L))

Check for
updates

OpenVP: A Customizable Visual Programming Environment for
Robotics Applications

Andrew Schoen
University of Wisconsin-Madison
Madison, Wisconsin, USA
schoen@cs.wisc.edu

D Expressions

@ Search

Main Tab

Settings

Type

On Reque

‘ v

'
1
1
1
1
1
I dress Request

Happy Expression
|

N |
LJ gs

Bilge Mutlu

University of Wisconsin-Madison
Madison, Wisconsin, USA
bilge@cs.wisc.edu

Scratch

88 Happy Expression

Settings

Type

B [0
. —

Figure 1: An example flow-based programming system designed with OpenVP, illustrating a simple logic about how a robot

should behave if a patron enters a store.

ABSTRACT

Authored robotics applications have a diverse set of requirements
for their authoring interfaces, being dependent on the underlying
architecture of the program, the capabilities of the programmers
and engineers using them, and the capabilities of the robot. Visual
programming approaches have long been favored for both novice-
level accessibility and clear graphical representations, but current
tools are limited in their customizability and ability to be integrated
holistically into larger design interfaces. OpenVP attempts to ad-
dress this by providing a highly configurable and customizable
component library that can be integrated easily into other modern
web-based applications.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories; Visual languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HRI 24, March 11-14, 2024, Boulder, CO, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0322-5/24/03...$15.00
https://doi.org/10.1145/3610977.3637477

944

KEYWORDS

visual, programming, library, blocks

ACM Reference Format:

Andrew Schoen and Bilge Mutlu. 2024. OpenVP: A Customizable Visual
Programming Environment for Robotics Applications. In Proceedings of the
2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI
’24), March 11-14, 2024, Boulder, CO, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3610977.3637477

1 INTRODUCTION

Visual programming systems and representations can be used as a
method of specifying more accessible robot program abstractions to
users, which can then be transformed, translated, and executed on
other systems built with more traditional, flexible programming ap-
proaches like C, C++, or Python. These visual user-facing programs
can come in many forms, including more traditional imperative
programs, state machines, or even behavior trees. Given the multi-
modal characteristics of robot programming, these user-facing pro-
grams may be combined with other configuration, visualization,
feedback, and analysis subsystems to create complete robot pro-
gramming systems. Existing well-established and ubiquitous tools
like Blockly [1] and Scratch [5], while capable, do suffer in their
limited interoperability with these other subsystems and relatively
poor flexibility in usage.

HRI 24, March 11-14, 2024, Boulder, CO, USA

Even in the context of greater emphasis on voice-based or chat-
based design of programs, there will still be a place for visual pro-
gramming systems. For example, after designing an entirely voice-
based prototype system, Porfirio and colleagues found that while
spoken language had benefits, it was generally inefficient or poorly
suited for complex specifications, leading the team to ultimately
construct a multi-modal system instead [4].

In the process of designing various tools such as CoFrame [7]
and LivelyStudio [6] in the robotics space, we have iterated and
improved on a standalone component library for easily specifying
highly customized and tightly integrated web-based visual pro-
gramming environments within these larger, complete applications.
This system, called OpenVP, is a React component library that can
easily be integrated with other subsystems to create interactive
robot programming systems. It provides a common block-based
programming environment suitable for a range of program designs,
such as imperative programming and flow-based or state machine
programs.

2 PURPOSE

OpenVP has been designed with multiple goals in mind. These
include:

o A high degree of straightforward customizability;

o Serializable and portable program representations;

o Tight integration with other interface subsystems (e.g., visu-
alization and feedback);

e Abstraction of basic interaction details;

OpenVP addresses these goals by creating a system by which a
clearly defined Program Specification format can define the behav-
ior, characteristics, and appearance of robotics-focused and visual
programs and Domain-Specific Languages (DSLs). In the following
sections we will articulate some of the characteristics of this system,
and how it can be customized for a variety of applications.

3 CHARACTERISTICS

OpenVP has been designed for usability by both end-users and
developers, and suitability to the robotics domain. This results in a
number of high-level characteristics that guide its design.

