verifies the claimed
lower bound on dj(z,vy). O

Next, we obtain the asymptotics of the term in (4.2), where v = 0 and
~ = Id. Recalling (3.20) and (3.4), this term is given by

1 1 o0 s —1
0 3 (x,y / / ol{expy " (¥),€)g
CTSTARLLl I
sin £\ dedt

+ cos (ﬂf‘g) \/@7

where we can use x,y € M instead of their lifts in M since p is an isom-
etry in a neighborhood containing z,y. We seek to show that this term
contributes the leading order behavior in (4.1). To accomplish this, we first
study the behavior of its derivative with respect to A, since it is more
straightforward to study and will prove useful in later arguments.

(4.3)

x (AY)

LEMMA 4.3. — Fix p as in Proposition 2.2. Then for any 0 < A < 1, we
have

1 > i(exp, ! N
(4.4) W/ / Me( Pe W)€ 5 At) cos(tp) cos(t[¢],-1)

v/det g,

! / enlert e 9 L p 0
@ Jsen Vaetg, | alnu)
where S M is the co-sphere fiber at x, and

Sup 020, Rala,y,p)| = O (y”*3+lal+\/3|)
d(2,9) <} nj(M.g)

uniformly in A.

Proof. — For this we argue in close analogy to the proof of [6, Proposi-
tion 12], although we must be cautious about the dependence on A through-
out the argument. Let us write the left hand side of (4.4) as

1 > ilexp_ ! -~
M%W/M/We<%@@wmmmwwwmm

Vdet gy
Using that cos(a) cos(b) = % (cos(a + b) + cos(a — b)) and p is even, we can
write the above as

1 o A : . de dt
. i(exp; ! (1):€)g ( it(u—I€ly) 1t(u+|§|g)> S(AL ,
(2m)ntt \/;oo /;Me ¢ e g )\/detg$
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We will concern ourselves only with the term involving e*(#~éls) because
it can be seen by repeating the following argument that the other term
yields only rapidly decreasing terms in p, due to the fact that the phase
is nonstationary for p > 0. Making the change of variables £ = purw for
r € RT and w € S:M, it suffices to estimate

n oo (o)
(4.5) ( M) 1/ / / eiw<exr>;1(y),w>g+itu(1—7")
2m)" 1 J_ Jo « M

x p(At)r" ' do, (w) dr dt,

where do, is the induced surface measure on S} M. By [23, Theorem 1.2.1],
we can write

(4.6) / el W@ do, (w) = 3 e @) a (urexpt(y)),
M +
where [0%ax(¢)] < C(1+]¢])~ . Hence, (4.5) can be expressed as

n

(4'7) Qﬂ)n+1

/ / V@) o (ur expy (1)) A(ADP™ dr dt,
where wi(x,y,t, r) = t(1 —r) £ rdy(x,y). Motivated by the form of this
phase function, we introduce a cutoff § € C2°(R*) with 8 = 1 on small
neighborhood of » = 1 and supported in (%, %) . We then have that (4.7)
equals

/u’n > > i T T -
(4.8) ; 7'('(277)” [m/o elb=(z.y,t, )ai(ﬂrexpzl(y))

x p(A)r" ' B(r)drdt+ O (p)

for any N > 2n — 1, uniformly in 0 < A < 1 and all z,y € M. To see that
the remainder is O(u~"), note that if we introduce a factor of 1 — 3(r)
n (4.7), we can integrate by parts arbitrarily many times in ¢ using the
operator ﬁ@t, which is well defined on the support of 5. This results

in an expression of the form

(71)NAN

> tiprdg(z,y) (1 _ NN, n—1/1 _ r
@y / e (1= r)"Nem1 (1~ B(r))

X / et 5IN) (At) dt dr-

Since p(™)(At) vanishes for |t| > L/A, we have that (4.9) is bounded in
absolute value by a constant times AN =1~V provided that N > 2n—1 so
that the integral in the r variable is absolutely convergent. Recalling that
A < 1 shows that the asymptotic in (4.8) is uniform with respect to A.
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Next, we seek to apply stationary phase to the first term in (4.8) (see [29,
Theorem 3.16] and [11] ). For this we set

b (t,r, @, y, 1) = ax(urexp, ! (y)p(At)r™ " B(r)
and note that the phase functions 4 each have a unique critical point at
(tE,7E) = (dy(x,y),1). Therefore, we have that the first term in (4.8)
equals

n—1

. 1
(4.10) F_ oFndi@a)y (ﬁ(ﬁﬁ%%u)# atarbﬁ(t§,r$,x7y,u)>
(2m) T in

1 i (z,y) +
+ =€ R ZFA (xaya,u’)a
@) 2
where
|Fy(z,y,w)| < sup  sup  |9fOrbs(t,r,m,y, )
k+L<7 (t,r)esupp bf

< C(1L+ pdy(,) 77,
with C independent of A by our estimates on a, the fact that p is uniformly
bounded, and the fact that 3 is supported where r ~ 1. For dg(x,y) <
2inj(M, g) and A < 1, we have that p(Ady(z,y)) = 1 and 9;p(Ady(z,y)) =
0, and hence we see that (4.10) is equal to

n—1

1% i T — n—

ep > etinds@v) g (pexpt(y)) + O (u"°)
+

n—1

_ (,L;T)n /S*Meiu(e)(pgl(y)aw>g do’x(w) + O(,Un_?))a

after recalling the decomposition (4.6). This completes the proof in the case
where we take no derivatives of the remainder. To include derivatives, we
note that the dependence on z,y in (4.5) only appears in the quantity

