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A b s t r a c t .  We prove a quantum version of a wall-crossing formula of Kalkman
[37], [44] that compares intersection pairings on geometric invariant theory (git)
quotients related by a change in polarization. Each expression in the classical
formula is quantized in the sense that it is replaced by an integral over moduli
spaces of certain stable maps; in particular, the wall-crossing terms are gauged
Gromov-Witten invariants with smaller structure group. As an application, we
show that the genus zero graph Gromov-Witten potentials of quotients related
by wall-crossings of crepant type are equivalent up to a distribution in one of
the quantum parameters that is almost everywhere zero.     This is a version of
the crepant transformation conjecture of Li-Ruan [46], Bryan-Graber [10], Coates-
Ruan [15] etc. in cases where the crepant transformation is obtained by variation of
git.
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1. Int roduct ion

1.1. Kalkman’s wall-crossing formula. According to the geometric invariant the-
ory introduced by Mumford [50], the git quotient X==G of an action of a complex
reductive group G  on a projective variety X  equipped with a polarization (ample
equivariant line bundle) L  !  X  has coordinate ring equal to the G-invariant part of
the coordinate ring on X .  Geometrically X==G is the quotient of an open semistable
locus X s s   X  by an equivalence relation, where a point x  2  X  is semistable if there
is a non-constant invariant section of a tensor power of the polarization that is non-
zero at the point. If the action of G  on the semistable locus has only nite stabilizers,
then X==G is the quotient of X s s  by the action of G, by which we mean here the stack-
theoretic quotient, see for example [21]. If X  is in addition smooth, then X==G is a
smooth proper Deligne-Mumford stack with projective coarse moduli space. In
Kempf-Ness [39], see also Mumford et al [50], the coarse moduli space of the git
quotient is identied with the symplectic quotient of X  by a maximal compact subgroup
of G.

The question of how the git quotient depends on the polarization, or equiva-
lently, choice of moment map is studied in a series of papers by Guillemin-Sternberg
[32], Brion-Procesi [7], Dolgachev-Hu [23], and Thaddeus [59]. Under suitable sta-
ble=semistable and smoothness conditions, the git quotient X==G undergoes a se-
quence of blow-ups and blow-downs. The class of birational equivalences which
appear via variation of git is reasonably large. In fact, for a class of so-called Mori
dream spaces, any birational equivalence can be written as a composition of birational
equivalences induced by variation of git [35, 49].

The question of how the cohomology of the quotient depends on the polarization
is studied in Kalkman [37], which proves a wall-crossing formula for the intersection
pairings under variation of symplectic quotient. Similar results, in the context of
Donaldson theory, are given in Ellingsrud-Go•ttsche [25]. Let X  be a smooth pro-
jective G-variety as above such that G  acts locally freely on the semistable locus
(that is, with nite stabilizers) and H G ( X )  its equivariant cohomology with rational
coecients. There is a natural map

X  : H G ( X )  !  H (X ==G)

studied in Kirwan’s thesis [41], given by restriction to the semistable locus H G ( X )  !
H G (X s s )  and then descent under the quotient H G (X s s )  =  H (X==G).  Consider the
simplest case G  =  C.  Let X==G denote the git quotients corresponding to polar-
izations L  !  X .  Let

X ;  : H G ( X )  !  H (X ==G)
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be the Kirwan maps and let
Z

X = G  : H (X==G)  !  Q;  !
[X =G ]

denote integration over X==G. Kalkman’s formula expresses the dierence between the
integrals X = G   X ;  as a sum of xed point contributions from components X G ; t   X G  that
are semistable for elements in the rational Picard group Pic G (X )  interpolating
between L   and L + ,

[Lt  : =  L
(1 t)=2

 L
(1+t)=2] 2  PicQ (X )

for some rational t 2  ( 1; 1). Each such xed point has a contribution to the
localization formula for the integral of a class  2  H G ( X )  over X  given as fol-lows.
Let  G ; t  !  X G ; t  denote the normal bundle of the inclusion X G ; t  !  X ,  and EulG ( X G ; t )
2  H G (X G ; t )  its G-equivariant Euler class, or equivalently, equivariant Chern class of
degree equal to the real rank. We identify H ( B G )  with the polyno-mial ring Q[] in
a single element  of degree 2, representing the hyperplane class in the cohomology of
B G  =  C P 1 .  If mt =  codim(X G;t ) and

(1) X G ; t  =  
M

X G ; t ; i

i = 1

is a decomposition into line bundles with weights i  2  Z  then

EulG ( X G ; t )  =  
Y

E u l G ( X G ; t ; i )  =  
Y

( c 1 ( X G ; t ; i )  +  i ):
i = 1 i = 1

Since G  acts with no non-trivial xed vectors on X G ; t ,  the Euler class has an inverse

EulG ( X G ; t )  1 2  H (X G ;t )[ ;  1]

after inverting the equivariant parameter . If one has a splitting as in (1) then the
inverted class admits an expansion

EulG  ( X G ; t )  1 =
mt 

( i )  1 1 +  
c1 

 
X G ; t ; i

  1

i = 1 i

=  
mt 

( i )  1 @1   
c1 

 
X G ; t ; i

 

+
c1 

 
X G ; t ; i

 2 

: : :A :
i = 1 i                                            i

The contribution from a xed point component X G ; t   X G  is the integral of the
restriction X G ; t  times the inverted Euler class, denoted

X G ; t  : H G ( X )  !  Q[;  1];  !  
G ; t  [  EulG ( X G ; t )  1:

[ X G ; t ]
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Let Resid denote the residue, that is, the coecient of  1:

Resid : Q[;  1] !  Q; an
n !  a 1:

n 2 Z

(More invariantly, the residue should be a map Q[;  1]d !  Q, but we omit the
one-form from the notation.)

Theorem 1.1 (Kalkman wall-crossing formula, circle group case). Let G  =  C  and let
X  be a smooth projective G-variety equipped with polarizations L  !  X .  Suppose that
stable=semistable for the G-action on P ( L +   L  ). Then

(2) X = + G   X ; +  X =      G   X ;   = Resid X G ; t :
t2(  1;1)

In other words, failure of the following square to commute is measured by an
explicit sum of wall-crossing terms:

H G ( X )
X ; + X ;

H ( X == + G ) H (X==  G)

X = + G

Q
X =      G

The formula (2) also holds for certain quasi-projective varieties, such as vector
spaces whose weights are contained in an open half-space, see the more general
Theorem 2.5 below.

Example 1.2. (Integration over projective space) The following simple example illus-
trates the notation involved. let G  =  C  acting on X  =  C k  by scalar multiplication,

g[z1; : : : ; zn] =  [gz1; : : : ; gzn]
so that H G ( X )  =  Q[] where  is the equivariant parameter representing the hy-
perplane class under the isomorphism H G ( X )  =  H ( B G )  =  H ( C P 1 ) :  Suppose that
polarizations L  correspond to the characters 1. Invariant sections are then mono-mials
of positive resp. negative degree, hence the semistable locus is X s s ; +  for L +  and the
emptyset for X ss;  . Thus

X== G  =  ; ; X == + G  =  Pk 1

and the two chambers are separated by the value t =  0 so that 0 2  X  is semistable for
L ( 1  t)=2

 L(1+t)=2 . The Kirwan map G  : H G ( X )  !  H ( X == + G )  sends the generator  2  H G ( X )
to the hyperplane class !  2  H 2 (X==+ G).  We compute the integrals
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k      1  ! a  for a 2  Z 0  via wall-crossing. In the negative chamber, the integral is zero,
since the quotient is empty. By the Kalkman formula (2)

! a =  Resid a [  EulG (Ck )  1

Pk      1                                                                 [0]                (

=  Resid 
a=k =

0 otherwise

conrming that ! k  1 is the dual of the fundamental class. This ends the example.

1.2. Quantum Kirwan map and adiabatic limit theorem. The main result of
this paper is a generalization of Theorem 1.1 to the setting of genus-zero Gromov-
Witten theory, that is, quantum cohomology. The Kirwan map, trace, and xed point
contributions become quantized in the sense that each is replaced by a formal map
depending on a formal variable q whose specialization to q =  0 gives the classical
version above. First we recall the denition of quantum cohomology of a smooth
polarized projective G-variety X .  The equivariant Novikov eld

X   Map(H2 (X; Q); Q)

associated to a G-variety X  with polarization L  !  X  consists of linear combinations
of delta-functions qd at d 2  H G (X ; Q)  satisfying a niteness condition:

X  : =  
:

X
cdqd; 8e >  0; #fcd jhd; cG (L)i <  eg <  1

=
:

d 2 H 2  (X ;Q)

The equivariant quantum cohomology is the tensor product

Q H G ( X )  : =  H G ( X )
 X :

We write G resp. Q H G ( X ; L )  if we wish to emphasize the dependence on L .
A  more standard denition in algebraic geometry would use the cone of eective curve
classes, but the denition we give here has better invariance properties, for example,
under Hamiltonian perturbation. Below we will need several variations on this
denition. Let G;n  G  denote the space of nite linear combinations of the symbols qd.
Denote by QH G ; n (X )  : =  H G ( X )
G;n  Q H G ( X )  the subspace with only nitely many non-vanishing exponents of q non-
vanishing. Let G;0  G  be the space consisting of expressions involving only powers qd

with positive pairing hd; cG (L)i  0. Denote by QH G ; 0 (X )   Q H G ( X )  the subspace
H G ( X )
 G;0.

The quantum cohomology Q H G ( X )  has the structure of a Frobenius manifold, in
particular, it is equipped with a family of products

? : TQH G (X ) 2  !  TQH G (X );  2  Q H G ( X )
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dened by equivariant virtual enumeration of genus zero stable maps, that is, maps u :
C  !  X  from projective nodal curves C  of arithmetic genus zero to X  with no
innitesimal automorphisms. The moduli stack Mg ; n (X ; d)  of stable n-marked maps of
homology class d 2  H 2 ( X ; Z )  and arithmetic genus g is a proper Deligne-Mumford
stack equipped with a perfect relative obstruction theory and evaluation map

ev =  (ev1; : : : ; evn) : M g ; n (X ; d)  !  X n :

The action of G  on X  induces an action of G  on Mg ; n (X ; d)  by translation; then the
evaluation maps induce a map

ev : H G ( X ) n  !  HG (Mg ; n (X ; d)) :
The quantum product at  2  Q H G ( X )  is dened by restricting to g =  0 and dening for
;  2  H G ( X )   TQH G (X )

 ?  : =  
X X qd 

evn+3; ev1  [  : : : [  evn  [  evn+1  [  evn+2
n0 d 2 H 2 ( X ; Z )

where the push-forwards are dened using the Behrend-Fantechi virtual fundamental
classes [4], [3]. The denition is extended to TQH G (X )  =  Q H G ( X )  by linearity over
X .  Note that we take the virtual fundamental classes to lie in the equivariant
homology H G (M g ; n (X ; d))  of the coarse moduli space, rather than in the Chow ring as
in [31]. The quantum cohomology Q H G ( X )  can also be dened using the smaller ring
G;0 but not G;n, because of the innite sums.

The orbifold quantum cohomology QH (X==G) of the quotient X==G is dened by
virtual enumeration of stable maps from orbifold curves, as follows. For any
element g 2  G  let Z g  be the centralizer of g 2  G, [g]  G  its conjugacy class, and hgi
Z g  the subgroup generated by g. Denote by I X = G  the rigidied inertia stack from
Abramovich-Graber-Vistoli [1], given by

I X = G  = X g;ss=(Zg =hgi):
[g]

Denote by
QH (X==G) =  H ( I X = G )
 G

the quantum cohomology of the git quotient X==G dened using the same Novikov eld
G  ; this larger ring contains X = G  by virtue of Kirwan’s injection H2 (X==G) !  H G ( X ) .
Virtual enumeration of representable morphisms from orbifold curves sat-isfying
certain conditions to X==G denes a family of products

? : TQH (X==G)2 !  TQH (X==G);  2  QH (X==G):

A  quantum version of the Kirwan map

X  : Q H G ( X )  !  QH (X==G)
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(we keep the same notation as in the classical case) was constructed by the second
author in [62]. The map G  is a formal, non-linear map with the property that each
linearization

D X  : TQH G (X )  !  T
X ( ) QH (X==G);  2  Q H G ( X )

is a ?-homomorphism, dened by virtual enumeration of ane gauged maps. Such a map
is by denition a representable morphism u : P(1; r) !  X = G  from a weighted
projective line P(1; r); r >  0 to the quotient stack X = G  mapping the stacky point at
innity P(r)  P(1; r) to the semistable locus X==G  X=G.  (More precisely, the domain
is a smooth Deligne-Mumford stack of dimension one with a single stacky point with
automorphism group of order r.) These are the algebro-geometric analogs of the
vortex bubbles considered in Gaio-Salamon [26]. The compactied moduli stack M G

(C; X ; d)  of ane gauged maps of homology class d 2  H G (X ; Q)  is, if
stable=semistable for X ,  a proper smooth Deligne-Mumford stack with a perfect
relative obstruction theory over the complexication of Stashe’s multiplihedron [62].
It has evaluation maps

ev e v 1  : M n ; 1 ( C ; X )  !  (X =G) n   I X = G ;

at the markings and the point at innity. The quantum Kirwan map is dened for  2
H G ( X )   Q H G ( X )  and a sequence of classes n  2  H (M n ; 1 (C) )  by

X ( )  : =  
X X qd 

ev 1 ;  ev(; : : : ; ) [  f n :  n0 d 2 H 2

(X ;Q)

We denote by G;n  its n-th Taylor coecient in . The map G  is dened over the smaller
equivariant Novikov ring G;0, but one obtains good surjectivity properties only using
the Novikov eld G  , see [29]. The map G  is a quantization of Kirwan’s in the sense that
D 0

G  jq =0 is the map studied in [41]. It admits a natural C-equivariant
generalization from Q H G ( X )  to QHC(X==G),  induced by the natural action of C  on
P(1; r).

A  quantization of the classical integration map over X==G is given by the graph
potential in Givental [27]

X = G  : QH (X==G) !  G

dened by virtual enumeration of genus zero orbifold stable maps to C  (X==G), for C
=  P, of homology class (1; d) for some d 2  H2 (X==G; Q). Let

M n (C ; X==G; d)  : =  M 0 ; n (C   (X==G); (1; d))

denote the stack of such maps of class d 2  H2 (X==G; Q), which we view as an element
of H2  (X ; Q) via the inclusion of the semistable locus. It has evaluation and forgetful
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maps

(3) ev : M n (C ; X==G; d)  !  (X==G)n ; f  : M n (C ; X==G; d)  !  M n ( C )

where M n ( C )  is the moduli space of stable maps to C  of class [C ]. The graph
potential is dened for  2  H ( I X = G )   QH (X==G) and a sequence of classes n  2

H ( M  (C ))  by

(4) X = G ( )  : =  
X X qd Z

ev(; : : : ; ) [  f n :  n0

d2 H 2 ( X =G ;Q)              [ M n ( C ; X = G ; d ) ]

Again X = G  is dened over the equivariant Novikov ring G;0. The potential X = G  admits a
natural C-equivariant extension QH C (X==G)  !  G  induced by identify-ing QH C (X==G)
=  QH (X==G)[] where  is the equivariant parameter.

The graph potential X = G  is related via the quantum Kirwan map to a gauged
Gromov-Witten potential G  : Q H G ( X )  !  G  dened by virtual enumeration of gauged
maps, by which we mean morphisms from C  to the quotient stack X=G,  sat-isfying a
Mundet stability condition [51] generalizing semistability for vector bundles on curves:

Denition 1.3. (Mundet semistability) A  gauged map from a smooth projective
curve C  to the quotient stack X = G  is a morphism v : C  !  X=G,  consisting of a pair

(p : P  !  C; u : C  !  P ( X )  : =  P  G  X )

see [21]. We suppose that the Lie algebra g of G  is the complexication of a unitary
form gR. Let gR be equipped with an inner product invariant under the action of
G R  =  exp(gR), inducing an identication gR !  gR.

(a) (Projections on Levi subgroups) Let R   G  be a parabolic subgroup. A  Levi
subgroup is a maximal reductive subgroup L   R .  The quotient U =  R = L
admits an embedding in G  as a unipotent subgroup. Denote the corresponding
Lie algebras l; u  r. The group R  admits a decomposition R  =  L U  and the
projection

(5) ’ L
 : R  !  L

is a group homomorphism which may also be dened as follows: Let  2  r be
an element acting positively on the roots of r=l. Then for z 2  C  the
automorphism

r !  r; r  !  Ad(z)r
acts on the -weight space u by the scalar zh;i. The corresponding Lie
group automorphism

R  !  R ; r  !  zrz
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has a limit as z !  0 which is the projection R  !  L .  For example, if R  is
the group of upper triangular matrices in G  =  G L ( r )  then U is the unipotent
group of upper triangular matrices with 1’s along the diagonal and Ad(z)
conjugation by z acts on the ij -th entry in the matrix by the scalar z i  j  ; the
latter tends to zero for i  <  j  if i  <  j .