3.1 Overview

Environment component serves as a single entry-point to using
the system. The Environment contains a number of other built-in
elements, shown in Figure 2. Central to the environment is the
Programming Canvas, where the entire program can be visualized.
Users can pan and zoom this infinite canvas to see a high-level
overview of their program or focus on a particular block. The can-
vas also features a mini-map and navigation widget. To support
editing, a number of other elements are present. The first on the
left is a Drawer Selector. These buttons activate corresponding Block
Drawers, which features a filterable list of blocks that can be dragged
onto the canvas. Finally, a navigational Tab Selector at the top allows
for creating, editing, and removing tabs.

3.1.1 Block Types. A key feature of OpenVP is the customizability
of the system for a variety of possible programming paradigms

945

Andrew Schoen & Bilge Mutlu

or applications. As such, it is important to support configurabil-
ity of the various block types that can be used in each instance.
Therefore, OpenVP uses a two-part approach to configuring blocks,
separating the program data model, which aims to be serializable
for server-based applications, from the program representation
data, which utilizes Javascript for greater customizability. These
two components are called the ProgramData and ProgramSpec, re-
spectively. This distinction is equivalent to the one between a DSL
specification and a program written in that DSL. The ProgramSpec
contains information about the drawers provided in the interface,
as well as all types available to the users, while the ProgramData
contains a serializable representation of the blocks and connections
in the user’s program. Edits made by users in the Environment are
reflected as changes to the ProgramData.

Within the ProgramSpec, each type specification inherits from
one of two primitive types, either objects or functions, and their
specifications include information about the properties of each,
as well as customizable rendering information for their instance
and reference blocks (for objects), and declarations and calls (for
functions). For example, it is possible to create three different object
types (e.g., a ProgramType for the top-level entry point, an Opera-
tionType to represent some behavior, and a TargetType to represent
something for the OperationType to act upon. If desired, each of
these types could include separate visuals for how instances and
references are rendered. Similarly, it is possible to generate multiple
types of the primitive functions, if needed. Note, the configurability
of functions is still driven to a large part by the end-user, since a
key feature of entries inheriting from the function primitive is that
arguments can be added and removed to the declaration itself from
the interface.

3.2 Drag and Drop

Drag and Drop is central to the design of OpenVP, borrowing from
similar tools such as Blockly [1] and Scratch [5]. In OpenVP, users
can select and drag blocks from the drawer into the Program Canvas.
Depending on the needs of the application, some block variants can
be designated as canvas blocks, meaning that they can be dragged
directly onto the canvas and organized on the 2D grid. Other blocks
can be limited to non-canvas blocks, meaning that they are only
applicable as children to canvas blocks, or other non-canvas blocks.
When dragging a block, valid drop points are highlighted in the
interface, giving a visual reminder of where they can be deposited.
Upon hovering the block onto a valid drop zone, a preview of that
block in the specified location is shown. Hovering over drop zones
without a held block provides a tool-tip that visually shows which
blocks are valid at that location.

As mentioned before, types inheriting from the function primitive
allow editing of their arguments. Function arguments can be seen
in the header of the corresponding function declaration. As would
be expected, arguments within a function’s context can be dragged
anywhere within that function, but are not available to be dropped
outside that context. Conversely, block references from outside that
context can still be dragged in and used within a function.

OpenVP: A Customizable Visual Programming Environment for Robotics Applications

Structures Main Tab

Search

O

@

Operation

O Fetch Operation

Settings

My Robot Program

Settings

Hat

<

<z

New Block

HRI 24, March 11-14, 2024, Boulder, CO, USA

X Secondary Jle

Block Drawer

Figure 2: Overview of OpenVP’s Environment layout, highlighting the four main sections: the Drawer Selector, where the active
drawer can be set, the Block Drawer, where blocks in the current set can be selected from, the Tab Selector, where individual
tabs can be added, removed, hidden, and edited, and finally the Program Canvas, where the program is visualized and edited.
Full customization of the theme is possible, as shown in the light/dark modes.