. —1
/ er(exp W)w)o g
SxM

and hence each differentiation in x or y yields at most one additional power
of p in the asymptotic expansion. More precisely, by the linear change of
variables 0 = g;1/2w, we have

/ eiyr(engl(y),Wg d0$(w):/ eipr<g;1/2exp;1(y)a9>]Rn dS(@),
SxM st

where dS is the surface measure on the round sphere S*~! ¢ R”, and so
the dependence on x,y only appears in the exponent. Therefore, applying
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8;185 yields a finite linear combination of terms of the form
(r)ofay) [ ooz 0 ) do, o)
S:M

for k < |af + |8 and some smooth, bounded functions f, h. Repeating the
preceding argument on each of these terms yields the desired result. O

If it were not for the factor of © 2 which appears in the v = 0 term
of (4.3), we could simply integrate (4.4) with respect to p to obtain the
leading term in (4.1) with a remainder bounded by O(\"~2+lel+I8l) The
following lemma handles this difficulty at the expense of weakening the
remainder bound.

LEMMA 4.4. — For p as in Proposition 2.2, there exist constants
¢, C, Ao > 0 such that if A = ﬁ, then
sintA d§ dt
(4.11) / / i{expy™ ()09 5( At) cos(t|€],)
“ M Vde
A" iXexp, ' (¥).€)g d§
= o \n Py ’ Y v R ) a)‘ )
(2m)" /BM Vetg, AN
where
O\ 1lal+18]
sup |8 aﬁRAa:y,)\)|<7
dy(2,y) <} inj(M.g) log A

for all A > Ag.

Proof. — We first handle the case where |a| = |8] = 0. Since the differ-
ential of ©~2 vanishes at (z,2) € M x M, we know that

@_%(x,y) =1+dg(z,y)*f(z,y)

for some smooth, bounded function f. Thus, we need only show that

o o1 . sin tA d¢ dt
(4.12) dg(x,y)g/_oo/* ettexpe )8y A — cos(tl€ly) =

An—l
= O 5
log A
since we can integrate (4.4) with respect to p from 0 to A to obtain the
claimed leading order term with an O(A"~2) error. Observe that

i - 1 . _
dg (337 y)2 el<esz L(Y),€)g — g<expa?1(y)7 V§ el<esz 1(y)7£>g>g
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where V¢ denotes the induced gradient on the cotangent fiber T); M. Thus,
we may integrate by parts in £ on the left-hand side of (4.12) to obtain

413 / / i{expy, ' (1),€) g p(At) <eXpw ( ) ‘é >
* M 99

« sin(t\) sin(t]¢]) —oe 4t

Vdet g,

Since (exp; ' (y),&/|€]) can be written as dy(x,y) times a bounded function

of z, y, and £/|¢|, and since sin(a)sin(b) = ; (cos(a — b) — cos(a + b)), we

may repeat arguments from the proof of Proposition 4.3 to see that (4.13)
is bounded by a constant times

n—1

(414) d/g(LL', y))‘n_l(l + )‘dg(‘r7 y))_ E :

In the regime where d4(z,y) < @, (4.14) is clearly bounded by

) (An—l/log)\). If @ <dy(z,y) < %inj(M7 g), then we have that

C)\n_l
log A’

™ (log \) 7 <

dy (2, )N (1 + My (2,9)) T <

since n > 2. This completes the proof in the case of no x,y derivatives.

To include 9997, we must consider a few cases. As discussed in the
proof of Proposition 4.3, each derivative which falls on the integral in the
left-hand side of (4.11) yields one additional power of A in the asymp-
totic expansion. If every derivative falls on the integral, then we have pre-
cisely the claimed leading order term plus a remainder on the order of
An=1+el+18l /1og X by combining Proposition 4.3, an integration from 0 to
A in p, and a repetition of the above argument. Alternatively, if two or
more of the derivatives fall on the ©~2 factor, then Proposition 4.3 shows
that the contributions from the integral itself are at most A"~ 2tlel+I5l
and then we simply use that all derivatives of ©~2 are bounded when z,y
are restricted to a compact set. The only remaining case is the scenario in
which exactly one derivative falls on the ©~2 factor. Here we must use the
fact that the differential of @2 (z,y) vanishes on the diagonal in M x M,

and hence both 9, (@’ﬂx,y}) and 0, (@’%(I,y)) are O (dg4(z,y)) for

any j. Combining this with previous arguments, we have that if o’ is a
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multiindex of length |a| — 1, then

@15) |or,©H@u)or'o] [ / i (1)),
- TxM

os(1]€l) e
vdet g,
< Cly(, y) NP (1 4 Ady (2, )
Arguing as before, we see that the right-hand side of (4.15) is bounded by
O (A"~ 1‘H‘)‘H‘W‘/log A) by considering the regions where dgy(z,y) < log)\

and dg(z,y) > @ separately. An analogous estimate holds with 9, re-
placing 0y, . g

< p(an ™!