(b) (Associated graded bundle) Given a reduction of P  to a parabolic subgroup
R   G  given by a section  : C  !  P =R  and a element  in the Lie algebra r of
R  acting positively on u and commuting with l, there is an associated
graded morphism given by a bundle

Gr(P ) !  C

whose structure group is the Levi L  and whose transition maps are obtained
by composing the transition maps for P  with the projection ’ L

 of (5). Thus in
particular Gr(P ) is the central ber in a family of bundles

(6) P  !  C   C

whose ber over z is the bundle Pz  obtained by conjugating the transition
maps of P  with z. The bundle Gr(P ) has a natural automorphism C  !
Gr(P ) generated by z, since the structure group of Gr(P ) reduces to L  and
commutes with L .

(c) (Associated graded morphism) Consider the associated bundle associated to
the family of bundles (6)

P ( X )  : =  (P  X ) = G

A  section u~ of P ( X )  is given by a collection of maps u~i : Ui !  X  in lo-cal
trivializations of P (X ) ,  satisfying u~j =  j i u~i where j i  are the transition maps
of the bundle. Therefore a section of P ( X )  over C   C  is given by (; z) !
zui(), where ui : Ui !  X  are the local maps dening u. By Gro-mov
compactness (the bundle P ( X )  is quasiprojective) the section u~ extends
uniquely over the central ber Gr(P ) !  C  as a stable map

Gr(u) : C  !  (Gr(P )) (X )

with domain C . Here C  is a projective nodal curve with some components
possibly mapping into the bers of (Gr(P )) (X )  and a distinguished principal
component C0   C  mapping isomorphically onto C  via composition with the
projection (Gr(P )) (X )  !  C .

(d) (Hilbert-Mumford weight) Since Gr(u) is a limit of the section u under the
automorphism z of P (X ) ,  the section Gr(u) is automatically xed (up to



^ ^

10 E D U A R D O  G O N Z A L E Z  AND  C H R I S  T .  WO O DWA R D

automorphism) by z for z 2  C.  It follows there exists family of automor-
phisms

(z) : C  !  C ; z 2  C

such that
Gr(u)((z )) =  z Gr(u); 8z 2  C:

Since C0
 maps isomorphically onto C , the map (z) must be trivial on C0  and

so Gr(u)jC0 the associated graded section Gr(u) takes values in the xed point
set P ( X )  where X  denotes the xed point set of the automorphism z : X  !  X .
The Hilbert-Mumford weight

(7) H (; )  2  Z

(with notation dened in (b)) determined by the polarization L  is the usual
Hilbert-Mumford weight, that is, the weight of the C-action

P ( L )  !  P (L ) ; l !  zl

over any point u(z) 2  P ( X )  in the image of C0  under Gr(u).
(e) (Ramanathan weight) Assume that  2  r =  r_ is a weight of R .  The Ra-

manathan weight of R (; )  of (P; u) with respect to (; ) is given by the rst
Chern number of the line bundle determined by  via the associated
bundle construction: If P  denotes the principal R-bundle associated to  as
in [54] and C  is the one-dimensional representation of R  with weight  then
the line bundle is

P  R  C  !  C :

The Ramanathan weight is
Z

(8) R (; )  = c1(P R  C )  2  Z:  [C ]

(f ) (Mundet weight) The Mundet weight is the sum of the Hilbert-Mumford and
Ramanathan weights:

M (; ) : =  H (; ) +  R (; ):

(g) (Mundet semistability) The morphism (P; u) is Mundet semistable if

(9) M (; )  0

for all such pairs (; ) [51]. The morphism is Mundet stable if the above
inequalities (9) are satised strictly.
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Remark 1.4. We explain how this notation compares with that in Schmitt [56]. Any
one-parameter subgroup  : C  !  G  determines a parabolic subgroup

Q : = g 2  G   9l 2  G; lim (z)g(z) 1 =  l:

Let  be such a subgroup and
 : C  !  P =Q

a parabolic reduction  of P  to the parabolic subgroup Q determined by , and
Schmitt [56] denotes by (E(); ())  the weighted ltration of E  =  P (V _ )  deter-mined by
of length say s, with  the coecients of the coweight generating . Schmitt [56] denes

M (E(); ()) =  
X

i ( d e g ( E ) r k ( E i )  deg(Ei ) rk(E )) 2  Q:
i = 1

which agrees with minus Ramanathan weight of (8) by a standard computation
involving Chern classes, and

( E ; ; ’ )  2  Q
the Hilbert-Mumford weight (7), see [56, p. 139] (opposite to our convention). The
Mundet weight for stability parameter  2  Q is then minus

M (E; ) +  ( E ; ; ’ )  2  Q

and a bundle with map is semistable i this quantity is non-negative for all pairs
(; ). This ends the Remark.

To  obtain a proper moduli stack with a perfect obstruction theory, we allow bub-
bling in the bers.

Denition 1.5. A  nodal n-marked gauged map over a scheme S  of homology class d
consists of an n-marked prestable curve (C ; z ) over S  and a morphism

u : C  !  C   X=G; u[C ] =  (1; d) 2  H 2 (C ; Z)   H2  ( X ; Z )

By the condition on the homology class, over each point s 2  S  there exists a prin-
cipal component C0   C s  which maps under u and projection to the rst factor
isomorphically to C , and a collection of bubble components

C1; : : : ; Ck  C ; dim(u(Ci )) =  0; i  =  1; : : : k

that map to points pi =  1 (u(Ci )) in C , 1 being the projection C   X = G  !  C . A  marked
gauged map (C ; u; z) over a point is Mundet semistable if the following two conditions
hold:

 the restriction ujC0 : C0  !  X = G  is Mundet semistable, and
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 each bubble component Ci ; i  =  1; : : : ; k on which u is given by a trivial G-
bundle with constant section has at least three special (marked or nodal)
points.

We introduce the following notation. Let M
G

(C ; X ; d)  denote the stack of n-
marked gauged maps and M G ( C ; X ; L ; d )  (or M G ( C ; X ; d )  for short if the polariza-
tion is understood) the substack consisting of Mundet semistable gauged maps for
the polarization L .  Taking X  and G  to be points, and d to be trivial, one obtains
the moduli stacks

M n ( C )  : =  Mgenus(C );n (C; [C ]); M n ( C )  : =  Mgenus(C );n (C; [C ])
of prestable resp. stable maps to C  of class [C ] 2  H2 (C; Z).  The category of Mundet-
semistable gauged maps from C  to X = G  of homology class d and n markings forms an
Artin stack M G (C ; X ; L ; d ) ,  which if all automorphism groups are nite is a proper
Deligne-Mumford stack with evaluation map and forgetful morphisms [28], [30,
Theorem 1.1]

Example 1.6. (Toric Case) Suppose that G  is a torus acting on a vector space X  with
weight decomposition k X i  so that G  acts on the one-dimensional representation
X i  with weights i  2  g_. Suppose that X  is equipped with a polarization given by a
trivial line bundle with character  2  g_. Let C  be a curve of genus 0. Then

M 0  (C ; X ; d) =

=

M 0  (C ; X ; d) =  H (OC (d) G  X )==G
M

X ( h i ; d i + 1 ) ==G
i = 1

where the polarization on H 0 (OC (d) G  X )  is the trivial line bundle with character ,
see [62]. For example, if G  =  C  acts on X  =  C k  by scalar multiplication then

M 0  (C ; X ; d) =  P(d+1)k  1 for d  0 and positive character .

Remark 1.7. In [62, Example 6.4(e)] a relative obstruction theory for M G ( C ; X ; d )
is constructed by the method in Behrend [3], with a small extension to the case of
quotient stacks in Olsson [52, Theorem 1.5]. The complex in the relative obstruc-
tion theory is (RpeTX= G )_ , and comes equipped with a morphism to the relative
cotangent complex L .  A  morphism to the shifted cotangent complex L M  (C ) [1] is
obtained by composing with L  !  L M  (C ) [1]. Completing the diagram in the derived
category gives rise to an absolute deformation theory as in [31, Appendix A]. If all
automorphism groups are nite then this obstruction theory is perfect.

The moduli stack admits evaluation and forgetful maps

ev : M n  (C ; X ; d) !  (X=G)n ; f  : M n  (C ; X ; d) !  M n ( C ) :
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Denition 1.8. (Gauged Gromov-Witten potential) Suppose that all automorphism
groups are nite for Mundet-semistable gauged maps. The gauged potential G  for a
smooth projective curve C  is the formal map dened by for  2  H G ( X )  and a
sequence of classes n  2  H ( M n ( C ) )

Z
(10) G (; ) = ev(; : : : ; ) [ f n

n 0 ; d 2 H
G

( X ; Z )              [ M n  (C ;X ;d)]

extended to Q H G ( X )  by linearity.

The gauged potential and the graph potential of the quotient are related by the
adiabatic limit theorem of [62] (which is a generalization of an earlier result of Gaio-
Salamon [26]): Let  be a rational stability parameter; we consider Mundet stability
with respect to the polarization L  with  !  1 .

Denition 1.9. Let M n ; 1 (C )  be the moduli stack of scaled n-marked maps from [62];
a generic element is an n-marked map  : C  !  C  with a relative dierential  2
H 0 (C ; ! ) .  It contains a prime divisor M n ( C )  corresponding to maps with zero
dierential  =  0, and for any partition I1  [  : : : [  I r  =  f1; : : : ; ng a prime divisor
isomorphic to M r  

r M j I  j (C))  whose generic element is a curve C  with innite
dierential  =  1  on the one unmarked component C0  =  C  and nite dierentials on the
remaining components C1; : : : ; Cr .

Theorem 1.10 (Adiabatic limit theorem). If X==G is a locally free quotient then all
automorphism groups are nite for  suciently large (more precisely, for any class d 2
H G ( X ; Z )  there exists an r  >  0 such that  >  r  implies that all automorphism groups
are nite) and

X = G   X  =  lim X

in the following sense of Taylor coecients: For any class  2  M n ; 1 (C )  let

X Y
1

 1
 : : : r ; 0

be its restrictions to

H

respectively. Then

k = 1  I 1 [ : : : [ I r = f1 ; : : : ;ng

M r ( C )   
Y

M j I j j ( C )

!

; resp. H ( M n ( C ) )
j = 1

X
X = G ( ; 1 )   G; j I j j ( ; j  )  =  lim G;n(; 0): k = 1
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In other words, the diagram

Q H G ( X ) X

(11)
X

X

QH C (X==G)

X = G

commutes in the limit  !  1 .

Remark 1.11. We often take in examples as insertion the class  2  H 6 (M3 ; 1 (C ))
pulled back from the point class 0 2  H 6 (M 3 (C ) )  under the forgetful map  :
M3 ; 1 (C )  !  M ( C ) ,  in which case the class 3 ; 1  is also the point class which restricts to
the point class 0 2  H 6 (M 3 (C ) )  in which case the classes 1  is also the point class and the
classes j  trivial, since  1(pt) contains a single curve with innite scaling, consisting of
one innitely-scaled components and three nitely-scaled components each with a
single marking. For C  =  P the projective line the result is a compari-son between the
three-point Gromov-Witten invariants in X==G and the three-point gauged Gromov-
Witten invariants in X .  See Example 1.16 below.

1.3. Quantum Kalkman formula. In order to study the dependence of the Gromov-
Witten graph potential of the quotient on the choice of polarization, suppose that
L  !  X  are two polarizations of X  and

L t  : =  L ( 1  t)=2

 L( 1 +t ) = 2

is the family of rational polarizations given by interpolation. Let X==G denote the
git quotients,

X ;  : Q H G ( X ; L )  !  QH C (X==G)
the quantum Kirwan maps (note that we do not introduce new notation for the
quantum version; the classical Kirwan map is obtained by setting q =  0) for the two
polarizations and

X = G  : QH C (X==G) !  X ; L  
the

graph potentials. Denote by

QH n (X )   Q H G ( X ; L  ) \  Q H G ( X ; L + )

the subset of the quantum cohomology of nite sums in the Novikov variable. The
main result of this note is a formula for the dierence

X = + G   X ; +  X =      G   X ;   : QH G  ( X )  !  X

as a sum of xed point contributions given by gauged Gromov-Witten invariants with
smaller structure group. Namely, for any non-zero  2  g generating a one-parameter
subgroup C      denote by X  the xed point set of C      generated by  and G  the
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centralizer of . The adjoint action of  on g is semisimple and the Lie algebra g of G
is then

g =  f x  2  g j [x; ] =  0g:
It follows that G  is reductive.

Denote by X ; t  =  X  the locus that is semistable with respect to Lt .  For any t
2  ( 1; 1) such that X ; t  is non-empty, we introduce in Denition 3.16 a stack
M n  (C ; X ; L t ; )  of reducible n-marked gauged maps from C  to X = G  consisting of a
principal component C0  =  C  mapping to X ; t =G and bubbles C1; : : : ; Ck  C  mapping
to X=G.  This stack admits a perfect equivariant obstruction theory whose relative
part is the cone on the map (RpeTX = G )_  !  C _  given by the innitesimal action, see
Remark 1.7 above. (The complex (RpeTX = G )_  is not perfect because of the C-
automorphisms; taking the cone has the eect of cancelling this additional
automorphism.) Denote by t the virtual normal complex, given as the moving part
of the obstruction theory on M n  (C ; X ; L t )  pulled back to M n  (C ; X ; L t ; )  and by

Eul(t ) 2  H ( M n  (C; X; Lt ; ))[;  1]

its (invertible) Euler class, where  is the equivariant parameter. The Mundet sta-
bility condition in general depends on a choice of equivariant Ka•hler class; here we
are interested in the large area limit in which the gauged Gromov-Witten invariants
are related to the Gromov-Witten invariants of the git quotient. Denote by

X  : =  Map(H2 (X ; Z); Q); G  [;  1] : =  Map(H G (X; Q); Q[;  1])

the space of Q resp. Q[;  1]-valued functions on H G ( X ; Z ) .  Note that G  has no ring
structure extending that on G  . The space G  can be viewed as the space of dis-tributions
in the quantum parameter q, and we use it as a master space interpolating Novikov
parameters for the quotients as t varies.

Denition 1.12 (Fixed point potential). Let X ; G ; L  be as above, and  2  g; t 2  ( 1; 1)
such that X ; t  is non-empty. The xed point potential associated to this data is the map

(12) X;G;t;  : QH G ; n (X )  !  G  [;  1]

 !
X X qd 

ev(; : : : ; ) [  Eul(t ) 1 [  f n

d 2 H G ( X ; Z )  n0      
[ M n  (C ;X ;L t ; ;d) ]

for  2  H G ( X ) ,  extended to QH G ; n (X )  by linearity.

We may now state the main result of the paper, in the case of torus actions.
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Theorem 1.13 (Quantum Kalkman formula, abelian case). Suppose that G  is a
torus and X  is a smooth projective G-variety equipped with polarizations L  !  X ,  and
all automorphism groups are nite for the polarization L  . Then

(13) X = + G   X ; +  X =      G   X ;   =
X X  

Resid X;G;t;:
t2(  1;1) 2g=G

In other words, failure of the following square to commute is measured by an ex-
plicit sum of wall-crossing terms given by certain gauged Gromov-Witten invariants:

Q H G ( X ; L  )
X ;

QH C (X== G)
X =      G

X ; L

QH n (X )

X

Q H G ( X ; L + )
X ; +

QH C (X== + G)
X = + G

X ; L +
:

The diagram is somewhat more complicated than in the classical case in (11),
because the maps X = G  X ;  are dened using dierent Novikov rings G;0 . If a symbol qd

appears in one Novikov ring X ; L  but not the other then the correspond-ing
contribution to X =  G  

G must be equal to the qd-term in the wall-crossing
contribution on the right. See Example 1.16.

The wall-crossing formula for Gromov-Witten invariants Theorem 1.13 should be
considered mirror to various results in on the behavior of the derived category of
bounded complexes of coherent sheaves under variation of git quotient appearing
recently in Segal [57], Halpern-Leistner [33] and Ballard-Favero-Katzarkov [2], and
more generally for crepant birational transformations, earlier in [38].

Remark 1.14. The xed point potential X ;G;t  quantizes the xed point contributions in
Kalkman’s formula (2), in the following sense: Let C  be a genus zero curve and

consider the n-th Taylor coecient X;t;. Consider the integral with insertion of the
class n  2  H ( M n ( C ) )  given by

G;n (; n ) : =  
X

q d ev  [  f n  [  Eul(t ) 1: d
[ M n  (C ;X ;L t ; ;d) ]

If 1 2  H ( M 1 ( C ) )  =  H ( C )  is the point class then

(14) X;t;(; 1)jq =0 =  
[X ; t ]  

 [  EulG (X ; t )  1
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which is the contribution from the xed point components appearing in Kalkman’s
wall-crossing formula. Indeed any map from the genus zero curve C  to X = G  of
homology class 0 consists of a trivial bundle and constant section. It follows that

M n  (C; X; Lt ; ; 0) =  X ; t   M n ( C ) :  In

particular, for n =  1 we obtain

M 1  (C; X; Lt ; ; 0) =  X ; t   C
which implies the claim. Furthermore, the Euler class Eul(t ) is the Euler class of
the virtual normal complex to X ;t .

