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This work presents technical details of determining the finite-volume energy spectra for the scat-
tering amplitude of the coupled-channel 7% — KN from lattice QCD data. The importance of
reliably extracting such spectra lies in the crucial dependence of the hadronic scattering ampli-
tudes analysis on the energy spectrum when using Liischer’s formalism. Results of the methods
used are presented and the final finite-volume spectra are shown. The analysis of the scattering
amplitude based on these results, exhibits a two-pole structure for the A(1405), a virtual bound
state below the 7 threshold and a resonance pole right below the KN threshold.
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1. Introduction

The A(1405) baryon with strangeness S = —1, isospin / = 0, negative parity and spinJ = 1/2is
recognized as a 4-star resonance by the Particle Data Group [1], implying a somewhat well-known
hadron. Tt was first predicted in Ref. [2], where the existence of a resonance in the 7~ X* spec-
trum was suggested just below the K~ p threshold. Historically, this hadron attracted attention due
to its unexpectedly low mass compared to its nucleon counterpart N(1535) when studied from a
conventional quark model picture. Currently, the growing interest in investigating this baryon is
rather based on the ideas proposed in Ref. [3], specifically the concept of two-pole structures. This
concept allows the existence of an additional state, and cases like the A(1405) can be dynamically
generated by meson-baryon interactions [4, 5]. Although many lattice QCD studies have been con-
ducted since, none of them have extracted the full spectrum in the 7% — KN coupled-channel region
in order to appropriately study the pole structure.

These aspects motivated this first study [6] determining the coupled-channel 7% — KN scatter-
ing amplitudes from lattice QCD, thus attempting to get a better understanding of the pole structure
and the positions of the resonance poles in the A(1405) region. In order to achieve this, the Liischer
formalism [7, 8] is employed, which relates discrete finite-volume energy spectra extracted from lat-
tice QCD data to scattering amplitudes. Given the crucial dependence of the scattering amplitudes
on the finite-volume spectra, the latter must be extracted reliably from lattice QCD calculations.
Therefore, the main focus of this report is to present essential specifics of the lattice QCD calcula-
tions, which include details about the generation of lattice data, type of operators used to construct
correlation functions, analysis of correlation functions, and final extraction of finite-volume energy
spectra.

This brief introduction is followed by Section 2 which summarizes all the details of the lattice
QCD ensemble used, including the construction of correlation functions based on a diverse set of
interpolating operators. This part also introduces the methodology used to diagonalize correlation
matrices, its variations and example results. Section 2.4 presents the fits performed to lattice data
that led to the final results, meaning the final finite-volume energy spectra. Finally, Section 3 outlines
the main results and conclusions from the methods used, as well as the importance for the analysis
of scattering amplitudes.

2. Spectrum determination

The determination of the finite-volume energy spectra from lattice QCD data starts with the
generation of gauge configurations, followed by the evaluation of correlation functions using an
appropriate operator basis, continued by diagonalization of these correlation functions, and finally
fitting the data to extract the finite-volume energy spectra.

2.1 Ensemble details

The study is carried out using a single ensemble of QCD gauge configurations: D200, generated
by the Coordinated Lattice Simulations (CLS) consortium [9]. The light quark masses used for the
gauge fields generation are heavier-than-physical and degenerate u— and d—quarks, and a lighter-
than-physical s—quark. The resulting hadron masses, m . L and properties of the lattice are shown
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in Table 1. The gauge configurations of the D200 ensemble were generated using the tree-level
improved Liischer-Weisz gauge action and a non-perturbatively O(a)-improved Wilson fermion
action. Additionally, open temporal boundary conditions were employed in order to reduce auto-
correlation, constraining the interpolating fields to be far from the boundaries, hence the maximal
temporal separation in correlation functions of #p,,x = 25a.

a[fm] (L/a)’xT/a amyz amg myL
0.0633(4)(6) 64> x 128 0.06535(25) 0.15602(16) 4.181(16)

Table 1: Properties of the D200 ensemble, where a[fm] and (L3/a) x (T /a) are the lattice spacing and
the lattice extent, respectively. The pion and kaon masses are m , ~ 200 MeV and mg ~ 487 MeV.