Next, we estimate the terms in (4.2) with v =1d and v > 1.

LEMMA 4.5. — For v = 172, ..., and any § > 0, there exist constants
c,Cy, Ag > 0 such that if A = Clog)\,

(4.16) sup
dg(2,y)< 5 inj(M,g)

x / h S“;” HADOW, (¢, d (m,y))dt)

— 00

9200 (w,y)

< G, max{ A"V e+l N0y
for all A > \g.

Proof. — Since u,, is C* and z, y are restricted to a compact set, deriva-
tives of u, are uniformly bounded by some constant depending only on v
and the order of differentiation. Next, we recall that by (3.19), it suffices
to estimate

(4.17) 920) </ / oi(exp ! ().€) g Hit(A£[E]g)

» d¢ dt
x p(At g vk
for any nonnegative integers j, k with j+ k& = v — 1, where y =0 on [—1, 1]
and x = 1 outside [—2,2]. To see that this is sufficient, we must show that
the error term in (3.19) contributes only negligible terms to the asymptotics
in A\. Let f, : R x TyM — C be a smooth, tempered function. Then

/OO PAL) € f, (8, exp, () dt| < C/_OO [P(AL)[(1+dy (,y))" (1+[t])* dt

— 00
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for some p, g > 0 since f, is tempered. Since dg4(z,y) is bounded, we have
that the above is dominated by a constant times

—00

o 1/A
[ ipanias e <c [ e,
~1/A

which is certainly bounded by C; €©2/4 for some Cy,Cy > 0. For A = ﬁ
with ¢ sufficiently small, we then have that this contributes at most A% with
6 > 0 small. The same is true if we introduce derivatives of f with respect
to x,y. Therefore, the proof will be complete once we show that (4.17)
satisfies the correct bound.

Changing to polar coordinates via & = rw , we have that (4.17) equals

(4.18) / / / eir{expy ! (y),w) g +it(A£r)
—o0 J0 SxM

x p(At)x(r)t/r" ===k do, (w) dr dt.

Noting that ¢/ " = (+19,)7 e*" we may integrate by parts j times in
r. This is justified in the sense of distributions, even if the integral in r
is not absolutely convergent. If any derivatives fall on the x(r) factor, the
resulting integrand will be compactly supported in r, and so combining the
preceding argument with the discussion prior to (3.19), we see that modulo
an O (A\?) error, (4.18) can be written as a finite linear combination of
terms of the form

(419) / /0 /S . eir(expgl(y),w>g+it(/\:|:r) ﬁ(At)X(T’)

x (exp; ' (y), w}ér"il*y*kfﬂe dog(w)drdt

for 0 < ¢ < j. Rescaling via r — Ar, and recalling that j + k=v — 1, we
obtain

(4.20) )\”*2””“/ /0 /Meiz\r<6><p;1(y),w>g+itk(1ir)ﬁ(At)X()\r)

x (exp; *(y), w)érn_z’ﬂrz do,(w) drdt.

We now wish to apply the stationary phase argument from the proof of
Lemma 4.3. One potential difficulty that arises is that the cutoff x is scaled
by A, and so it appears that in the corresponding analogue of (4.10), one
may have extra factors of A\ which appear due to differentiating x(Ar) with
respect to r. However, we recall that the 5 from the proof of Lemma 4.3 was
supported in (%, %), and x(Ar) is identically 1 for r > % Thus, 9%x(Ar)
is zero for r > % So, for large enough A, the derivatives of x will vanish
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on the support of 3, and the problem is avoided. We may therefore apply
the exact same argument as in the proof of Lemma 4.3 to see that (4.20) is
bounded by A\"~2 (14 \d,(x, y))_nT_1 Since £ < j < v—1, we have that
n—2v+{<n—rv—1, giving the exponent we claimed in Lemma 4.5. As
discussed previously, adding derivatives 0307 simply adds at most || +|5]|
additional powers of A from the i (exp. (1) :w)g factor, and so the proof is
complete. O

Finally, we must control the terms in (4.2) for which v # Id. Here we
must work in the universal cover and take advantage of the fact that the
lifts  and vy are bounded away from each other. This allows us to improve
our estimates on the corresponding terms by a power of ”T’l by exploiting
the factors of (14 Ad3(Z,vy))~ “z* which appear when we apply stationary
phase.

LEMMA 4.6. — Given any § > 0, there exist constants c¢,C,, g > 0
such that if A = ﬁ and T,y € M are such that d;(z,y) > ¢ for some
€ > 0, then

o - 0 sintA . ~
020 (W@ | = p(At)atWAt,dg(x@)dt)\
<G, max{)\nTil_”4'|0‘|+‘B|'*'57 %Y
for \ > )\0.