Remark 1.15. We have stated the formula (13) in its simplest form; there are various
extensions which include:

(a) (Twistings by Euler classes) One can introduce twisted gauged Gromov-Witten
invariants as follows. The universal curve

p : C n ( C ; X )  !  M n  ( C ; X )

admits a universal gauged map

e : C n ( C ; X )  !  X=G:

For any complex of G-equivariant vector bundles E  !  X  denote by
(15) Ind(E ) : =  R p e E

the index of the complex E = G  !  X=G.  The complex Ind(E ) is an object
in the bounded derived category of M G ( C ; X ) .  Indeed, p is a local complete
intersection morphism [17, Appendix] and so R p e E  admits a resolution by
vector bundles. The Euler class

(16) ( E )  : =  EulC(Ind(E )) 2  H ( M n  (C ; X ))[;  1]
is well-dened  2  H 2 (pt) is the equivariant parameter. For any equivariant
bundle E  on X ,  inserting the Euler class of (16) gives twisted gauged Gromov-
Witten invariants. Introducing similar twistings in the denition of G  , the wall-
crossing formula extends to this case as well.

(b) (Wall-crossing for individual Gromov-Witten invariants) Although we have
written the formula (13) as a dierence of potentials, after unraveling the
denitions one obtains wall-crossing formulas for individual Gromov-Witten
invariants, or at least nite combinations of them. See Example 1.2 below.

(c) (Wall-crossing for non-convex actions) In some cases, the action of G  on X  is
not convex at innity (e.g. G  is a torus acting on a vector space X  with
weights 1; : : : ; k

 2  g_ not contained in any open half-space H   g_ ) and
the moduli spaces M n  ( C ; X )  are non-compact. Often, the moduli spaces
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M G ( C ; X )  admit an auxiliary group action with proper xed point loci, and
thus the maps X = G ; G  etc. can be dened via localization. The wall-crossing
formula holds in this case as well, as long as the auxiliary group action extends
to the various master spaces involved and the xed point loci on these master
spaces is proper (after xing the homology class of the gauged map.) See
Example 1.19 below.

Example 1.16. (Three-point Gromov-Witten invariants of projective space) The fol-
lowing simple example illustrates the notation involved in Theorem 1.13. As in
Example 1.2, let G  =  C  acting on X  =  C k  by scalar multiplication, so that
H G ( X )  =  Q[] where  is the equivariant parameter. Suppose that polarizations L
correspond to the characters 1 and

X== G  =  ; ; X == + G  =  Pk 1

and the two chambers are separated by the value t =  0 so that 0 2  X  is semistable
for L ( 1  t)=2

L(1+t)=2 . Let !  2  H 2 (X== + G)  denote the hyperplane class. For integers a; b; c  0 we
compute genus 0, d =  1, n =  3 invariants h!a ; ! b ; ! c i0;1 of Pk 1 via wall-crossing; this
was already covered in Cieliebak-Salamon [13]. Of course from the elementary
computation of quantum cohomology of projective space one knows
that (

1 a +  b +  c =  2k 1
0;1 0 otherwise:

First we relate the above three-point invariant to a gauged invariant. Since
c G ( X )  =  k, the minimal Chern number of X  is k. For dimensional reasons, there are
no quantum corrections in D 0 X ( i ) ; i   k 1. Thus

D 0
G  ( i )  =  ! i ; i   k 1:

The adiabatic limit Theorem 1.10 with insertions implies that the genus zero, three-
point invariants h! a ; ! b ; ! c i0;d of class d 2  H2 (X==G) =  Z  in the quotient X==G equal
gauged Gromov-Witten invariants:

Z
h! a ; ! b ; ! c i0;d = ev a [  ev b [  ev c [  f 3  [ M 3

(P;X;d)]

where P is the projective line and 3 2  H 6 (M3 (P))  is the point class, that is, the
class xing the location of the three marked points.

We apply the wall-crossing formula Theorem 1.13 to compute the gauged invariant.
There are no holomorphic spheres in X ,  so the moduli stack M G (P; X ; L t ; d) G  is a
point, for t =  0, consisting of the bundle P  with rst Chern class c1 (P ) =  d 2
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H G ( X ; Z )  =  Z  with constant section equal to zero. Thus the xed point stack is

M 3  (P; X; Lt=0 ; ; d) =  M3 (P):

for any non-zero  2  g. The index bundle of T X  at the xed point for d =  1 is

Ind(TX=G )j0 =  H 0(P; OP(1) 
C  C k )  =  C2k :

It has Euler class Eul(t=0 ) =  2k: By the wall-crossing formula 1.13

h! a ; ! b ; ! c i0;1 =  Resid 

Z
ev a [  ev b [  ev c [  f 3

[ M 3  (P;X;L0 ;;1)] t=0

=  Resid 
a+b+c =2k

1 a +  b +  c =  2k 1
0 otherwise:

Thus
! a  ? ! b  =  q ! a + b  k ; k  a +  b  2k 1

as is well-known. For example, taking a =  b =  k 1 we obtain that there is a unique
line in projective space passing through two generic points and a generic hyperplane.
We give another Fano example in Example 1.2, where we compute the change in a
coecient in the fth quantum power of the rst Chern class for a blow-up of the
projective plane. This ends the example.

The most interesting case of the wall-crossing formula Theorem 1.13 is the crepant
case by which we mean that the sum of the weights at any xed point vanishes (De-
nition 4.2); the term crepant was introduced by Reid [55] as the opposite of discrepant
in the context of the minimal model program. In the last section we give a proof of a
version of the crepant transformation conjecture of Li-Ruan [46], Bryan-Graber [10],
Coates-Corti-Iritani-Tseng [16], Coates-Ruan [15] on equivalence of Gromov-Witten
theories in this case: We say that two elements of Map(H2 (X==G; Q); Z) are equal
almost everywhere (a.e.) in the quantum parameter q if their dierence is an element of
the form f ()q  with f (  +  d); d 2  Z  polynomial in d. If, as distributions, these
functions are tempered then by Fourier transform the dierence is supported on a set
of measure zero.

Theorem 1.17 (Wall-crossing for crepant birational transformations of git type).
Suppose that X ; G  are as in Theorem 1.13, and C  has genus zero. If all the wall-
crossings are crepant then

X =      G   X ;   =
:  

X = + G   X ; + :
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Remark 1.18. (a) Theorem 1.17 implies many of the special cases already known
in the literature, although actually computing the transformations G relat-
ing the graph potentials X =  G  can be a dicult task. Note that Iwao-Lee-Lin-
Wang [36], Lee-Lin-Wang [43] extend the invariance to cases not necessarily
related by variation of git, while the results here are more general than that of
[43], [36] since we allow \weighted ops". More recently Coates-Iritani-Jian
[19] have proved a version of the crepant transformation conjecture for toric
complete intersections, which overlaps in many cases with the results here.

(b) The results here are for the graph potential, whereas the results in Coates-
Iritani-Jiang [19] are for the fundamental solution. One natural expects the
results here to extend to the case of localized graph potentials (fundamen-
tal solutions) using the results of Halpern-Leistner [33] and Ballard-Faver-
Katzarkov [2]. We hope to return to this in future work.

(c) Almost everywhere equality in the formal parameter q means the following:
considering both sides as elements in Map(H G(X; Z)= torsion; Q), the dier-
ence is a polynomial in at least one direction. In particular, in the case of a
single quantum parameter the dierence is tempered distribution its Fourier
transform in that direction has support of measure zero, see Section 4.

(d) The proof of Theorem 1.17 uses an action of the Picard stack of the curve
on the xed point stacks, see Lemma 4.5. In the crepant case the (almost)
invariance under this action implies that, after summing over degrees, the
wall-crossing term is a sum of derivatives of delta-functions in the quantum
parameter.

Example 1.19. (Simple three-fold op, cf. Li-Ruan [46], Iwao-Lee-Lin-Wang [43],
Lee-Lin-Wang [36]) The following simple example may help to explain the notion
of \almost everywhere vanishing" of the wall-crossing contributions in the quantum
parameter. Let G  =  C  acting on X  =  C4  with weights 1 each of multiplicity 2. Let L
be the trivial polarization and L t  the trivial bundle shifted by tensoring with a
representation of weight t. The invariant sections of L t  are spanned by monomials

zd1 zd
2
zd

3
z4

4 2  H 0 (Lt )G ; d1 +  d2 d3 d4 =   t:

Thus the semistable locus X ss;t is either (z1; z2) =  0 or (z3; z4) =  0 depending on
the sign of t, and the git quotients X==G factor over P =  (C2    f0g)=C giving
identications

X==G =  OP( 1)2;
where P is the projective line and we abuse notation by denoting by OP( 1)2 the total
space of two copies of the tautological line bundle OP( 1). The quotients X == + G
and X== G  are isomorphic but the birational transformation relating them, induced
by the variation of git quotient, is a simple op.
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We consider the wall-crossing formula corresponding to the three-point invariants
with each insertion given by the hyperplane class. In order to make sense of the
non-compact integration in the d =  0 case one must take an equivariant extension
with respect to the action of C  acting by scalar multiplication, and use localization for
the residual C-action. Thus if  is the equivariant parameter for the auxiliary C  and  2
H 2  ( X )  is the hyperplane class,

X (  +  ) =  !  +

where !  2  H 2 (X==G) is the symplectic class integrating to 1 on the zero-section P
OP( 1)2. The xed point set of the residual C  action is the zero section of X==G,
which acts with weights 2 (with multiplicity two) on the normal bundle. The degree
zero moduli space is X==G itself, and integration of  =  3 over this non-compact space
can be dened via localization as

I : = G
;() : = ( !  +  )3 [  Eul(OP( 1)2) 1 X = G

P

( !  +  )3 
ZP

( !   2)2

= 3! 2 (2) 2 +  3(2) 2(1 ! =(2) +  ::::)2

P

3 ! !

P 4 4 4
= 3=4  1=4 =  1=2:

The auxiliary circle action naturally extends to the various master spaces involved,
and the wall-crossing formula holds in this case as well, dening each contribution via
localization. There is a unique xed point 0 2  X ,  with normal bundle isomorphic to X .
Thus the wall-crossing term is

Resid 
3=(2( )2) =  1:

Thus Kalkman’s wall-crossing formula reduces to

I +  I   =  (1=2) ( 1=2) =  1:

We now study wall-crossing for invariants of positive degree. For each d 2  H G ( X ; Z )  =
Z,  there is a unique gauged map u : C  !  X = G  of class d mapping C  to the xed
point 0 2  X .  Its normal complex RpeT X has weight 1 with multiplicity 2 +  2d and
weight  1 with multiplicity 2   2d, by Riemann-Roch. Thus the wall-crossing term
for class d is

Resid 
3=(2+2d( )2 2d) =  1:



G

1  1

1 1

X ;

2 2

! !

a:e:

X ;

~

 +
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The class d occurs in the expression X = G X ;  i d  0. Indeed, the contribution of qd is the
contribution of qd to the gauged Gromov-Witten potential in Theorem 1.10, which by
denition is an integral over Mundet stable maps M G (C ; X ; d) ,  which in this case is the
git quotient of

M G ( C ; X ; d )  =  H 0 (OC (d) C  (C2   C2 ))==C

by the C  action corresponding to the polarization L ,  where C1  denote the one-
dimensional representations with weight 1. For d =  0, only one factor

H 0 (OC (d) 
C  (C2 ))  =  C2( jdj+1)

is non-vanishing. It follows easily that the moduli space of gauged maps of class d is
empty for the polarization L corresponding to the character 1. Each qd; d =  0
appears in only one of the Novikov rings G;0. Thus the higher degree integrals for L +

are 1 for d >  0 and 0 for d <  0 resp. for L   are  1 for d <  0 and 0 for d >  0, each
corresponding to an integral over multiple covers of the zero section. Summing over
classes d the wall-crossing formula for gauged invariants in Theorem 1.13 becomes

1 
+  

X
q d   

1 X
q d =  

X
q d  =  0:

d>0                                             d<0                      d 2 Z

The reader may compare with the treatment of simple ops in [46], [43, Corollary 3.2]
which contains essentially the same computation. Note that here we have not given
an explicit description of the maps G which relate the two graph potentials.
This ends the example.

2. K a l k m a n ’s  wa l l - c ross ing  f o r m u l a

In this section we give a proof of Kalkman’s formula 1.1 rst for circle group
actions and then for the general case.

2.1. The wall-crossing formula for circle actions. The wall-crossing formula is
somewhat simpler for the case of a circle group, so we begin with that case. Let G
=  C  and X  a smooth projective G-variety as above, equipped with polarizations L  !
X .  The proof of the wall-crossing formula is by localization on a proper Deligne-
Mumford stack X  whose xed points include X==G and the xed point components
X G ; t  with t 2  ( 1; 1). From the point of view of symplectic geometry, this is the
symplectic cut construction in Lerman [44], but we need the algebraic approach here
given in Thaddeus [59, Section 3].

Recall from the introduction the notation for variation of git quotient. Let

L t  : =  L ( 1  t)=2

 L(1+t)=2 ; t 2  ( 1; 1) \  Q



_

2
_

 = + c

2

~
~

~

~

~
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denotes the family of rational polarizations interpolating between L .  Denote by
X==t G the corresponding git quotients, by which we mean the stack-theoretic quotient
X s s ; L t =G of the semistable locus X s s ; L t      for L t  by the action of G. (Most authors
would enclose a stack-theoretic quotient by square brackets, which we omit since we
always mean stack-theoretic quotient unless otherwise stated.) In symplectic
geometric terms, this means that if

 : X  !  gR

are moment maps for action of a maximal compact G R  of G  on L  with respect to a
unitary connection then

t : =  
1 

2 
t

  +  
1 +  t

+  : X  !  gR

is a moment map for the action of G  on Lt .  Even more concretely, if  are equal up
to a constant c =  +    then the maps

  +  + t
t 2 2

are all equal up to a constant t c depending on t. For the following see Thaddeus
[59, Section 3].

Lemma 2.1 (Existence of a master space). Suppose that G  acts with nite stabilizers on
the semistable loci X ss;  and for any t 2  ( 1; 1) and any t-semistable point x  2  X ,  G x  acts
with nite stabilizer on the ber ( L +

 L  1)x. There exists a smooth proper Deligne-Mumford C-stack X  equipped with a line
bundle ample for the coarse moduli space whose git quotients X ==t C  are isomorphic to
those X==t G of X  by the action of G  with respect to the polarization L t  and whose xed
point set X C  is given by the union 0 1

X C
 
=  (X== G)  [  (X == + G)  [  @ 

[
X G ; t A

t2(  1;1)

where X G ; t  is the component of X G  that is semistable for parameter t. Furthermore,
the normal bundle of G;t of X G ; t  in X  is isomorphic to the normal bundle of X G ; t  in
X ,  equivariantly after the identication G  =  C.

Proof. The projectivization P( L    L + )  of the direct sum L    L +  of the polariza-tions L
!  X  has a natural polarization given by the relative hyperplane bundle OP(L      L + ) (1 )
having bers

(17) OP(L      L + ) (1) [ l      ; l + ]  =  span(l  +  l+ ) :

Let
 : P (L    L + )  !  X



     +

 +

 +

~

~
~

~

 +

~
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denote the projection. (A  word of warning: the notation  will be used for a number
of dierent projections in this paper.) The group C  acts on P(L    L + )  by

w[l ; l+ ] =  [l ; wl+ ]; w 2  C; l  2  L :

For k  0 the space of sections of OP(L L  ) (k) has a decomposition

(18) H 0 (P(L    L + ) ; OP ( L      L + ) (k ) )  =
M

H 0 ( X ; L
k

 L
k + )

k      + k + = k

under the natural C-action with eigenspaces given by the sections of

L k

 L k + ; k  +  k +  =  k; k  0:

The G-semistable locus in P( L   L + )  is the union of non-vanishing loci of non-zero
invariant eigensections. Hence

(19) P( L      L + ) s s  =  X ss;      [ X s s ; + [  
[  

 1 (X s s ; t ) \ (P(L      L + )  P(L  )  P ( L + ) )  t2[

1;1]

where X ss;t  X  is the semistable locus for L t  and X ss;  are considered subsets of
P(L    L + )  via the isomorphisms X  !  P(L).  Let

X  : =  P( L    L + ) == G

denote the geometric invariant theory quotient, by which we mean the stack-theoretic
quotient of the semistable locus. The assumption on the action of the stabilizers in
Lemma 2.1 implies that the action of G  on the semistable locus in P(L    L + )  has
only nite stabilizers. It follows that X  is a proper smooth Deligne-Mumford stack.
The quotient X  contains the quotients of P(L)  =  X  with respect to the
polarizations L ,  that is, X==G.

Next we describe the xed point set. The xed points for the action of C  on X  are
represented by pairs [l ; l+ ] with a positive dimensional stabilizer under the action
of G   C.  Necessarily either l 

 =  0; l+
 =  0, or l ; l +

 are both non-zero but the
projection to X  is G-xed. In the latter case, semistability implies that there exists an
invariant section of L t  =  L ( 1  t)=2

 L(1+t)=2 ; t 2  [ 1; 1], non-vanishing at x. Since l are both non-zero, the weight t of C  on
the ber cannot be in f  1; 1g, hence x  is t-semistable for some t 2  ( 1; 1). The normal
bundle of X C  lifts to the normal bundle ~ for the xed point set some one-parameter
subgroup in P( L   L + ) ,  which projects to the normal bundle in X C .  Both projections
have trivial ber, hence the claim on normal bundles.

