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GROWTH OF HIGH L? NORMS FOR EIGENFUNCTIONS
AN APPLICATION OF GEODESIC BEAMS

YA1ZA CANZANI AND JEFFREY GALKOWSKI

This work concerns L” norms of high energy Laplace eigenfunctions: (—A, — A, =0, [l 2 =1.
Sogge (1988) gave optimal estimates on the growth of ||, || » for a general compact Riemannian manifold.
Here we give general dynamical conditions guaranteeing quantitative improvements in L? estimates
for p > p., where p, is the critical exponent. We also apply results of an earlier paper (Canzani and
Galkowski 2018) to obtain quantitative improvements in concrete geometric settings including all product
manifolds. These are the first results giving quantitative improvements for estimates on the L” growth of
eigenfunctions that only require dynamical assumptions. In contrast with previous improvements, our
assumptions are local in the sense that they depend only on the geodesics passing through a shrinking
neighborhood of a given set in M. Moreover, we give a structure theorem for eigenfunctions which saturate
the quantitatively improved L? bound. Modulo an error, the theorem describes these eigenfunctions as
finite sums of quasimodes which, roughly, approximate zonal harmonics on the sphere scaled by 1/,/log A.

1. Introduction

Let (M, g) be a smooth, compact, Riemannian manifold of dimension n and consider normalized Laplace
eigenfunctions, i.e., solutions to

(—Ag =2 =0, ol 2 = 1.

This article studies the growth of L” norms of the eigenfunctions ¢, as A — oco. Since the work of
Sogge [1988], it has been known that there is a change of behavior in the growth of L? norms for
eigenfunctions at the critical exponent p. :=2(n +1)/(n — 1). In particular,
n
Ixlran = COW, spyi=| 2 0 PSP (1)
T %, 2=p=rp.

For p > p., (1-1) is saturated by the zonal harmonics on the round sphere S”. On the other hand, for p < p,,
these bounds are saturated by the highest weight spherical harmonics on $”, also known as Gaussian
beams. In a very strong sense, the authors showed in [Canzani and Galkowski 2021, page 4] that any
eigenfunction saturating (1-1) for p > p. behaves like a zonal harmonic, while Blair and Sogge [2015b;
2017] showed that for p < p. such eigenfunctions behave like Gaussian beams. In the case p < p., Blair
and Sogge [2015a; 2018; 2019] have made substantial progress on improved L? estimates on manifolds
with nonpositive curvature.
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This article concerns the behavior of L? norms for high p; that is, for p > p.. While there has been a
great deal of work on L? norms of eigenfunctions [Hezari and Riviere 2016; Koch et al. 2007; Sogge
et al. 2011; Sogge and Zelditch 2002; 2016; Tacy 2018; 2019; Toth and Zelditch 2002; 2003], this article
departs from the now standard approaches. We both adapt the geodesic beam methods developed by
the authors in [Canzani and Galkowski 2023; 2019; 2021; Canzani et al. 2018; Galkowski 2018; 2019;
Galkowski and Toth 2018; 2020] and develop a new second microlocal calculus used to understand the
number of points at which |u; | can be large (see Section 1A for details on the new ideas here). By doing
this, we give general dynamical conditions guaranteeing quantitative improvements over (1-1) for p > p..
In order to work in compact subsets of phase space, we semiclassically rescale our problem. Let 1 = A",
and, abusing notation slightly, write ¢, = ¢y, so that

(=h*Ag =Ddn =0, lgnll2m = 1.
We also work with the semiclassical Sobolev spaces H; (M), with s € R, defined by the norm

”””%1,;‘(/1/1) = ((=h*Ag + 1)u, u)

L2 °
We start by stating a consequence of our main theorem. Let E denote the collection of maximal unit
speed geodesics for (M, g). For m a positive integer, r > 0, t € R, and x € M, define

Em,r,t

0 i={y € E : y(0) = x and there exists at least m conjugate points to x in y(t —r, t +r)},

where we count conjugate points with multiplicity. Next, for a set V C M, write
cyrt= vy e3P
xeV

Note that if r, — 0T as |t| — oo, then saying y € C)’Cl_l”f’t for ¢ large indicates that y behaves like a
point that is maximally conjugate to x. This is the case for every point x on the sphere when y is either
equal to x or its antipodal point. The following result applies under the assumption that points are not
maximally conjugate and obtains quantitative improvements.

Theorem 1.1. Let p > p. and U C M, and assume there exist to > 0 and a > 0 such that

inf d(x;,C" Yy >r, for t > 1o,
x1,x2€U 2

with r; = Le=at Then, there exist C > 0 and ho > 0 such that, for 0 < h < hgandu € D'(M),
a

el 5, N Vlogh—!
V9ogh™! h

The assumption in Theorem 1.1 rules out maximal conjugacy of any two points x, y € U uniformly up

lullr ) < Ch—““’)( I(—h*Ag — 1)u||H/5“>/zn/p(M)).

to time 0o, and we expect it to hold for a dense set of metrics on any smooth manifold M with U = M.
Since Theorem 1.1 includes the case of manifolds without conjugate points, it generalizes the work of
Hassell and Tacy [2015], where it was shown that logarithmic improvements in L? norms for p > p,
are possible on manifolds with nonpositive curvature. One family of examples where the assumptions
of Theorem 1.1 hold is that of product manifolds [Canzani and Galkowski 2021, Lemma 1.1], i.e.,
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(M| x M3, g1 @ &), where the (M;, g;) are nontrivial compact Riemannian manifolds. Note that this
family of examples includes manifolds with large numbers of conjugate points, e.g., S> x M for any
nontrivial M.

The proof of Theorem 1.1 gives a great deal of information about eigenfunctions which saturate L?
bounds (p > p.). Indeed, its proof yields Theorem 3.8 (see Section 3G), which describes the profile
of these functions modulo an error in L?. It shows that, under the assumptions of Theorem 1.1, an
eigenfunction can saturate the logarithmically improved L°° norm near at most boundedly many points (it
actually shows the same for the L” norm when p > p.). That is, for € > 0, there is N, > 0 such that

eh(l_”)/z\/%
W [ ||L2(M),

where {xq}qez(n) 15 @ maximal R(h) := p1/2-8 separated collection of points with 6 > 0.

#{Ol €Z(h) : lullLo(Bxy,Rh)) = B(xq, R(h)NU # @} <N, (1-2)

Moreover, modulo an error small in L?, near each of these points the eigenfunction u can be decom-
posed as a sum of quasimodes which are similar to the highest weight spherical harmonics scaled by
h=D74/ /log h—! whose number is nearly proportional to 2!~/ Indeed, Theorem 3.8 (see Section 3G)
shows that there is a collection of geodesic tubes {7;}icr(,u) C S*™M of radius R(h) (see Definition 1.3)
with indices in the set L(e, u) = UiC:1 Ji and with pairwise disjoint tubes 7, N7y = & for k, £ € J; with
k #~ £, such that

‘= \/logh 1 ]dZ(g:u)
Here, u, should be understood as an error term satisfying, for all p < g < oo,
luellze < en™ @ Qog h™ ") ™2 Ju]l 2.
Each v; is microsupported in the geodesic tube 7; and is a quasimode with
I(=h*Ag = Dujlle < Ce7'ARID D 2 and  lvjlle < Ce7' RV ullp2. (1-3)

While similar to highest weight spherical harmonics (also known as Gaussian beams), they are not as
tightly localized to a geodesic segment and do not have Gaussian profiles. We refer to these quasimodes
as geodesic beams (see Remark 3.2 and Figure 1 for an illustration).

Furthermore, in Theorem 3.8 we prove that near each point x, on which u nearly saturates the L?
bound, i.e., for « that belongs to the set displayed in (1-2), we have

ce’ R ™ < |L(e,u,a)| < CR(W)' ™", (1-4)

where L(e,u,a) :=={j € L(e,u) : 1y (Tj) N B(xy, 3R(h)) # &} and 7wy : S*M — M is the natural
projection. Since dim Sy M =n — 1, this means that at points x, at which u nearly saturates its L” norm
there must be a full measure set of directions on which u is microsupported. In addition, we also prove
that the collection of geodesic beams v; on which u has its microsupport carries a positive portion of the

2 2.2 2
> vl = PP ull7.

jeLl(eu,a)

total L2 mass:
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1081’!(17")/2

logh™! v

Figure 1. The figure illustrates a function u that saturates the L bound at three points
Xays Xasy» Xay Viewed as a superposition of geodesic beams v;. Each ridge corresponds to
a beam v; and is microsupported on a tube 7; of radius R(h).

Note that, together with (1-3) and (1-4), this implies that most of the geodesic beams carry mass exactly
proportional to R(A)"™~1/2|ju|; 2, and hence that the mass is nearly uniform over all possible directions.
For the precise statement of these estimates, see Section 3G.

Remark 1.2. Note that we do not use the bound (1-2) to prove our main theorem. Instead, this decompo-
sition is a consequence of the proof of Theorem 1.1, which, in principle describes much more about the
profile of eigenfunctions (see the outline of the proof in Section 1A for more details).

The proofs of Theorems 1.1 and 3.8 hinge on a much more general theorem, Theorem 1.4, which does
not require global geometric assumptions on (M, g). As far as the authors are aware, Theorem 1.4 is the
first result giving quantitative estimates for the L? growth of eigenfunctions that only requires dynamical
assumptions. We emphasize that, in contrast with previous improvements on Sogge’s L estimates, the
assumptions in Theorem 1.4 are purely dynamical and, moreover, are local in the sense that they depend
only on the geodesics passing through a shrinking neighborhood of a given set in M. Moreover, the
techniques do not require long-time wave parametrices.

Theorem 1.4 controls ||u|| ) using an assumption on the maximal volume of long geodesics joining
any two given points in U. For our proof, it is necessary to control the number of points in U where
the L° norm of u can be large (see Step 4 in Section 1A). This is a very delicate and technical part
of the argument, as the points in question may be approaching one another at rates ~ h% as h — 0F
with 0 < § < % To state our theorem, we need to introduce a few geometric objects. First, consider the
Hamiltonian function p € C*°(T*M\{0}),

px,8) =18[g— 1,

and let ¢; : T*M \ 0 — T*M \ O denote the Hamiltonian flow for p at time ¢, which coincides with
the geodesic flow in this case. We also define the maximal expansion rate and the Ehrenfest time at
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frequency h~!, respectively, as

1

Amax :=limsup — logsup [[de;(x, §)| and T, (h) := : (1-5)
|t]—o00 |t| S*M 2Amax
where || - || denotes the norm in any metric on 7 (T*M). Note that Apax € [0, 00), and if Apyx =0 we

may replace it by an arbitrarily small positive constant. We next describe a cover of S*M by geodesic
tubes.

For each pg € S*M, the cosphere bundle to M, let H,, C M be a hypersurface such that py € SN*H,,,
the unit conormal bundle to H,,. Then, let

Hoy C Ty, M ={(x,£) € T*M : x € Hy,)

be a hypersurface containing SN*H,,. Next, for g € H,, and t > 0, we define the tube through g of
radius R(h) > 0 and “length” T + R(h) as

AR = | @B, (q. R(W)),
lt|<T+R(h) (1-6)

By, (q, R(h)) :={p € Hp, 1 d(p,q) < R(M)},

where d is the distance induced by the Sasaki metric on T*M (see e.g., [Blair 2010, Chapter 9] for a
description of the Sasaki metric). Note that the tube runs along the geodesic through g € H,,. Similarly,
for A C §*M, we define A’ (R(h)) in the same way, replacing ¢ with A in (1-6).
Definition 1.3. Let A C S*M, r > 0, and {p; (r)}J]vv:’1 C A for some N, > 0. We say the collection of tubes
(AL, (r)}]N:f1 is a (1, r) cover of a set A C $*M provided
N,
AGr cUT T=anm.

j=1

Given a (z, r) cover {7;};es for S*M, for each x € M we define
Ty ={j €T :n(T)NB(x,r) # 2}

We are now ready to state Theorem 1.4, where we give explicit dynamical conditions guaranteeing
quantitative improvements in L?” norms.

Theorem 1.4. There exists Tpy > 0 such that for all p > p. and &g > 0 the following holds. Let U C M
and0 <61 <6y < %, and let h®> < R(h) < h® forallh > 0. Let 1 < T (h) < (1 —28,)T,(h) and let ty > 0
be h-independent. Let {T;}jcs be a (t, R(h)) cover for S*M for some 0 < T < 1.

Suppose that, for any pair of points x1, x, € U, the tubes over x| can be partitioned into a disjoint
union

T xi = Bxyx, UGx x5
where
U @) ShuramM=2. 1 €lio. TM).

J€Ga, )
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Then, there are hg > 0 and C > 0 such that, for allu € D'(M) and 0 < h < hy,

_ fo _1764e0)" (1—pe
”u”LP(U) 5 Ch 3(p) <TL(h) +[ sup IBxl,x2|R(h)n l]( +e0)” (1—p /P))
)Cl,)czEU

T (h)
X (||M||L2 + T”(_thg - 1)M||H’<n3>/2n/p>- (1-7)

In order to interpret (1-7), note that we think of the tubes G, ., and B, x, as good (or nonlooping) and
bad (or looping), respectively. Then, observe that

1By, [ R ~vol( | ] 77187 M)

Jj€By, )
and that | J By ny 7; is the set of directions over x; which may loop through x; in time 7 (). Therefore,
if the volume of points in Sy, M looping through x; is bounded by T (h)~G+eo=pc/ n (1-7) provides
T (h)~'/? improvements over the standard L” bounds. We expect these nonlooping-type assumptions to
be valid for a dense set of metrics on any smooth manifold M.

Theorem 1.4 can be used to obtain improved L? resolvent bounds [Cuenin 2020, Theorem 2.21] which,
as shown there, are stable by certain rough perturbations. These estimates in turn can be used to construct
complex geometric optics solutions and solve certain inverse problems [Dos Santos Ferreira et al. 2013].

One can check using a similar argument to that in [Canzani and Galkowski 2021, Lemma 5.1 (see also

Theorem 5, Section 1.5.3)] that in certain integrable situations

n—1y(6+0) " (1=pc/p) ¢
(50p, s ™) =T
with T (k) > log h~! and U a nontrivial open subset of M, thus producing o((log #~')~!/2) improvements
on the L? norms over U after an application of Theorem 1.4. One example of such an integrable system
is the spherical pendulum where U can be taken to be any set that lies at a positive distance from the
poles.

For other examples, where one can understand these types of good and bad tubes, we refer the reader
to [Canzani and Galkowski 2023], where they are used to understand averages and L° norms under various
assumptions on M, including that it has Anosov geodesic flow or nonpositive curvature. Since our results
do not require parametrices for the wave group, we expect that the arguments leading to Theorem 1.4
will provide polynomial improvements over Sogge’s estimates on manifolds where Egorov-type theorems
hold for longer than logarithmic times.

Note that Theorem 1.4 addresses L?” norms with p. < p < oo, while the authors’ previous work
in [Canzani and Galkowski 2021] considers p = oo alone. Moreover, for p = oo, the estimate in
Theorem 1.4 is actually weaker than those in that previous work in that it requires an assumption about
geodesics passing near two distinct points, while those in that previous work require only a nonrecurrent
assumption on geodesics passing through a small neighborhood of a single point. This is because
describing the L? norm for p < oo requires understanding the behavior at many points simultaneously,
while the L° norm cares only about a single point with maximal growth.
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Remark 1.5. The proofs below could be adapted to the case of quasimodes for real principal type
semiclassical pseudodifferential operators of Laplace type. That is, to operators with principal symbol p
satisfying both that 9z p # 0 on {p = 0} and that {p = 0} N T*M has positive definite second fundamental
form. This is the case, for example, for Schrédinger operators away from the forbidden region. However,
for concreteness and simplicity of exposition, we have chosen to consider only the Laplace operator.

1A. Outline of the proof of Theorem 1.4. Our method for proving Theorem 1.4 differs from the standard
approaches for treating L” norms in two major ways: it hinges on adapting the geodesic beam techniques
constructed by the authors [Canzani and Galkowski 2021] and on the development of a new second
microlocal calculus. We now give a detailed sketch of the argument used in this proof.

To simplify the presentation in this outline, we suppose u is a Laplace eigenfunction and U = M, and
sketch the proof of Theorem 1.4.

Step 1: We first write u = ) i XTUs where the 7; are as in Definition 1.3 and x7; is a microlocal cutoff
to 7; which approximately commutes with P = —h’A ¢ — L; see Section 3A. We also cover M by balls
{B (x4, R)}wez such that Z consists of a union of boundedly many collections of disjoint balls. We next
organize the tubes 7; by the L? mass of XT;u, Writing

A= 27 a2 < Nlxezulle < 278 lull 2
see Section 3B. For each k, we then organize the balls B(xy, R) by the L* norm of »_

D xru

JEA

jea, XT;u, Writing

Tieym = {a eZ: 2" k|2 < h P D2RU-M/2

< zm—k||u||Lz}; (1-8)
L*®(B(x4,R))

see Section 3C. The reason for this choice comes from the geodesic beam estimate (see [Canzani and
Galkowski 2021])

< CRUWRRO=DZ Ny ul| 2, (1-9)
L®(B(x4,R)) JjeAi(a)

where Ay (a) denotes those tubes 7; such that j € Ay and 7; passes over the ball B(xy, R). Because of
the definition of 4;, we have that 2" is a lower bound for the number of tubes in Ay () for o € Zy 1
see (3-20).

With this bookkeeping completed, we record the estimate on the L? norm:

||u||Lpch(Z S x|

1/p
) : (1-10)
m JE€Am Lp(UaeIk’m B(XOHR))

where Ag ,, = J

Step 2: We control each L” norm in (1-10) by using interpolation between the L*° estimate analogous
to (1-9) and the standard LPc estimate:

Y x7u

jeAk,m

«€Tim Ai (), i.e., those tubes in A which pass over a ball in Zg ,.

S Ch_l/pc
Lpc

Y xru

jeAk,m

< Ch™ P27k A 12 e 2.
L2
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In Section 3D, we start by handling the “easy” piece where the L norm is smaller than 7'(h) ~Na="—1/2
for some very large N. This piece can be neglected since the standard interpolation estimate shows that it
has L? norm < h=%P) /. /T (h)|u]| 2.