Proof. — The argument proceeds in much the same way as the proof
of Lemma 4.5, although we must be cautious about the fact that the z,y
need not be restricted to a fixed compact set. However, we may recall that
0;W,, vanishes when d;(z,y) > [t| and that p(At) vanishes when |¢| > L/A.
Hence, we may assume that dg(z,y) < A. By Lemma B.1, we have that
under this restriction on dg(z, y),

(4.21) |P2Qpu, (7, 7)| < O eC295@W) < ¢y eC2/4 = 0y ACoe

itA= clog 5 We can then choose ¢ small enough so that (4.21) is bounded
by O ()\5/2). Note that this choice of ¢ depends only on ¢, v, and the order

of differentiation. Therefore, it suffices to prove that

Pay ([ o000, 1. dy(a. 7))

—00

(4.22) sup
e<dy(my)<k

n—1 S )
<C, rnax{)\Tf”Ho‘Hlﬁ|+§ JAZh
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We argue as in the beginning of the proof of Lemma 4.5 to show that it is
in fact enough to estimate

(423) Png </Oo / ei(&xpgl(%Df)g#’it()\:l:‘f‘y)
—o0 =M

<p(ADX(Iel, )P kel dff“) .
|9z

To reduce to this case, we must show that the smooth, tempered error
fo(t,exp; (7)) in (3.19) introduces a negligible contribution to the growth
in A as before. The new concern is that the T and 7 are not restricted to
a compact set, and so if we differentiate f, (¢, expgl(@) with respect to T
or g, we must be able to control the derivatives of expgl(gj) which appear
due to the chain rule. It is here that we must apply Lemma B.2, which
states that all derivatives of the inverse exponential map are bounded at
most exponentially in dg(Z,yy). Combining this with the fact that f, is a
tempered function, we have that

0200 f(t,expz ()] < CL e @D (14 )7

for some constants C,Ca, p > 0 which depend only on v and the order of
differentiation. Hence, for |d;(Z, )| < %, we have

L/A

‘/_ p(At) eltA agagf,,(t,expil(m)dt’ < Cpe®/A /_L/A(1+ [t])P dt

< Cpef2/A

after potentially increasing Cy and Cs. As discussed previously, we can then
choose ¢ small enough so that the above is bounded by O ()\5/ 2). Therefore,

n—1

we only need to show that (4.23) is bounded by O ()\T_”+‘a|+|ﬁ|+g) for

dz(Z,y) < %. For the case where we take no derivatives, we may repeat the
proof of Lemma 4.5 to obtain a linear combination of terms, each with a
bound of the form C, \" =2+ (14-\d; (7, 7))~ "= for 0 < £ < v—1. However,
in this case, the distance between 7, § is bounded below by % inj(M, g), and
so the previously mentioned terms are all bounded by Cl,)\nz;l_” uniformly
in Z,7y under our conditions on £. In order to include derivatives, we may
again repeat previous arguments to show that we obtain at most |a| + ||
extra powers of A, but we must take into account the possibility that we
obtain a factor involving derivatives of expgl(ﬂ). In such a case, we simply
apply Lemma B.2 and previous discussions to see that this contributes at
worst an extra O ()\5/2) factor. O
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In light of the three preceding lemmas, the proof of Proposition 4.1 is
nearly complete. The final step is to recall that by (3.6) and finite speed of
propagation, the number of nonzero terms in (4.2) with v # Id is bounded
by a constant times e“/4, and hence is bounded by A’ with § small if we
choose A = ﬁ with ¢ small enough. Therefore, by Lemma 4.6 and the

triangle inequality we have that for any P, Q € Diff(M) of orders |«o| and
| 8], respectively,

Sy

y#Id v=0

sin
t

~ < A ~
Pay (Lustoi [ aan 0w, 1. dy(z ) o)

< C'max{\"T ~vHlal 4181428 \20y

for some C' > 0. Combining this with Lemmas 4.4 and 4.5, the proof of
Proposition 4.1 is complete. In combination with Propositions 2.2 and 3.1,
we can see that this completes the proof of Theorem 1.1.

Remark 4.7 (Proof of Theorem 1.2). — We note that throughout the
entire proof of Theorem 1.1, the only reason we needed dy(x,y) to be small
was so that we could uniquely determine which term in the parametrix
expansion gives the leading order behavior, which allows us to write the
asymptotic (1.1). However, if one assumes that dg(z,y) > € for some € > 0,
then the only issues that arise are that there may be a finite collection
of v € T for which d3(Z,7y) = d,(z,y), and that exp;'(y) is no longer
necessarily well-defined. However, in such a case, exp;1 (y) still makes sense
on M, and we have that d3(T, vy) is bounded below by a positive constant
for every ~, since it is impossible for the distance between any two lifts z, y
to be smaller than dy(x,y). This is due to the fact that geodesics on M
project to geodesics on M via the covering map. Hence, one could apply
Lemma 4.6 to all the terms in the parametrix to obtain that the integral
on the left-hand side of (4.1) satisfies

T J -

1 i n—
= / bthﬁ(At)@‘;“f‘?fKN(t,ac,y) dt’ < CATF Hal 1A+

log A
can combine this with Propositions 2.2 and 3.1 to see that we obtain an
upper bound of the form

for some small § > 0. Since this bound is smaller than O (M) we

O A1+l +|8]

N

sup 8;“8ﬂE>\ x,y
dg(z,y)2e | Y ( )| log)‘

for any € > 0, which is exactly the content of Theorem 1.2.
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5. Proof of Theorem 1.3

In this section, we show that Theorem 1.3 follows from Theorem 1.1 in
a straightforward manner.