Proof of the classical Kalkman’s wall-crossing Theorem 1.1. First note that the inte-
grand in the wall-crossing formula lifts to the master space in a natural way: The



~

~

C ~ ~

C G

~ G

~

~

X ;
~

~~

~

X ; () X ; + () X
X G ; t

~

 1

G G
X

G ; t GEul ( X G ; t )
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projection P(L    L + )  !  X  is G-equivariant and C-invariant. Composing the
pull-back map

H G ( X )  !  H G C ( P ( L    L + ) )
with the Kirwan map

H G C ( P ( L    L + ) )  !  H C ( X )  one

obtains a canonical map

 : H G ( X )  !  H C ( X ) :

The composition of  with the Kirwan map

~X;t : H C ( X )  !  H (X ==t C)  =  H (X==t G)  is

pull-back to the t-semistable locus and so equal to

~X;t   =  X ; t  : H G ( X )  !  H (X==t G):

In particular, () 2  H C ( X )  restricts to X ;  on the two distinguished xed point
components X==G  X C .

Taking the residue of the localization formula for the circle action on the master
space gives Theorem 1.1, see Lerman [44]. Indeed for any equivariant class  2
H G ( X )  of top degree, its pullback to P(L   L + )  descends to a class () 2  H C ( X )  whose
restriction to X==G is G       (), and whose restriction to X G ; t   X G  is X G ; t .  Since

deg(()) =  deg() =  dim(X ) 2;
the integral of () over X  vanishes. On the other hand, by localization the integral
of ()  is

Z Z G Z G Z
(20)

[ X ]  
() =  

[ X =      G] EulG (  )  
+  

[ X = + G ]  EulG ( + )  
+  

t2(  1;1)    
 
[ X G ; t ]  EulG ( X G ; t )

where  !  X==G are the normal bundles to X==G in X .  Since the normal bundle of the
\sections at zero and innity" P(L)  in P(L    L + )  may be canonically identied with
( L +

 L )1, the group C  acts on  with weights 1. Hence the inverted
Euler classes are

EulG ()  1 =  ( +  c1()) 1 =   1(1 +  c1()() 1 +  : : :):
Taking residues on both sides of (20) one obtains

Z
0 =   X = + G X ; +  +  X =      G X ;   +  Resid X G ; t

t2(  1;1)     [ X        ]

as claimed.
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2.2. Kalkman wall-crossing for actions of non-abelian groups. Kalkman’s
wall-crossing formula can be used to study the intersection pairings for variation of
git for the action of an arbitrary connected complex reductive group G  on a smooth
polarized projective variety X  as follows. As above, let

X  =  P(L    L + )==G:
We examine the structure of the xed point set of C  on X .  For any  2  g, denote by G
G  the stabilizer of the line C  under the adjoint action of G. Recall from the
introduction that

X  =  f x  2  X  j zx =  x; 8z 2  C  g
is the xed point set of the one-parameter subgroup C  . Since G  commutes with C  ,
it acts on X .  The t-semistable locus

X ; t   X
has, by assumption, the property that the action of G=C  has nite stabilizers, that is,
gx =  C  for all x  2  X ;t : It follows the owout of the semistable locus is

GX ; t  =  G  G  X ;t :
In particular, there exists a canonical action of g=g (considered as an abelian group)

ber-wise on the normal bundle X ; t .  Denote by X ; t =(g=g) the quotient by the action.

Lemma 2.2 (Structure of the xed point components). Suppose that stable=semistable
for the G-action on P(L      L + ) ,  so that X  is a smooth proper Deligne-Mumford stack
with C  action, constructed in the proof of Lemma 2.1.

(a) For any xed point x~ 2  X C      with x~ =  [l] for some l 2  P(L    L + ) ,  there
exists  2  g such that

8z 2  C; zl =  zl:
(b) Any xed point x~ 2  X C      is equal to [l] for some l 2  P(L    L + )  in the ber over

x  2  X  that is t-semistable for some t 2  ( 1; 1) and has stabilizer generated
by  2  g, with the property that the weight of the one-parameter subgroup
generated by  on (L ( 1  t)=2)

 L( 1 +t ) = 2 )x  vanishes:

zl =  l; 8l 2  (L ( 1  t)=2)

 L(1+t )=2 )x :
(c) Denote by X ==t (G=C ) the git quotient of X  by the group G=C       with respect

to the polarization determined by the restriction of L ( 1  t)=2

 L(1+t)=2 . For each  2  g generating a one-parameter subgroup C      there is a
morphism

 : X ==t (G=C ) !  X C :



~

~

X ~

~

~ ~

X
~ ~

~ ~

~

+

X

~
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The images of all the  cover X C ,  disjointly after passing to conjugacy
classes of one-parameter subgroups C  .

(d) For any  2  H G ( X ) ,  the pull-back of ~ () jX C  under  is equal to image of
under the restriction map H G ( X )  !  H C (X ==t (G=C  )).

(e) The pull-back of the normal bundle  ~ C of X C  under  is isomorphic to the quotient
of X ; t =(g=g) by a fractional action of G=C,  via an isomorphism that intertwines
the action of C  on (X ; t =(g=g))==(G=C) with the action of C  on X C  .

Proof. (a) Denote by P( L   L + )  the complement of P( L  ) [ P ( L + )  in P(L   L + ) .  If [l] 2
X C ,  with l 2  P(L    L + )  then [l] 2  X ,  where  is a generator of the Lie algebra of C  and
X  is the zero set of the vector eld  ~ generated by . Since X  is the quotient of P (L
L + )  by G, if L  denotes the vector eld on P(L    L + )  generated by  then L ( l )  =  L ( l )
for some  2  g. Since G  acts locally freely  must be unique. Integrating gives z l =  zl
for all z 2  C,  hence (a). (b) is a consequence of (a) and the denition of semistability in
terms of invariant sections. Item (c) is a consequence of items (a) and (b). Item (d)
follows from the fact that  ~ is pullback to X ==t (G=C ). For (e), the normal bundle X C

of X C  restricted to the image of  is isomorphic to the quotient of the normal bundle of
G G  P ( L   L + )   by G, which in turn is isomorphic to the quotient of the normal bundle
of P(L    L + )   by g=g. The projection to X  identies this normal bundle with the
normal bundle X  to X  quotiented by g=g. Thus X C  is isomorphic to a quotient of X

=(g=g) by G=C  .

Remark 2.3. An anonymous referee has pointed out the following alternative per-
spective on the xed point loci. Consider the G-equivariant bundle

~ : =  X ; t =(g=g) !  X ;t :

Taking quotients gives a vector bundle ~=G !  X ; t =G over the Artin stack X ;t =G. On
the other hand, we have a C-bundle

P  : =  ( L
 L  1) !  X ; t

which is a sub-bundle of P (L    L + ) j  ;t , and where superscript  denotes removal of the
zero section. The map P  !  X ; t  is equivariant for the G-action and the Deligne-
Mumford stack P=G gives a component of X C .  These spaces t into a
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diagram (quotients being stack-theoretic)

P=G X C  
p

X ;t =G:

The pull-back of the vector bundle ~=G !  X ; t =G by p is isomorphic to the
restriction of the normal bundle X C  to the component P=G:

p[~=G] =  X C  jP=G :

Here the left-hand side p[~=G] is naturally a C-equivariant bundle over P=G (since
p~ is a G  C-equivariant bundle over P)  and this isomorphism intertwines the C-actions.
The various pull-backs t into a commutative diagram of maps in equivariant
cohomology

H G ( X ) ~ H C ( X )

H G  
(X ; t )

p
H G C ( P ) H C(P=G) H ( X C )

It follows that the xed point contribution from X ; t  in the wall-crossing formula is
given by

Z
Resid ~() [  p EulG  (~) 1: P= G

One may re-write this as an integral over X ;t =(G =C) as follows. Let k 2  Z  f0g
be the weight of the C-action on bers of P  !  X ;t ;  by changing the choice of one-
parameter subgroup by a sign we may assume that k is positive. The projection P  !
X ; t  denes a B(Z=kZ)-bundle

 : P=G !  X ; t =(G=C )

Choose a splitting of the Lie algebra

g =  C   (g=C):

Let

 2  HC(pt); ~ 2  H 2 (pt)



C G

C

2

2 2 2

1
k C

G

+

~ ! =  k + + +  : : :
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denote the standard generators. Consider the commutative diagram

H (P=G)  =  H G C ( P )  =  H  
 
(X ; t ) = H (X ; t =(G=C  ))

 C(~)
:

H (P=G) H (X ; t =(G=C  ))

Note that the identication of the C  -equivariant parameter ~ in H G  C (P)  re-quires
the choice of a splitting. We claim that the pullback of  to H (P=G) corresponds
to a class k~ +  !  2  H (X ; t =(G=C))
 C(~) for some nilpotent ele-ment !  2  H 2 (X ; t =(G=C ) where k is the ber weight
above. Indeed let

K  =  f(z ; z k ) 2  C   Cg be

the subgroup that acts trivially on P. Then

 k~ 2  H G C ( P )  lies

in the image of

HG C(pt) !  H ( G C ) = K (P )  !  H G C (P) :

Since (G   C ) = K  acts on P  locally freely,    k~ is nilpotent. This proves the
claim. The splitting also denes action of (G=C  )  C      on ~, so that

EulGC(p~) =  EulC(~=(G=C )) under

the isomorphism

H G C ( P )  =  H (X ; t =(G=C))
 C[~]:

The xed point contribution can be rewritten as
Z

Resid                                            j X ; t  [  Eul (~=(G=C)) 1

X ; t = ( G = C  ) ~ = (  ! ) = k

where we regard jX ; t      as an element of H  (X ; t )  =  H (X ; t =(G=C  )) using the
splitting and the factor 1=k arises as the degree of

 : P=G !  X ; t =(G=C ):
Under the substitution ~ =  ( ! )=k we have for i  2  Z

 i ki
i  
 
1 i ! i ( i  +  1)! 2  

(
! ) i

                     
 
i          

 
i + 1                  2 i+2



1 k

Z

C

Z

G C

 

G G
X
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and thus (

Resid ~i j~=(  ! = k )  = 0
i  =  1
otherwise

Therefore the above residue equals

Resid~ jX ;t  [  Eul (~=(G=C)) 1: X ; t = ( G = C  )

This ends the Remark.

We introduce the following notation for xed point contributions.

Denition 2.4. For any xed point component X ; t   X  that is t-semistable,
denote by X ; t  the normal bundle of X ; t  as above. Let

X;;t : H G ( X )  !  Q[;  1];  !  
[ X ; t  =(G=C)] EulC((X ; t =(g=g))=(G=C ))

where we have omitted the restriction-and-quotient map H  ( X )  !  H  (X ;t ==(G =C))

to simplify notation, and  is the equivariant parameter for C  .
We dene an equivalence class on rational elements of the Lie algebra as follows.

Recall that an element  2  g is rational if C  is the Lie algebra of a one-dimensional
subgroup C.  We declare two rational elements 0; 1

 to be equivalent if the one-
dimensional subgroups are conjugate:

(21) (0  1) ( ) 9g 2  G; C
0  

=  gC
1
g  1

or equivalently, C1  is related to C0  by the adjoint action. Denote by [] the equiv-
alent class of a rational element  2  g.

Theorem 2.5 (Kalkman wall-crossing). Let X  be a smooth projective G-variety and
L  !  X  polarizations with stable=semistable for the G  action on P(L      L + ) .  Then

(22) X = + G X ; +  X =      G X ;   = Resid X;;t t2(

1;1);[]

where the sum is over equivalence classes [].

Proof. This is an immediate consequence of Kalkman’s result for circle actions, The-
orem 1.1, applied to the master space constructed in Lemma 2.1, using the identi-
cation of the xed point components and normal bundles in Lemma 2.2.

Example 2.6. (a) (Blow-up of the projective plane as a quotient of a product of
projective lines by a circle action) Let X  =  (P)3 with polarization

L  =  OP(a)  OP(b)  OP(c); a  b  c:



1

G G

G

G G
3

G G

2
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We let G  =  C  acting on each projective line P by

g[z0; z1] =  [z0; gz1]; g 2  C; z0; z2 C:

Let G  act on OP(n) so that the weights at the xed points [1; 0], [0; 1] are
 n=2; +n=2. Let G  act diagonally on the factors in X  =  (P)3. Consider the
family of polarizations L t  =  L
 Ct  obtained by shifting L  by a trivial line bundle with weight t.

The chamber structure for the various git quotients is governed by the
weights of the action on the polarizing line bundle on the xed points, given
by (a  b  c)=2. Thus there are nine chambers, of which two have empty git

quotients and seven non-empty chambers. In the rst and last chamber, we
have X==t G =  P (C3 )  resp. P ((C3 )_ ),  while the six wall-crossings represent

three blow-ups and three blow-downs involved in the Cremona transformation.
We study the application of the Kalkman formula to the square of the rst

Chern class. That is, let

 =  c G (X ) 2  2  H 4 (X ) :

Since T X  is isomorphic to the pull-back of T (X==t G) plus a trivial line bundle
with ber g, we have

X;(c1 ( X ) )  =  c1 (X==tG):

Consider the wall-crossing from the chamber t <   a b c to the rst non-
empty chamber t 2  (a b c;  a +  b c), corresponding to the wall-crossing
over the \lowest" xed point x  =  ([1; 0]; [1; 0]; [1; 0]) 2  X .  Since all weights of the
action on the tangent bundle at this xed point x  2  X  are 1, we have

c1 (X ) j x  =  3 2  H G (fxg) :

Hence

X = + G X ; + ( )  X =      G X ;  ()  =  Resid 
(3)2 

=  9:

Indeed, c1(P2) is three times the generator of H 2(P2), so
Z

X ;  X ;  () = c1(P2)2 =  9:
[P ]

Consider next the wall-crossing from the chamber with quotient X== G  =  P2 to
the chamber with quotient X == + G  =  Bl(P2), where Bl(P2) is the blow-up of P2

at a point. Letting  : Bl(P2) !  P2 denote the blow-down map we have
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c1(Bl P2) =  3H   E  where H ; E  are the hyperplane class and class of the
exceptional divisor respectively. Hence

(23) X = + G X ; + ( )  =

(24) =

(3H E ) 2

(3H )2 6 H E  +  E 2  =  9 0 1 =  8:

To  compare this result with the wall-crossing formula, note that the xed
point set X G ; t  consists of a unique point ([0; 1]; [1; 0]; [1; 0]) which is semistable
exactly for t =  a   b   c, with tangent weights  1; 1; 1. It follows that the
rst Chern class squared and Euler classes are

c1 (T X jX G;t )2  =  (   +   +  )2 =  2; EulG (T X jX G ; t )  =   3:

Hence the wall-crossing term is
Resid  

G ; t  [  EulG ( X G ; t )  1 =  Resid =   1:
[ X G ; t ]

The wall-crossing formula reduces to

X = + G ( ; )  X =      G (; ) =  8 9 =   1:

This matches the well-known fact that each blow-up of P2 lowers c2 by 1.
(b) (Blow-up of the projective plane as a quotient of ane four-space by a two-

torus) Let us do the same example in a dierent way, namely as a quo-tient
of an ane space. Let X  =  C4  with G  =  (C)2  acting with weights
(1; 0); (1; 0); (1; 1); (0; 1). Consider the path L t  of polarizations whose rst
Chern classes H 2  (X ; Q) =  Q2 are the line segment from (1; 2) to (2; 1). The
chamber structure is determined by the rays generated by the weights, so that
the \negative" chamber is spanned by (0; 1); (1; 1) and the \positive chamber"
by (1; 1); (1; 0). The quotient in the negative chamber X== G  is isomorphic
to P2 via the map

X== G  !  P2; [a; b; c; d] =  [(a; b; cd 1; 1)] !  [a; b; cd 1]:

On the other hand X == + G  is isomorphic to the blow-up of P2 with the map
to P2 blowing down the exceptional divisor given by

X == + G  !  P2; [a; b; c; d] !  [a; b; cd 1]:

As one moves in a line from say ( 1; 2) to (2;  1) the symplectic quotients are
in order ;; P2 ; Bl(P2 ); ; where the initial and nal contractions are projective
bundles over the xed point sets pt resp. P for the residual action of C  on the
quotient of X  by the diagonal action. See Figure 1, where the two chambers
for the possible quotients are shown together with the moment polytopes of
the quotients in each chamber.



1

Resid
1

j =  9
R

[P ]

2

R

Resid C

X

X
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F i g u r e  1. Chambers for (C)2  action on C4

Consider rst the wall-crossing from the empty chamber to the negative
chamber in Figure 1. We have c G (X )  =  31 +  22. Hence the wall-crossing term
is

(31 +  22)2

= 1       2(1 +  2) 2 = 0

hence 2 c1(P2)2 =  9 as expected.
The wall-crossing term for passing from the negative to positive chamber

is the residue:

Resid 
(31 +  22)2 

=   1:
1 2               = 1 =  2

We obtain from the wall-crossing formula that [Bl(P2 )] c1(P2)2 =  8 as we al-
ready computed in item (a) above.