Next, in Section 3E, we write Ay, = Gk U By m» where |
that

jeG,, Tj 1s non-self-looping in the sense

U J €Gk,m m U] €Gk.m

telto, T ()]

Using non-self-looping estimates from [Canzani and Galkowski 2021] (see also Lemma 3.6) and summing
carefully, we are able to show that

cX(Z] 2w,

Ur  p=8(p)
) -
m jegk.m Lp(UaeIk’m B(Xo“R))

= WHMHU-

This is done in Section 3E2.
Our final task is to estimate the sum over the bad tubes. For this, we again use the geodesic beam

estimate to control the L norm of ) x7;u by the maximal number, |5 |, of “bad” tubes passing

JEBr,m
over a ball B(x,, R) with « € Z; ,,. In addition, we control the L? norm of this sum by |Bk.m |1/22=% The

numbers of “bad” tubes are estimated in the next step.

Step 3: We first estimate |B}";"| using the dynamical hypothesis. In particular, we check that
1B | < 1Tk 1Bry x|

This estimate comes from imagining the worst case scenario that every tube connecting some ball B(x,, R)
with o € Zj ,,, to another ball B(xg, R) with 8 € Z; ,, lies in A; and that no such tube connects B(xy, R)
to B(xg, R) and B(xg, R) for B # B’; see (3-46). Using a similar argument, we can see that

2 .
|Bk,m| = |Ik,m| sup |BX|,X2|7

X1,X2
see (3-39). Thus, it remains only to estimate |Z ,|.

Step 4: To estimate the size of Zj ,,, we need to estimate the number of balls on which the combination
e XTU with L? mass 27% has L™ norm 2"~ *RO=D/2p0=m/2) || ,».

To do this, we aim to understand both the minimal amount of L2 mass needed for an eigenfunction

of beams wy ,, ==

to have a certain (large) L°° norm and where that mass must be located in phase space. The standard
Hormander-type L* bound (as presented in [Koch et al. 2007]) answers the first question: for x € M,

V2 w(x)] < C(lwll 2 + A~ Pwl2). (1-11)

To answer the second question, we need to understand to what extent this inequality can be microlocalized.
Because of the invariance of eigenfunctions under the geodesic flow we localize to the coisotropic
submanifolds

My = J e (1ym). (1-12)

l7]<1
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We want three properties for Xr, our localizers to I'; see (3-25) for the precise requirements and
Theorem 6.3 for their construction. First, they should localize tightly (A” with p ~ 1) to I'. Second, they
must nearly maintain the value of a function at x:

wx) = (Xr,w)(x) + 0(h™). (1-13)
Third, they must preserve quasimodes for P so that, using the inequality (1-11), we have
W2 (X, wim) ()] < ClIXr, wicmll 2. (1-14)
Thus, from (1-13) and (1-14) it follows that, for o € Zj ;,, there is X, € B(xy, R) with
ROV 2 < ROV X, wiem | oo (B k) < 1 X5, Wem 2+ (1-15)

Note that we use I'; as defined above, as opposed to the flowout of S;M, precisely so that (1-13) is

possible.
Finally, we will bound |Z ,,| by summing (1-15) over all balls in Z ,, to obtain
R™122"OIT < T Xy, wemll - (1-16)
(XGIkYm

We produce an upper bound on (1-16) of the form

D Xy, weml7a < lwimll72 (1-17)

o€l m

This follows from Proposition 6.6 (see the analysis leading to (3-31)) and controls the minimal L? mass
necessary for wy ,, to have a large value at all the points in 7y ,,. We view this estimate as an uncertainty
principle type of result in which we prove that, for x, # Xg, localization to I'z, and I'z, are incompatible
in the sense that

I Xrs, Xre, 2o 2 < 1 (1-18)

with uniform estimates in d (X, Xg). Combining (1-16) with (1-17) yields the bound needed on |Z ,,| to
finish the analysis in the proof of Theorem 1.4. This is done in Section 3E1.

Remark 1.6 (uncertainty principle). Note that, if the function wy_,, could be localized simultaneously on
all the manifolds I';, , then we would have

2 2 2
E 1 X1, Wemllz2 = | Zimlllwiem 72 > lwiem I
OIEIkYm

This contradicts (1-17). Hence, if one more carefully quantifies this argument by assigning weights to the
localized masses || Xr;, Wk mllr2, we can understand how much of the L? mass of wy_,, can be localized
to many I'z,. This is a type of uncertainty principle. Since (1-15) shows that I'z, must carry mass in order
for wg , (Xy) to be large, this can be thought of as an estimate on how much a “single unit” of L? mass
can be used to produce a large L* norm at multiple points.
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Remark 1.7 (zonal harmonics). Another way to think of the estimate (1-18) is on the round sphere S2,
where the natural enemy is a zonal harmonic Z, at a point x € S2. Recall that the zonal harmonic Z, is
localized h close to Iy, in the sense that in a fixed size neighborhood of x,

Xr. Zy = Zy + O(h™).

The estimate (1-18), or more precisely Corollary 6.5, can be used to give lower bounds on

2 Zu

Xy €L

=D N Ze 72+ D (XE X, Ze, Zo)ios

2
L2
Xy €L Xo FXp

where d (x4, xg) > R for a # B. Equation (1-18) shows that, for a # 8,
IXF,, Xr, Il <1

and hence quantifies the amount of cancellation in such a sum. This cancellation is easy to see with
d(xy, xg) > ¢ > 0, but becomes much more subtle when this distance is small.

Remark 1.8 (second microlocal calculus). In order to build the localizers X satisfying (1-13) and (1-14),
we develop a new second microlocal calculus associated to a Lagrangian foliation L over a coisotropic
submanifold I' C T7*M. In the case of the I', defined in (1-12), the leaves of L will be given by ¢, (7,"M)
for a fixed time ¢. The calculus allows for simultaneous 4” localization (with p close to 1) along a leaf
of L and along I". Because of this and the fact that 7.*M is one such leaf, we can find localizers with the
property (1-13). We note that other works on L?” norms, especially [Blair and Sogge 2015b; 2017], use
localizers to 4!/ neighborhoods of geodesic segments. However, when two cutoffs X and X, localizing
at scale h'/2 have overlapping support, we always have

X1 X2l g2 p2 ~ 1,

and hence (1-18) does not hold. Therefore, in our framework it is necessary to localize in some directions

at scales below h!/2

and hence to develop a special calculus associated to the pairs (L, I'). The calculus,
which is developed in Section 5, can be seen as an interpolation between those in [Dyatlov and Zahl

2016; Sjostrand and Zworski 1999].

Outline of the paper. In Section 2, we construct the covers of S*M and T*M consisting of tubes and balls,
respectively, which are necessary in the rest of the article. Section 3 contains the proof of Theorems 1.4
and 3.8. This proof uses the anisotropic calculus developed in Section 5 and the almost-orthogonality
results from Section 6. Section 4 contains the necessary dynamical arguments to prove Theorem 1.1 using
Theorem 1.4.

2. Tube lemmas

The next few lemmas are aimed at constructing (t, r)-good covers and partitions of various subsets
of T*M; see also [Canzani and Galkowski 2021, Section 3.2]. Before we proceed, we recall the symbol
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classes S§'(T*M); see also, e.g., [Zworski 2012, Chapters 4, 9]. We say thata € C*°(T*M) is in S§"' (T*M)
if, for all &, B € N9, there is Cop > 0 such that, for 0 < h < 1,

19200 a(x, )] < Caph™ P E)™IP () = (14 1E )2,

We sometimes write Ss(T*M) = Sg(T*M), and we write a € S§'(T*M; A) if a € C*(T*M; A) is also
in §§"(T*M).

Definition 2.1 (good covers and partitions). Let A C T*M, r > 0, and {p; (r)} ~; C A be a collection of
points for some N, > 0. Let ® be a positive integer. We say that the collectlon of tubes {Ar (r)} i1 isa

(®, t,r)-good cover of A C T*M provided it is a (7, r) cover of A and there exists a part1t10n (T2 =1
of {1,..., N,} such that for every £ € {1, ..., D},

AL GHNALGr =, i, jedi i#].

In addition, for 0 <4 < 5 Land R(h) > 8h°, we say that a collection {y; }J ”1 C Ss(T*M; [0, 1]) is a §-good
partition for A associated to a (9, t, R(h))-good cover if { Xj} hl is bounded in S5 and
Np
2
supp x; C A, (R(h)) and ij >1 on AZ/ (%R(h)).
j=1
Remark 2.2. We show below that for any compact Riemannian manifold M, there are 2, Ry, 79 > 0,

depending only on (M, g), such that, for 0 < 7 < 79 and 0 < r < Ry, there exists a (D, 7, r)-good cover
for S*M.

We start by constructing a useful cover of any Riemannian manifold with bounded curvature.

Lemma 2.3. Let M be a compact Riemannian manifold. There exist ®©, > 0, depending only on n, and
Ry > 0, depending only on n and a lower bound for the sectional curvature of M, so that the following
holds: for 0 < r < Ry, there exists a finite collection of points {xy}qer C 1\7, Z={1,...,N,},anda
partition {Z; }?:"1 of T such that

M C U B(xy, 1), B(xg,,3r)NB(xy,,3r) =0 for ai,az €1;, o) #as,

ael

{xq}aez 1 @ maximal %r—separated set in M.

Proof. Let {xy}ncz be a maximal %r-separated setin M. Fix ap €7 and suppose B(xy,, 3r)NB(xy, 3r) #Q
for all o € Ky, C Z. Then, for all @ € Ky, we have B(xa, %r) C B(xg, 8r). In particular,

Z Vol(B(xa, %r)) < vol(B(xy,, 8r)).

aeKO,O

Now, there exist Ry > 0, depending on n and a lower bound on the sectional curvature of 1\7, and
9, > 0, depending only on n, such that, for all 0 < r < Ry,

vol(B(xq,, 8)) < VOl(B(xq, 14r)) <D, vol(B (x4, 37)). (2-1)
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Hence, it follows from (2-1) that

> Vol(B(xa. 37)) < VOl(B(puy. 8r)) < “?"' > vol(B(xa. 37)).

aelCaO ozelCaO

In particular, |Kqy,| <D,,.

At this point we have proved that each of the balls B(x,, 3r) intersects at most 2, — 1 other balls. We
now construct the sets 71, ..., Zp, using a greedy algorithm. We will say that the index «; intersects the
index ay if

B(xq,,3r)N B(xy,,3r) # 3.

We place the index 1 € Z;. Then suppose we have placed the indices {1, ..., «}inZ;, ..., Zp, so each
of the Z; consists of disjoint indices. Then, since « + 1 intersects at most ©, — 1 indices, it is disjoint
from Z; for some i. We add the index « to Z;. By induction we obtain the partition Zi, ..., Zgp,.

Now, suppose that there exists x € M such that x ¢ Uaez B(xy,r). Then, mingez d(x, x4) > 71, a
contradiction of the %r maximality of x,. ]

In order to construct our microlocal partition, we first fix a smooth hypersurface H C M, and choose
Fermi normal coordinates x = (x;, x’) in a neighborhood of H = {x; = 0}. We write (§1,&’) € T;"M for
the dual coordinates. Let

Sho={(x.§) € SyM | &= 5} (2-2)
‘We then consider

My i ={(x,§) € THM [ 1511 = 3, 5 <I€lew) < 3} (2-3)
Then Hy,, is transverse to the geodesic flow and there is 0 < Tjpjz < 1 such that the map
v [_Tinsz TinjH] X H):H - T*M7 q"(ta Io) = gat(p)’ (2_4)

is injective. Our next lemma shows that there is ©, > 0 depending only on n such that one can construct
a (®,, t,r)-good cover of Xy.

Lemma 2.4. There exist ©,, > 0 depending only on n and Ry = Ry(n, H) > 0 such that, for 0 < ry < Ry,
O<rg< %rl, there exist points {p; }jl.v:r'1 C Xy and a partition {ji}?:”l of {1,..., Ny} such that, for all
O<t< %TinjH’
Ny,
A%, (o) € | AL (),
j=1
A;j(3r1) N A;{(3r1) =dJ,

for j,te i, j#L.

Proof. We first apply Lemma 2.3 to M = Sy to obtain Ry > 0 depending only on n and the sectional
curvature of H and that of M near H such that, for 0 < r| < Ry, there exist {p; };V:”] C Xy and a partition
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()2 of {1, ..., Ny} such that
Ny,

=u | By, r), B(pj,3r)NBloy,3r) =2 for jLed, j#¢,
j=1

Ny . . .

{pj} j:‘l 1s a maximal %rl—separated setin Xg.

Now, suppose that j, £ € J; and
Ag,(Bri)N A;j (3r)) # 2.

Then, there exist

qe € B(pe,3r1) NHsy,, qj € B(pj,3r1) NHsy,,

and #¢, t; € [—7, 7] such that ®1,—1;(qe) = q;. Here, Hy is the hypersurface defined in (2-3). In particular,

for T < %rinjH, this implies that g, = ¢;, t, =t;, and hence B(p¢, 3r1) N B(p;, 3r1) # <, a contradiction.

Now, suppose rg < r; and that there exists p € ATEH (rg) so that p ¢ Uj:Lm’er A;j (r1). Then, there
are |t| < T +rp and g € Hy,, such that

p=w:(q), d(g,Zg) <ro, j_{ninN d(q, pj) = ri1.
In particular, there exists p € Xy with d(q, p) <ro such thatforall j =1,..., N,
d(p, pj) = d(q, pj) —d(q, p) > r1 —ro.
This contradicts the maximality of { pj};vgl ifrg < %rl. U

We proceed to build a §-good partition of unity associated to the cover we constructed in Lemma 2.4.
The key feature in this partition is that it is invariant under the geodesic flow. Indeed, the partition is built
so that its quantization commutes with the operator P = —h>A — I in a neighborhood of Xy .

Proposition 2.5. There exist 1| = 71 (Tinjg) > 0 and &1 = £1(71) > 0, and given 0 < § < % and 0 <& <¢g;
there exists h| > 0 such that, for any 0 <t <ty and R(h) > 2h%, the following holds.
There exist Cy > 0 such that for all 0 < h < hy and every (t, R(h)) cover of Ly there exists a partition

of unity
. 0O kAL [ 1-246 1-26
Xj €SsNC(T™M; [-C1h 14+ Cih D

on ATEH (%R(h)) for which
supp x;j C A;jg(R(h)), MS;, ([P, Op, (x)D) N A%, (e) = 2, Z xi=1 on AL, (3R(D)),
J
{xj}; is bounded in Ss, and [—thg, Op,,(xj)] is bounded in Ws.

Proof. The proof is identical to that of [Canzani and Galkowski 2021, Proposition 3.4]. Although the
claim that ) jxj=1lon A§, (%R(h)) does not appear in its statement, it is included in its proof. [
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3. Proof of Theorem 1.4

For each ¢ € §*M, choose a hypersurface H, C M with ¢ € SN*H, and tinj 5, > %inj(M ), where Tinj i,
is defined in (2-4) and inj(M) is the injectivity radius of M. We next use Lemma 2.4 to generate a cover
of Xp,. Lemma 2.4 yields the existence of ©, > 0 depending only on n and Ry = Ro(n, H;) > 0 such
that the following holds: Since by assumption R(h) < h%, there is ho > 0 such that %2 < R(h) < R for
all 0 < h < hg. Also, set ri := R(h) and ro := %R(h). Then, by Lemma 2.4 there exist

Nrmy = Nray(q, R(h)) >0, {pj}ljes, C Em,withg;={1,..., Nrm},

and a partition {jq,i}?:n] of 74, such that, forall 0 < 7 < %Tinj H

o
A%, (3RM) C | AL R®M). (3-1)
J€Ty
Qn
Udi=7, (3-2)
i=1
AL, GRM)NAL BR(h) =2 for ji, jo € Tyis J1 # Jo- (3-3)

By (3-1) there is an h-independent open neighborhood of g, V,, C $*M, covered by tubes as in Lemma 2.4.
Since S*M is compact, we may choose {qg}l?:1 with L independent of & such that S*M C Ule Vye- In
particular, if 0 < T <minj</<y TH,, and foreach £ € {1, ..., L} we let

Tas = A5 (R()),
then there is ©,; > 0 such that
L
UTa. iYea,
=1

isa (D, T, R(h))-good cover for S*M. Let {qu}f_l C CX(T*M) satisfy

supp ¥g, C {(x S)eT*M\{O}K ISI)evq,} forall £=1,...,L,
8

L

Z ¥g, = 1 in an h-independent neighborhood of S*M.
=1

We split the analysis of u in two parts: near and away from the characteristic variety {p = 0} = S*M. In
what follows we use C to denote a positive constant that may change from line to line.

3A. It suffices to study u near the characteristic variety. In this section we reduce the study of ||u| rr )
to an h-dependent neighborhood of the characteristic variety {p = 0} = S*M. We will use repeatedly the
following result.