Proof of Theorem 1.3. — Recalling the definition of E
Theorem 1.1 implies that

(51) E()\,A+1] (l',y)

1 / i{fexpy ' (y),€) dg
_ 1 ellexp; &g + Ry a (z,y),
(2m)" Ja<lel<att Vaetg, O

ooy (T, y) = Raga (2, y) — Ra(w,y) satisfies

|8aa . )| o <)\n—1+a|+5)
sup o(@y - .
dy(z,y)<e (oAt log A

We then define
/ / el (e (W)Wl =1 qr dg, (w),
(2m)m .

where do, denotes the induced measure on S; M, so that the first term on
the right-hand side of (5.1) equals F'(A+ 1) — F/(\). By Taylor’s theorem,
we see that

o (T:9) 0 (2.2),

where R

FO+1)— F(\) = F'(O\) + %F“(T),

for some 7 € (A, A+ 1). Since

-1 -1 Ja-2(A\d
F/()\> _ ATL / eik(@xpgl(y)7w>g dU;p(Q}) _ )\n TZ( g(l‘,y))
SxM

n—=2 )

(2m)n/2 (Adg(z,y)) =

it suffices to show that F”(7) is smaller than the remainder bound claimed

(2m)"

in Theorem 1.3. By direct computation, we see that

(5.2) F'(r)=(n- 1)7'"_2/ TP W)9)s o (w)

e / i{exp; ! (y), w)y €O W do (w).
SxM

For the first term, we can simply use that the integral is a uniformly
bounded function of 7 to obtain a bound of size O (A\"72) for 7 € (A, A+1),
which is certainly smaller than O (/\”_1 /log )\). To estimate the second
term in (5.2), we can simply repeat arguments from the proof of Lemma 4.4
to see that it is bounded by a constant times

dy (2, y) A" (1 + My (2,y)) T,
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for our range of 7. By considering the regions where d4(z,y) < and

1
log A
dy(z,y) > @ separately as before, we obtain that the above isgindeed
bounded by O ()\"_1 /log )\). As discussed in previous arguments, we may
include derivatives in x,y by simply noting that each differentiation yields
at most one additional power of 7 in (5.2). Thus, the proof of Theorem 1.3

is complete. O

Appendix A. Localized Summations and Integrals

In this appendix we prove a technical estimate on summations of the

form
o0

> (4 A —k)NEP,

k=1
where N is large, so that the summand is localized to where & &~ A. The
estimate was used in the proof of Proposition 2.2, but the proof of the
estimate itself is not particularly instructive, so we present the argument
here. In order to prove the estimate for sums, it is convenient to first prove
an estimate for integrals with a similar form. The version for sums then
follows from a comparison argument.

LEMMA A.1. — Let p € R . Then there exists an integer Ny > 0 and a
constant C' > 0 such that
(A1) / (1+|/\7T|)7N(1+T)pdr§C’max{)\p,l}
1
for all A > 1 and for all N > Ny. In addition, if p > 0, then the above
estimate holds for the integral over 0 < r < oo.

Proof. — First note that it is natural to consider the integrals over [1, \)
and (A, 0o) separately. Observe that

A A
(A.2) / (1+ A=) N1 +7r)Pdr < Cmax{\?, 1}/ (1+XA—r)"Ndr.
0 0
Then, by the change of variables y =1 4+ A — r, we get that

A 14+ 0o
/ (1+>\—7")*Ndr:/ y Ndy < / y~Ndy
0 1 1

and floo y~ N dy is bounded by a uniform constant for all N > 2. Combining
the above with (A.2), we have

/)\(1 + A=) N1 +r)Pdr < C(max{\?,1}).
0
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Now, consider the integral over [\, 00). Here, we make the analogous
change of variables y = 1 4+ r — A to obtain

oo

(A3) //\Oo(l—l-r—)\)_N(l—&-r)pdr :/1 v N+ )P dy.

If p < 0, then we can bound the integrand by vy~ since A+ > 1, and we

immediately see that the right-hand side of (A.3) is bounded by a constant.
In the case where p > 0, we have that

/ y V(A +y)Pdy < /\p/ y Ndy < CN
1 1

for some C > 0, which completes the proof. 0

By a simple comparison argument, one can prove the analogous result
for sums.

COROLLARY A.2. — If p > 0, then there exist Ny,C,\g > 0 large
enough so that
(A.4) DA+ A—E)NE < CON
k=0
for all A > A\g and all N > Ng.

Appendix B. Geometric Estimates

In this section, we prove growth estimates on derivatives of the Hadamard
coefficients u,,, the inverse exponential map (Z,7) +— exp;'(¥), and the
squared-distance function dg(Z, y) on the universal cover of a manifold with-
out conjugate points. These estimates were used repeatedly in Sections 3
and 4 in order to include derivatives in the statement of Theorem 1.1. As in
Theorem 1.1, let (M, g) be a smooth, compact Riemannian manifold with-
out boundary and with no conjugate points. Denote by (M ,g) its universal
cover, which is diffeomorphic to R™ by the Hadamard—Cartan Theorem.