Consider next wall-crossing from the positive chamber to the empty cham-
ber. The xed point locus contributing to the wall-crossing term is

X ; t =(G=C ) =  P

since the multiplicity of the weight (1; 0) is 2. The wall-crossing term is
Z

 (31 +  22)2

      
[P]      

X
2(1 +  2)

where C  : H G ( X )  !  H G = C (X==C)  is the Kirwan map for the quotient by the rst
factor of C,  so that X == C  has C-quotients X==G. Under C  we have that 1 maps
to the generator !  of H 2 (P) while 2 maps to the parameter



3 !  +  2) + ! ! 2

Z

R
;

d d d

k X

G
Z

k

X ;

Resid =  k 1=k
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 for the residual C-action. The wall-crossing term is therefore

Resid 

Z

[P] 

(
( !  +  )

2  
=  Resid 

Z

[P] 

( 3 !  
2

2)2
1   

 
+  2 : : :

=  Resid 12
! 

4
!  

=   8:
[P]

Thus as expected the wall-crossing formula reduces to c1 (;) =  8 8 =  0:
(c) (Resolution of a crepant singularity) The following example illustrates the

application of the wall-crossing to orbifolds, in which the integrals become
rational, and also the non-compact case, in which the integrals must be dened via
localization. Suppose that X  =  C k + 1  and G  =  C  acts with weights 1 with
multiplicity k and  k with multiplicity 1. Take L  to be the trivial
polarization, and L t  the family obtained by shifting by a trivial line bundle
with weight t. Thus invariant sections are spanned by monomials.

z0
0 z1

1 : : : zk
k ;  kd0 +  d1 +  : : : +  dk =  t:

The latter requires d0 =  0 for t <  0 resp. (d1; : : : ; dk) =  0 for t >  0. It
follows that the semistable locus for t <  0 is z0 =  0 and for t >  0 the locus
where (z1; : : : ; zk) =  0. The git quotients are then X == + G  =  C k =Z k  (by our
conventions, a stack with trivial canonical bundle) while X== G  is isomorphic
to the total space of OPk     1 (k) !  Pk 1.

We apply the wall-crossing formula to the Euler class of the quotients. Let
=  cG (Ck + 1 )  (the next-to-highest Chern class of C k + 1 )  so that G

;() is the top
Chern class of X==G. Then

X = + G ( X ; + ( ) )  = Eul(Ck =Zk ) =  1=k:
[C =Zk ]

Indeed, interpreting this integral via localization using the C-action given by
scalar multiplication, there is a unique xed point with stabilizer of order k
which contributes Eul(Ck )=(k Eul(Ck )) =  1=k to the integral. On the other side
of the wall,

Z
X =  G ( G       ()) = Eul(Pk 1) =  k:

[OPk      1 ( k ) ! P k      1 ]

The wall-crossing term is

(1 +  )k (1 k)
k ( k)

as expected.



X X

1
G

1

Z 2

3

1
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(d) (A  del Pezzo surface as a quotient of a product of projective lines by a non-
abelian group) Let X  =  (P)5 with the diagonal action of G  =  S L(2; C).  The
action of S L(2 ; C)  on P lifts uniquely to an action on the hyperplane bundle
O(1) and we take as polarization the exterior tensor product O(1)t  O(1)4

varying on the rst factor only. The stability condition for a tuple (v1; : : : ; v5)
2  X  is

ivi ivi ; 1 =  t; i =  1; i =  1; 8w 2  P
v i = w                      v i = w

The values of t for which there are semistable points with innite stabilizers
are t =  2; 4; these points are given by

v1 =  vi =  vj =  vk =  vl; v1 =  v2 =  v3 =  v4 =  v5:
Thus the chamber structure for t is (0; 2); (2; 4); (4; 1). Since the quotient in
the last chamber is empty, and all the weights are one, the quotient X==t G for
the second chamber must be P2. Passing from the second to rst chamber the
quotient X==t G undergoes a blow-up at 4 points. Consider the wall-crossing
given by passing between chambers so that

X== G  =  P2; X == + G  =  Bl4(P2):

We compute the square of the rst Chern class by wall-crossing: Let

=  cG (X )2 ; so that X ; ( )  =  c1 (X==G)2 :

The xed points of C  action for the singular value t =  2 are the 4 (up to
the action of the disconnected group G      =  N (T )) congurations with v1 =
vi =  vj =  vk =  vl. Consider the case that x  =  (x1; : : : ; x5) 2  X  is xed by the
maximal torus action; the tangent bundle of this point has weights 1; 1; 1;
1;  1 hence c G (X ) j x  =  . The tangent bundle T x X  modulo g=g has weights 1; 1;
1. Thus

Z
c1 (X==+ G)2 = c1 (X== G)2 +  4 Resid

[ X = + G ]                                                       [ X =      G]

=  9 4 =  5:

This again matches the fact that each blow-up of P2 lowers c2 by 1.

2.3. The virtual wall-crossing formula. Our main result will be derived from a
virtual extension of wall-crossing formulas, similar to Kiem-Li [40] using the virtual
localization formula of Graber-Pandharipande [31]; we assume that the reader is
familiar with the concepts of equivariant perfect obstruction theories etc. from those
papers. In this section we explain the virtual extension and give an application to a
simple complete intersection.



~

~
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We rst need a simple lemma on obstruction theories on quotients. Let X  be a
Deligne-Mumford G-stack equipped with a G-equivariant perfect obstruction theory
which admits a global resolution by vector bundles. This means that X  is equipped
with an object E  of the bounded derived category of G-equivariant coherent sheaves,
together with a morphism from E  to the cotangent complex, satisfying certain ax-
ioms, see [4], [31]; a typical example is an invariant complete intersection as in
Example 2.9 below. Let g_ denote the sheaf of sections of the trivial bundle with ber
g_. The G-action on X  induces a canonical morphism a_ : L X

 !  g_ that we
call the innitesimal action. The obstruction complex E  comes equipped with a lift a~_ :
E  !  g_ of the innitesimal action a_ : L X  !  g_. If X ss is the semistable locus for some
polarization and stable=semistable, denote E s s ; LX s s      etc. the restrictions to the
semistable locus. The following lemma is probably well-known:

Lemma 2.7. If X ss is the semistable locus for some polarization and stable=semistable,
then the perfect obstruction theory E ss  !  L X s s  : =  L X  jX ss descends to a perfect ob-
struction theory on the quotient X ss =G.

Proof. From the bration  : X ss !  X ss =G one obtains an exact triangle of cotangent
complexes

(25) L X s s = G  !  L X s s  !  g_ !  (LX s s =G )[1]:

Let Cone(a~_) denote the mapping cone on the lift of the innitesimal action a~_. The
exact triangle

Cone(a~_) !  E  !  g_ !  Cone(a~_)[1]

admits a morphism to (25), in particular making Cone(a~_) !  L X s s = G  into an ob-
struction theory with support in [ 1; 1]. By the assumption on the stabilizers, this
obstruction theory is perfect.

We now study the virtual normal complexes of the xed point stacks. If  2  g an
element generating a one-parameter subgroup then the xed point stacks X  also have
equivariant perfect obstruction theories compatible with that on X .  We choose a
splitting of Lie algebras

g =  C   (g=C)

inducing a splitting of Lie groups after passing to a nite cover G  !  G

G  =  G=C   C  : Denote

by X  the conormal complex for the embedding

X =(G=C  ) !  X =(G=C  ):



X

G G

0

G G

Z
G
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Denote by X ;t the locus of X  semistable for L t  and by  ; t      the restriction of X       to
X ;t . The Euler class EulC  

(X ; t )  is well-dened in the equivariant co-
homology H (X ;t )[;  1], after inverting the equivariant parameter . From the virtual
localization formula in Chang-Kiem-Li [12, Theorem 3.4], improving Graber-
Pandharipande [31], one obtains the following virtual version of the wall-crossing
Theorem 2.5, similar to results of Kiem-Li [40]:

Theorem 2.8 (Virtual Kalkman wall-crossing). Let X  be a proper Deligne-Mumford
G-stack equipped with a G-equivariant perfect obstruction theory which admits a
global resolution by vector bundles. Let L  !  X  be G-line bundles that are am-ple
for the coarse moduli spaces, so that stable=semistable for P( L    L + ) .  Let X  = G

resp. X ;;t denote integration resp. equivariant integration over X ==G resp. X ;t times
EulC(X ; t )  1. Then

(26) X  = + G  X ; +  X  =     G  X ;   =
X

Resid X ;;t

t2(  1;1);[]

where the sum is over [] from (21).

Example 2.9. (Wall-crossing over a nodal xed point) The following simple example
may help illustrate the notation. Suppose that X  =  P1 [ 1 1  P1 is a nodal projective line
with a single node 1 ,  equipped with the standard C-action on each component, so that
the weights of the action on the tangent spaces at the node 1  are 1. We equip X
with a polarization so that the weights are 1 at the smooth xed points 0 2  P1, and 0 at
the nodal point. Then X==t G is a point for t 2  ( 1; 1), and is singular for t =  0. Since
X  is a complete intersection, X  has a perfect obstruction theory [4, Example before
Remark 5.4] and the virtual wall-crossing formula of Theorem 2.8 applies. We
examine the wall-crossing for the trivial class  =  1 at the singular value t =  0. The
virtual normal complex at the nodal point is the quotient of C1   C  1, the sum of one-
dimensional representations with weights 1;  1, modulo their tensor product C1

 C  1, which has weight zero. Hence the normal complex has inverted Euler class

EulG (X ;G;t )  1 =  
(  ) 

=  0:

The integrals on the left and right hand sides are 1 (being the integrals over points)
while the wall-crossing term is

1 1 =

=

as desired.

X  = + G  X ; +  X  =     G  X ;

Resid X ;;0 =  Resid EulG (X ;G;t )  1 =  Resid 0 =  0
[pt]



 1

~
~

~

~

~
~

~
~

~

~

_

_ _

38 E D U A R D O  G O N Z A L E Z  AND  C H R I S  T .  WO O DWA R D

We begin the proof of Theorem 2.8 by construction of a master space.

Lemma 2.10. Let X  be a Deligne-Mumford G-stack equipped with a G-equivariant
perfect obstruction theory which admits a global resolution by vector bundles as well as
an embedding in a smooth Deligne-Mumford G-stack. Let L  !  X  be polarizations (G-
line bundles with ample coarse moduli spaces) such that stable=semistable for L  and
for any t 2  ( 1; 1) and any t-semistable point x  2  X G ,  G x  acts with nite stabilizer
on the ber ( L +
L   )x . There exists a proper Deligne-Mumford C-stack X  equipped with a line bundle
ample for the coarse moduli space whose git quotients X ==t C are isomorphic to those
X ==t G of X  by the action of G  with respect to the polarization L t  and whose xed point
set X C  is given by the union

X C  
=  (X == G)  [  (X ==+ G)  [  

[  
(X ==t (G=C))

[]

where [] is as in (21) and  is the natural map to X  as in Lemma 2.2. Furthermore, X  has
a perfect obstruction theory admitting a global resolution by vector bundles with the
property that the virtual normal complex of X ==t (G=C) is isomorphic to the image of
X  =(g=g) under the quotient map X  !  X ==(G=C), by an isomorphism that intertwines
the action of C  on ( X  =(g=g))==(G=C) with the action of C  on X C  .

Proof. The construction of the master space is the same as in 2.1, that is, the master
space is the stack-theoretic quotient X  =  P( L    L + )==G:  The assumption on the
action of the stabilizers implies that the action of G  on the semistable locus in P(L       L + )
is locally free, so that stable=semistable for P( L    L + ) .  It follows that X  is a proper
Deligne-Mumford stack, and by Lemma 2.7 has a perfect obstruction theory induced
from the natural obstruction theory on P( L    L + )  given by considering it as a bundle
over X .  The quotient X  contains the quotients of P(L)  =  X  with respect to the
polarizations L ,  that is, X ==G.

The same argument in Lemma 2.2 describes the xed point loci: they correspond to
xed point loci in P( L      L + )  for one-parameter subgroups of C  G. Given such a locus P( L
L + )  , the pull-back of the virtual normal complex is by denition the moving part of
Cone(a~P(L     L + ) ) ,  where

a~P(L     L + )  : E P ( L      L + )  !  g

is the lift of the innitesimal action of G. Consider the bration  : P (L    L + )  !  X .  By
denition E P ( L      L + )  ts into an exact triangle

E X  !  E P ( L      L + )  !  L  !  E X  [1]:
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X
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X
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Over the complement P(L   L + )   P ( L   L + )  of the sections at zero and innity we may
identify L  =  C  using the C-action on the bers, by the assumption on the weights of the
C  action on the ber. The projection to X  identies the mapping cones

Cone(a~P(L     L + ) j P ( L      L + )       )  !   Cone(a~_ 
 )  where

a~_ 
 : E X  jX  !  (g=C)_

is the lift of the innitesimal action of g=C. Now the virtual normal complex is by
denition the C-moving part of the perfect obstruction theory; the Lemma follows.

Proof of Theorem 2.8. The proof of 2.8 is similar to that of Theorem 2.5. Namely we
take the residue of the virtual localization formula applied to X :  For any equivariant
class  2  H G ( X )  of top degree, its pullback to P(L    L + )  descends to a class ~ 2  H G ( X )
whose restriction to X ==G is G       (), and whose pullback under X ; t  !  X C  is X ; t .  By virtual
localization the integral is
Z Z

X ;  () Z
X ; + ( ) X Z  ; t

[X ] [ X  =     G] EulG (  ) [ X  = + G ]  EulG ( + )
t2(  1;1

)
;[]    

 
[X ; t =(G=C)]  EulG  (X ; t )

Taking residues and using Lemma 2.10 to identify the last term with
Z

Resid
X

G ; t = Resid X ;;t t2(  1;1)

[X G ; t ] G X G ; t                  
t2(  1;1);[]

gives the formula in the Theorem.

3. Wa l l - c ro s s i n g  f o r  G ro m ov - W i t t e n  invar iants

In this section, we prove a quantum generalization of Kalkman’s wall-crossing
formula Theorem 2.5. In the rst two subsections, we dene the wall-crossing terms as
integrals over moduli spaces of gauged maps xed by a central subgroup. The last
two subsections contain a construction of a master space for moduli spaces of gauged
maps, and a proof of the wall-crossing formula via virtual localization on the master
space. The construction of the master space is obtained from one for a dierent
compactication of gauged maps introduced by Schmitt [56], pulled back under a
relative version of Givental’s morphism from stable maps to the quot scheme. Schmitt’s
compactication has the advantage that it is constructed by git methods so the
classical techniques apply.
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3.1. Construction of a master space. The proof of the wall-crossing formula 3.25
depends on the construction of master space in the sense of 2.1 whose quotients are
the moduli spaces of Mundet stable gauged maps.
Proposition 3.1 (Existence of a master space). Under suitable stable=semistable
conditions, there exists a proper Deligne-Mumford C-stack M G ( C ; X ; L  ; L + )  with the
following properties:

(a) M G ( C ; X ; L  ; L + )  admits a perfect C-equivariant relative obstruction theory
(b) the git quotients of M G ( C ; X ; L  ; L + )  are the moduli stacks

M n  ( C ; X ; L  ; L+ )==t C  =  M n  (C ; X ; L t )

for parameter t 2  ( 1; 1);
(c) the C-xed substack includes M n  ( C ; X ; L  ; d) and M n  (C ; X ; L + ; d) ;
(d) M  ( C ; X ; L  ; L+ ; d)  admits an embedding in a non-singular Deligne-Mumford

stack.

The proof will be given after several constructions. First recall the quot-scheme
compactication of Mundet semistable morphisms from C  to X = G  constructed by
Schmitt [56, Theorem 2.7.1.4]:

Denition 3.2. (Bundles with maps)
(a) Let X  =  Pr 1 and G  =  GL(r ) .  A  projective bundle with map over a smooth

projective curve C  over a point S  =  fptg is a datum ( E ; L ; ’ )  consisting of
a vector bundle E  !  C  of rank r; a line bundle L  !  C ; and a surjective
morphism ’  : E  !  L ;  to obtain a compactication one allows this morphism
to be non-zero rather than surjective. On the locus ’  =  0 we obtain a section
of the associated projective bundle Fr ( E _ )  G  X  =  P(E _ ),

(27) f ’  =  0g !  Fr ( E _ )  G  X ; z !  im ’ z  :
For more general schemes S , a projective bundle with map over a curve C   S
!  S  of degree l is a datum ( E ; L ; ; ’ )  where  is a morphism from S  to the
Jacobian Jacl (C ) of degree l line bundles, N ()  the corresponding line bundle
on C  dened by pulling back a Poincare bundle over C   Jacl (C ), and ’  : E  !
N ()
 L  is a non-zero map. For G  a product of groups GL(r i ) ; k =  i; : : : ; k, a
projective bundle with map is collection of bundles E i  of rank ri , a line bundle
L  !  C  and a surjective morphism ’  : k       E i  !  L .