Lemma 3.1. Forall e > 0 and all p > 2, there exists C > 0 such that

llullr < Ch”(l/p_l/z)||u||H;<1/2—1/p)+s. (3-4)
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Proof. By [Galkowski 2019, Lemma 6.1] (or more precisely its proof), for any ¢ > 0, there exists C, > 1

so that [[Id|| yw2+e ;. < Ceh™"/% By complex interpolation of Id : L? — L* and Id : H}/?*¢ — L™
h

with 0 =2/p, we obtain |[Id|| 7, w2+00-6_, 1 p < CI7/R™0=0/2 and this yields (3-4). O

Observe that . 5
="y Op,(¥g)u+ (1 — Zoph(wa))u.
=1 =1

Since 1 — Zf: | ¥4,=0 in an h-independent neighborhood of S*M = {p = 0}, by the standard elliptic
parametrix construction (e.g., [Dyatlov and Zworski 2019, Appendix E]) there is E € W~2(M) with

L

1= " 0p, (W) = EP+ O(h™)y—. (3-5)
=1

Next, combining (3-5) with Lemma 3.1 and using that #"(1/P=1/2) = p=38()+1/2=1 e have

L
H (1 -3 Ophwf(,{))u
=1

< Ch"YPUDNEPull yoajo-ymee + O (R [Jull 2
Lr h

< Ch=* PR Pul wasiypre + O () ||l 2. (3-6)
h
It remains to understand the terms Op,, (¥, )u. Since there are finitely many such terms,
L L
> 0 (Wgu| =Y 110p, (W ull e, (3-7)
=1 Ly =y

and we consider each term ||Op;, (¥4, )ullz» individually.
By Proposition 2.5, foreach £ =1, ..., L, there exist 71(g¢) > 0 and €;(g¢) > 0 and a family of cutoffs
X7, }jes,, with X7, ; supported in A;;rg](q“)(R(h)) such that, for all 0 < 7 < 71(g¢),

Z X7,,=1 on Aquz (3R (). (3-8)

J€T g,
Let t9(g¢) be as in [Canzani and Galkowski 2021, Theorem 10]. Then, set

o i [ 1.
Ty = 12}}&{1“’](%’ 0(q0), T1(g0), 5TinjH,, |-
From now on we work with tubes 7, ; = A/’)j (R(h)) for some 0 < T < 1)7. Next, we localize u near and
away from A% (h%):
qe
Opy (Yg)u =D Op;(X7,, ) OPy (Wq)u + (1 - Ophom,,)) Opy (Vg Ju.
jequ jequ

Remark 3.2. We refer to functions of the form Op,, (X7, ,j)u as geodesic beams. One can check using
Proposition 2.5 that if u# solves Pu = O (h);2, then the geodesic beams solve

POp, (%7, )i = O(h) 1

for any k and are localized to an R(h) neighborhood of a length ~ 1 segment of a geodesic.
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In particular, by (3-8), %R(h) > %héz, and [Canzani and Galkowski 2021, Lemma 3.6], there is
E € h™W§o™P 50 that

(1 -3 Ophoh;,z,j)) Opy (W) = EP + O (h). (3-9)
J€T g,

Since A"(1/P=1/2=0 — p=8(M+1/2=02 =1 " combining (3-9) with Lemma 3.1 yields

H (1 - Z Oph(iﬁgj)> Oph(wq()u

J€T g

< ChPPI=I222 Pyl pcyees + O (R ul| 2. (3-10)
Lr "

Combining (3-6), (3-7), and (3-10), we have proved that for U C M,

> Opy(E7,,.,) OPy (Wy

jeJq[

L
lullLrwy <
(=

1 LP(U)

+ Ch= T2 = Pyl wapeype2 + O (™) ull 2. (3-11)
h
3B. Filtering tubes by L? mass. By (3-11) it only remains to control terms of the form

k)

Lpr

> Op, (R, ;) Opy (g, )u
J€T g,

where u is localized to V,, within the characteristic variety S*M and, more importantly, to the tubes 7, ;.
We fix ¢ and, abusing notation slightly, write

Vo=V T=Jg T=Taj in=7ir, vi=y OpGpOp(u.  (-12)
jeg
LetT =T(h)> 1. For each j € J let
X7 € CX(T*M; [0, 1]) N Ss (3-13)

be a smooth cut-off function with supp x7; C 7; and x7, = 1 on supp )ZTJ., and such that {x;}; is bounded
in S5. We shall work with the modified norm

T
lullp,7 = Null 2 + -l Pull 2.

Note that this norm is the natural norm for obtaining 7~!/2

improved estimates in L? bounds since the
fact that u is an o(T ~'h) quasimode implies, roughly, that « is an accurate solution to (hD; + P)u =0

for times t+ < T'. For each integer k > —1, we consider the set

: 1 _ 1
A = {] eJ: W”””P,T < 10p, (x7)ull 2 + = 1Op,, (7)) Pull 2 < ?”MHP,T}- (3-14)

It follows that A, consists of those tubes 7; with L? mass comparable to 27K,
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Remark 3.3. Note that if A € W5 and MS;(A) C {x7; = 1}, then the elliptic estimate implies
[Av]i.2 < ClIOp, (x7)vll 2 + O () ||Vl 2.
In particular, if j € A; and MS;,(A) C {x7; = 1}, then
lAull 2 +h~ NAPul 2 < C27 ullp.r + O ™) |ullp.1.

Observe that since |x7;| < 1, for & small enough depending on finitely many seminorms of x;,
10p), (x7;)IL2— 12 < 2. In particular, this together with 7 > 1 implies that

J=J 4 (3-15)

k>—1
Lemma 3.4. There exists C, > 0 so that for all k > —1
| Al < C2%. (3-16)

Proof. According to (3-2), the collection {7;};c 7 can be partitioned into ©,, sets of disjoint tubes. Thus,
we have ) jeg X7 |> <®, and there is C,, > 0 depending only on n such that

< C,.

> " 0p;,(x7)* O, (x7)

jGJ L2*>L2

In particular,
> 110p, Gerull 7z < Callull?,

jeg

> 10, (x7) Pullyz < Call Pull3.

jeJ

Therefore,
|AR|27 P |l < 2<Z 10p, Gxrull7. + 12 ||0p,1<XTj)Pu||iz) < Cullul? 7. O
JEAL
Next, let

wi = Y Op,(X7,)0p, (¥)u. (3-17)

JEAL
Then, by (3-12) and (3-15) we have

v= > . (3-18)
The goal is therefore to control ||wi||z») for each k since the triangle inequality yields

o0
lvllzr @) < Z lwillLrw)-
k=—1
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3C. Filtering tubes by L*° weight on shrinking balls. By Lemma 2.3, there are points {x4}ycr C M
such that there exists a partition {Ii}?z"l of Z such that

M C ] B(xa. R(h)),

ael

B(xy,,3R(h)) N B(xq,,3R(h)) =2 for ay,ar €Z;, o # .

Then, for m € Z, define

w o0
Ik,m = {O{ c IU :2m71 < h(nfl)/ZR(h)(lfn)/sz || k||l|4| (HB(xasR(h))) < zm}’ (3_19)
ujlp,t

where Zyy ;== {a € Z: B(xy, R(h)) NU # J}. For each k € 7 and « € Z, consider the sets
Ar(a) :={j € Ak : tm (Tj) N B(xe, 2R (h)) # S},

where 7y : T*M — M is the standard projection. The indices in Ay are those that correspond to tubes
with mass comparable to zik l#|| p,7, while indices in A (o) correspond to tubes of mass zik llu|l p,7 that
run over the ball B(xy, 2R(h)). In particular, we claim that Lemma 3.4 and [Canzani and Galkowski
2021, Lemma 3.7] yield the existence of C,, cyy > 0 such that

en2" < | Ar(@)] < C2% for o € Iy . (3-20)

The upper bound follows directly from Lemma 3.4, while, to obtain the lower bound, we first observe
that for o € 7,
2" R RMI VP2 ullp 1 < lwill o sy, ROY- (3-21)

In addition, (3-14) and [Canzani and Galkowski 2021, Lemma 3.7] imply that there exist cy; > 0, 737 > 0,
and C, > 0, depending on M and n respectively, such that for all N > 0 there exists Cy > 0 with

lwill oo (Bxa, R(1)))

(n—1)/2
_ GuR()

Sy 10p4 (X7;) Opy (W)l 2 +h ™ 10p;, (X7, P Opyy (W)ull 2 + Cvh™ ul p.7
Ty -

JjeAi(a)
< ¢yt DR R D22 u p r | Ak ()| + CvhN ull p 7,

which, combined with (3-21), proves the lower bound in (3-20). To obtain the second bound we used
Remark 3.3. To simplify notation, let

A= A@. (3-22)

o EIk,m

Note that for each « € Zj ,,, there is X, € B(x,, R(h)) such that
|wi (Fo)| = 2" R 2RIV  u p 1 (3-23)
We finish this section with a result that controls the size of Z ,, in terms of that of A ,,. Let

G+ <p<l, (3-24)



GROWTH OF HIGH L? NORMS FOR EIGENFUNCTIONS: AN APPLICATION OF GEODESIC BEAMS 2285

0<e<d, x € CX((—1, 1)), and define the operator
5 00) = 7 (3h7d e, 50) [0py (7 (L0l = D) e .

In Lemma 6.2 we prove that x, 3, € lIJ;;’ Li,.p’ where

Qp, =(EeTiM: |1 - gl <8 To= |J @)
l#]<3 inj(M)

and \IJITX‘:O Liyp is a class of smoothing pseudodifferential operators that allows for localization to A”
neighborhoods of T';, and is compatible with localization to 2” neighborhoods of the foliation Lz, of I'z,
generated by Q5 .

In Theorem 6.3 for € > 0 we explain how to build a cut-off operator X3, € \DF_S‘T Ls,.p Such that

i X5, = Xn gy + O(hF) gy,

(3-25)
WF,/([P, X5, DN {(x,8) : x € B(Xo, inj M), £ €} =2,

where inj M denotes the injectivity radius of M. Moreover, X3, acts microlocally in the sense that if
a,b e S(T*M) with suppa Nsupp b = @, then

Op, (@) Xz, Op;,(b) = O (h™)y—=. (3-26)

Lemma 3.5. Let %(82 + 1) < p < 1. There exists C > 0 such that for every k > —1 and m € Z the
following holds: if

|-Ak,m| S C 22mR(h)n—1(h,o—1/2R(h)—1/2)—2n(n—1)/(3n+1)’
then
Ziem] < Cl Ak m|27 2" R(1)' . (3-27)

Proof. We claim that by (3-17), for o € Zy 1,

X5 We = Xhiy Wi + O (™ ull2) and  wim:= Y Op,(%7,)0p,(W)u. (3-28)
je-Ak.m

Indeed, it suffices to show that x; z, Op, (X7,)Op;, (¥)u = O (h*|lul|12) for & € Iy », and j & Ay . Note
that for such indices 7y (7;) N B(Xy, 2R (h)) = &, while
supp;z(%hfﬂd(x, %)) C B, Ceh?) C B(xg, 3R(M)

for some C > 0 and all & small enough.
Our next goal is to produce a lower bound for | A ,, | in terms of |Z ,,| by using the lower bound (3-23)
on || xn.z, Wk.mll L~ for indices o € Zj ,,. By (3-25), we have

Xh 5 Wk = Xh %y X5, Wkm + O (K)o

for o € Iy .
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Next, note that since MS;, (x7;) C {||§]g — 1| < ¢}, using (3-26) we have
~ (1 .
Op; (7 (£ (€l = D)) Xz, wem
~ (1 ~ /10
= 0p, (% (5 015 = 1)) X5, Opy (% (U8l = 1) ) + OGZ ll 1)1~
= Xz, wem+ OB ullp.r) .
In particular, using this with (3-23) and (3-28),
2 R R V22 R p g < Mz, will e
al
= | opu (% (5 (el = 1)) Xewin |, _+0G)ullpr
= || Xz, Wi mll Lo +O ) ullp.7. (3-29)

Therefore, applying the standard L® bound for quasimodes of the Laplacian (see, e.g., [Zworski 2012,
Theorem 7.12]) and using, by (3-25), that X; nearly commutes with P on B(ia, % inj M ), we have

2" RV K u p < CUX g, wiemll 2 + B P Xz, wiemll 28)) + O™ llullp 1)
< CIXz,wkmll2 +h Xz, Pwimll2) + O||ullp.7)- (3-30)

Note that we have canceled the factor 4(!=""/2 which appears both in (3-29) and the standard L*° bounds
for quasimodes. Using that h>*~'R(h)~! = o(1), Proposition 6.6 proves that, for all 7Zc Tk.m and
veL*(M),

Y 11Xz, vl2, < CL+ay | Z| DY) v 2,

ael

where a;, = (h*~'/?R(h)~'/?)"~1. As a consequence, (3-30) gives

IZIR(R)" 27222 D w3 < C(Z X, wieml72+A72Y ||anPwk,m||iz>
acl acl

< C(1+a|Z|" V) (fwie 122 + B2 Pwiemll32)
< C(14a,|Z|3 /@y 272K A w7

The last inequality follows from the definition of wy_,, together with the definition of A, in (3-14).
In particular, we have proved that there is C > 0 such that for all Ic Tk.m>

IZIR(h)"~ 122" < C max(1, a;|Z|®" D/ CM)| Ay . (3-31)

Now, suppose that a; |, |"TD/?" > 1. Then, there exists 7cC Tk.m such that ap|Z)GntH/@m = 1 In
particular, |Z| R (h)"~ 122" < C| Ay, |. This implies that if

A < %ah—(2n)/(3n+1)R(h)n7122m’
then a;| Ty | " TD/@M < 1, and so by (3-31),

|Zk.m| R(R)"™12%™ < C| Ay . 0
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Note that for wy ,, defined as in (3-28),

o [e.8]
1wl oy <Dn D Nkl =P Y Mwiml o, )+ O lullp1), (3-32)
m=—00 m=—o0
where
Ui = | Bl R(W)). (3-33)
(XEIk,m

Finally, we split the study of ||wi||z»(v) into two regimes: tubes with low or high L* mass. Fix N >0
large, to be determined later. (Indeed, we will see that it suffices to take N > %(1 —pe/ p)~1.) Then, we
claim that, for each k > —1,

mi k my k
ol oy <@ Y Mwkmll oy + 20 D Mwimllo,,, +O0GTlullpr),  (3-34)
m=—00 m=mj ;+1

where m ; and m  are defined by
2kR(h)(l—n)/2
TN

22k = min(c, 2%, coR(h)'™™),

2ml,k — mln( , cn22k’ C()R(h)ln>,

where co and ¢, are described in what follows. Indeed, note that the bound (3-20) yields that 2™ is
bounded by | A (a)| for all o € Z ,,, and the latter is controlled by coR(h)"~! for some c( > 0, depending
only on (M, g). Also, note that by (3-20) the wy ,, are only defined for m satisfying 2" < ¢,2?*. These
observations justify that the second sum in (3-34) runs only up to m> .

3D. Control of the low L™ mass term, m < my . We first estimate the small m term in (3-34). The
estimates here essentially amount to interpolation between L”¢ and L*°. From the definition of Zj ,,
in (3-19), together with %(1 —n)(p — p.) — 1 =—p8(p) and using Sogge’s LP¢ estimate

lwiem llLre @y < CRTYPe(lwiemll 2 + B Pwicmll 2)

—1/pe
<Ch™ Y7 |u|pr,

we obtain
mi mi .k
2 e lZr e S € D0 Il 10 5
m=—0o0 m=-00
mi.k
< Ch—Pé(p)R(h)(n—l)(P—Pc)/Zz_k(P_PC) Z 2mp=pe) ||””[1)) T
m=—oQ

< Ch—Pﬁ(p)R(h)(n—l)(P—Pc)/Zz(m|,k—k)(P—pc)||u||§ e
It follows that

mi,k

I/p
Z ( Z ||wk,m||€p(Uk.m)> < Ch—S(P)R(h)(n—l)(l—Pcr/P)/Z”u”P,T Z 2(’111,k—k)(1—pc/p)‘ (3_35)

k>—1 “m=—o00 k>—1
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Finally, define k; and k, such that

R(h)(l_")/z

o7 and 20 = cyR(W)—M2TN. (3-36)

2k
Cn

If k <k, then 214 = cn22k, so there exists C,, , > 0 such that
ky

(my x—k)(1=pc/p)
kzl 2 =Cor NG pip

R(h)(l—n)(l—m/l?)/2

If ky <k <k, then 214 = 25X R(h)(1="/2 )TN Therefore, since |k, —ki| < cN log T for some ¢ > 0,
there exists C > 0 such that

ko 1=n)(1=p:/p)/2
R(h)( n pe/p
(m1x—k)(1—pc/p)
kzk 2 = CNlog T——"~G=5 7
=K1

Last, if kK > kp, then 2™k = coR(h)l_”, so there exists C), > 0 such that

R(h)(l—n)(l—pc/p)/Z

o
Z 2k =k)(1=pe/p) < Cp

= TNA—pc/p)
K2
Putting these three bounds together with (3-35), we obtain
- 1/p NlogT
- g
> ( > lw ||€P(Uk,m)> =Ch 6(p)m”“””‘ (3-37)

k>—1 “m=—00

3E. Control of the high L>° mass term, m < my . In this section we estimate the large m term in (3-34).
To do this we write

A.m = Gi,m U Biem,

where the set of “good” tubes | J
is small. To do this, let

By(a, ) = {j e JAv@:
k

j€Gim 7; is [to, T'] non-self-looping and the number of “bad” tubes |Bj ;x|

T
U @ (T) N Spies 2rnM # @}- (3-38)
1=ty

Then, we define

Bem:= | Bule B)nA).