ProposITION B.1. — Let P,Q be elements of Diff(]\?), the algebra of
C*°-bounded differential operators on M, defined in the sense of [21, Ap-
pendix A.1]. Then, we have that

(B.1) |P2Qpu, (7, 7)| < Cy eC2da@w)

for some C7,Cy > 0 which may depend on v, P, and (). Here the subscripts
on P and () indicate the variable of differentiation.
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Proof. — By induction and (3.4), it suffices to prove the bound for
derivatives of the first Hadamard coefficient, uo(Z,7) = O(Z,7) 2. Re-
calling the definition of the ©-function, we have

O(z,y) = |det (D exp;)

o3 @ |

By [5, Lemma 3] we have that this function is uniformly bounded below by
a constant times dg(z,y)! ™" when dj(Z, y) is bounded away from zero, and
hence ©~% is bounded above by Cdg(z, ?j)nT_1 off the diagonal. Hence, by
the chain rule, it suffices to estimate the derivatives of © in order to obtain
the bound on ug. Fix Zg, 70 € M and assume without loss of generality
that dz(Zo, o) > 1. Let U,V be small open neighborhoods of 0 in R™ and
let p:U — M and PV — M be geodesic normal coordinate charts near
Zo and gp, respectively, with p(0) = Zg and ¥(0) = 7p. That is, the maps
w; = ©(0,...,wj,...,0) and z; — ¥(0,...,2;,...,0) are geodesics in M
passing through =y and g, respectively. Then, since P, Q € Diff(M ), they
can be expressed in the w and z coordinates as

P= Z Pa(w)0s and Q= Z qs(2)0?

la|<j 1BI<k
for some j,k > 0, where the coefficient functions p,, gz are uniformly
bounded in the C* topology on any canonical coordinate patch of fixed
radius [21, Appendix A.1]. Therefore, it suffices to estimate iterated appli-
cations of d,, and 9, to © in these coordinates. To accomplish this, we will
consider a 2n-dimensional variation through geodesics, motivated by the ar-
gument in [4, §3]. Set pg = dj(Zo, Yo) and define the map F' : UxV xR — M
by

t
F(’LU, Z7t) = expw(w) <p0 exp;(lw) (’(/J(Z))) 9

which is a 2n-dimensional variation through geodesics in the sense that the
map t — F(w, z,t) is a geodesic parametrized with speed dg(¢o(w), ¥(2))/po
for each fixed w, z. Observe that in the w, z coordinates (D expjo)exp;; o)
is a matrix whose columns are given by 9., F(0,0, pg), and hence it suffices
to show that the lengths of the vector fields 0., F { i=po and their covariant
derivatives in the w, z coordinate directions are bounded exponentially in
po- Since F' is a variation through geodesics, we have that for each fixed
J, 0., F is a Jacobi field along the geodesic t — F(w,z,t) (cf. [16]). To
estimate the covariant derivatives of these Jacobi fields, one may argue in
close analogy to the proof of [4, Lemma 3.3] with some small modifications.
Since the proof is so similar, we will not reproduce it in its entirety; we will
instead sketch the argument and point out the places where the differences
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occur. One notable difference is that we use [5, Lemma 4] to obtain certain
lower bounds without relying on the nonpositive curvature assumption of [4,
Lemma 3.3].

The precise estimate we seek to prove is as follows. For any integer k > 0,
let D* denote some iterated combination of elements of the set

9 ={Dy,,...,Dw.,D.,,...,D. }

of order k, where Dy,; and D, denote covariant differentiation along the
w; and z; coordinate directions, respectively. Then for any j = 1,...,n,
and all t € [0, po], we claim that

(B.2) |D*0.,F(0,0,t)|5 + |D:D*0.,F(0,0,t)|5 < Cy e“>,

for some constants C7, Co > 0 which may depend on the particular combi-
nation of derivatives which make up D*. The same estimate holds if 9., F
is replaced by 9, F, although we will not need this fact.

To prove the claim in (B.2), we begin by noting some facts about general
Jacobi fields on manifolds without conjugate points. In the notation of [5],
let us fix a geodesic v emanating from 7z € M and let A(t) be the matrix
Jacobi field along v satisfying A(0) = 0 and D;A(0) = I. Given that the
tangential component of such a Jacobi field is linear in ¢, it suffices to
only consider the component which acts on the orthogonal complement of
~'(t), which we will again denote by A(¢) in a slight abuse of notation.
Then, since the curvature of M is bounded below by some x < 0, one
has that ||A(¢)|| < sinh(kt) by the Rauch Comparison Theorem (cf. [8,
Theorem 2.3]). To obtain a lower bound, we appeal to [5, Lemma 4], which
shows that if M has no conjugate points, then for any ¢ > 0, there exists
a constant C' > 0 such that |A(¢)7!]| < C for all t > ¢, or equivalently
|A(t)|| = C~!. Hence, for any orthogonal Jacobi vector field J(¢) along
such that J(0) = 0, we have that

(B.3) CHDeJ(0)]5 < |T(8)l < sinh(xt)| Dy J(0)]

g
for t > e. Since we have assumed that py = d3(Zo,%0) > 1, we may make
the choice of ¢ < 1 independently of Zg, yo.
The next step in the proof is to observe that Dk('?sz satisfies an inho-
mogeneous Jacobi equation of the form

(B.4) D}(D*9,,F) + R(D*9.,F,0,F)0,F + Sk = 0
where R is the Riemannian curvature tensor, and Sj, is a vector field along
the variation F' which is induced by the pullback of a sum of tensors on