(b) For a reductive subgroup G  of a product G L ( r )  =  k      G L ( r i )  let  : G  !  G L ( r )
be a faithful homogeneous representation, that is, so that the central subgroup
of G  maps to the center (C) k  of GL(r ) .  A  projective bundle with map is a
projective GL(r)-bundle with map ( E ; L ; ’ )  and a reduction  : Fr (E )  !
Fr(E )=G of the frame bundle to G.
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2
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(c) A  G-bundle with map ( E ; L ; ’ ; )  is Mundet semistable if it satises the in-
equality of Denition 1.3 for every pair (; ) consisting of a parabolic reduc-tion
and antidominant coweight .

We introduce the following notation the moduli stacks of bundles with maps with
given numerical invariants.

Denition 3.3. Given a G-module V and integers dE ; dL  let MG;quot (C; V ; dE ; dL )
denote the stack of Mundet semistable G-bundles with maps

(P ; L   E  : =  P (V ) _ ; ’  : E  !  L )

whose bundles ( E ; L )  have rst Chern classes

c1 (E ) =  dE ; c1 (L) =  d L  2  H 2 (C )  =  Z:

Schmitt [56, Theorem 2.7.1.4] proves using a git construction that MG;quot (C; V ; dE ; dL )
has projective coarse moduli space. We will need some details regarding the git con-
struction which involves level structures, dened as follows.

Denition 3.4. Let n  1 be an integer. An n-twisted level structure for a projec-tive
bundle with map ( E ; L ; ’ )  is a collection of sections s1; : : : ; sl generating E :  a
surjective map

s : Ol ( n) !  E :
An isomorphism between two projective bundles with maps and level structures
(E k ; Lk ; ’k ; sk ); k 2  f1; 2g is a pair of isomorphisms E 1  !  E 2 ; L 1  !  L 2  intertwining
the maps ’ k  and level structures sk. In the case of G   G L ( r )  bundles, a level
structure is a level structure for each factor E i   E ; i  =  1; : : : ; k.

Denote by MG;quot; lev (C; V ; dE ; dL ) the compactied stack of projective bundles
with maps and level structures. The group G L ( r )  acts on MG;quot; lev (C; Pr  1 ; dE ; dL )
by changing the level structure:

g (E ; L ; ’ ; s )  !  (E ; L; ’ ; g s):
Schmitt [56, Section 2.7] constructs a line bundle D ( L )  ( the pull-back of an ample
line bundle on a suitable quot scheme by a nite morphism) such that the quotient of
the inverse image of the semistable locus in MG;quot;lev (C; Pr  1 ; dE ; dL ) by G L ( r )  is
MG;quot (C; Pr  1 ; dE ; dL ). (The notation stands roughly speaking for determinant line
bundle.)

A  well-known construction of Givental [27] provides a morphism from the Kontsevich-
style compactication to the quot-scheme compactication. Let X  be a smooth
projective G-variety. Given d 2  H2  ( X ; Z )  let dE  2  Z  denote the image of d under

H G ( X ; Z )  !  H ( B G ; Z )  !  H ( B G L ( r ) ; Z )  =  Z
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and d L  2  Z  the image of d under

H2  ( X ; Z )  =  H 2 (B G)   H 2 ( X )  =  Z :

Lemma 3.5. There is a proper morphism of Artin stacks

(28)

which maps
M G ( C ; X ; L ; d )  !  MG;quot (C; Pr  1 ; L; dE ; dL )

u : C  !  E  : =  P(V _ )
with principal component u0 : C  !  P(V _ )  to the pair ( L ; ’ )  where the line bundle L
is dened by

(29) L  : =  (u0 )E

 
O

O (
dipi ) i = 1

where di is the degree of the i-th bubble component

ujCi : C i  !  P(E _ ) ; i  =  1; : : : ; k
and pi 2  C  is its projection (u(Ci )) onto the principal component C ; and if ’ 0  is
the quotient corresponding to u0 then ’  is dened by tensoring with a section of O(
dipi ), so that in a local coordinate z

(30) ’ ( z )  : =  ’0 (z )(z pi ) di :

Proof. In the setting of families of stable maps this is an application of Popa-Roth [53,
Theorem 7.1], see also Marian-Oprea-Pandharipande [48, Section 5.2] for a similar
construction. The stack M G ; l e v (C ; X ; L; d)  admits a universal bundle

E  !  C   MG ; l e v (C ; X ; L; d):
Letting

C G; l e v (C; X; L; d) !  M G ; l e v (C ; X ; L; d)
denote the universal curve, we have a universal map

C G; l e v (C; X; L; d) !  P(E ); (u : C  !  C   X=G; z 2  C ; s) !  u(z)
where s denotes the level structure from above. The morphism in [53, Theorem
7.1] maps this datum to the morphism E _  !  L  for the line bundle L  !  C
M G ; l e v (C ; X ; L; d)  dened by (29); at least locally. Since the construction in [53,
Theorem 7.1] is functorial, the local constructions patch together to the required
morphism, even though M G ; l e v (C ; X ; L; d)  is a priori a stack of possibly innite
type. The map (30) giving a projective bundle with map and level structure in the
sense of Schmitt [56, Section 2.7]. Taking the quotient by the action of G L ( r )  gives
the desired morphism M G ( C ; X ; L ; d )  !  MG;quot (C; Pr  1 ; L; dE ; dL ).
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Corollary 3.6. M n  (C ; X ; d) is proper for each d 2  H2  (X ; Z ) .

Proof. Forgetting the markings and stabilizing the stable section denes a morphism

M G ( C ; X ; d )  !  M G (C ; X ; d) ;

this is the composition of morphisms forgetting a single marking, each of which is
isomorphic to a universal marked curve. Combining these we obtain a proper
morphism

M G ( C ; X ; d )  !  MG;quot (C; Pr  1 ; dE ; dL):

Since the composition of proper morphisms is proper, M n  (C ; X ; d) is proper.

A  master space for stable gauged maps is constructed by considering bundles with
pairs of maps. Associated to each map is a determinant line bundle, and a repeat of
the construction in Thaddeus [59] will create a master space for the variation of
stability condition. First we introduce a suitable moduli space of bundles with pairs
of maps.

Denition 3.7. (Stack of bundles with pairs of maps)
(a) Suppose L  !  X  are polarizations. Given tuples r  ; r >  0 a class dG 2

H 2 (B G)  and integers d L  =  (dL  ; dL )  and G-modules V ; V+ a bundle with
pair is a tuple

 
_

(P ; L  ; L
+

; ’  ; ’
+

)  ’ +  : P (V _ )  = :  E +  !  L +

consisting of a G-bundle P  with rst Chern class dG, line bundles L  ; L +  of
degrees d L  and non-zero maps ’  ; ’ +  from the associated vector bundles E  : =
P (V _ ).

(b) A  stability condition on bundles with pairs is given by combining the Ra-
manathan and Hilbert-Mumford weights in (7), (8): For weights  ; +  >  0 a
parabolic reduction  and Lie algebra element  generating a one-parameter
subgroup we dene

     ; + (; ) =  R (; )  +   H ;  (; ) +  + H ; + ( ; )

where H;(; ) is the weight of the one-parameter subgroup on the asso-ciated
graded for the map ’ .  A  datum (P ; L  ; L + ; ’  ; ’ + )  is semistable i

     ; +   0 8(; ):

Let MG;quot (C; V ; V+ ; dG ; dL ) denote the moduli stack of (  ; +)-semistable
data (P ; L  ; L + ; ’  ; ’ + ) .



 +

+ + +

+

+

 +  +

 +      +

 +
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A  very similar construction appears in [56, Section 2.8.1] under the name of twisted
ane bumps, but with a dierent stability condition.

Lemma 3.8. For suciently large twisting in Denition 3.4, there exists a projective G L ( r
) G L ( r  )-scheme MG;quot;lev (C; V ; V+ ; dG ; dL ) such that for any + ;  , the stack
MG;quot (C; V ; V+ ; dG ; dL ) has coarse moduli space that is the good quotient of an open
subset of semistable points MG;quot;lev (C; V ; V+ ; dG ; dL )

MG;quot (C; V ; V+ ; dG ; dL ) =  MG;quot;lev (C; V ; V+ ; dG ; dL )ss =GL(r  )  G L ( r + ) :
Furthermore, the semistable locus is a git semistable locus in the sense that there
exists a nite injective equivariant morphism

MG;quot;lev (C; V ; V+ ; dG ; dL ) !  QG;lev (C; V ; V+ ; dG ; dL )

to a G L ( r  )  GL(r + )-scheme QG;lev (C; V ; V+ ; dG ; dL ) and a line bundle

D ( L  ; L + )  !  QG;lev (C; V ; V+ ; dG ; dL )
so that the following holds: A  bundle with pair (P ; L  ; L + ; ’  ; ’ + )  is semistable i its
image in QG;lev (C; V ; V+ ; dG ; dL ) is semistable, that is, there exists a non-trivial
invariant section of D ( L  ; L + )  non-vanishing at (P ; L  ; L + ; ’  ; ’ + ) .

Proof. We will embed the given moduli stack into a larger moduli stack via a tensor
product construction. Let MG;quot;lev (C; V ; V+ ; dL ) denote the moduli stack of ob-
jects that are tuples ( P ; ’   : E   !  L  ; ’ +  : E +  !  L + ; s+ ; s  ). where the bundles
E  ; E +  are equipped with level structures s+; s  acted on by GL(r ) .  The tensor
product map

( ’  ; : E   !  L  ; ’ +  : E +  !  L + )  !  ( ’

 ’ +  : E

 E + ; L

 L + )  induces an embedding

(31) MG ; l e v (C; V ; V+ ; dL ) !  MG ; l e v (C; V
 V + ; d L      d L + ) ;

( P ; ’  ; ’ + ; s )  !  ( P ; ’
 ’ + ; s ) :

Because the Hilbert-Mumford weights are additive under tensor products (the weights
on the hyperplane bundles are additive, by construction) the morphism (31) pre-
serves the semistability conditions. By the construction on [56, p. 277], there exists an
injective nite morphism

 : MG ; l e v (C; V
 V + ; dG ; dL      d L + )  !  QG;lev (C; V
 V + ; dG ; dL      d L + )

to a projective scheme, denoted QG;lev (C; V
 V + ; dG ; dL  d L  )  and line bun-dle D (  ; + )  on the codomain QG;lev (C; V

 V + ; dG ; dL      d L + )  so that a datum



 +
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(P ; E ; L ; ’ ; s )  is semistable i (P ; E ; L ; ’ ; s )  is git-stable with respect to D (  ; + ). Let

QG;lev (C; V ; V+ ; dG ; dL ) = (MG ; l e v (C; V ; V+ ; dG ; dL ))

QG;lev (C; V
 V + ; dG ; dL      d L + )

and D ( L  ; L + )  the pull-back of D ( L ) .  Then QG;lev (C; V ; V+ ; dG ; dL ) is projective
and the morphism MG ; l e v (C; V ; V+ ; dG ; dL ) to QG;lev (C; V ; V+ ; dG ; dL ) is nite and
injective, since it is the restriction of a nite and injective morphism. The claim on the
semistable locus follows by restriction.

The constructions above give moduli stacks of bundles with sections of projec-
tivizations. We extend this to sections of associated bundles with arbitrary smooth
projective bers as follows:

Denition 3.9. (Moduli stack of bundles with pairs of maps) Given the projective
G-variety X  and G-equivariant embeddings

 : X  !  P(V)

let MG ; qu o t (C; X ; V ; V+ ; dG ; dL ) denote the substack of MG;quot (C; V ; V+ ; dG ; dL )
consisting of data

( P ; ’   : E   !  L  ; ’ +  : E +  !  L + )
so that

( [ ’  (z )]; [ ’+ (z )]) 2  (    + ) ( X )   P(V )  P(V+ )
for generic z 2  C . Including level structures for the bundles E  ; E +  into the data
gives a G L ( r  )   GL(r + )-stack

MG;quot; lev (C; X; V ; V+ ; dG ; dL )  MG;quot;lev (C; V ; V+ ; dG ; dL )

Let QG ; l e v (C; X; dG ; dL ) denote its image in QG;lev (C; V ; V+ ; dG ; dL ). Denote the
quotient stack

M
G;quot

(C; V ; V+ ; dG ; dL ) =  MG;quot;lev (C; V ; V+ ; dG ; dL )=(GL(r  )   GL ( r + ) ) :

Denition 3.10. (Master space for quot scheme compactications) Let L  !  X
denote the pull-backs of the hyperplane bundle under the embeddings  and

D ( L )  !  QG ; l e v (C; X; dG ; dL )

denote the pull-backs of the line bundles in the Lemma above. Then

P( D ( L  )  D ( L + ) )  !  QG ; l e v (C; X; dG ; dL )
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is a P1 bundle, equipped with a natural GL(r)-action and a polarization

OP ( D ( L      ) D ( L + ) ) (1 )  !  P ( D ( L  )   D ( L + ) )

considered in (17). Let

Q G ( C ; X ; L  ; L+ ; dG ; dL )  =  P ( D ( L  )  D ( L + ) ) == G L ( r )
denote its git quotient, that is, the quotient of the semistable locus P ( D ( L  )
D (L + ) ) s s  of objects where some non-trivial invariant section P ( D ( L  )  D ( L + ) ) )  is
non-vanishing, by the action of GL(r ) .  The pull-back

P( D ( L  )  D ( L + ) )  !  MG;quot; lev (C; X; d)

is a P1-bundle and admits a nite injective morphism to Q G ( C ; X ; L  ; L+ ; dG ; dL ).
Since P ( D ( L  )   D ( L + ) ) ) == ( G L ( r  )  G L ( r + ) )  is a good quotient, so is

M q u o t (C ; X ; L  ; L+ ; dG ; dL )  : =  P ( D ( L  )  D ( L + ) ) == G L ( r  )  G L ( r + ) :

Proposition 3.11. If stable=semistable then the stack M G ; q u o t (C ; X ; L  ; L+ ; dG ; dL )
is a proper Deligne-Mumford stack with a projective coarse moduli space. The group C
acts naturally on M G ; q u o t (C ; X ; L  ; L+ ; dG ; dL )  and the quotient of the semistable locus
for

D ( L t )  : =  D ( L  )(1 t)=2

 D (L + ) ( ( 1 + t ) = 2

(pulled back from Q G ; l e v (C ; X ; L  ; L+ ; dG ; dL ))  is MG ;q uo t (C; X; Lt ; dG ; dL ),  the stack
of data

(P ; L  ; L + ; ’  ; ’ + )
that are semistable with respect to the stability condition (

; + )  =  ((1 t)=2; (1 +  t)=2):

Proof. The coarse moduli space of M G ; q u o t (C ; X ; L  ; L+ ; dG ; dL )  admits a nite in-
jective morphism to the projective variety Q G ( C ; X ; L  ; L+ ; dG ; dL ).  It follows that
the stack M G ; q u o t (C ; X ; L  ; L+ ; dG ; dL )  has projective coarse moduli space. By [56,
Theorem 2.3.4.1] and [56, Proposition 2.2.3.7] and [56, Corollary 2.2.3.4] after twist-
ing by a suitable tensor power of a positive line bundle on C , every bundle with
map (P ; L  ; L + ; ’  ; ’ + )  that is semistable for D ( L t )  for some t 2  [ 1; 1] appears
in this quotient construction, and so by construction MG ; q u o t (C; X; Lt ; dG ; dL ) is the
git quotient for the polarization D (L t ) .

The Kontsevich style compactication of the master space is obtained from similar
compactications applied to the master space for quot scheme compactications. Let
M

G
(C ; X ; V  ; V+; d) denote the substack of M

G
(C ; X ; d)  consisting of bundles that



^
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appear in M
G;quot

(C; V ; V+ ; dG ; dL ) together with a stable section of the associated
X  bundle P ( X )  !  C ; as the twisting in Denition 3.4 goes to innity the union of these
loci includes all of M

G
(C; X ; d).  The Givental morphism (28) for the pair of

embeddings  : X  !  P(V) gives a morphism

(32) M
G

(C ; X ; V  ; V+; d) !  M
G;quot

(C; V ; V+ ; dG ; dL )

which maps the pair (C; u : C  !  P ( X ) )  to the line bundles L  and maps ’  : P (V _ )
!  L  associated to the morphisms   u : C  !  P (V). For the rest of the section we x the
degrees d; dG; dL and omit them to simplify the notation.