Ol,ﬁEIk,m
Let Gk.m := Ak.m \ Br.m- Then, by construction, U.,' <Gim 7; is [t9, T] non-self-looping and we have
Bt.m| < c|Tem|*1Bu| (3-39)
for some ¢ > 0, where
|By| := sup{|By(a, B)| : a, B € I}. (3-40)

That is, |By| is the maximum number of loops of length in [#y, 7] joining any two points in U.
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Then, define

wi, =Y Op,(%7)Op,(¥)u and wf,, := > Op,(i7;) Op,(¥)u. (3-41)
jegk,m jEBk.m
Next, consider

ma i 1/p ma i 1/p ma i 1/p
(X i) =( X Wfaen) +( X Wball,) - o)

m=mj i m=mi i m=mj i

3E1. Bound on the looping piece. We start by estimating the “bad” piece

mak

B P r
(X ki)

k>—1 “m=mj

Observe that if 2”1+ = min(coR(h)' ™", ¢,2%), then m1 x = my and we need not consider this part of

the sum. Therefore, the high L> mass term has

2kR(h)(lfn)/2
TN

and k; < k < ky. Hence, for m| y <m <my, Lemma 3.4 gives that there is C, > 0 with

2k = (3-43)

| Ak < Ci2% < C,R()"122mT2N,

Furthermore, since R(h) > h% with &, < %, (3-24) yields that there is ¢ = e¢(n, N) > 0 such that
h*=12R(h)~'/? < h?, and hence, since T = O (logh™"),

|Ak m|: O(R(h)n—lzzm (hp_1/2R(l’l)_l/z)_zn(”_l)/(3n+1))-
In particular, a consequence of Lemma 3.5 is the existence of g > 0 and C > 0 such that
[ Zn] < CRA)' 272" | A m| (3-44)
< CR(h)'~m%—2m (3-45)

for all 0 < i < hgy, where we have used again Lemma 3.4 to bound | Ay |-
Next, note that for each point in 7 ,, there are at most ¢|Zy ,, | |By | tubes in By, touching it. Therefore,
we may apply [Canzani and Galkowski 2021, Lemma 3.7] to obtain C > 0 such that

lwg | < CHYP2RM) DT | 1By |27  ull p.1- (3-46)
Using (3-46) and interpolating between L* and L?¢ we obtain
1wg w7,y < CHPP P RM VT 1By 127  ull o) PPl wid 1, - (3-47)

In addition, since combining (3-14) with (3-39) yields

B 1/2~7—k —k 1/2
lwg 2w,y < ClBeml?2 M ullp.r < C274| T | 1Bl llullp. 7.
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the bounds in (3-47) and (3-45) together with the definition of m ; in (3-43) yield

myx ma i
Z ”wl?m”ILj!’(Uk,,,,) 5Ch*PS(p)R(h)(nfl)(p*pc)ﬁ Z |Ik,m|p|BU|p7p”/227kp||M||I;:,T
m=mj j Mm=n1.k
my .k
< Ch—PS(p)R(h)(n—l)(—P—Pc)/zzkpllgU|P—Pr/2||u||II’) r Z p—2mp
m=m i

< Ch—P5(p)R(h)(n—l)(p—pz:)/2|BU |P—Pc/2T2NP —kp llu HI;T

Then, with k| and k; defined as in (3-36), we have

k> ma i 1/p ko
Z( > ||wf,m||ipwk,m)> < ChP@ R ()= DU=pel D21 | 1=pel COITN 1y p 1 S~ 27
k=ky “m=myi k=k;
< Ch™* P (R()" 1By ' ="/ T Jullp 7.
Finally, since we only need to consider k| < k < kp,
m2k 1/p
> ( > lwg, ||€,,<U,(_m)> <Ch PR By ) P/ |l p . (3-48)

k>—1 “m=myy

3E2. Bound on the non-self-looping piece. In this section we aim to control the “good” piece,

ma k

1/p
S (X batlien) 349

k>—1 “m=myy

So far all L? bounds appearing have been < A =/2//T. The reason for this is that the bounds were
obtained by interpolation with an L™ estimate which is substantially stronger than 2 ="/2/{/T .

We now estimate the number of non-self-looping tubes 7; with j € Ay. That is, tubes on which the
L? mass of u is comparable to 27%||u| p.7.

Lemma 3.6. Letk € Z, k > —1, and ty > 1. Suppose that G C Ay, is such that
U T; is [to, T] non-self-looping.
jeg
Then, there exists a constant C,, > 0, depending only on n, such that |G| < (Cyty/ T)22k.

Proof. Using that G C Ay, we have

lull? _
1915wy <2 210D, (erull gz + 120D, () PullZ). (3-50)

Jjeg

Since {7}}jeg is (Dp, T, R(h))-good, there are {Q,-}?‘):”1 C G, such that, foreachi =1, ..., 9,

]
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By [Canzani and Galkowski 2021, Lemma 4.1] with t;, = #p and T, = T for all ¢,

)
- D 4ty
210, Gl = 3 D 109, el = == llul, 7. (3-51)
jeg i=1 jeG;
On the other hand, since }_ 4. I0p;, (x7;)[I* < 2 for each i,
> 0P, (x7) Pull}s < 29,1 Pull3.. (3-52)
Jj€g
Combining (3-50), (3-51), and (3-52) yields
lull3 8Dt 4 8,10 +49D,/T
915wy <~ Mullbr + S Pulf, < == =" lull}. ;. O

We may now proceed to estimate the L” norm of the nonlooping piece (3-49). The first step is to
notice that we only need to sum up to m < m3, where m3 j is defined by

C,192%
i °T ,COR(h)ln),

23k = min
M

cy > 01s as defined in (3-20), and C,, > 0 is the constant in Lemma 3.6. To see this, first observe that,
using (3-19), (3-44), and (3-46), for each o € Zy ;,
||wlgm||LN(B(xa,R(h))) < lwk,mll L (B(xq, R))) + ||w;§m||L°°(B(xa,R(h)))
< CQ" +|Zim! 1BuD2 7 R 2 RV | p 1
< C+ R 27" Akl 1BuD2" R R VP ulpr. (3-53)

Furthermore, since |G| > |Ak.m| — |Ze.m|*1Bu/| and Gin is [to, T] non-self-looping, Lemma 3.6 yields
the existence of C, > 0 such that

Iy
| Ak | — 1T |*1By| < cn?zzk.

Next, since m1 x < m < my , we may apply Lemma 3.5 to bound |Zj ,,| as in (3-44) to obtain that for
some C > 0,

1
Al (1= CRUP 27" A | 1By ) < €y 22 (3-54)
In addition, provided
|BulR(h)"' < TN, (3-55)
we have that, form > m ; and k; <k <k,

R()*1=m274m Ay | 1By | < R(h)* =274 +2K B <272k 74N 1By | < R(W)" ' TV |By | <« 1, (3-56)

where we used that, by (3-20), |As.| is controlled by 2% to get the first inequality, that m > m ; to
get the second, and that k > k; to get the third. Combining (3-54) and the bound in (3-56) we obtain
| Ak.m| < Cato2?*/T, and so, by (3-20), 2™ < C,102%*/(cyT). As claimed, this shows that to deal
with (3-49) we only need to sum up to m < m3 .
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The next step is to use interpolation to control the first sum in (3-49) by

mo i m3 i
2 1wl = 20 Iiulisw,,) (3-57)
m=mj i m=mi i
We claim that (3-53) yields
lwg L Bxa R < C2"FRP2 R u|p 7. (3-58)

Indeed, using the bound (3-55) on |By|, that | A | is controlled by 2% that m > m x as in (3-43), and
that k1 < k < k,, we have
R(h)l_n2_3m|./4k,m| |BU| < R(h)Z(l—n)2—3m+2kT—6N < T_ZN.
Note that
1w llLre iy < CR™YPe (w2 +h I PwE 1l 2)
>oap. Oph(m]wﬁm

jegk,m 2)
< Ch= VP27 1G V2 lull pr + O (W™ ull p.1),

where the last line follows from the definition of Ay ,,, the fact that [P, Op, (x7;)] € hWs with its micro-
support contained in supp x7;, and Remark 3.3. Finally, by Lemma 3.6, |Gk | < (Cnto/ T)22%*, and hence

Z Op;, (X7;) Pu

<Ch™'/r (nw,?,anszl
J€Gkm

lwg ol Lre i < C\/ T “VPe)ull p.r 4+ OB |ull p.7).

Using this together with interpolation and (3-58) we obtain

g g —Fc g c
”wk»mngp(uk,m) S ”wksm”iw[(]Uk,m)”wksm”ipC(Uk,m)
tpz/z
—p3(p) (n=1)/2om—kyp—pc "0 b4 )
< CH= PP R0y bl 4 O™ ullf ). (3-59)
Using this, we estimate (3-57):

my i P1/2
Z ”wkm”Ll’(Uk )< Ch™ PS(P)(R(h)(n /25 (m3 x— k))[? Pc||u||P TT e + 0(h°°||u|| T)‘ (3-60)

m=mj

Then, summing in k, and again using that only k; < k < k» contribute,

o0 ma k l/p
S (X W)

k=—1 “m=my

pe/2p)  k
Sthfzs(P)”M”PTT‘p /(zp) Z(R(h)(ﬂ 1)/22(”’!%1( k))l pc/P+0(hOO||u”PT)
k=k
12 l
<Ch™P 0 0 alullpr+00> ) p.1)- (3-61)

Note that the sum over & in (3-61) is controlled by the value of k for which C, 1523k /(cmT)=coR(h) I=n
since the sum is geometrically increasing before such k and geometrically decreasing afterward.
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3F. Wrapping up the proof of Theorem 1.4. Combining (3-37), (3-48), and (3-61) with (3-42) and (3-34),
and taking N> 1(1 — p./p)~! provided R(h)"~!|By| < CT %" for some C > 0, we obtain
tl /2
lllzr@w) < Z lwillLr@w) < Ch™ ‘W(T1 75+ (R By D' Pc/(zf”T”V) lullp.r
k=—1

as requested in (3-55). Since this estimate holds only when |By|R ("' <CT %N, we replace T by
To :=min{ & (R(h)"~"|By)~1/6N, T}, so that

1/2

lvllLew) < Ch™ ‘”P><T + (R 1By '~ Pb/@“T”)nuin
0

1/2

T1/2
1/2

t
3(p)
<Ch™°¥ <T1/2

+ (R(h)"~ 1|16U|)”<12N>) lullp.r, (3-62)

where the constant C is adjusted from line to line.
Next, combining (3-62) with (3-11) and the definition of v in (3-12), we obtain
1/2

t
lull Loy < Ch™ ‘“"’(

T T RO 1|18U|)1/<12N>)||u||pT+Ch PR Pull s joetmseca.

Putting ¢ = % and setting N = %(1 + éé‘o)(l — pe/p)~", estimate (1-7) will follow once we relate |By |
for a given (z, R(h)) cover to |By| for the (D, t, R(h)) cover used in our proof.

Finally, to finish the proof of Theorem 1.4, we need to show that for any (z, R(h)) cover {7;}; of S*M,
up to a constant depending only on M, |By| can be bounded by |By| where By is defined as in (3-40)
using a (’5, 7, R(h))-good cover {7~7<}k of S*M.

Lemma 3.7. There exists Cp > 0 depending only on M such that if {T;};cs and {ﬁ}ke’c are a (t, R(h))
cover of S*M and a (D, t, R(h))-good cover of S*M, respectively, and |By| and |I§U| are defined as
in (3-40) for the covers {T;}jcs and {:ﬁ}kelﬁ respectively, then

1By| < Cu®|Byl.

Proof. Fix a, B such that x,, xg € U. Suppose that j € By («, B), where By («, B) is as in (3-38). Then,
there is k € gy(oz, B) such that Tr N7T; # 3. Now, fix j € J and let

={kek:T,NT; #2).
We claim that there is c¢y; > 0 such that for each k € C;,
Te C A" (cuR(h)). (3-63)

Assuming (3-63) for now, there exists Cy; > 0 such that

Vol(A‘M’(cMR(h)) ~
ICi| < D <DCy.
infgexc vol(T;)
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Thus, for each j € By («, B), there are at most CMBS elements in Z§U (o, B), and hence

By («,
By (. B)| z%

as claimed.
We now prove (3-63). Let g € T¢. Then, there are Pr> ,oj’., q' € S*M and 1, tj, s € [t — R(h), T+ R(h)]
such that ) ) )
ou (01 = ¢, (0)),  9s(g") =q.
In particular, d(q’, p;) < 2R(h), so there is ¢ > 0 such that d(¢y, (p;), ¢5,—s(q)) < cuR(h). Apply-
ing ¢, and adjusting ¢y in a way depending only on M, we have d(,o]’., @y—1;—-5(q)) < cuR(h). In
particular, adjusting ¢y, again, d(p;, Pre—t;—s (@) < cpR(h) and the claim follows. O

3G. Profiles of near-saturating functions. As explained in the introduction, our next theorem describes
the profiles of functions which extremize the improved bounds from Theorem 1.4.

Theorem 3.8. Let p > p., T(h) — o0, and § > 0. Let 0 < 8 < & < 1, h® < R(h) < h®, and
{Xa}aezy C M be a maximal R(h)-separated set. Let By be as in (3-40), and suppose that
By | R(hY"'T (h)>P/P=PI+ = (1)
and u € D' (M) with
h

| Pull o = oo Il 2)- (3-64)
For e > 0, set
eh1=m72 /i
WHMHLZ(M)’
Then, there are ¢, C > 0 such that, for all ¢ > 0, there are N, > 0 and ho > 0 such that |Sy (h, €, u)| < N,
forall 0 < h < hy.

Moreover, there is a collection of geodesic tubes {7T;}jcr(s,u) of radius R(h) (see Definition 1.3) with
indices satisfying L(e, u) = UiC:1 Jiand Ty NTg =9 fork, e J; withk # £, such that

Sy(h,e,u) = {Ol €Z(h) : lullLo(B(xy,R(H)) = B(xq, R(h)NU # Q}-

U=1u,

1
" m ./6%8:,14) v
where v; is microsupported in T;, |L(g, u)| < Ca_zR(h)l_”, and, forall p < g < o0,
lueliza < eh™> (T )~ lull 2,
lvillzz < CeT R D2 ull 2 1Pjllz2 < Ce™ R 2hul| 2.
Finally, with L(&, u, a) :={j € L(&,u) : w(T;) N B(xy, 3R(h)) # T}, for every a € Sy (h, €, u),

ce’R()'™" < |L(e,u, @) SCRW'™ and Y |vjl}, = e?[|ull7..
jeLl(e,u,a)

The proof of Theorem 3.8 is completed in the following three subsections.
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3G1. Proof of the bound on |Sy (h, €, u)|. We claim that there is ¢ > 0 such that, for o € Sy (h, &, u),

cs\/_
\/_
To see (3-65), first let xo, x1 € C2°(—2,2) with xo =1 on [—% %] and x; = 1 on supp xo and note
that, by Lemma 3.1, the elliptic parametrix construction for P, and (3-64),

Plull pr < Null Lo B 2R (3-65)

—8(p)+1/2
(1= xo(=h*A)ullLr < Ch—‘“l’)—l/znPu||Hl<n_3>/2 = O<T> lluall 2 (3-66)
Therefore, for a € Syy(h, €, u), we have
5 eh—=m/2
| xo(—=h"Ag)ull Loo(B(xy, RhY) = Wllullﬂw) (3-67)

for i small enough. Next, set x, n(x) := xo(R(h)~'d(x, x4)) and note
X1 (=1 Ag) X X0 (—h* At = o nx0(—h* Ag)u+ O (h™lul|2)co.

Then, by (3-67) and [Zworski 2012, Theorem 7.15],
eh(1-m/2
o Ml < lxot= I A )ull Lo(B (. R(AY)
= | Xan X0(—h* Al Lo (B(xy. R(HY))
= [1x1 (=1 Ag) Xauh Xo(—h> Al L (B(xy. k(1Y) + O (W) Jue]| 2
< Ch™"P (I xo(=h* A)ull Lo g, 2ry T OBl 12). (3-68)

Combining (3-68) and (3-66) yields the claim in (3-65). It then follows from Theorem 1.4 that, if
{oc,-}lN:1 C Sy(h, g, u) with B(xy,, 2R(h)) N B(xaj, 2R(h)) = @ fori # j, we have

NipeEVTo, “UP|ulpr < 1/p 1/p V10
= pr < lulee < Ch™YPull2 < Ch=YP X2 ) p 1.

Then, N'/P < Ce~!. Since at most D, balls B(x,, 2R (h)) intersect, | Sy (h, &, u)| < CD,e~P.

3G2. Preliminaries for the decomposition of u. Let g € R such that p < g < co. Below, all implicit
constants are uniform for p < g < oco. As above, it suffices to prove the statement for v as in (3-12)
instead of u. Then, we write v = Z,fi_l wy as in (3-18). For V C U, by the same analysis that led
to (3-34),

ma2.k

lwillfey <@n Y Mmoo, + OB ullpr,

m=—0oQ
where wy, is as in (3-28). Then, by (3-37) with N = 1q/(q — pc) + 18,

mi.k

l/a logT
q ) g
Z( > ”wksmHLq(Uk,m)) = Ch " e o 14l 1 (3-69)

k>—1 “m=—00
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for i small enough. Then, splitting wy , = wf mt wgm, as in (3-41), we have by (3-48) that

ma i

>(x

1/q
llwg mnmwkm)) < Ch?@ (R By )P/ COTHICAPDTR |y p . (3-70)
k>—1 “m=myy
Define k{ and k5, respectively, by
C?*D%2e72R(h)' "ey T

—2r\—2.2 1—n
g2k o C O e RW el g C 00 , (3-71)
4C, 19 4Cpto
where C is as in (3-61). Then, define K(¢) := {k : k¢ <k <k} and note that, since 22 7% = C2D2¢72,
|K(e)| <logy(4C?*D2¢72) =: K. Using (3-59) and summing over k ¢ K(¢), it follows that

m3 i 1/q e hﬂs(q)\/%
> ( > ||wkm||Lq(Ukm>) “m, v e (3-72)

k¢IiC(e) “m=my i
Next, for k € K(¢), let

Mk, &) = {m:m5, <m <msyp), mS,=myy— _qp log,(e12CD,),

and note |M(k, €)| < (¢/(g — p.)) 10g2(8_12C’Dn) := M. Using (3-59) and summing over k € K(¢)
and m ¢ M(k, g), it follows that

G 4 1/q
S (X whale,)

kekK(e) “m¢M(k,e)

pe/(2q)
s@) fo (n=1)/2m5 ,—k\1=pe/q o0
< ChD D 3 (RO L g+ O )
kek(e)
e
= 1D, W”M”P,T- (3-73)
Let
e h(lfn)/Z\/g
Niem (€)== {Ol € Tim : 1w | L (Bxe. RODY) = ||M||P,T}- (3-74)
m m k.m (B(xa, R(h))) 49, MK, JT
We claim
suewc | U Nmo. (3-75)
keK(e) meMk.e)
To prove (3-75), suppose & ¢ U cicey Umertce.e) Ve (€). Then, using (3-69) with g =oco and N = 5+ ¢,
1 Ch1=log T <
,D_n”U”LDO(B(xa,R(h))) = e luller + Z Z lwi,mll Lo ) - (3-76)

k>—1m=my

Next, for the second term in the right-hand side of (3-76), we write the decomposition

ma,k m3k m3 k

DO wfalicwen+ D> Y0 i lecwen+ Y Y. Il lcwey. G-

k>—1m=my k¢K(g) m=m i kek(e) m=my i
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Note that in the term with the sum over k ¢ K(¢) we only sum over m < mj3; for the same reason as
in (3-57). We bound the three terms in (3-77) using (3-70), (3-72), (3-73), and (3-74) with ¢ = oo and
N =} + 2. Combining with (3-76) this yields

1 _ logT 3e \/—
~ vl Ry < ChY ">/2||u||p,r<m+R<h>" NBy|T3/*H% 4 ——

D, 49, JT

Thus, if @ & Uy eice) Umertk.e) Neom (€), then [[v]] oo (B(x,. R(hy)) < eh<1—">/2§g lu|| p.7 for h small enough.
In particular, o ¢ Sy (h, €, u). This proves the claim (3-75).