2.2 Correlation functions

The correlation functions are built using an appropriate set of interpolating operators that over-
lap with the states of interest, and include both single-hadron operators and multi-hadron opera-
tors [10], as well as meson-baryon interpolators with different momentum combinations: A(&Z),
n(&%)Z(ag) and K (&%)N (El%), as shown in Table 2 (see Ref. [11] for the complete list and for a
comprehensive description of the naming scheme). The inclusion of a more diverse set of operators
has the fundamental role of ultimately extracting the full finite-volume energy spectra below the
lowest-three-particle threshold, namely the 7t A threshold.

A(d?) Operators

G1¢(0) AlG1g(0)]o.1,3
K[A>2(1)]1 N[G1(D)]o
n[A; (D] Z[G1(1)]o

Table 2: Example of single- and multi-hadron operators used to construct correlation matrices. The
irreducible representation (A(d?)) labels are related to the symmetry sector with a total momentum d?,
and the subscript indicates a spatial identification number.

These temporal correlation functions are evaluated using the stochastic Laplacian Heaviside
method (sLapH) [12, 13]. Once the correlation matrices are computed, autocorrelation of the data
is studied with binning by computing the single hadron masses and their variance with different
Npin (see Fig. 1 as an example of the pion mass). The final binning choice Ny, = 10 is made
based on behavior of the variance and the corresponding correlated- y> for a certain value of Npi,
of resampled data (jackknife or bootstrap), and these results are shown in Fig. 1.

2.3 Extraction of energy spectra

Now the correlation matrices must be diagonalized in order to extract stationary-state energies.
This is achieved by solving the so-called Generalized Eigenvalue Problem (GEVP) (more details of
this method can be found in Refs. [14-16]). The method diagonalizes correlation matrices as:

C(ta)Vn(to,ta) = Au(to, ta) C(to) Vu(to,ta), (1)
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Figure 1: (Top) Ratios of variances for fits to m , versus Ny, for jackknife and bootstrap resam-
pling. (Bottom) Correlated- y? of two-exponential fit to 71, versus Npi,. In both panels, the final
binning choice is illustrated as a blue solid square.

where ¢ is the metric time, #4 is the diagonalization time, and A,, are the eigenvalues. This prescrip-
tion connects the latter to an exponential of the form:

An(t,10) ox 7170 (14 O (eBEn =10 ) @)

where AE,, is the distance to the closest energy level, and discussed in more details in Ref. [15].

The spectrum results are obtained using two different independent implementations of the vari-
ational method: single pivot and rolling pivot. For the single pivot a single choice of 7p and 74 is
used, where the eigenvectors extracted at 74 are used to rotate the correlators C(¢) at all times t,
whilst for the rolling pivot a single choice of 7y is used, and the correlator C(z) is diagonalized at
all times ¢. Figure 2 depicts the results from both implementations and a variation of 7.

2.4 Finite-volume energies

The correlation functions are fitted using variations of tower of exponentials as fit forms. The
energies are then determined from correlated- )(2 fits over different [#min, fmax | intervals. Single-
hadron and multi-hadron correlation functions are treated differently.