Denition 3.12. (Master space for stable gauged maps) Denote by M G ( C ; X ; L  ; L + )
the ber product of the Givental morphism (32) with the projection from the master
space

M G ( C ; X ; L  ; L + )  =  M
G

(C ; X ; V  ; V+ ) MG ; q u o t (C ;V      ;V + )  M
G ; q u o t (C ; L  ; L + ) :

Proof of Proposition 3.1. Under the assumption that stable=semistable, d 2  H +  (X ; Z) ,
M  ( C ; X ; L  ; L + )  is a proper Deligne-Mumford stack. Indeed, the ber product of
proper morphisms is proper, and M G ; q u o t (C ; X ; L  ; L + )  is projective, and so its im-
age in the MG;quot (C; V ; V+ ) has proper coarse moduli spaces. It follows that the
coarse moduli space of M G ( C ; X ; L  ; L + )  is proper, hence (assuming nite stabiliz-ers)
M G ( C ; X ; L  ; L + )  is also proper. Consider the quotients by the circle action. The
git quotients are the ber products

M G ( C ; X ; L  ; L + )==t C =  M
G

(C ; X ; V  ; V+ ) M G ; q u o t (C ;X ;V      ;V + ) M G ; q u o t (C ; X ; L  ; L + )==t C

=  M
G

(C ; X ; V  ; V+ ) M G ; q u o t (C ;X ;V      ;V + )  M
G ; q u o t (C ; X ; L t )

=  M G ( C ; X ; L t )

which proves (b). Item (c) is similar.
We wish to prove (a): Assuming stable=semistable as above, M n  ( C ; X ; L  ; L + )

has an equivariant relative obstruction theory over the moduli stack M n ( C )  of
prestable maps to C  of class [C ]. The restriction of this obstruction theory to

M n  ( C ; X ; L  ; L + )  is perfect and admits a resolution by vector bundles. To  prove
this recall the construction of the obstruction theory for M  ( C ; X )  from Remark
1.7. The complex in the relative obstruction theory is denoted E  G in the
diagram below, constructed from the following commutative diagram of complexes of
coherent sheaves. Let L  denote the cotangent complex relative cotangent complex
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of  : M n  ( C ; X ; L  ; L + )  !  M n  (C ; X ) .  Consider the diagram

L   E M n  ( C ; X ; L      ; L + )   E M n  ( C ; X )  
 L[1]

? ? ?

L   L M G ( C ; X ; L      ; L + )    L M n  ( C ; X )  
 L[1]

where the horizontal lines are exact triangles and the second vertical arrow  exists by the
third axiom in the denition of a triangulated category. The map  satises the axioms of
an obstruction theory by the ve lemma applied to the cohomology of the above
diagram. If the automorphisms are nite then the relative obstruction theory is perfect:
rst cohomology H 1 ( E  G ( C ; X ; L  ; L  ) )  is identied with the Lie algebra of the group of
automorphisms [52, Theorem 1.5] which vanish by assumption. Existence of a
resolution follows from the fact that  is a local complete intersection morphism, see [17,
Appendix].

It remains to show item (d), that for any d 2  H G ( X ; Z ) ,  the moduli stack
M G ( C ; X ; L  ; L + )  admits an embedding in a non-singular Deligne-Mumford stack.
Let

U G;quot; lev (C; X; L ; L + )  !  MG ; q u o t ; l e v (C; X ; L  ; L + )
denote the universal bundle over the moduli space of bundles with maps and level
structures. MG ; q u o t ; l e v (C; X ; L  ; L + ) ,  equipped with the action of G L ( r  ) G L ( r  ) by
changing the level structure. Consider the embedding

U G;quot; lev (C; X; L ; L + ) G  X  !  U quot; lev (C; X; L ; L + ) ( G L ( r      ) G L ( r + ) )  P(V  V+ ): The

latter is projective (it is the pull-back of the universal bundle on quot scheme)
and so embeds ( G L ( r  )GL(r+))-equivariantly in some PN . Then M n  ( C ; X ; L  ; L + )  is
an embedded substack of M0 ; n (PN )=(GL(r  )  G L ( r  )), with objects given by
stable maps that are compositions of stable sections

C  !  U G;quot; lev (C; X; L ; L + )  G  X = ( G L ( r  )  G L ( r + ) )

with the inclusion into PN =(GL(r  )   GL ( r + ) ) .  Since M0 ; n (PN ) is a non-singular
Deligne-Mumford stack, the quotient M0 ; n (PN )=(GL(r  ) G L ( r  )) is a non-singular
Artin stack. The group ( G L ( r  )  G L ( r + ) )  acts locally freely on an open subset

M0;n (PN )reg  M0 ; n (PN ) containing M  ( C ; X ; L  ; L + )  by the stable=semistable
assumption and the quotient M0; n (PN )re g =(GL(r  )  G L ( r + ) )  is Deligne-Mumford.
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3.2. Analysis of the xed point contributions. In this subsection, we deduce the
quantum wall-crossing formula by applying virtual localization to the master space
constructed in the previous subsection. By virtual Kalkaman Theorem 2.8 for the C
action on the master space M G ( C ; X ; L  ; L+ ; d)  we obtain the following preliminary
version of the wall-crossing formula: For any xed point component F   M G ( C ; X ; L
; L + ; d)  denote by F  the normal complex, dened as the C-moving part of the perfect
obstruction theory in Proposition 3.1.

Proposition 3.13. Suppose that d is such that stable=semistable for M G ( C ; X ; L  ; L+ ; d).
Then for any  2  H G ( X ) n ,  

Z
(33) ev   ev

[ M n  ( C ; X ; L
+

; d ) ] [ M n  ( C ; X ; L      ;d) ]
Z !

=  Resid                             
 ev  [  EulC(F  )  1

F [F ]

where F  ranges over the xed point components of C  on M n  ( C ; X ; L  ; L+ ; d)  not
equal to M n  (C ; X ; L; d).

Next we describe the moduli spaces of circle-xed gauged maps in terms of gauged
maps with smaller structure group. We begin with the following remark on actions of
central subgroups on the moduli stacks of gauged maps. To  simplify notation we
denote M G ( C ; X )  =  M G (C ; X ; L t ; d )  the moduli stack of L-semistable gauged maps
of class d 2  H2  (X ; Z ) .

Proposition 3.14. Let Z   G  a central subgroup. The action of Z  on X  induces a
natural action of Z  on M n  (C ; X ) .

Proof. For any principal G-bundle P  !  C , the right action of Z  on P  induces an
action on the associated bundle P (X ) ,  and so on the space of sections of P (X ) .  The
action of Z  on the space of sections of P ( X )  preserves Mundet semistability (since
the parabolic reductions are invariant under the action and the Mundet weights are
preserved) and so induces an action of Z  on M n  (C ; X ) .

The following is similar to the description of xed point sets in the case of stable
maps in Kontsevich [42] and Graber-Pandharipande [31, Section 4].

Proposition 3.15. Let Z   G  be a central subgroup. The xed point locus for the
action of Z  on M n  ( C ; X )  is the substack whose objects are tuples

(p : P  !  C; u : C  !  P (X ) ; z )

such that
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(a) u takes values in P ( X Z )  on the principal component C0;
(b) for any bubble component C i   C  mapping to a point in C ,  u maps C i  to a

one-dimensional orbit of Z  on P (X ) ;  and
(c) any node or marking of C  maps to the xed point set P ( X Z ) .

We will identify the following stacks with the xed point sets in the master space.

Denition 3.16. (Fixed point stacks) For any  2  g generating a one-parameter
subgroup C   G, recall that G  denotes the centralizer of C  and so contains C  as a
central subgroup. For each rational  2  g let

M n  
 (C; X; Lt ; ; d)  M n  

 (C ; X ; Lt ; d)
denote the stack of Lt-Mundet-semistable morphisms from C  to X = G  that are C  -
xed and take values in X  on the principal component.

The Mundet semistability condition for xed gauged maps simplies somewhat in the
limit of large polarization, see [30, Lemma 6.3] for more details. Let X ; t  denote the
(possibly empty) locus of Lt-semistable points in X .

Lemma 3.17. (Large-area limit of xed gauged maps) For any class d there exists a
0 such that for  >  0, any Mundet-semistable xed map for polarization L t  must consist
of a principal component mapping to X ; t =G and bubbles mapping to X=G.

Proof. Mundet semistability for L  implies that the Hilbert weight H (; ) is at most  1

times minus the Ramanathan weight R (; ), for any ; . In particular, this holds  =
for  antidominant and  the trivial parabolic reduction, in which case the Ramanathan
weight for a pair (P; u) with respect to (; ) is simply  hc1(P ); i The latter is bounded by
a constant c(d)kk depending on d 2  H G ( X ; Z ) ,  since c1 (P ) is the projection of d onto
H 2 (B G).  So the Hilbert weight M (; ) is less than ckk where c : =  c(d) 1. Choose 0
suciently large so that for any  >  0, any point with Hilbert-Mumford weight M (; ) less
than ckk for all  is semistable; see for example [41, Lemma 3.12]. Then any Lt-
semistable pair (P; u), the section u takes values in P (X ;t ).

Proposition 3.18 (Fixed points as reducible gauged maps). Any C-xed compo-nent
of M G ( C ; X ; L  ; L + )  is in the image of M G  (C ; X ; Lt ; )  in M G ( C ; X ; L  ; L + )  for some
t 2  ( 1; 1) where  2  g is a non-zero element, G  is stabilizer, and C       G  the
unparametrized one-parameter subgroup generated by , consisting of maps u : C  !
X = G  taking values in X = G  on the principal component, and X = G  on the bubbles.

Proof. Any xed object of C  in M G ( C ; X ; L  ; L + )  not in the xed point compo-
nents M G ( C ; X ; L )  is a datum  : P  !  C; u : C  !  P ( X )  of M G ; l e v (C ; X ; L t )  for
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some t 2  ( 1; 1) with a one-parameter group of automorphisms  : P  !  P;  2  C  and
: C  !  C  trivial on the principal component C0  and intertwining the section u in the
sense that (X ) u  =  u . The innitesimal automorphism corresponding to  is a
section of the adjoint bundle P (g), given by an element  2  P (g)z =  g at a base point z
2  C . The structure group of P  reduces to the centralizer G, and the section u takes
values in the xed point set P ( X )  =  P ( X )  of  on the principal component.

Remark 3.19. The xed point locus admits a description in terms of \bubble trees"
as follows: There is an isomorphism

M G  (C ; X ; Lt ; )  !
[

MG ; f r (C ; X ; t )  ( X ) r  

Y
M j I j j + 1 ( X )

! C  

=(G)r

r;[I1 ;:::;Ir ] j = 1

where I1  [  : : : [  I r       f1; : : : ; ng is a disjoint union of subsets describing mark-ings
lying on bubble components and MG ; f r (C ; X ; t )  denotes the moduli stack of gauged
maps with framings at the marked points. Indeed, by denition each object of M G

(C ; X ; L t ; )  consists of a principal component mapping to X ; t =G and a collection of
bubble trees in X  xed (up to reparametrization) by the action of C  .

Corollary 3.20. (Obstruction theory for the xed point components) M G  (C ; X ; L t ; )  is
an Artin stack, and if every automorphism group is nite modulo C  , each sub-stack
with xed homology class d 2  H G  ( X ; Z )  is a proper Deligne-Mumford stack with a C-
equivariant relatively perfect obstruction theory over M n (C ).

Proof. The relatively perfect obstruction theory M G  (C ; X ; Lt ; )  is pulled back from
that on the C-xed point set in M G ( C ; X ; L  ; L + ) C  in Proposition 3.18. The latter is a
special case of existence of relatively perfect obstruction theories on xed point loci
discussed in [31].

Lemma 3.21. The conormal complex t     of the morphism M G

(C ; X ; Lt ; )  !  M G ( C ; X ; L  ; L + )

is isomorphic to the C-moving part of the obstruction theory in M G  (C ; X ; L t ) ,
whose relative part is (RpeTX= G )_ .

Proof. By denition the obstruction theory for M n  ( C ; X ; L  ; L + )  ts into an exact
triangle with that of M  ( C ; X )  and a trivial factor corresponding to the ber of
P ( D ( L  )  D ( L + ) ) .  Under projection the normal complex to the xed point com-
ponent M n  

 (C ; L t ; X ; )  of the C-action is isomorphic to the moving part of the
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obstruction theory on M G  (C ; L t ; X ) ,  under the identication of C  with C,  as in
Lemma 2.10.

Virtual integration gives rise to the xed point contributions in the wall-crossing
formula. Let [ M G  (C; X; Lt ; ; d)] denote the virtual fundamental class in the ho-
mology of the coarse moduli space resulting from Corollary 3.20. Integration with
respect to these classes yields -xed gauged Gromov-Witten invariants of Deni-tion
3.22. The -xed gauged Gromov-Witten invariants that appear in the wall-crossing
formula involve further twists by Euler classes of the virtual normal complex: Recall
that we constructed in the previous section a perfect obstruction theory on
M G  (C ; X ; Lt ; ) ,  as well as a normal complex for the embedding in M G ( C ; X ; L  ; L + ; ) .

Denition 3.22. [Fixed point contributions to wall-crossing for Gromov-Witten
invariants] Virtual integration over the stacks M G  (C; X; Lt ; ; d); d 2  H G ( X ; Z )
denes a \xed point contribution"

(34) X;;t : QH G ; n (X )  !  G  [;  1];

 !
X X qd 

ev(; : : : ; ) [  Eul(t ) 1 [  f n  d 2 H 2

( X ; Z )  n0      [ M n      (C ;X ;L t ; ;d) ]

for  2  H G ( X )  and a sequence of classes n  2  H ( M n ( C ) ) ,  extended by (multi)linearity of
the integral over G  , and where we omit the restriction map H G ( X )  !  H G  ( X )  to
simplify notation.

This completes the construction of the xed point potential in Denition 3.22.

Remark 3.23. The xed point potential X;;t takes values in X  rather than in X ; L  . Indeed,
the number of possible pairings of classes of gauged maps with c1 (Lt ) in the case that a
central subgroup C  acts trivially can be arbitrarily small, since twisting by a character
of C      does not change the pairing.

Remark 3.24. The right-hand-side of the formula in Theorem 1.13 can also be re-
written using the quantum Kirwan map for

QHG = C(X ; t )  !  QHC(X ;t ==(G=C ))

using the adiabatic limit theorem for (G=C)-gauged maps. However, in our ex-
amples the gauged Gromov-Witten invariants are always easier to compute than the
Gromov-Witten invariants of the git quotients, so we have left the formula as written.
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3.3. The wall-crossing formula. By the adiabatic limit theorem 1.10, to prove the
wall-crossing formula 1.13 it suces to prove a formula for the dierence of gauged
potentials. The following result is an algebro-geometric generalization of a wall-
crossing formula of Cieliebak-Salamon [13] for gauged Gromov-Witten invariants of
quotients of vector spaces dened using symplectic geometry. We will deduce our
main result Theorem 3.26 by taking the large area limit  !  1  of the following
Theorem:

Theorem 3.25 (Wall-crossing for gauged Gromov-Witten potentials). Let X  be a
smooth projective G-variety. Suppose that L !  X  are polarizations such that
semistable=stable for the stack M G ( C ; X ; L  ; L + )  of 3.1. The gauged Gromov-
Witten potentials are related by

(35) X ; +  X ;   = Resid X;;t

[];t2( 1;1)

where the sum is over equivalence classes [] as in (21).

Proof. The statement follows from virtual localization applied to M G ( C ; X ; L  ; L + )
and the identication of xed point contributions in Proposition 3.18.

Combining Theorem 3.25 with the adiabatic limit Theorem 1.10 implies:

Theorem 3.26 (Quantum Kalkman formula, arbitrary group case). Suppose that X
is equipped with polarizations L  so stable=semistable for the action of G  on P(L
L + ) .  Then the Gromov-Witten invariants of X==G are related by a sum of twisted
gauged Gromov-Witten invariants for subgroups G   G

(36) X = + G X ; +  X =      G X ;   =  lim Resid X;;t ;
[];t2( 1;1)

where the sum is over [] in (21).

We already gave a simple Example 1.16 of the formula in Theorem 3.26 in the
introduction. We give another Fano example:

Example 3.27. (Quantum powers of the rst Chern class for the blow-up of the
projective plane) Suppose that, as in Example 2.6 (b), G  =  (C)2  acts on X  =  C4  with
weights (1; 0); (1; 0); (1; 1); (0; 1) 2  Z2 . Consider the path from ( 1; 2) to (2;  1) in H 2

( X )  =  Q2 crossing through the chambers with git quotients ;; P2; Bl(P2 ); ; as in
Example 2.6 (b). Denote by X== G  resp. X == + G  the second resp. third quotient. The
quantum Kirwan morphism for P2; Bl(P2) has no quantum corrections, since these
varieties are Fano. Hence

(37) D0 X ;(c1 ( X ) )  =  c1 (X==G):
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We consider the wall-crossing formula for invariants with 5 xed markings, corre-
sponding to the small quantum product

c1 (X==G)?5 2  QH (X==G):

In the notation of (4) we wish to compute

@(c1 (X =G);0) X =G(1; [pt]) 2  X

where
c1 (X==G) 2  H (X==G); [pt] 2  H (M0 ; 5 ):

By Example 1.6, the moduli space of gauged maps is, after xing the locations of the
markings, the quotient of the space of sections H 0 (P; OC (d) 

G  X )  by G, with stability
condition corresponding to the stability condition for X ,  see [62]. We take d =  (1; 0),
so that

H 0 (P; OC (d) 
G  X )  =  C(0;1)  C(1;1)  C(1;0)

(or C7  for short) where for any weight , C  denotes the one-dimensional represen-
tation with weight . We consider the sequence of polarizations L t  corresponding to the
vectors

( 1; 2); (1; 2); (2; 1); (2;  1) 2  g_

lying in the path of chambers from left to right in Figure 1. The moduli spaces of
gauged maps corresponding to the various chambers are therefore the empty set, P5,
its blow-up along a projective line BlP1 (P5), and the empty set again. The stabilizers
for the wall-crossing terms are the perpendicular vectors to the walls in Figure 1.
The rst wall-crossing term for degree (1; 0) invariants corresponds to the direction  =
(1; 0), for which there is a unique -xed stable map with normal weights (1; 0) with
multiplicity 4 and (1; 1) with multiplicity 2. The wall-crossing term is

Resid1 

(3
 
+  2

2 )2 j2 =0 =  243:

Using (37) we obtain that c1(P2)?5  243q1[pt] which is shorthand for saying that
the coecient of q1[pt] is 243; here ? is the small quantum product, as expected since

c1(P2)?5 =  (3! )?5 =  243!?3 ? ! ? 2  =  243q1[pt]:

The second wall-crossing term corresponds to the change of quotient from P2 to
Bl(P2) with  =  (1;  1) is (after xing the ve points on P) an integration over
MG (P; X ; ; t)   P, the quotient of the -xed summand C(1;1) by C,

1 
Resid C  (31 +  22)5 [P]

1 2



C

1 5( 5 !  + !1 !