+ O(hoo))

3G3. Decomposition of u. We next decompose u as described in the theorem. First, put

my,k ma k ms3 i
Ue | 1= Z Z wk,m—l-z Z w,lsm-l— Z Z w,gm+ Z Z w,‘im,
k>—1m=—00 k>—1m=mj kgK(e) m=m keK(ge) m¢g M(k,e)

. g
Upig := Z Z Wi >

kekK(e) me M(k,e)

and u, » 1= u — upig — e,1. Note that

3e, 5 )x/_
le1llLe < 28 p-ot lullp,r,
4 /T

e lle < CR= 22 RN Pull oo,

where we use (3-70), (3-72), (3-73), (3-76), and (3-77) to obtain the first estimate, and (3-11) to obtain
the second. These two estimates prove the claim on ||u.|/ ¢ after combining them with (3-64). Next,
observe that

=y uj,  u;:=0p,(Fr)Opy(¥)u, and L&) = ) J Gem

JEL(e) keK(e) me M(k,e)

We claim that the statement of the theorem holds with v; = JTu ;. Note that the v; are manifestly
microsupported inside 7;.
Let o € Sy (h, €, u). Then by definition,

)zt &p0- n)/z«/_

fllull (3-78)

| uvigll oo (B (xo, R(R))
Note that for all j € L(¢), the estimate

10p, (7)) Opy, (¥)ull 2 + = |Op, (7) Opy, (¥) Pull 2 < 2757 lul p 7 (3-79)

follows from the definition of A; in (3-14) and the fact that X7 = 1 on supp )?T,- To see that u; is a
quasimode, we use the definition of Ay again, together with Proposition 2.5, and obtain

IPujll 2 < ll—h*Ag, Opy, (X7)1ujll 12 + |0, (7)) Pull 2 < C27hlullp 1. (3-80)

The definition of k{ together with (3-79) and (3-80) give the required bounds on v; and Pv;.
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Next, define
L(e,u,a) :={j€L:my(T;) N B(xq,3R(h)) # T},

and note that by [Canzani and Galkowski 2021, Lemma 3.7],

lluvigll oo (B(xy, R(RY))

<ChU=PRR(I)DZ N |0, (7;) Opy, (W)ull 2+h ™ |Opy, (37;) Opy, () Pl 24O (™) [lu | .2
jeL(eu,a)

< Ch"=P2R() "=V K Lo, u, @) lull p7+O (™) |ull p,1- (3-81)

(Note that in [Canzani and Galkowski 2021, Lemma 3.7], the number t|H,ry(p,)| appears in the
prefactor. In our circumstance, one can check that |H,rg(p,)| =2 and T > 0 is a number uniformly
bounded below by cinj(M) for some ¢ > 0.) Therefore, combining (3-78) with (3-81) yields

11 P
sﬂ < CRMKW"V227M e, a, u)| + O(h™).
VT

Moreover, Ujeﬁ(w) T; is [t9, T'] non-self-looping and so by Lemma 3.6, | L(g, u)| < (Cuto/ T)2%%:, Using
the definition of k{ and k3 in (3-71), we have, for 4 small enough,

ce’R(h)' ™" = */_R(h)“ 20K < |L(e, u, )| < |L(g, u)| < 22’<z <Ce’R(h)'™,
T
which yields the upper bound on |L(e, u)| and the lower bound on |L(e, u, «)|. Note that the upper bound
on |L(eg, u, )| follows from the fact that the total number of tubes over B(x,, 3R(h)) is bounded by
CR(h)'~". Next, we note that the fact that at most ®,, tubes 7; overlap implies

3" 0P, (i) Opy (W) PullZs < Cll Pl + O™l 12).
jeL(eu,a)

Therefore, using the first inequality in (3-81) again, applying Cauchy—Schwarz, and using that there is
C > 0 such that |£(e, u, «)| < CR(h)'™, we have

1/2
Z:f__lullprR(h)(” V2Icee u, a>|l/2( > ||u,-||iz> + Ch™ P2 + O (™) lull 2
JjeL(e,u,a)
1/2
sc( > ||u,,-||iz> +o(T ™ ul2). (3-82)
JjeL(eu,a)

Here, the o(T ! ||u|| 12) term comes from using (3-64). In particular, for 4 small enough,

NG ( 2\
c—=llullp,r < llu |l .
ﬁ Z J

jeLl(eu,a)

This completes the proof of Theorem 3.8. ]
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4. Proof of Theorem 1.1

In order to finish the proof of Theorem 1.1, we need to verify that the hypotheses of Theorem 1.4 hold with
T(h)=blog h~! for some b > 0, such that, for all x;, x, € U, there is some splitting J x, = Gx,.x, U By, .x»
of the set of tubes over x; € M with a set of “bad” tubes B,, , satisfying

(|Bx1 xz|R(h)n_l)(l_p<f/l’)/(6+€0) < T(h)—l/Z
and g9 > 0. Fix x, x, € U and let Fy, F» : T*M — R"*! be smooth functions such that, fori = 1, 2,

SiM =F'0),  3d(q, M) < Fi(@)] = 2d(q, SIM),  max (9 Fi(@)]) <2,

o<

= 4-1)
dF;(q) has aright inverse R, (q) with [|[Rf, (@)| <2.

Define also v; : R x T*M — R"*! by 4, (¢, p) = F; o ¢;(p).

To find By, x,, we apply the arguments from [Canzani and Galkowski 2023, Sections 2, 4]. Iln particular,
fixa>O0andletr, :=a e " A > Apax, and Apax be as in (1-5). Suppose that d (x; , C;lr ’%’to) > Iy
Then for py € S;C"IM with d (S;;M , ¥1,(p0)) < 1y, we have by [Canzani and Galkowski 2023, Lemma 4.1]
that there exists w € T, Sy, M such that

X

d(V2) g, p) : RO x Rw — Tlﬂz(to,po)RnH

has a left inverse L, o) satisfying

I L (19, p0) Il = Cma max (aeM@tMlol 1)

Next, let {A;j (r1)} be a (®y, 7, r1)-good cover for S*M. We apply [Canzani and Galkowski 2023,
Proposition 2.2] to construct By, x, and Gy, ,.

Remark 4.1. We must point out that we are applying the proof of that proposition rather than the
proposition as stated. The only difference here is that the loops we are interested in go from a point x; to
a point x,, where x| and x; are not necessarily equal. This does not affect the proof.

We use [Canzani and Galkowski 2023, Proposition 2.2] to see that there exist oy = «; (M) > 0,
ar =ap(M, a), and Cy = Co(M, a) such that the following holds. Let rg, r, r, > 0 satisfy

ro<ri, ri<airy, r<min{Ry 1,ae¥T}, ry< %e‘ATrz, 4-2)

where y = 5A 4+ 2a and A > Apax Where Ay is as in (1-5). Then, for all balls B C S;‘IM of radius
Ry > 0, there is a family of points {p;};es, C S;‘]M such that

n—1

Bg| < CoDpra——T * AT,
r
1

and for j € G :={j € Ty, : B(pj,2r1) N B # &} \ B},

U ‘Pt(A;j(Tl)) m1\1';21‘4(}"1) = .

1€lto,T]
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We proceed to apply [Canzani and Galkowski 2023, Proposition 2.2]. There is cp7!~" > N, > 0 such
that, for all x; € M, we can cover S;‘]M by N, balls. Let 0 < Ry < 1 and {Bi}jV:Rf be such a cover. Fix

0<e<eg <4—1Landset
ro:=h®, ri:=h" = 2 pe,
o
Let T(h) = blogh~! with
1 1-— 281

0<b< <
4AmaX 2AmaX

to be chosen later. Then, the assumptions in (4-2) hold provided

h£17£< 2 efAT

h® < min{%alaze*ﬂ, %oqRo} and »
1

In particular, if we set a3 = %al op and oy = %al_l, the assumptions in (4-2) hold provided & < (%al R(h )) /e
and

logh™ + (4-3)

log a3 g1 — &€ _1 . log(ay)
T(h —logh™ .
(h) < mm{ og Ty A A

Fix b > 0 and i > O such that b < 2mln(e? g1 —¢&)/(2A+a) and (4 3) is satisfied for all & < h(. Note
that this implies that b =b(M, a) and ho =ho(M, a). Let By, x, := U BB,-- For j € Gy, x, =T x; \Bx,.xp5
we then have

U @@femnag, yen=2

telt,T]

Moreover, shrinking /¢ in a way depending only on (M, a, €), we have, for 0 < h < hy,
- |Bx1,x2| = CMCOQnr2T64(2A+a)T =< h£/3-

Therefore, putting R(h) =r; = h® and T = T (h) = blogh~' in Theorem 1.4 proves Theorem 1.1.

5. Anisotropic pseudodifferential calculus

In this section, we develop the second microlocal calculi necessary to understand “effective sharing” of
L? mass between two nearby points. That is, to answer the question: how much L? mass is necessary
to produce high L°° growth at two nearby points? To that end, we develop a calculus associated to the
coisotropic
o= 0@, Q=6 e TIM |1 - 5], <),
lr]< 5 inj(M)

which allows for localization to the Lagrangian leaves ¢,(€2,). In Section 6B we will see, using a type of
uncertainty principle, that the calculi associated to two distinct points, x,, xg € M, are incompatible in
the sense that, despite the fact that I'y, and [y, intersect in a dimension 2 submanifold, for operators X,
and Xy, localizing to Iy, and T',,, respectively,

1 Xx, Xx,g 2 <N X, 212 ”Xx,g 222
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Let I' C T*M be a coisotropic submanifold and L = {L,},er be a family of Lagrangian subspaces
L, C T,T that is integrable in the sense that if U is a neighborhood of I', and V and W are smooth
vector fields on 7*M such that V,,, W, € L, forall g € ', then [V, W], € L, for all g € ". The aim of
this section is to introduce a calculus of pseudodifferential operators associated to (L, ') that allows
for localization to i#” neighborhoods of I' with 0 < p < 1 and is compatible with localization to h”
neighborhoods of the foliation of I generated by L. This calculus is close in spirit to those developed
in [Dyatlov and Zahl 2016; Sjostrand and Zworski 1999]. To see the relationships between these calculi,
note that the calculus in [Dyatlov and Zahl 2016] allows for localization to any leaf of a Lagrangian
foliation defined over an open subset of 7*M, while that in [Sjostrand and Zworski 1999] allows for
localization to a single hypersurface. The calculus developed in this paper is designed to allow localization
along leaves of a Lagrangian foliation defined only over a coisotropic submanifold of 7*M. In the case
that the coisotropic is a whole open set, this calculus is the same as the one developed in [Dyatlov and
Zahl 2016]. Similarly, in the case that the coisotropic is a hypersurface and no Lagrangian foliation is
prescribed, the calculus becomes that developed in [Sjostrand and Zworski 1999].

Definition 5.1. Let I" be a coisotropic submanifold and L a Lagrangian foliation on I'. Fix 0 < p < 1 and
let k£ be a positive integer. We say that a € S{E’ Lpifac C>°(T*M), a is supported in an h-independent
compact set, and

Vi Ve Wi Wea = O™ "2 (h™Pd(T, ) %), (5-1)
where Wy, ..., Wy, are any vector fields on T*M, Vi, ..., V,, are vector fields on T*M with
Vs -y (Ve)g € Ly
for g €', and g — d(T', gq) is the distance from ¢ to I induced by the Sasaki metric on 7*M.
We also define symbol classes associated to only to the coisotropic submanifold I'.

Definition 5.2. Let I" be a coisotropic submanifold. We say that a € S’f’ pifaeC ®(T*M), a is supported
in an h-independent compact set, and

Vies Ve Wi Woa = O™ (h ™ d(T, )" )
where Vi, ..., V,, are tangent vector fields to I" and Wy, ..., W, are any vector fields.

5A. Model case. The goal of this section is to define the quantization of symbols in S’fo’ Lo.p» Where I'g
and Lg are a model pair of coisotropic and Lagrangian foliation defined below. The model coisotropic
submanifold of dimension 2n —r is

FO - {(x/’ x//’ S/, S//) = RI’ X Rn—r X RF X Rn—r :x/ — O}
with Lagrangian foliation

Lo:={Log}ger,» Log=span{og,i=1,...,n} CT,T.
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Note that in this model case the distance from a point (x, &) to [y is controlled by |x’|. Therefore,
ac S’lim L,.p 1f and only if a is supported in an -independent compact set and, for all (o, ) € N" x N",
there exists Cq g > 0 such that

099 al < Coph™ ™ (h=P)x/|y< 1o,
In the model case, it will be convenient to define a € C*(R” x Rg x R} ) such that
a(x,&) =a(x,& h™"x"),

and, for all (&', a”, B, y) € N" x N"7" x N" x N, there exists Cy,p,,, > 0 such that

10% 0% 9L 8] a(x, £, )| < Capyh =11 a) 7Y=L, (5-2)

Similarly, if a € S]lio,p’ then, for (o, a”, B, ¥) e N" x N"7" x N x N, there exists Cy g,,, > 0 such that
0% 0% 97 8] a(x, £, M| < Capy (W)Y, (5-3)

Definition 5.3. The symbols associated with this submanifold are as follows: We say a € 51120 Lo.p if

a e C®(R? x Rg x R?) satisfies (5-2) and a is supported in an A-independent compact set in (x, §). If
we have the improved estimates (5-3) then we say that a € §l'io o

Remark 5.4. While there is no p in the definition of §1’io’ ,» we keep it in the notation for consistency.

Leta e :S:llio Lo.p- ‘We then define

(O (@) Ju(x) = / SO g £ P uly) dy dE.

2 h)

Since a € §§0 Lo.p 1s compactly supported in x, there exists C > 0 such that on the support of the integrand
|A| < Ch=", and hence h < Ch'~”(1)~!. This will be important when computing certain asymptotic
expansions.

Lemma 5.5. Letk € Randa € S}, ; . Then,

10p, (@)l 1212 < Csup la(x, &, h~"x")| + O (P ™x®0+(=p)/2)
R2n

Proof. Define Ty : L>(R") — L*(R") by
Tsu(x) := " ?u(h’x). (5-4)

~

Then T is unitary and, for a € S{EO’ Lo.p’
Opy,(@u =T}, »Opi(a@)Taspyatt,  an(x, §) = a7 2x, RU=P2E pU=P2y),
Then, for all «, B € N", there exists Cy, g such that

19208 a] < Cy gh1=PIHIBD/2 (p0=p)/2 kol
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Now, since aj, € S(1—p)/2, by [Zworski 2012, Theorem 4.23] there is a universal constant M > 0 with
10p; (@) 22 <C Y sup|9“ay| < Csupla|+ Coh~ mXPHOFTI=0/2
|(x|<Mn R2n

(To see that [Zworski 2012, Theorem 4.23] applies equally well to the left quantization, we apply the

change of quantization formula [Zworski 2012, Theorem 4.13] and the boundedness of ¢!{¢P-P)/2 o
symbol classes [Zworski 2012, Theorem 4.17].) D
Sk
Lemma 5.6. Suppose that a € SF0 Lo.pandb e SFf),Lo,p‘ Then
Op;,(@)Op; (b) = Op;,(c) + O(h™) 2. 12,
where ¢ € SllingLkg , satisfies
c=ab+ O(h )~k1+k2 1. (5-5)
FO Lgy.p
In particular, ‘
i] " 1— ’
e~ ﬁ((h D) (hDy +h'~"D;)*b) Dia. (5-6)
Jolel=j
If instead a € §l]il) and b € SF2 p» then the remainder in (5-5) lies in hl=r Sl]fi)t)kz L

Proof. With Ty as in (5-4), we have Op;,()Op, (b) = T, 3 Op,, () Op;, (bu) T, /2, Where
ap =a(h?x, kPP, hPx") and by =b(hPx, h=PPE, hPPX).
Now, for all o, B € N", there exists Cy g such that
|3§8§ah| < Ca’ﬁh—P(\al-Hﬂl)/Q(h—P/Zx’>k1—|a\ and |3§3§bh| < Ca’ﬁh—ﬂ(la\-i-lﬁ\)/z(h—ﬂ/2x’>k2—|a|'

In particular, using that a and b are compactly supported, we have that a;, € h_ma"("kl’o)Sp 2 and
by € h~ (k20 g, “and hence [Zworski 2012, Theorems 4.14, 4.17] apply. In particular, if we let
M>0and k := max(ky, 0) + max(kz, 0), we obtain Op,,(a;) Op,,(by) = Op,,(ci), where, for any N > 0,

N_ . .
hiil -
(e, E) =YY" TI,(Dg‘aux, E)(Dby(x, £)) + O(h~P NIy,

J'0|06| J

YT ¥

J=0 la|=j o’ +a"=a

h(l Pl )
———(Dga)nl(h” Dy N (h? Dy + D;)¥ bl + O (h—PkHN0=p)y ¢

p/2°

Choosing

k+M
N=max(k1+k2,p T >,
L—p
the remainder is O (hM)g .- Moreover, since a and b were compactly supported, we may assume,

introducing an i error, that the remainder is supported in {(x, &) : |(x,&)| < C h=r/2}, Putting

N-1 B
i/ " o
=32 Y DEUD Dy 4R D)

Jj=0 |a|=j &’4+a"=a

we thus have T,

)2 Oph )Ty = Oph () + OhM)p_, c as claimed. U
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~

Lemma 5.7. Suppose thata € Sy,  and b € :8:11102 Lo Then,

[Op4 (@), Op, (B)] = —ih'=*Op,(c) + O (h™) 2, 12,

omi+mo—2 .
where c € SFo.Lo.p satisfies

n r
c=h" Z(a&aaxib — 85,bdy,a) + Z(a&aaxib — 8,a8,b) + Oh' ™) ey 1my 2.