1. Single Hadrons:

Diverse fit models are used, such as one- and two-exponential fits, and geometric exponential series
fits. The single-hadron energies correspond to the lowest-lying mesons and baryons. A summary
of their masses in lattice units is shown in Table 3. The chosen 7y, is based on the consistency of
the results from the correlated- X2 with different fit forms (see Figure 3).
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Figure 2: Center-of-mass finite-volume energy spectra under variation of diagonalization method (sin-
gle pivot or rolling pivot) and diagonzalization time (examples of 74 = 12a, 16a) for the single pivot
method. For the two cases of rolling pivot: (M) The method was implemented on the mean values of
the correlators, and the eigenvectors were used to diagonalize the bootstrap samples; (B) The method
was implemented on the central value and on the bootstrap samples.
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Figure 3: Pion mass: (left) Effective energy and its final fit result; (right) Different fit models

versus variation of ,,,;,.

am
amy

0.06533(25)
0.3830(19)

anmp
ampy

0.3634(14)
0.3143(37)

ampg
am

[1]

0.15602(16)
0.41543(96)

Table 3: Summary of hadron masses in lattice units extracted using exponential fall-offs of the

correlation functions of single-hadron operators.

2. GEVP Eigenvalues:

Additionally to the fits used for the single-hadrons, one-exponential fits to a ratio of correlators are

included for the eigenvalues obtained from the GEVP procedure (see Figure 4). This ratio is defined

as

Ry (1)

D, (1)

 Ca(d3, ) Cp(d3. 1)

3)

where D, (1) corresponds to the diagonal of the resulting rotated correlation matrices in the single
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Figure 4: Example result: Stability plot of energy fit versus different ¢, for the lowest level of the Gy, irrep
using diverse fit models, including two ratios of non-interacting levels (N (0)K (0) and 7 (0)Z(0)).

8.25 I
8.00 J i %

N 7.75 E I I Eﬁ I }I{ }% %
%7.50 # ;{ i
S I !

7.25 KN
i 1 1

7.00

el 3 3 t L] ™

Gi(0) Gu(0) Gi(1) Gy(1) G2) AB) BB GE)

Figure 5: Final results of finite-volume energy spectra, where dashed lines correspond to scattering thresh-
olds; green points are the finite-volume energy spectrum in the center-of-mass frame and their bootstrap error;
gray blocks are the locations of energy sums for non-interacting hadrons with increasing momenta.

pivot case, and to the eigenvalues 1, () in the rolling pivot case; C4 p are the correlation functions
of single hadrons, (A, B) = (7, X) or (K, N) are the thresholds of interest; and df‘  are the units of
momentum squared for that hadron. This ratio enables the determination of the énergy interaction
shift aAE from the non-interacting energy E"°"~I", whilst taking advantage of partial cancellation

in the systematic uncertainties.

2 2
. 2rd> 2rd>?
Ep = Im? + (—L A) +4|m% + (—L B) , 4)

where E"°"~" i5 the non-interacting energy sum close to the stationary state energy. From this shift
aAE the laboratory frame energy aE'° can be reconstructed as

aEilab =aAE + aE,[;on_im. (5)
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Given that more than one non-interacting energy can be near a certain energy level, and that the
reconstructed lab-energy frame should be independent of the choice, all the types of non-interacting
levels are used to check consistency of the fit results (see Figure 4 for an example).

The final spectrum results consist of the finite-volume stationary-state energy spectra shown in
Figure 5, where all the energy levels extracted from all different irreps are summarized. Results
from the relevant irreps are the fundamental physics input that constrains the 7% — KN coupled-
channel scattering-amplitude analysis when employing the Liischer formalism [7, 8] to explore the
A(1405) energy region.

3. Conclusion

This is the first lattice QCD calculation of the 7% — KN coupled-channel scattering-amplitude.
This study was performed using a single ensemble of gauge configurations with m , ~ 200 MeV and
a = 0.065 fm. The spectra were reliably extracted using different methods, which consist of varia-
tions of the implementation of the GEVP and a variety of fit models, including ratios-of-correlators
for diagonalized correlation functions. The spectrum results showed good agreement with the differ-
ent implementations of the GEVP and consistency with respect to different fit forms. These energy
spectra are the key input for the scattering-amplitude analysis via the Liischer method, which was
successfully employed based on the finite-volume stationary-state energy spectra obtained from lat-
tice QCD data, here the final results favored a two-pole picture in the A(1405) energy region. More
details can be found in Refs. [6, 11].
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