M, evaluated on a subcollection of the vector fields Dk_lasz , D’f—lasz ,
0,F, where D*~! is some iterated combination of elements of 2 of order
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k — 1. This statement is nearly identical to equation (3.17) of [4] and it
is proved in exactly the same way. To obtain the estimate (B.2), we will
induct on k. For k = 0, one can use that 0., F' satisfies the homogeneous
Jacobi equation and argue as in [4] to see that there is a uniform constant
Co > 0 so that

1
501 (102, F[5 +1D:02, FI3) < Co (102, I3 + 1D, F3) -

Since F(w, z,0) = @(w), it is clear that 0., F' vanishes at ¢ = 0, and hence
by (B.3) and Gronwall’s inequality, we obtain

(B.5) 0., F(0,0,t)|2 + |D;0.,F(0,0,t)|2 < Cy e

for some Cy,Cy > 0 and for all ¢ € [0, pg]. Assume now that k > 1, and set
X, = Dkasz (0,0,t). We claim that X; solves the boundary value problem

(B6) {Dth + R(X,64)6¢ + Sp =0

XO = 07 Xpo = f(yo)a

where o, = F(0,0,t) is the geodesic connecting T and go, and f is a vector
field which is uniformly bounded. To see that X, satisfies these boundary
conditions, note that

F(w, z,0) = p(w) and F(w, z,po) = ¥(z),

and so X; always vanishes at ¢ = 0, since its definition involves applying
0., to F'. Furthermore, if DF consists of any derivatives in w, then X, also
vanishes at t = po. If D consists only of derivatives in z, then Xy 1s
computed by repeatedly differentiating the canonical chart map 1, and is
therefore uniformly bounded since M has bounded geometry. We then de-
compose X; = Y;+ Z;, where Y; satisfies the same inhomogeneous equation
as X; but with Yy = D;Yy = 0, and Z; solves the corresponding homoge-
neous equation with Zy = 0, Z,, = f(yo) — Y,,. It is shown in the proof
of [4, Lemma 3.3] that Y; satisfies

(B.7) Vil + | DiYilg < Crere

for all t € [0, pp]. It is this step which utilizes the induction hypothesis
that (B.2) holds when taking fewer than k covariant derivatives of 0., F.
If f(yo) —Y,, =0, then Z; is identically zero by the no conjugate points
assumption. Otherwise, we apply (B.3) to obtain that |D;Zy|5 < |Z:|5 for
all t € [e,po]. Evaluating at t = po gives |D:Zolg < |f(Y0) — Ypolg, and
so repeating the argument for the £k = 0 case and using the boundedness
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of f along with (B.7) shows that |Z;|; + |D:Zi|5 < C1 e“2P0 after possibly
increasing C7, C5. Thus, we have shown that

|Xt|§ + |DtXt|§ < Cl eCpo .

Recalling the definition of X;, we have completed the proof of (B.2), and
therefore Proposition B.1 is proved. A similar argument holds if one replaces
0., F by 0y, F with the boundary conditions reversed, but our result does
not require it. O

To prove Lemma 4.6, we also required similar estimates on the inverse
exponential map and squared distance function, stated below.

LEMMA B.2. — In the notation of Lemma B.1, we have
(B.8) }Png (expgl@)) |g < O e©2% (@)
Here, Cy,Cy > 0 may depend on v, P, and Q. Moreover, we have
(B.9) |P2Qy (d5(&.5))| < €1 @2,

Proof. — First let us note that (B.9) follows immediately from (B.8) and
the fact that M has bounded geometry, since dg(Z,§)2 = lexp; ' (7)|2. So
we only need to show (B.8). Since the metric on M is uniquely geodesic,
the map expgl@) is globally defined and C°°. We can write the action of
this map as

(@,7) = (r(@,9),w(T,7)) € RT x S*M,

provided that we avoid a neighborhood of the diagonal in M x M. We
claim that the z,y derivatives of this map are bounded exponentially in
dg(Z,y). Furthermore, we may recall that by discussions from the proof
of Proposition B.1, it suffices to prove this in canonical coordinates. For
this, we take note of the following general fact. If G € C*°(R™ x R™) and
b € C*(R") are such that G(a,b(a)) = 0 and 9,G(a,b(a)) is invertible, we
have that 9,G(a,b(a)) + 0,G(a,b(a))9,b(a) = 0, and hence

(B.10) Dab(a) = —0pG(a,b(a)) " 0,G(a,b(a)).

By repeated differentiation of the equation G(a,b(a)) = 0 with respect to
a, one obtains that for any multiindex «, we can express 05b(a) in terms of
G (a,b(a))~! times a finite linear combination of terms involving factors
of 889G (a,b(a)) for |B| + |y < |a| and factors of the form 9% b(a) for
|o/| < |a| — 1. One can then use induction and (B.10) to show that if
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|a] = N, then there exists a constant Cn, kx > 0 so that

(B.A1) [9gb(@)| <Cn Y 10507 G(a,ba)|N

IBl+IvIsN
% [[|0sGa,b(a)) 1| (1 + 190G (a, b(a)) ~|*¥)]
where || - || here denotes the usual matrix norm. We now consider, in some

chosen canonical coordinates (Z,y) on M and standard polar coodinates
(r,w) on T3 M, the function

G(‘%a :’Ja T, OJ) = €XPyz (TW) - :'7
So in the notation of the preceding discussion, we would have a = (7, 79)
and b(a) = (r(7,7),w(T,7)) = exp; (7). By Lemma B.2, we have that
derivatives of G are bounded exponentially in . Restricted to the set where