SF L
i=1 i=1 0202

If instead a € S;"OI pandb e S;"Ozp, then the remainder lies in hl_".S'lrfo1 ;mz_z. Moreover, if a € S (R?")

is independent of A and dga = e(x, £)x" with e(x, &) : R" — R" for all (x, §), then
[Opy (@). Op,, (b)] = —ihOp,,(c) + O (h*) g~

withc = H,b+ Y ;_ (e)r);9,,b+ O(hl_p)g’r”o%z(lw. Similarly, the same conclusion holds if b € E{foz’p with

the error term in c being O(hl_p)§t112—l.
To.p

Proof. In each case, we need only apply formula (5-6). (I

SB. Reduction to normal form. In order to define the quantization of symbols in Sr 7, for general (I', L),
we first explain how to reduce the problem to the model case (I'g, Lo).

Lemma 5.8. Let L be a Lagrangian foliation over a coisotropic submanifold ' C R*" of dimension 2n —r.
Then, there is a neighborhood Uy of (xo, &) and a symplectomorphism « : Uy — Vo C T*R" for each
(x0, &0) € I such that

k(T'NUy) =TogNVy and (k)gLg = Lo,y for g € T'NUo.
Proof. We first put I' in normal form. That is, we build symplectic coordinates (y, 1) such that
F={y.m:y=--=y =0} (5-7)

First, assume r = 1 and let f; € C°°(T*M) define I". By Darboux’s theorem (see e.g., [Zworski 2012,
Theorem 12.1]) there are symplectic coordinates such that y; = fj, and the proof of (5-7) is complete
forr =1.

Next, assume that we can put any coisotropic of codimension » — 1 in normal form. Let f1, ..., f, €
C®(T*M) define I'. Then, for X e TT" andi =1,...,r,

o(X,Hy)=df;(X) =0.

In addition, since I" is coisotropic, (TT)* C TT, and so Hy eTT foralli=1,...,r. In particular,

{fi, fiy=Hs fi=dfj(Hz)=0 onT.

Now, using Darboux’ theorem, choose symplectic coordinates (y, n) =(y1, ¥/, n1, n’) such that y; = fi
and (xo, &) + (0,0). Then, 9,, fj ={fj, y1} =0o0nT for j =2,...,r. Next, we will observe that
I'={(y,n):yi=f,=---=f, =0} and dy; and {dfj};:2 are independent. Thus, since 9, f; =0 on I,

C={0,m:y=0, f;(0,y,0,n)=0, j=2,...,r}.
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Now, {y; =n; =0} NT is a coisotropic submanifold of codimension » — 1 in T7*{y; = 0}. Hence, by
induction, there are symplectic coordinates (y2, ..., Yn, 02, ..., I) on T*{y; = 0} such that

Fnfyi=m=0={y=m=0 n=-=y =04
In particular,
{(y/an/):‘fj]'(o?yla()?n/)zov J=27'7r}={y2:=yr=0}

Thus, extending (y2, ..., Yu, 2, - . ., I») to be independent of (y1, 1) puts I' in the form (5-7).

Next, we adjust the coordinates to be adapted to L along I'. First, define y; :=y; fori =1,...,r.
Then, since L C TT, for every i = 1,...,r, we have that dy;(X)|r is well defined for X € L and
dy;(X)|r = 0. Next, since L is integrable, the Frobenius theorem [Lee 2013, Theorem 19.21] shows that
there are coordinates (41, ..., Yn, 51, el §n) on I', defined in a neighborhood of (0, 0), such that L is
the annihilator of dy. Since we know that for every X € L,

o(X. Hy) = d5;(X) =0
and L is Lagrangian, we conclude that Hy, € L. In particular, since L is the annihilator of dy,
Vi, ¥j} = Hy, 3 = dy; (H;,) = 0.
Now, extend (41, ..., Yu, 51, el 5,,) outside I" to be independent of (y1, ..., y,). Then, {y;, y;} =0
in a neighborhood of (xo, o), and hence, by Darboux’s theorem, there are functions {7; }7:1 such that
{i,n;} = &; and {n;, ;} = 0. In particular, in the (¥, 7) coordinates, ' = {(y, ) : y1 =--- =y, =0}
and dy(L)|r = 0. In particular, L = span{d7;} as claimed. O
In order to create a well-defined global calculus of pseudodifferential operators associated to (I", L),
we will need to show invariance under conjugation by Fourier integral operators (FIOs) preserving the
pair (Lo, ['p).

Proposition 5.9. Suppose that Uy and Vy are neighborhoods of (0, 0) in T*R" and k : Uy — Vy is a
symplectomorphism such that

€(0,0)=1(0,0), «(ToNUop)=ToNVo, &«lr,Lo= Lolr,. (5-8)
Next, let T be a semiclassically elliptic FIO microlocally defined in a neighborhood of
((0,0), (0,0)) € T*R" x T*R"
quantizing k. Then, for a € Ellio,Lo,p’ there are b € S'JIIEO’LO’p and c € §§;20’p such that
T-'0p,(@)T =0p,(b) and b=aoK,+h'"c,
where K, : T*R" x R" — T*R" x R" is defined by

Ke(y,n, pn) = (K(y, n), e (k (Y, n))%),

and 7wy : T*R" — R” is the projection onto the first r-spatial coordinates. In addition, if a € §1'io o> then

k=1 Sk
ce SFO,p and b € Sro,p'
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To prove Proposition 5.9, we follow [Sjostrand and Zworski 1999]. First, observe that the proposition
holds with ¥ = 1Id since then T is a standard pseudodifferential operator. In addition, the proposition also
holds whenever, for a given j € {1, ..., n}, we work with

KM = (Vs oo s Yimls = Vs Vil oo v Yus Mo oo s Mj—1, —Njs Mjk s+« -5 M)
Indeed, this follows from the fact that in this case an FIO quantizing « is
Tu(x) =u(xy, ..., Xj—1, =Xj, Xj41, .-, Xp),

and so the conclusion of the proposition follows from a direct computation together with the identity case.
Thus, we may assume that

k(y,m)=x,& = xy,=0,i=1,...,n. (5-9)

Lemma 5.10. Let k be a symplectomorphism satisfying (5-8) and (5-9). Then, there is a piecewise smooth
family of symplectomorphisms [0, 1] > t — k; such that k, satisfies (5-8), (5-9), ko =1d, and k; = «.

Proof. In what follows we assume that « (y, n) = (x, £) but reorder the coordinates: (', y”, ', n”) € T*R"
is written as (y', 7/, y", n”") € R¥ x R2®=") Let & and k"= (x" (¥, n), £’ (y', n)) with

K|F0 : (O’ 77/’ y//7 T,N) = (O’ S/(y//’ 77), K”()’N, 77))

Now, since (k4)|r,Lo = Lo, we have, fori =1, ...,n,
KOy, = %8)5, + @ag € Lo, (5-10)
Coom T o
and hence
3,xIr, = 0. (5-11)
Next, since « preserves I'g, {«*x;}/_, defines I'g, and span{dk*x;|r,}/_, = span{dy;|r,};_,, we have

Span{HK*xi |1"0};=1 = Span{Hy; |F0 }:‘:1 .
By Jacobi’s theorem, «, H,«,i = H,,. Therefore,
(kIry)«(span{H,y, }i_|r,) = span{Hy, }i_;Ir,,
and we conclude from (5-10) that £”|r, is independent of 1’, and hence that k" is independent of »'. In
particular, ¥ is a symplectomorphism on 7*R"~". This also implies that, for each fixed (y”, n”), the
map ' — &E'(y”, n’, n”) is a diffeomorphism. Writing
K//(y”, n//) — (x//(y//, n//)’ %.//(y//, n//)),
we have by (5-11) that 9,»x” = 0, and hence x” = x”(y”). Now, since k" is symplectic,
(377”5”03'7”4‘ ay”é_.//dy//) A 8y~x”dy” — dn// /\dy”,
and so we conclude that
0y x")'0,0&" =1d,  (dy7x")'d,v&" is diagonal. (5-12)
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The first equality in (5-12) gives that 9,»&"” is a function of y” only, and hence there exists a function
F = F(y") such that

§' ") =1@x" "N 0" = F(")).
Therefore, calculating on n” = F(y”), the second statement in (5-12) implies that — 9, F (y") dy” Ady” =0.

In particular, d(F(y")- dy”) = 0. It follows from the Poincaré lemma that, shrinking the neighborhood of
(0, 0) to be simply connected if necessary, F(y") - dy” = dy (y") for some function ¥ = v (y”). Hence,

0"y = &N, 1@ N 0 = ap (). (5-13)

Now, every symplectomorphism of the form (5-13) preserves L. Hence, we can deform «” to the identity
by putting v/, = t¢ and deforming x” to the identity. Since the assumption in (5-9) implies d,»x” > 0, this

/

can be done simply by taking x," = (1 —#) Id +-¢x". Putting «;" = (x/, &), there is ;" such that x; = Id
and k| = k”. Now, composing x with

Oy e G )T ),
we reduce to the case that " = Id. In particular, we need only consider the case in which

k0, Yy 0"y =(Famy E G, ) +ho(y, M)y, V' n") +hi(y, )y, (5-14)

where f(y,n) € GL,, ho(y, n) is an r x r matrix, and #(y, n) is an 2(n —r) X r matrix. Next, we claim
that the projection map from graph(x) to R?" defined as (x, £; y, n) — (x, 1) is a local diffeomorphism.
To see this, note that, for |y’| small, the map (x”, n”) — (", &”) is a diffeomorphism, that, for each
fixed (y”, "), the map " +— &’ is a diffeomorphism, and that det d,/x|r, 7 0. Thus, « has a generating
function ¢:

K2 (0@ (x, m), ) = (x, dcp(x, 1))
such that
detd2,$(0,0) #0 and 3,¢(0,x", n) =0.
Now, writing k = (k/, k"), we have k” = Id at x’ = 0. Therefore,
3y (0, x",m) =x" and 8¢ (0,x", ) =1n",
and we have ¢ (0, x”, n) = (x”, n”) + C for some C € R. We may choose C = 0 to obtain

o, m) =" 0" +gx, Mmx’ (5-15)

for some g : R — M y,. Finally, since «(0,0) = (0,0) and 83,](1) is nondegenerate, we have that
09 (0,0) = g(0,0) =0 and 9,/ g is nondegenerate. In fact (5-9) implies that, as a quadratic form,

0yg > 0. (5-16)

Observe next that every ¢ satisfying (5-15) for some g satisfying (5-16) and g(0, 0) = O generates a
canonical transformation satisfying (5-14) and (5-9). In particular, the symplectomorphism satisfies (5-8).
Thus, we can deform from the identity by putting g, = (1 —1)n’ +tg. (I

Finally, we proceed with the proof of Proposition 5.9.
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Proof of Proposition 5.9. Let k; be as in Lemma 5.10. That is, a piecewise smooth deformation from
ko = Id to k1 = k such that «, preserves I'g and («;)«|r, preserves Lo. Let 7; be a piecewise smooth
family of elliptic FIOs defined microlocally near (0, 0), quantizing «,, and satisfying

hD,T,+T,0,=0 and Ty=1d. (5-17)

Here, Q, is a smooth family of pseudodifferential operators with symbol g, satisfying d;k; = (k) H,
(Such an FIO exists, for example, by [Zworski 2012, Chapter 10], and g, exists by [Zworski 2012,
Thoerems 11.3, 11.4].) Next, define

A =T, 'Op;(@)T;.

Note that T*I@)(a)T =T7-'Ty Tfl(’)\f)(a)Tl Tfl T + O (h*°)y-~. Hence, since the proposition follows
by direct calculation when x = Id, we may assume that 7 = T7.

In that case, our goal is to find a symbol b such that A; = Op,,(b). First, observe that (5-17) implies
that thT,_1 — Q,Tt_1 =0 and so

hDA; =[Q;. A] and Ay=Op,(a).
We will construct b, € §IIC‘O,L0,,0 such that B, := 6}3,1 (b,) satisfies
hD:B, =[Q, B1+ O(h®)y-~ and By=Op,(a). (5-18)

This would yield that B; — A; = O (h*°);2_, ;> and the argument would then be finished by setting b = b;.
Indeed, that B, — A; = O (h*™)2_, ;2> would follow from the fact that, by (5-18),

hD(T,B, T, ") = 0<h°°>u,foo,

and hence, since Ty = Id and Bo = Oph (a), we have T; B, T, — Oph (a) = O (h*°)y-~. Combining this
with the fact that both 7; and Tt are bounded on H;f completes the proof.

To find b; as in (5-18), note that since «; preserves I'g and Lo, d,k; = H,, and H,, is tangent to L
on I'g. Therefore, d,yg; = 0 on y’ = 0, and so there exists r,(y, n) such that 9,yq,(y, n) = r/(y, n)y".

Hence, by Lemma 5.7, for any b € SFo Lo.p®

1_'0 Ly.p

[0, Op, ()] = —ihOp, (f) + O(h®)y—~ and [ =Hyb+ Y (r2)j(@:b); + O(h' )z

Then, letting bo =aokK,e€ Sr Lo.p and BO Oph (bo) yields

hD, B = —ihOp,,(Hy,bY + (r, 1) - b)) = [Qy. BY1+ h**Op,(e?).
where e € Slli 2L - This follows from the fact that if we set u(y) = y'h™", then

3 (Y (y, n, () = Hy, b2 (y, 1, k() + 8,2y, 1, 11(»)) Hy, (1 (y))

and Hy, u(y) = re(y, mu(y).
Iterating this procedure and solving away successive errors finishes the proof of Proposition 5.9.

If a € Sk

Io.p» then we need only use that d¢/g; = r;x" and we obtain the remaining results. U
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Our next lemma follows [Sjostrand and Zworski 1999, Lemma 4.1] and gives a characterization of
our second microlocal calculus in terms of the action of an operator. In what follows, given operators A
and B, we define the operator ad4 by ad4 B = [A, B].

Lemma 5.11 (Beal’s criteria). Let A, : S(R*) — S'(R") and k € Z. Then, A;, = éE)h(a) for some
ac S’lioyLo’p if and only if, for any a, B € R", there exists C > 0 with
lads,, , adyp, Anttllip)-ming.0) < CRO™P D i o),
where |ull, == |lu|lp2+ |h~P"|x"|"u|| .2 for r > 0. Similarly, A, = Op,,(a) for some a € 5{30’/) if and only if
lads, ., ad%, adﬁDx, adew Antt ||| —ming,0) < CRUTAUTHBDFCTHE ko)

Proof. The fact that A, = 61/)}[ (a) for some a € gl’io Lo.p Implies the estimates above follow directly from
the model calculus. Let U, be the unitary (on L% operator, Upu(x) = h"?u(hx), and note that

—1 1—
10, ully = Nl 2 + 1R 1 ull o

Then, consider Aj, := UnALU, ! For fixed &, we can use Beal’s criteria (see e.g., [Zworski 2012,
Theorem 8.3]) to see that there is a;, such that An=a, (x, D). Define a such that a(hx, &; h) = ap(x, &),
and hence A; = Op,(a). Note that, for ¢, ¥ € S(R"),

1
2m)"

where §/ (£) = (F¥)(€) = [ ¢ "9y (y) dy. Next, define
By := Uy adi_, (ad,, (AU, "

(Anvr. ¢) = / f &) gy (x, E)P ()P0 dx dE, (5-19)

Since D, U, = U,hD, and Uh_le = thUh_l, we have

By =ad?_, adj A= (=)l Hp=2lp, (x, D),

P

where by, (x, &) = (—85)“85 ap(x, &). Our goal is then to understand the behavior of b, (x, £) in terms
of h and (h'~Px’). Let 7y, and Tz, be the physical and frequency shift operators

Tou(x) =u(x —xp) and Tgu(x)= e 80) y (x)

with Fzz, = 1, F and Fty, = T_y,. In addition, write ||u||(—) := ||(h'=?x")~"u]| > for the dual norm to
luell g = 11U, -
Assume that £ > 0. Then, the definition of B, combined with the assumptions yields
(Bay ey, Tyo Tno®)| < K2 UHPD 1z 20 Wl oy T30 Eno® Nl — 1 (5-20)

In addition, note that, for fixed ¥, ¢ € S,
e Ten ¥ llg ~ (' P (x0))* and [Ty, Eno ¥l < ~ (' (30)") 1P,
Therefore, (5-20) leads to
[(BTay Ty W, Ty Tng®)| < CHUTPUHED (0120 (o) Ve (110 (3)) 1P, (5-21)
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On the other hand, we have by (5-19) that

A . hd=p)lel . R . L -
(BTe By ¥, T T} =~ / / e by (x, §)r (& — Eg)e ™ X0ETEITI 0TI G (x — yo) dx dE

= RPN F ((2y.60)b1) (N0 — 0, X0 — Y0, (5-22)
where x (x, £) = ¢/ @59 (£)¢(x). Combining (5-22) with (5-21) we then have
| F((Ty0.6 0095 3P an) (o — &0, x0 — yo)| < CR=PWPHRT=P () Ve (R =P (30)) 1AL,

Next, note that x can be replaced by any fixed function in C2° by taking v and ¢ with U (E)(x) #0
on supp x. Putting ¢ = 19 — & and z = xo — yp, we obtain that, for every &, 8 € N”,

| F(@F 0 (ry,60008 82 a) (. 2] < ChO=PPURI=P (o) YE (010 (g — 2)) 1P
Hence, i

122 PF ((Ty0,6 08888 an) (¢, 2)] < CRI=PBIR =P (o) Yo (h' =P (g — 2)) 1AL,
In particular, for every N > 0,

| F (30,6008 3P an) (¢, 2)| < CRU=PIPHRT=P () Ve 1Py =N (z) =N,
and, as a consequence, we obtain
g9l an(x, &) = 9£0 (a(hx, £)) = O (W' =PIP\(p! =P x" k= IPT),
This gives the first claim of the lemma for kK > 0. For k£ < 0, we consider (h~*x’ )_kA and use the
composition formulae. A nearly identical argument yields the second claim. U
5C. Definition of the second microlocal class. With Proposition 5.9 in place, we are now in a position
to define the class of operators with symbols in SIIE’ Lo
Definition 5.12. Let I' ¢ U C T*M be a coisotropic submanifold, U an open set, and L a Lagrangian
foliation on I'. A chart for (I', L) is a symplectomorphism
k:Uy—V, UycCU, VCT*R",

such that « (UyNT) C VNTgand ky gL, = (Lo)kg) forg e ' NU.
We now define the pseudodifferential operators associated to (I', L).