C 4

C
4

1 2(  +  2 ) 5

2

( 3 !  +  2) 5

Z
!

4 5 3  3! !
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where C
7        is the descent map in equivariant cohomology from C7 . Using that

C6 ;C(1 ) is the generator !  of H 2 (P) this gives

2 
Resid 

Z

[P] ( !  +  )4 ( !
)

)
=

2 
Resid 

Z

[P] 
  5 

 
25! 4 +  51 4 

 
1 +  

 

 
=

11:

It follows that the coecient of [pt] in c1(Bl(P2))?5 is 232q1 .
For the transition to the empty chamber, as before C  maps to 1 to the generator !

of H 2 (P3 ) while 2 maps to the parameter  for the residual C-action. The wall-
crossing term is

Resid 

Z

[P3] 
C

 3
(1 +  2)2  =  Resid 

Z

[P3]  ( !  +  )2

2 

=

Resid (3! )3  (2)2 10 3 +  (3! )2  (2)3 10 3        2
[P3]

2
 

3

+ (3! ) (2 )  5         3 2       
 +  (2)           4 3

=  1080 1440 +  720 128
=  232:

This is as expected since the quotient X==t G is empty in the last chamber. One can
verify that the expansion of c1(Bl(P2))?5 contains 232q1[pt] using the known quantum
multiplication table for Bl(P2) from Crauder-Miranda [20]:

? e
e  p +  eqe +  xq f

f
p

f p
p eqe f q f

eqe                  xq e + f

(e +  f )q e + f

where e; f ; p; x 2  H (Bl(P2 )) are the exceptional resp. ber resp. point resp. fun-
damental classes respectively, q1 =  q e+f ,  and using a little help from Mathematica.
(We thank Eric Malm for teaching us how to get Mathematica to compute these
coecients.)

4. Invar iance under c repant  t r ans fo r m at i ons

Ruan and others, see [15], conjectured that crepant resolutions induce equivalences
in Gromov-Witten theory. We prove a version Theorem 1.17 of Ruan’s conjecture for
crepant birational equivalences induced by variation of git.
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4.1. Crepant transformations. We consider the birational transformations that
are crepant in the following sense:

Denition 4.1. Suppose that Y are smooth proper Deligne-Mumford stacks with
projective coarse moduli spaces related by a birational equivalence given by open
embeddings

Y 
     

Z
+

Y +  :

Such a birational equivalence is called crepant (or a K-equivalence) if  extends to
morphisms  : Z  !  Y from a smooth stack Z  with projective coarse moduli space such
that the pullbacks of the canonical divisors to Z  are equal, as in Kawamata [38].
This ends the denition.

A  well-known conjecture of Li-Ruan [46], Bryan-Graber [10] and others (perhaps
motivated by physics papers such as Witten [61]) that in such a situation (not nec-
essarily arising from geometric invariant theory) the Gromov-Witten theories of Y
and Y +  are equivalent, in a sense to be made precise. Many special cases have been
proved, see for example Iwao-Lee-Lin-Wang [36], Lee-Lin-Wang [43], Boissiere-Mann-
Perroni [5], Bryan-Gholampour [9], [8], Bryan-Graber-Pandharipande [11], Coates-
Corti-Iritani-Tseng [16] and Coates-Iritani-Tseng [18].

We specialize to the case that the birational transformation is obtained by variation
of git quotient. Suppose that X  is a smooth projective G-variety, and X==G are git
quotients obtained from polarizations L  !  X .  Since the semistable loci are open,
the identity on the locus semistable for both polarizations induces a birational
transformation from X== G  to X== G. We call such a birational transformation of git
type. Suppose that stable=semistable for P( L    L + )  so that the master space X  =
P(L    L + ) == G  is a smooth proper Deligne-Mumford stack.

Denition 4.2. A  birational transformation of git type  =  (  ; + )  will be called crepant
if the sum of the weights i (F )  2  Z  of C  on the normal bundle to any xed point
component F   X ;t ,  counted with multiplicity, vanishes:

codim(F )

i (F )  =  0; 8F  X ;t :  i = 1

Denition 4.3. The denition of crepant transformation of git type is a special case
of the denition of crepant transformation (K-equivalence) in Kawamata [38] etc.
Indeed, Kempf ’s descent lemma [22, Theorem 2.3] and the crepant condition
together imply that the canonical bundle descends to each singular quotient, from
which the canonical bundles on X==G are pulled back. The ber product of these
morphism is the required smooth stack in the denition of crepant transformation.
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4.2. The Picard action. The proof of invariance in Theorem 1.17 uses a symmetry
of the xed point contributions under an action of the Picard stack

Pic(C ) : =  Hom(C; B C)

of line bundles on C ; a similar action was used in a proof of a generalized Verlinde
formula in [58]. The Lie algebra g has a distinguished factor C  generated by , and
using an invariant metric the weight lattice of g has a distinguished factor Z  given
by its intersection with the Lie algebra of C.  After passing to a nite cover, there exists
a splitting G  =  G=C   C.

We dene an action of the Picard group on the moduli stack as follows. Recall that
an object of M G  (C ; X ; Lt ; )  consists of a tuple (P; C ; u) where P  !  C  is a G-bundle
and u : C  !  P ( X )  is -xed, in particular, the restriction of u to the principal
component of C  maps into the xed point locus X .  Let C   G  denote the subgroup of G
generated by  2  g.

Denition 4.4. (Picard action) For Q !  C  a line bundle and (P; C ; u) an object
of M n  

 (C ; X ; L t ; )  dene

(38) Q(P; C ; u) : =  (P   Q; C ; v)

where v is dened as follows: We have an isomorphism of associated bundles

(P   Q)(X )   P ( X )

since the action of C  on X  is trivial. Hence the principal component of u, which is a
section of P ( X )  induces a corresponding section of (P  C  Q)(X ).  Each bubble
component of u maps into a ber of P (X ) ,  canonically identied with X  up to the
action of G, and so induces a corresponding map into a ber of (P C  Q)(X ),  well-
dened up to isomorphism.

The action of the Picard group preserves semistable loci in the large area limit.
Indeed, because the Mundet weights M (; )= approach H (; ) as  !  1 ,  the limiting
Mundet weight is unchanged by the shift by Q in the limit  !  1  and so Mundet
semistability is preserved, see Remark 3.17. It follows that for  suciently large the
action of an object Q of Pic(C ) induces an isomorphism

(39) S  : M n  
 (C; X; Lt ; ; d) !  M n  

 (C; X; Lt ; ; d +  )

where  =  c1(Q). The action lifts in an obvious way to the universal curves
C n 

 (C; X; Lt ; ; d) !  C n 
 (C; X ; Lt ; ; d +  ), denoted with the same notation.



n

n n

n

n t

^

P
d 2 Z P

d 2 Z

G

n 2

C G

58 E D U A R D O  G O N Z A L E Z  AND  C H R I S  T .  WO O DWA R D

Lemma 4.5. The action of P ic(C ) in (39) induces isomorphisms of the relative
obstruction theories, and so the Behrend-Fantechi virtual fundamental classes. Fur-
thermore, the action preserves the class ev  for any  2  H G  (X ) n .

Proof. The action of Pic(C ) lifts to the universal curves, denoted by the same nota-
tion. Since the relative part of the obstruction theory on M G  (C; X; Lt ; ; d) is the C
-invariant part of (RpeTX = G )_  up to the factor C,  the isomorphism S  preserves the
relative obstruction theories on M G  (C; X; Lt ; ; d) and M G  (C; X ; Lt ; ; d +  ) and so the
Behrend-Fantechi virtual fundamental classes [ M G  (C; X; Lt ; ; d)] and [ M G  ( C ; X ; L
; ; d +  )]. (Note that on the principal component, the obstruction theory is
(RpeT X =G)_  which is unchanged by the tensor product by C-bundles. On the bubble
components (RpeT X=G)_  is unchanged by the tensor product since the pull-back of Q
to C  is trivial.) Since the evaluation map is unchanged by pull-back by S  (up to
isomorphism given by twisting by Q), the class ev  is preserved.

Remark 4.6. To  interpret the main result we recall the basic denitions from the
Schwartz theory of distributions for which the standard reference is H•ormander [34].
We only need the case of distributions on the unit circle S . Denote by D0 (S ) the space
of continuous linear functionals on the smooth functions on S , and by E 0(S)  D0 (S ) the
space of tempered distributions. Fourier transform denes an isomorphism of E 0(S)
with the space of functions on Z  with polynomial growth. We view q as a
coordinate on the punctured plane C.  Any formal power series in q; q 1 denes a
distribution on S , which is tempered if the coecient of qd has polynomial growth in d.
In particular qd is the delta function at q =  1, and has Fourier transform the
constant function with value 1. Any distribution of the form f (d)qd, for f (d)
polynomial, is a sum of derivatives of the delta function (since Fourier transform
takes multiplication to dierentiation) and so is almost everywhere zero.

4.3. Proof of invariance. In this section we prove Theorem 1.17. We study the
dependence of the xed point contributions with respect to the Picard action dened in
(38). Suppose that Q is a C  -bundle of rst Chern class the generator of H 2 (C ),
after the identication C  !  C.  Denote the corresponding class in H2  

 ( X )  by . Consider
the action of the Z-subgroup of Pic(C ) generated by Q. The contribution of any
component M G  (C; X; Lt ; ; d) of class d 2  H G ( X )  diers from that from the component
induced by acting by Q
r , of class d + r ,  by the ratio of Euler classes of the virtual normal complex
(RpeT (X=G)) +

Eul ((Rp eT (X=G)) + )
(40)

EulC(S
r
; (RpeT (X=G))+ )  

2  H ( M n  
 (C; X; Lt ; ; d))
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which we now compute. Let X ; t  be the component of the xed point set X  which is
semistable for t 2  ( 1; 1). For simplicity, we assume that X ; t  is connected; in
general, one should repeat the following argument for each connected component.
Let

[X ; t = G  ] =  [T X=T X ;t ] [g=g]
denote the class of the virtual normal complex for X ; t =G !  X=G.  Consider the
decomposition into C-bundles

X ; t = G  =  
M

X ; t ; i  i = 1

where C  acts on X ; t ; i  with non-zero weight i  2  Z  and mt is the codimension of X ;t ,
which for simplicity we assume is constant. Then eT (X=G) is canonically isomorphic
to S r eT (X=G) on the bubble components, since the G-bundles are trivial on those
components. Because the pull-back complexes are isomorphic on the bubble
components, the dierence

(eT (X=G))+  S r ; (eT (X=G))+  2  K ( M n  
 (C; X; Lt ; ; d))

is the pullback of the dierence of the restrictions to the principal part of the universal
curve, that is, the projection on the second factor

p0 : C   M n  
 (C ; X ; L t ; )  !  M n  

 (C ; X ; Lt ; ) :

These restrictions are given by

(41) (eT (X=G))+;prin

(42) S r ;(eT (X=G))+;pr in

=  
M

e X ; t ; i  g;
i = 1

=  
M

e X ; t ; i
 (eQ C      

C r i )  g
i = 1

where e is the map from the universal curve to C . The projection p0 is a representable
morphism of stacks given as global quotients. To  compute the dierence in push-
forwards we apply Grothendieck-Riemann-Roch for such stacks [60], [24]. The Todd
class on the curve is

TdC =  1 +  (1 g ) ! C

so

(43) T d C M  =  (1 g ) ! C  +   T d M  :

Let
z : M n  

 (C ; X ; L t ; )  !  C   M n  
 (C ; X ; L t ; )
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be a constant section of p0. Then

T d M  Ch(S r ;Rp(eT (X=G))+ )  =
=

p0 ;(TdC M  Ch(S r ;eT (X=G))+ )  (1
g)z Ch(S r ; (eT (X=G))+ )  +

T d M  p0; Ch(S r ;eT (X=G)+ )

by Grothendieck-Riemann-Roch and (43). Continuing we have

: : : =  (1 g)z Ch(e(T (X=G))+ )  +

T d M  p0; 

X
C h ( e X ; t ; i ) C h ( ( e Q C      

C r i ) )  i = 1

=  (1 g)z Ch(S r ;e(T (X=G))+ )  +  
T d M

p0; 

X
C h ( e X ; t ; i ) ( 1  +  r i ! C )

i = 1

since the bundle Q is trivial on any ber of C  M  !  M  and using (42). Continuing using
multiplicativity of the Chern character and Grothendieck-Riemann-Roch again this
equals

: : : =  p0 ; (TdC M  Ch Rpe(T (X=G)) +   
M

( e X ; t ; i ) r i

!

i = 1

=  T d M  Ch Rpe(T (X=G))) +   
M

(z e X ; t ; i ) r i :
i = 1

Hence

(44) Ch(S r ;Rpe(T (X=G))+ )  =  Ch Rpe(T (X=G)) +   
M

( z e X ; t ; i ) r i

!  

i = 1

The equality of Chern characters above implies by injectivity of the Todd map [24]
an equality

[S r; Ind(T (X=G))+ ] =  [Ind(T (X=G))+   
M

(z e X ; t ; i ) r i ] :  i = 1

By the splitting principle we may assume that the X ; t ; i  are line bundles. The dif-
ference in Euler classes (40) is therefore given by the Euler class of the last summand
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in (44)

Eul (Rp eT (X=G) + )

Eul (S r ;Rp eT (X=G) + )

Let

mt
!

=  EulC                        (zeX ; t ; i ) i
r

i = 1
mt

= ( i  +  c1 (X ; t ; i )) i
r  i = 1

=  
mt

 +  
c1 (X ; t ; i ) i r  mt 

i

r : i = 1

i i = 1

 =  
X

i  2  Z  i = 1

be the sum of weights of the action of C  at the xed point component X ;t . Ex-
panding out the product we obtain

(45)
mt 

 +  
c1 (X ; t ; i ) i r  

=  r  +  r  1 r  
k      

c 1 ( X ; t ; i )

!

i = 1 i i = 1 !
+  r  2 r2 c1 (X ; t ; i )c1 (X ; t ; j ) + r r   c1 (X ; t ; i )2 +  : : :

i = j                                                                  i = 1                            i

and : : : indicates further terms with the property that the coecient of r  m is
polynomial in r. By the crepant assumption in Denition 4.2, the sum of the weights is
= i = 1  i  =  0: Write

X;;t = X;;d;t d

where X;;d;t is the contribution from gauged maps of class d. For any singular value t
2  ( 1; 1),

(46)
X

q d +
r X ; ; d + r ; t ( )  =  

X Y
i

r q d
+ r

 
Z

r 2 Z r 2 Z  i = 1 [ M n      (C ;X ;L t ; ;d) ]

k

1 +   1 rc1 (X ; t ; i ) +  : : : ev(; : : : ; ) [  Eul(t ) 1 [  f n  i = 1



k
!
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where as before the terms : : : are polynomial in the r. In the language of distributions,
for any polynomial f ( r )  in r,

(47)
X

f ( r )
Y

i
 
i q

r  

=a:e: 0
r 2 Z i = 1

vanishes almost everywhere in q, being a function times a sum of derivatives of
delta functions in q, see Remark 4.6.) Since G ; +

X =  G    G;  
X =  G  is a sum of wall-

crossing terms of the form (47), this completes the proof of Theorem 1.17.

Remark 4.7. The standard formulation of the crepant transformation conjecture in
Coates-Ruan [15] etc. uses analytic continuation. The above results say nothing
about convergence of the gauged Gromov-Witten potentials, so it is rather dicult to
put the version above in this language. However, if the potentials G ; +

X =  G  and G;

X =  G  have expressions as analytic functions with overlapping regions of denition on
the torus H 2  (X ; Q)=H 2  ( X ; Z )  with coordinate q, then they are equal on that region.
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