G = 0, we know that r = dz(Z,7), and hence for any N, there exist
constants C'y, cy > 0 such that

(B.12) OVG| < On eondg (@y)

Here 0"V denotes any combination of derivatives in Z, 7, r, w with total order
N. In what follows, we will assume that all quantities are evaluated where
rw = exp; *(§), unless otherwise specified. By (B.11) and (B.12), it only
remains to bound the inverse matrix 9, ,G~!. We achieve this by expressing
it in terms of Jacobi fields between  and y. In particular, 0,G is exactly
the velocity of the geodesic connecting z and ¥y, and therefore has norm
1. Also, we have that 0,G is an orthogonal matrix whose columns are
normal Jacobi fields {J; }}_, along the geodesic connecting  and 3 which
vanish at Z. Thus, the elements of J,G are bounded exponentially in r,
and since the columns are orthogonal, BT,WGT&”,WG is a diagonal matrix D
whose entries are the norms [Ji|2 (setting J; = 9,G), which vanish only
at r = 0 and are otherwise bounded away from zero [5, Lemma 4]. Thus,
(%wG’l = D*I&MGT is also bounded exponentially in r, provided we
avoid a neighborhood of r = 0. Combining this with (B.11) and (B.12), the
proof is complete. d

Appendix C. Proof of Lemma 2.1

A key component in the proof of Theorem 1.1 with the inclusion of
derivatives in x,y was the spectral cluster estimate

cy Y |a;;<pj(x)|2gclxl\al(AA”*1+Ae02/AmaX{A%,A”*B})
X €[N A+A]
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for 0 < A < 1. We provide a summary of the proof here, but the techniques
are mostly a repetition of arguments presented in Section 4, so we do not
give all the details. We begin in a manner analogous to the exposition
of [22, §3.2]. We introduce a Schwartz function 5 € .(R) such that 5 > 0,
B(0) =1, and B(t) = 0 for |t| > % inj(M). This function will serve a similar
role to that of p throughout the previous sections of this article, but the
key difference is the nonnegativity assumption, which is critical in what
follows. Since 8(0) = 1, there exists some § > 0 such that 3(r) > 3 for
|7] < 4. Then,

(A=A
> e <2308 (A5 e
j=0

[Xj—AI<AS

where we are able to write the summation over all j by the nonnegativity
of 3. Since [A, A + A] can be covered by a fixed, finite number of intervals
of the form |A — X;| < Ad, we have that

= A=A
> el <y s (A oen
=0

X ENA+A]

for some constant C' > 0. By Fourier inversion, we have

6 ()\ — AJ) _ i/oo AB(At) eit(A—)\j) dt

A 27

1 e iy i )\+>\
= 7T/_OOAB(At)e”‘cos(t)\j)dt—B( I ]).

Since (8 is Schwartz, we have an estimate of the form

‘5 (ATJ)’ <ON(L+ AT+ AN

for any N. Recalling that A™' > 1 and A; > 0 for all j, we have that

Yo 102w

AjEeMA+A]

< % ‘ / AB(At) e 0205 K (t,2,y)|,_, dt| + O (A7),

for any N as A — oo, where the implicit constant in the O(A~") term is
independent of A € (0, 1]. By Proposition 3.1, the proof of (C.1) can be
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reduced to showing that

1

s

/ AB(AL) ¢ 0207 Kon (1 2., y),_, dt‘

< o2l (A)\"‘l + AeC2/A max{ AT, )\"‘3}> ,

where K (t,x,y) is the N partial sum of the Hadamard parametrix, defined

by (3.7). This is proved by repeating the arguments from Section 4 with

sin tA it
S22 replaced by e

in ¢, which then produces one lower power of A in the asymptotic expansion.
In particular, by the proof of Lemma 4.3, we have

, yielding an integrand which is one degree less singular

(C.2)

005 (wlie.0) [ ABCAN e 0ty o)) )

=y

< CA)\n71+2|a\ )

For v > 1, we can repeat the proof of Lemma 4.5 to obtain

(C.3) |ocag <ul,(z,y) / - AB(At) e™ 8th,(t,dg(x,y))>

— 00

=y

<0, max{)\n—2u+2|a\ , eC/A}.

That the exponent here is n — 2v + 2|« rather than n — v — 1+ 2|¢] is due
to the fact that in the integration by parts used to obtain (4.19), we only
obtain the term where ¢ = 0, since exp ! (x) = 0. Also, recall that in the
proof of Lemma 4.5, the e“/4 term yielded a factor of X% for some small
6 > 0, but this was due to the fact that we chose A = ﬁ. Since we have
stated the lemma for arbitrary A, we leave the above as is. Finally, for the
terms arising from the non-identity elements of the deck transformation
group, we have

(C.4)

P.0; (uu@, ) [ B a1, ﬁm)

n—1
< O, e¥Amax{\"7 v+l 1}

for any P, @ € Diff (M ) of orders |a| and |8, respectively, by the arguments
in the proof of Lemma 4.6. Combining these estimates with the fact that
there are at most O (eC/ A) deck transformations ~ for which the corre-
sponding term is nonzero, we thus obtain (C.1).
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