Definition 5.13. Let M be a smooth, compact manifold and U C T*M open, I' C U a coisotropic
submanifold, L a Lagrangian foliation on I', and p € [0, 1). We say that A : D'(M) — C*(M) is a
semiclassical pseudodifferential operator with symbol class Slli’ L. p(U ) (and write A € \Ifl]f’ L. p(U )) if there
are charts {Kg}?’:l for (I', L) and symbols {Cl@}é\;l - §1’E L. p(U ) such that A can be written in the form

N
A=>"1T/0p,(a0) Ty + O (h™)pr s . (5-23)
=1

where T; and Te/ are FIOs quantizing «, and K[l fore=1,...,N.
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We say that A is a semiclassical pseudodifferential operator with symbol class Slli’ p(U ) (and write
A€ \IJlli’p(U)) if there are symbols {ag}évzl C E{E’p(U) such that A can be written in the form (5-23).

Lemma 5.14. Suppose that k : U — T*R" is a chart for (T, L), T quantizes «, and T' quantizes ", If
A€ ‘-Iflli’L’p(U), then there is a € §1’i’L’p(U) with suppa(-, -, A) C «(U) such that
TAT' =Op,,(a) + O (h™)pr_ .

Moreover, if A is given by (5-23), then

N
a0 K, =0 (T'T) Y o(T{Ty) (a0 Ky)) + O g
=1 ;

Proof. Note that we can write
N
TAT' =Y " TT/Op,(a)TeT' + O(h™®)p .
e=1

Next, note that 7’7, quantizes « ok, Uand that T, 7" quantizes k; ok ~!. Letting Fy be a microlocally unitary
~! we have that F; satisfies the hypotheses of Proposition 5.9 and we can write

FIO quantizing x; o
T.T'=C.F, and TT/=F;'Cg
with C, Cg € W(M) satisfying o (CrCr) = (o (T/Ty) ok, ) (o (T'T) ok, ). Therefore,
TT,Op,(a) T;T" = F; ' CrOpy (a)C1 Fy = Opy, (be) + (W) s,
= (0 (CRCL) ok ok ) (g o Keop-1) + O(hl—/))gﬁ._p. O

Lemma 5.15. Let ' C U C T*M be a coisotropic submanifold, U be an open set, and L be a Lagrangian
foliation on I. There is a principal symbol map

or.L: Vi, ,(U) = St ,W)/h'PSE (U)
such that, for A € \IJIJL (U) and B € \IJF L p(U),
or,.(AB) =or,L(A)or,.(B) and or ([A, B]) = —ih{or,.(A),or L(B)}. (5-24)
Furthermore, the sequence
0— h'" P (U) — Wi, (U) 5 St (U)/RPSE (U) >0
is exact. The same holds with or, Yr ,, and SF’ o

Proof. For A as in (5-23), we define

N
or,L(A) =) o (T T)) (@ ox),
=1
where dg(x, &) :=ae(x, &, h~"x’). The fact that o is well defined then follows from Lemma 5.14, and
the formulae (5-24) follow from Lemma 5.6.
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To see that the sequence is exact, we only need to check that if A € \lllli’ L.p and or 1 (A) =0, then
Aehl-r \Ifl’i_Ll o To do this, we may assume that WF,’(A) C U such that there is a chart (k, U ) for (I", L).
Let T be a microlocally unitary FIO quantizing « and suppose that o 7 (A) € h'~ /’S . Then, by
the first part of Lemma 5.14, we know TAT ~! Oph (a) + O (h*™) for some a € S Then, by the
second part of Lemma 5.14, since o 1 (A) € hl= pSlli Ll oo WE have that a € h'~ /’Slli’ Ll’ 0 and, in particular,
Aeh' P! O

Note that if A € WP (M), then A € \Ilr L.p and o (A) = or(A). Furthermore, if A € WK
Aevf,  andor(A) =or L(A).

T.p then

Lemma 5.16. Let ' C U C T*M be a coisotropic submanifold, U be an open set, and L be a Lagrangian
foliation on I'. There is a noncanonical quantization procedure

Oph Sllin(U)_"per(U)
such that, forall A € \IJI- L p(U), thereisa € SF L p(U) such that Op,E’L(a) =A+ Oh*®)p_co and
or.LoOp, i Sk, (U) — Sk, U)/h' P St )
is the natural projection map.

Proof. Let {(ky, Ug)} | be charts for (I, L) such that (U v 18 a locally finite cover for U, Ty and Te’
quantize k, and Ke , respectlvely, and o (T, Ty) € C2°(U,) is a partition of unity on U. Leta € SF L p(U ).
Then, define a, € SFO’LO’p such that a;(x, &, h=Px') := (yea) ok~ (x, €), where x;, =1 on suppa(T Ty).
We then define the quantization map

N
Op;, “(a) :==>_ T/Op,(a)T.
=1

The fact that ot o Op,f’ is the natural projection follows immediately. Now, fix A € ‘~Ilr L.,(U). Put
ao = or.(A). Then, A = Op; " (ag) +h' =P Ay, where A € Wi . We define a; = ot (A¢) inductively

for k > 1 by )

h(k+])(l_p)Ak+1 —A— th(l—p) OP;IZ’L(Clk)-
k=0

Then, lettinga ~ ), h*(1=P) g, we have A = Op,l;’L(a) 4+ O (h®°)p_ ¢~ as claimed. O

Remark 5.17. Note that £ := ngvzl T,T, is an elliptic pseudodifferential operator with symbol 1.
Therefore, there is E’ € W0 with o (E’) = 1 such that E’EE’ =1d. Replacing T; by E'T; and T, by T, E’,
we may (and will) ask for Zévz 1 T Té =1d, and so Opg’L(l) =1Id.

Lemma 5.18. Let I' C U C T*M be a coisotropic submanifold. If A € \I-’llf’p(U) and P € V" (U) with
symbol p such that, for every q € I', we have H,(q) € T,I". Then,

i _
[P, A]=Op; (Hpa) + O(h' ")y,

where a(x, &; h) =or(A)(x, &, h—Px’).
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Proof. Suppose that WF,,'(A) C U, for U, C U open, and suppose that k : Uy — T*R" is a chart
for (I', L). Note that we may assume that WF;,(A)" C U, and then use a partition of unity to cover U
with a family {U,},. Therefore, there exist a Fourier integral operator T that is microlocally elliptic on U,
and quantizes k and a € §{i’p such that A = T_lé\bh (a)T + O (h®)p— c=~. Then, on WF;'(A),

TP, AIT~' =[TPT~", Op,(a)]+ O (h™)p_ .
Now, TPT~! =O0p,(pox~")+ O(h)yn1. Hence, a direct computation using Lemma 5.7 gives
(7 PT~", Opy (@)] = ~ihOp; () + O (h* )i 2
with c(x, &, h = x') = Hpo,-1 (a(x, £, h=x")) € S{_' (Uy). In particular,
[P, Al = —ihT~'Op,(c)T + Oh*™") g2
Therefore, [P, A] € hW[ ' with symbol or(ih '[P, A]) = H,(a(x, & h™"x")). O

6. An uncertainty principle for coisotropic localizers

The first goal of this section is to build a family of cut-off operators X, with y € M that act as the identity
on the shrinking ball B(y, h”) and such that they commute with P in a fixed-size neighborhood of y.
This is the content of Section 6A. The second goal is to control || X, X, [[;2_,,2 in terms of the distance
d(y1, y2) as this distance shrinks to 0. We do this in Section 6B. Finally, in Section 6C, we study the
consequences of these estimates for the almost-orthogonality of X ,.

In order to localize to the ball B(y, h”) in a way compatible with microlocalization we need to make
sense of

X0 =% (Thrdee, ), 7 ecE-1,1),

as an operator in some anisotropic pseudodifferential calculus. As a function, x, is in the symbol
class Sr_;xi,’ where I'y and L, are the coisotropic submanifold and Lagrangian foliation defined as
follows: fix § > 0, to be chosen small later, and, for each x € M, let

ry:= U 0 (2)), Q,:={f¢€ Ty*M 1= &gl < 6}. (6-1)
|t]< 2 inj(a)

In this section, we construct localizers to I'y, adapted to the Laplacian and study the incompatibility
between localization to I'y, and I'y, as a function of the distance between y, y, € M. Let y € M. In what
follows we work with the Lagrangian foliation Ly of I'y given by

Ly = {Ly,q}QEFys Ly,q = ((/)t)*(TqT;M),
where ¢ = ¢,(q) for some |f| < %inj(M) and g € Q.

Remark 6.1. In fact, it will be enough for us to show that x, (x) x (8! (IhDlg —1)) € ¥r, L, since we
will be working near the characteristic variety for the Laplacian.
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6A. Coisotropic cutoffs adapted to the Laplacian.

Lemma 6.2. Letye M, 0 <e <4, 0<p <1, x € CX((—1, 1)), and define the operator x;, y by

) = 7 (3h7d e ) [0py (7 (£l = D) Ju] 0. 62
Then, xp,y € \Illfyﬁy,p.

Proof. We will use Lemma 5.11 to prove the claim. First, observe that we may work in a single chart for
(T'y, L) by using a partition of unity. Therefore, suppose that B € W0 and « : Uy — T*R" is a chart for
(I'y, Ly), Vo € Up, and T is an FIO quantizing « that is microlocally unitary on V. Furthermore, since
k«Ly = Lo, we may assume that x (Up N T;‘M ) C TO* R". Denote the microlocal inverse of 7 by T'. Then,
observe that, for A and B with wavefront set in V,

adA(TBT/) =T adT/AT(B)T/ + O h*®)p .
By a partition of unity, we will work as though yx, , were microsupported in Uy. We then consider, for
all N > 0and o, B € N,
W2 2N ad?, ad) ) (T xnyT)
=h 2PN PN ad?per @dhyp 7 )T+ O (™) proscoe.

In order to prove the requisite estimates, we will first view x; , as an element of the model microlocal
class. In particular, we work with x € M written in geodesic normal coordinates centered at y, so that

) = % (1n21x1) [0y (7 (L kel = D) Ju] o).
Then,
xiny =00, (2 20) 0py (2 (Laig1 - 1))
is an element of ‘31:00,20, , With r = n, and so we can apply Lemma 5.7 to compute ada(xs,y) for
A € WT°°(M). In particular,
adrhp, 7 (Xn.y) = Op; () + O (h™), (6-3)

where ¢ € hl_pgr_o‘ﬁo’p is supported on {(x, &, 1) : |x] < eh®, |A| < e}. Now, suppose ¢ € 3’41?0?20’0 is
supported on {(x, &, 1) : |x| < eh”, |A| < ¢} and B € ¥V~ with 6(B)(0, &) = 0. Then, again using

Lemma 5.7 and the fact that 9z/0 (B)|y=0 =0,
adg(Opj,(c)) = Opy,(c) + O (h™), (6-4)

where ¢’ € hglfoo’oLo,p is supported on {(x, &, A) : |x| < eh”, |A| <e&}.
Now, note that since K(T)TM ) C TyR", then, foralli =1, ..., n, we have that B = T'x; T has symbol
o (B) =[b(x, &)x]; for some b € C*°(T*M; M,,%,). Therefore, (6-3) and (6-4) yield

ad?_ 7 7 (adh, - Gny)) = BO=P1HEDGp, () + 0 (1),
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where ¢’ € SFO Lo.p is supported on {(x, &, 1) : |x| < eh”, |A| < &}. Finally, using again that 7’x; T has
symbol [b(x, £)x];, we have that (6-4) gives

—2N, 2N 1-
172N PN ad® 7 g (adF 2 Gty 2 g2 < CHUTPY WD, O

We next construct a pseudodifferential cutoff, X, € \IJF “p» Which is microlocally the identity near S M
and which essentially commutes with P = —th — 1 near y. In particular, we will have

Xh,yXy = Xn,y+ O(hoo)\llﬂo-

When considering the value of a quasimode u that is 4” close to the point y, this will allow us to effectively
work with X, u instead.

Theorem 6.3. Let y € M, 0 <& <&, and 0 < p < 1. Then, there exists X, € \IJITS; C qjiﬁv,p satisfying
(1) If xn.y is defined as in (6-2), then

Xh,yXy = Xn,y+ O (h®)gy-o. (6-5)
(2) WE,/([P, X,]) N {(X» §):x e B(y, %inj(M)), §e Qx} =3J

Proof. First, we note that we will actually prove that X, € W o‘;, and so the result will follow since

Y e Y °1,.p- Let H C T*M be transverse to the Hamiltonian flow H, such that €2, C . Next, let
x e CX((-2, 2)) with » = 1 on [—1, 1], and define x € CX(H) by

_ 2
w0 = (hPd(x, y)x (51 =161 ),
where § is as in the definition of Q. Let ¢ € C°(T*M) with
=1 on B(y, 5inj(M))N{l€l, <2},  suppy C B(y, 3 inj(M)).

Then, let x( be defined locally by H, xo = 0 and xol3 = 0 such that x € S . That is, xo(¢:(q)) =
Y@ (q)) xo(g) for |t] <inj(M) and g € H. Next, observe that by Lemma 5.7 there isep €S Vo,j; such that

— 5 [P.Op (xo)] = h' ™" Opj>(eo).  suppeo N B(y. 3injM)) < | J (M Nsupp o).
lt|<3 inj(M)
(Here and below 01 denotes the gradient of x.) Suppose that there exist yx—1, ex—1 € S;:‘; such that
— 5 [P Op} (-1 = h¥1 77 Opy (exr). suppexi NB(y, zinjM)) € ) @n(HNsupp dno).
1] <3 inj(M)
Then, define y; € SIT:C;J by solving locally H, xx = ex—1 and x|y = 0. Note that then
supp i« N B(y, 5inj(M) € | @ (H Nsupp dxo)

It]<3 inj(M)
and

BP0 (L1P, Op G + 107 701) = Hy i — ex 1 =0.
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In particular, with xi := xx—1 + h*17P) %, we obtain —;l;[P, Op}* (xi)] = h* VU= Op, (¢;) with
ex € Sp>° and

v P

supp ex N B(y, % inj(M)) C U @ (H N supp 9x).
|t]<3 inj(M)
Setting

Xy =0p; (Xoo) and Yoo~ (Xo + Z(Xk-i—l - Xk)),
X

we have that X, satisfies the second claim and, moreover, x» =1 on
U e nidey) <h?yn{lgle - 1] < 35}).
lt]<1 inj(M)
To see the first claim, observe that, for ¢ > 0 small enough,
B(y, eh”)N{||&], — 1| <8} C U o (HN{d(x,y) <h?yn{llElg — 1] < 15}).
lt|< inj(M)

and hence, by Lemma 5.6,
Xy Xy = Xy OPb E(1) + O(h®) g = Xy + O (h™)y-o. O

6B. An uncertainty principle for coisotropic localizers. Let I'(t) C T*R", t € (—e&y, &), be a smooth
family of coisotropic submanifolds of dimension #n 4 1 with

L(0) ={(0, x,, &, &) : %, €R, & e R, £, R}

Assume that for each ¢, we define I'(¢) by the functions {g; (t)}f:_] C C*®(R*") with ¢;(0) = x; (note that

qi () should be thought of as a function in C®(R?) parametrized by ¢). Moreover, assume that there are
¢,C>0suchthatfori=1,...,n—1,

{qi(®), xi}[ = clt| on I'(O)NT(r), || >0, (6-6)
and, foralli, j=1,...,n—1andall t € (—&o, &),
{qi(), ¢} =0, {qi®),&}=0, Hai@®),x;}l<Cr> on TOYNT(), i#j (67
The main goal of this section is to prove the following proposition.

Proposition 6.4. Let 0 < p < 1 and {I'(t) : t € (—e&g, &)} be as above. Suppose that X (t) € \Iflf(cg”p for
all t € (—ep, €9) and that there is € > 0 such that h*~¢ < |t| < &g. Then,

IX(O)X (1)l 2, 2 < CRODEP=D/20=m/2,

Proof. We begin by finding a convenient chart for I'(¢). By Darboux’s theorem (see, e.g., [Zworski
2012, Theorem 12.1]), there is a smooth family of symplectomorphisms «; : V| — V; such that, for
j=1,...,n—1,

Kk (qi () =y; and K& =ny, (6-8)
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where V| and V, are simply connected neighborhoods of 0. Note that «,(I"(0)) = I'(¢) with this setup,
Uis a chart for I'(¢). By [Zworski 2012, Theorem 11.4], the symplectomorphism «; can be extended
to a family of symplectomorphisms on 7*R" that is the identity outside a compact set, and such that there

SO K,
is a smooth family of symbols p; € C°(T*R") satisfying 0;«; = (k;)+«Hp,.
Now, let U(r) : L> — L? solve
(hD;+Op,(p:)U(t) =0, U©)=1d.
Then, U (¢) is microlocally unitary from V; to V; in the sense that if a € C2°(V1) and b € C2°(V>) then
[U®]*U () Opy(a) = Opy(a) + O(h™*)g—= and  U(H)[U(1)]" Op,(b) = Op;,(b) + O (h™) g,

and U (¢) quantizes «,. Moreover,

U / J@CED=D By ¢ p By dn,

~ @rhy
where b(t, -) € S©"P(T*R") and the phase function ¢ (¢, -) € C®(T*R"; R) satisfies

0P+ pi(x,0:¢0) =0, @0, x,n)=(x,n)
for all ¢ € (—e&y, &9). Since U (¢) is microlocally unitary, it is enough to estimate the operator
A@t) =XO0O)XU ().