TypeSpec | ObjectTypeSpec BlockSpec |
FunctionTypeSpec color string
ObjectTypeSpec | icon string
name string onCanvas boolean
primitiveType OBJECT connections
description string {[side]: ConnectSpec }
instanceBlock BlockSpec extras Extra []
referenceBlock | BlockSpec minified boolean
properties {[key]: FieldInfo } hideNewPrefix boolean
FunctionTypeSpec | Sl Ccss
name string BlockFieldInfo |
primitiveType FUNCTION id string
description string type BLOCK
functionBlock BlockSpec name string
callBlock BlockSpec accepts string]
properties {[key]: FieldInfo } default any
Fieldinfo | BlockFieldinfo isList boolean
BooleanFieldinfo fullwidth boolean
NumberFieldinfo | ConnectSpec |
StringFieldinfo accepts string []
OptionsFieldinfo direction IN|OUT
Vector3Fieldinfo
MetadataFieldInfo

Figure 3: Overview of block customization via their asso-
ciated TypeSpec data. For brevity, some variants are not in-
cluded, notably non-block FieldInfo structs, (e.g., Number-
FieldInfo, StringFieldInfo, etc.). Also not shown are the Extra
fields, discussed elsewhere.

946

3.3 Block Design

Blocks are highly customizable, with their appearance and behavior
specified within the ProgramSpec. Each block is configured via
a TypeSpec, which is described in Figure 3. Breaking down this
specification, each variant (ObjectTypeSpec and FunctionTypeSpec)
includes a set of two BlockSpec entries. Each of these entries can
independently specify the color of the block, the icon, whether it
appears on the canvas, any connections it can make with other
blocks, menu items, whether newly spawned items have a "New"
prefix attached to the name (e.g., "New Operation" or "New Robot
Function"), whether it features a compact design, or any other CSS
style overrides that are desired.

3.3.1 Parameters. Considering the two TypeSpec variants, each
block can specify the properties of that block through the inclu-
sion of FieldInfo data. These structs come in a variety of forms,
including BlockFieldInfo, NumberFieldInfo, StringFieldInfo, Option-
FieldInfo, BooleanFieldInfo, Vector3FieldInfo, and MetadataFieldInfo.
The contents of the BlockFieldInfo data structure is shown in Figure
3, which dictates how other blocks can be dropped into that block,
either as a list of blocks or singular parameters.

3.3.2 Menus and Documentation. Block menus (Extras) can be
configured separately for each BlockSpec entry and include a set of
basic, prescribed functionality like selection, deletion, documentation,
copying, and cutting, as well as more customized cases like adding
arguments to functions and custom Javascript functionality.

The TypeSpec can also provide a description, which is a markdown-
flavored text string, which can be used in the in-editor documenta-
tion. This markdown supports standard features, with customized
links such that those to valid types will create a hyperlink to that
type’s documentation.

HRI 24, March 11-14, 2024, Boulder, CO, USA

DESCRIPTION

Program Program @
The Program Program Ficids -
The program does things. It also allows you
to include Operations @ in their set of .

Children ©

children. It does a lot of fancy things:
Operation @ Function @ Block @
« Basketball

« Cribbage

« Snorkelling

ilo (ST P2 Program as a Field ~

You should always follow these steps:

This block is not used anywhere

1. Live
2. Laugh
3. Love

Connections v

Figure 4: An example of a Documentation section generated
for an example Function block. The documentation automat-
ically curates how that block is used in other blocks and what
blocks it uses. Additionally, the Description tab will render
the textual markdown description from the TypeSpec.

3.4 Connections

For each of a TypeSpec’s BlockSpec structures, connections between
that block and other canvas blocsk can be configured. This data
structure includes a set of block types and directions that are al-
lowed to connect. With this capability, it is possible to design flow-
based programs, in addition to imperative ones. An example of such
a design can be seen in Figure 5.

3.5 Integration

OpenVP was built with the understanding that it needs to oper-
ate within the context of a larger design application. This type of
capability is essential if, for example, it is desired that when an
error is found and selected, the corresponding block highlights.
Alternatively, perhaps it is desired that while the actual process is
running, the current progress of a given block could be updated.
OpenVP solves this by making the internal data model, including
both the ProgramSpec and ProgramData, accessible or editable from
outside the component.