First, note that since X (¢) € \IJF_(‘;” , and U (t) quantizes «;, there exists a(t) € §;O?f) with t € (—&g, &9)
such that X (1) = U (t)Op,, (@(t)[U ()]* + O (h*®)2_, 2, and so

A(t) = Op,,(a(0))U (1)Opy (a(t)) + O (h™) 12, ;2.

Fix N>n—1landlet y = x(1) € §1io]}7p be such that |x (1)| > ¢(A)~N. Now, since a(t) € SI?O‘?‘,;, by the

elliptic parametrix construction there are ey, (¢), eg(t) € ’51?00‘; such that

Opy, (e (1))Opy,(x) = Opy (a(t)) + O(h*™) 1212, Op;,(x)Opy(er (1) = Opy(a(r)) + O (h®) 2, 12

for all # € (—&p, €9). Note that we are implicitly using the fact that a(¢) is compactly supported in (x, &)
to handle the fact that x is not compactly supported in (x, §). Thus,

A(#) = Op, (e (0)Op, GOU (1)0p;, GOOPy (er (1)) + O (h™) 12, 2.
Since 6i)h (er(t)) and E)EJh (er (1)) are L? bounded uniformly in ¢ € (—&gp, £9), wWe estimate
A() := Op;, GOU (1) Opy, (-
In fact, we estimate B(¢) := A(t)(A(t))* by considering its kernel:

B(t; x,y) = / U)(x, w)U @) (w, y)x (hPx"Yx (h~"y) x (hPw)* dw

1
T Qrh)>

/eid)(t,x,w,y,r]f)/hb(t’ X, U)B(t, y, %')X(hipx/)x(hipy/))((hipw/)z dw d?]d%‘
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with ®(#, x, w,y,n,&) = ¢(t,x,n) —P(t,y,&) + (w, & — n). First, performing stationary phase in
(wn, 1) yields

1 -
B(t, X, y) = W / F(t,x, w/, sn)F(t, y, w/, é"n) dw/dfn,
Ft,x,w, &) = / ! GUETE D Y (1 x o £ x (B X x (hPw) dn
for some by € SMP(T*R™). Next, note that since ¢ (0, x, n) = (x, n),

¢(t’x’ 77)— (X, 77) =tq~>(t’-x’ 77)

with ¢ such that, for every multi-index e, there exists Co > 0 with |97, | ¢| < Cq.
Next, we claim that there exists C > 0 such that

1@ ¢ x.n) ' <C if (x,n) €T(0), dy¢(t,x,m)=0. (6-9)

We postpone the proof of (6-9) and proceed to finish the proof of the lemma.

To continue the proof, note that, modulo an O (hN®) error, we may assume that the integrand of
B(t; x, y) is supported in {(x, y, w') : |x'| <7, |y/| <h?7¢, |w'| < h?~¢} and h?~* < |t|. Therefore,
the bound in (6-9) continues to hold on the support of the integrand. By (6-9) and

05 (8, x,m) —19(t, x, 1)) =0, (6-10)

there is a unique critical point 7.(t, x, w’, §,) for the map ' +— ¢(t, x, 7', §,) — (w’, n’), in an O(1)
neighborhood of 7... Indeed, since |8$,¢| <Ct,

Oyp =1 (b (e, x, ml, E' = 1), 0 — ) + O(n =),

In particular, 7. is the unique solution to d,y¢ (¢, x, n.., &) —w’ = 0.
Next, again using (6-10), by applying the method of stationary phase in " to F with small parameter //¢,

we obtain
1

Q2 h)rgn—1
q)l(ta xa w/a ya %—n) = llj(t’ x’ w/’ Sl’l) - \Ij(t’ y’ w/’ Sl’l)v
\IJ(t’ X, w/v Sn) = ¢(t’ X, n;(ta X, w/a én)v én) - (w/v n(/;(tv X, w/v sn)):
Bi(t; x, y,w', 0, &) == ba(t, x, 0, E)b(t, y, E, &) x (W x) x (WP y ) x (WP w')?

for some by € S°MP(T*R"). Next, observe that

B(t, X, y) — feiq)](l,x,w’,y’fn)/hBl(l,; X, y, wl’ ni’ s) dw/ dén,

O, 0g, W (¢, x, W', &) = B, 0, (x —w', ) + Xn&n + O ()
= (X' —w', 8,3, 1) + 1+ O(1)
=140+ 00" =1+0(),

where in the last line we use the fact that |¢| > h°~%, and therefore, there exist ¢ > 0 and a function
g=g(x', y, w', &) such that |3z, ®1| > c|x, — g|. In particular, integration by parts in &, (with the operator
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L=h>+ a(g»nCIDIhDgn)/(h2 + 10g, @1 [?)) shows that for any N > 0 there is Cy > 0 such that

12N+ 0|, — gV
(2 + 5w — gV

Applying Schur’s lemma together with the fact that there exists C > 0 such that, for all ¢,

|B(t; x, )| < Cyh ™"t h? =Dy (=P y ) x (kP x")

SHP/ IB(t;x,y)Idersup/ |B(t; x, y)| dx < ChZp=Dr=1yl=n
X y

yields that || B(1)||;2_, ;2 < ChZP=D@=D¢l=n for all t € (—e&y, &9), and hence
IX )X ()12 2 < CROT D=V A=m/2
as claimed.

Proof of the bound in (6-9). Let ¢, (x, n) := ¢ (¢, x, n) and ¢, (x, y, n) := ¢,;(x, n)—(y, n). Then we have
Cy, ={(x,y,n) : 3y (x, n) = y}, and so

Ay, ={(x, 0 (x, 1), 3y (x, m), —m)} C T*R" x T*R".
In particular, since A, is the twisted graph of k;, we have that «; is characterized by

Kt(an¢t(x’ ’7)’ 77) = (X, ax¢t(xs 77))

Furthermore, since «;(I'(0)) = I'(¢), we have
L@ ={(x,8) (v, m) =(x,8), y=0¢:(x,m), § =0x¢:(x, m), (y,n) €0}
Then, using k&, = 1,
() ={(x,8): & = 0w (x, ), dydy(x,n) =0, & =n,, n €R"}.

Next, let p := (x, 17) € I'(0) be such that 9,y ¢, (x, 1) = 0. Without loss of generality, in what follows
we assume that x,, = 0. Letting I'o(¢) := I'(#)|{x, =0y We have that

FO(I) = {(X, S) :Sl = 8)C/¢l(x’ 77)’ an/d)l‘(x’ 77) = 0’ Xn = 07 gn =1MNn, NE Rn}
In particular, letting § = (0@ (P), Mn) and pg := (X, 5), we have pg € I'g(#) NT'o(0) and
TﬁoFO(t) = {(5x, 53;‘) : 55’ = 0,0y (D) + anax’¢t(ﬁ)5ns
ax 8n’¢t(p~)8x + 8n8n’¢t(p~)6n = 0’ 8«\7»1 = O’ 55,1 = 517”, 517 € [Rn}.

Next, we note that d,, € Tj,I"(¢) and Hy, ;) € T5,I'(¢) foralli =1, ..., n—1. Therefore, since d,,¢q; (1) =0,
we also know that Hq/i(t) = (0gqi (1), 0, =0yq;(1),0) € T5,T'o(¢) foralli =1, ...,n— 1. We claim that
there exists C > 0 such that, for all v = (§,/, 0, 8¢/, 0) € span{H‘;[_ (t)}:'l:_ll C T5,I' (), we have

81 = Ctll g . (6-11)
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Figure 2. A pictorial representation of the coisotropics involved in Corollary 6.5,
where yy, »; is the geodesic from x; to x;. Localization to both I'y; and 'y, implies
localization in the nonsymplectically orthogonal directions x” and &’. The uncertainty
principle then rules this behavior out.

Suppose that the claim in (6-11) holds. Then, note that for each such v, since §,, =0 and 6;, = 0, we
have that there is 8,, € R"~! such that

8¢ = 05y (P)Sx + Dbt (D)8, 83,y b1(P)Sy + 0 (P)8y = 0.
Using that 8)%,?7,@( p)=1d+0(t) and Bf,d),(ﬁ) = 0(t), we conclude that
O (P[0 oy (D)™ 8 = (07,00 (D)0, b1 ()] 05 bs () — 031,y ()8
and so
0 (P)Ad+0(1)8e = (= 1d+0(1))8,. (6-12)

Let H, = (8.0, 8. 0). Since j € I'(#) NT(0), assumptions (6-6) and (6-7) yield that the vectors

{5)(;)}?:—11 are linearly independent. Indeed, setting e; := (§; j)}:l] e R

89 = d:.qi (e + 0%, 1954i(1)] = Ct (6-13)
for ¢ small enough. Furthermore, (6-12) then yields that the {5‘;{)}:’:—11 are linearly independent. Then,
combining (6-12) with (6-11) yields (6-9) as claimed. O

To finish it only remains to prove (6-11). Let v = (8,0, §¢/, 0) € span{H ;i ([)}?:_11. Then, there
is a € R*! such that 8, = Z?;ll aiéfj,) and 8¢ = Z;:]l aiééﬁ). Next, note that by (6-13) we have
18211 = llall(Ct + O(t%)). Since I8¢/ 1| < Collall for some Cy > 0, the claim in (6-11) follows. O

For each x € M, let I, be as in (6-1). (See Figure 2 for a schematic representation of these two
coisotropic submanifolds.) Then we have the following result.

Corollary 6.5. Let0 < p <1, 0 <e < p,and y(t) : (—eg, &9) = M be a unit speed geodesic. Then,

for X (1) € \Illfyo(i’p and h such that h*~¢ < |t| < &,

X)X ()|l 2 2 < CRO=DEP=D/2,(A=m)/2
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Proof. To do this, we study the geometry of the flow-out coisotropics I'y, ;). Namely, we prove that I'),(;
is defined by some functions {g;(¢)}7_, with ¢;(0) = x; that satisfy (6-6) and (6-7). We then apply
Proposition 6.4 to I'(¢) = k! (') )) for a suitable symplectomorphism «.

Fix coordinates (x’, x,,) € R"~! x R on M such that y(t) =(0,1) and

2 _
9z 1€ o) |x:0’$:(0’1) =1Id.

For each t € (—¢&, &), let H; be the submanifold transverse to the Hamiltonian vector field H, defined by

Hy = {(x/, f, Sla En) 1 28, > |§|ga |xl| < do},

where 89 > 0 is chosen such that I'), ) NH; = {(0, 1, &', &,) : 2&, > |&|g, |1&], — 1] < 8).

In particular, as a subset of {||§], — 1| < 8}, we define I'), ;) N'H; by the coordinate functions {xi}?;ll.
For each ¢t € (—e&g, g9) let g;(¢) : H; — R be given by ¢;(¢) = x; fori = 1,...,n — 1. Then, define
{gi (Y= on T*M by

Hpqi(t) =0,  qi(D)|y, = qi(1).

For all ¢, we note that H,(H,,)q;(t)) =0 and

{qi (1), qj (O}, = e, qi (1), qj (1) — e, qj (1)Dr, i (1) + Hyy(0)q; (1),

where H is the Hamiltonian vector field in T*{x, = t}. In particular, since 0,q;(t) = 0 and ﬁqi )
is tangent to H;, we have {¢;(7), gj(t)}|%, = 0. Hence, {gi(¢), q;(1)} =0, {g:(t), p} =0, ¢:(0) = x;,
and {g; (t)};’_l1 define I'y, ;). Next, observe that there exists s € R such that, foreachi =1,...,n—1,

qi (0)(x, &) = x;(ps(x, §)) with ¢, (x, §) € Hop. Since g, p # 0 on Ho, for E near O there exist ag and eg
such that

p(x, &) —E=ep(x,§)(& —ap(x,§) (6-14)

with eg > ¢ for some constant ¢ > 0. In particular, ¢, = €* Hy is a reparametrization of ¢; 1= e*Hen-ap) op

{p = E}, and we have that, for (x,&) e {p=E}andalli=1,...,n—1,

qi(0)(x, €) = x; (¢, (x, §)) = xi + Xpz,a£ (x, &) + O (X)) .

In particular, on H; N {p = E}, using this together with the fact that since Hy, () is tangent to {p = E}
and x, =t, 0g,q;(t) = 0, (t) =0, we have

{q; @), qi O }u,np=E) = 06,9 (£)0x,qi(0) — 0,4, (1) g,q; (0) + ﬁqj(t)Qi 0)
= 3, (1) 3y, i (0) — 8y, q; (1) O(t*) + ﬁq,«(z)qi 0)
= 0(t%) + 3, (105,a) (0, §).

Now, since 8§p|T{p=E} >0and, foralli, j=1,...,n,
Oz, p = 0g; 0, ep(§n — ap) + g€ (8nj — 0g;ap) + 0g;€ g (8pi — Og,ap) — ep g, 0g,ak, (6-15)
we have, as quadratic forms, Bszplr{p:E} = —eEagaEIT{p:E}. Indeed, if V = Zj Vf'a;,. e T{p = E}, then

0=V(p—E)lp-g =eeVés—ap)+ Ver) (& — E)lp—g = eV (x —ar),
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and therefore, since eg # 0, we have V (§, —ag)|,—r = 0. Next, observe that, on {p = E},

dcer Y (8 — Ogap) VI = dgep(V (&, —ar)) =0.
J
In particular, the first three terms in (6-15) vanish on T{p = E}.
Hence, since Bg, Plx=0,6=(,1) = Id, we have that 8§,a5(0, &’) < 0 is a multiple of the identity at x =0,
&' =0, and p = E. Next, observe that

Yoy Ny C{(0,5,0,8,) :5s €R, & =0}

Therefore, there are ¢, C > 0 with

8ijt + 0(t%) < [{qi (1), 4O o, n(p=E)nr, T, | < Coijt + O t?)

on I'y0) N Ty ). Then, ¢8;jt + O (t?) < |{qi(1), q;(O)}|{p=r}| < C8;jt + O(t?) by invariance under H,.
Since E small is arbitrary, this holds on I'y o) N 'y, ().

Now, by Darboux’s theorem, there is a symplectomorphism « such that, foralli =1,...,n — 1,
k*q;(0) = x; and k*p = &,. In particular, Kfl(Fy(o)) CcT0)={(0, x,, &, &) :x, €R, E e R" ! x R} and,
abusing notation slightly by relabeling ¢; (¢) = x*¢; (¢), we have that (6-6) and (6-7) hold. In particular,
Proposition 6.4 applies to I'(t) = k! Ty ).

Now, let U be a microlocally unitary quantization of x and X (¢) € \Ilr_y‘f)’ ,- Then, U XU e WP

L(@),p
and hence the corollary is proved. (I

6C. Almost orthogonality for coisotropic cutoffs. In this section, we finally prove an estimate which
shows that coisotropic cutoffs associated with I'y, for many x; are almost orthogonal. This, together with
the fact that these cutoffs respect pointwise values near x;, is what allows us to control the number of
points at which a quasimode may be large.

Proposition 6.6. Let {B(x;, R)}\.\ be a (D, R)-good cover for M, and X; € g™ i =1,...,N(h),
with uniform symbol estimates. Then, there are C > 0 and hy > 0 such that, for all 0 < h < hy,

J C{l,....,N(h)}and u € L*(M), we have
D IXGulf: < €A+ WP RTHODZZ GO 44 2T RH D) ull. (6-16)
ieJ

Proof. To prove this bound we will decompose the sum in (6-16) as

2
D oIXully = | Y Xiu <Z X;‘X,-u,u>. (6-17)

e ieg L2 \ijeg
i#j

First, we note that by Corollary 6.5, (once with X (0) = Xj’.k and X (1) = X;, and once with X(0) = X;
and X (1) = X) there exists C > 0 such that, for i # j,

1XG X HIXG X < CRO™ DO 2d (g, )72,
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Therefore, by the Cotlar—Stein lemma,
> X < sup (uxjn + > IXIxY ||X,-X;‘||“2)
jeg jegd i€T\(j)

<24 CRODO=YD2 qup 37 d(a, x) T,
J&T je\(j}

To estimate the sum, observe that there exists C > 0 such that, for any j € J and any positive integer k,

kn
% < #{l :2kR < d(_xi’ X]) < 2k+1R} < C2(k+l)n.

In particular, there is C > 0 such that, for any j € 7,

nllogz ‘J‘
Z d(x;, xj)(lfn)/4 <C Z 2kn(2kR)(lfn)/4 < C|j|(3n+l)/(4n)R(1fn)/4‘ (6-18)
ieJ\{j} k=0

Therefore, we shall bound the first term in (6-17) using

DX

jeJd

< C 4 Ch=D0=1/2/2 pU=m)/4) 7 Gnt1)/Gn), (6-19)

We next proceed to control the second term in (6-17). Let X €V Oop such that
Xj )

X X;=Xj+0Mh®) 2.

By the Cotlar-Stein Lemma,

YOXiXi| < sup YO IXX X XXXl X X Xk XF XX+ 0(h1 TP, (6-20)
ijed kled ; jeg

i#j i#]

By Corollary 6.5 there exists C > 0 such that, for k # ¢, i # J,

IXEX o X XXXl < CRO™VCP =Y min{1, h D7D 2a (0, 20" P ) d (e, xe)d (g, x0) T2,

Using that
sup d (x, x¢)!' % < RUZW/A,
k.teJg
ke

adding in (6-20), and combining with the bound in (6-18), we get

> X%
i.jeJ

i#]j

In particular, combining (6-19) and (6-21) into (6-17) we obtain

Z 1X;u|? < C(1 4 h@=D@=1/2) pU=m)/2| 7| Ga+1)/Cn) +h3(n—l)(2p—l)/4R3(l—n)/4|j|(3n+l)/(2n))”u”iz
ieJ

< Ch(n—l)(2p—1)/2(1 +h(n—l)(Zp—l)/4|j|(3n+1)/(4n)R(1—n)/4)|j|(3n+1)/(4n)R(1—n)/2. (6-21)

< C(l +h(n—1)(,0—1/2)R(1—n)/2(1 + (th—lR—l)(n—l)/4)|j|(3n+1)/(2n))”u”iZ. 0
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