3.5.1 Data Store. The above functionality is achieved through the
use of a flexible data store model called [3]. All the behavior for the
store, including the internal actions, are contained within this store,
which is provided in the library. Substitution of custom versions
of this store as a property of the Environment component provides
means of overriding behaviors and internal access. Full information
configuring this is provided in the documentation.

3.5.2 External Blocks. Suppose a designer wishes to provide a vi-
sualization of a certain block from the Environment, but outside of
the Environment itself. For this purpose, we provide an External-
Block component, which when connected to the correct data store,
renders a full block, minus the Environment.

3.5.3 Execution Progress. Robotics generally involves a number of
long-running processes, and it can sometimes be useful to receive

947

Andrew Schoen & Bilge Mutlu

Settings

Settings

Figure 5: A small example flow-based program, illustrating
the ability to draw connections between canvas-based nodes.
Connectivity is configured within BlockSpec structs.

feedback about these processes within the interface itself. Part of
the store is reserved for configuring the progress of any blocks in
the Environment. This is done with a lookup of block ids to numbers,
an indeterminate label, or clock-sensitive Javascript functions.

4 SOURCE CODE AND USAGE

The source code for OpenVP is provided freely on Github! and can
be added to existing projects via the node package manager (NPM).
Documentation is hosted on github?.

OpenVP uses a MIT license. As a high-level library itself, it makes
use of many other libraries, such as React Flow [2] and Zustand
[3]. The former provides a fee-based Pro tier for usage by commer-
cial entities (it is free for research and academic purposes), so all
commercial usage of OpenVP should abide by those rules as well.

In conclusion, OpenVP seeks to provide an extensible, config-
urable, and forward-facing tool for visually specifying programs
common in robotics applications. Early versions of this library have
already been used in widely different robotics programming ap-
plications, such as CoFrame [7] and Lively [6]. It is our hope that
by making this software available more widely, others can benefit
from and contribute to its further development.

5 ACKNOWLEDGMENTS

This work received financial support from National Science Founda-
tion Awards 1925043 and 2026478. We would like to thank Nathan
White for feedback and implementation assistance.

!https://github.com/Wisc-HCI/open-vp
2https://wisc-hci.github.io/open-vp/

OpenVP: A Customizable Visual Programming Environment for Robotics Applications

REFERENCES

(]

Neil Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). IEEE, 49-50.

Webkid GmbH. 2019. Reactflow: Build Better Node-Based Uls with React Flow.
https://reactflow.dev.

Daishi Kato and Paul Henschel. 2019. Zustand: Bear necessities for state manage-
ment in React. https://docs.pmnd.rs/zustand/.

David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi,
and Bilge Mutlu. 2023. Sketching Robot Programs On the Fly. In Proceedings of the
2023 ACM/IEEE International Conference on Human-Robot Interaction. 584-593.

948

HRI 24, March 11-14, 2024, Boulder, CO, USA

[5] Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Sil-
verman, and others. 2009. Scratch: programming for all. Commun. ACM 52, 11
(2009), 60-67. Publisher: ACM New York, NY, USA.

Andrew Schoen, Dakota Sullivan, Ze Dong Zhang, Daniel Rakita, and Bilge Mutlu.
2023. Lively: Enabling Multimodal, Lifelike, and Extensible Real-time Robot Motion.
In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot
Interaction. 594-602.

Andrew Schoen, Nathan White, Curt Henrichs, Amanda Siebert-Evenstone, David
Shaffer, and Bilge Mutlu. 2022. CoFrame: A System for Training Novice Cobot
Programmers. In 2022 17th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 185-194.

	Abstract
	1 Introduction
	2 Purpose
	3 Characteristics
	3.1 Overview
	3.2 Drag and Drop
	3.3 Block Design
	3.4 Connections
	3.5 Integration

	4 Source Code and Usage
	5 Acknowledgments
	References

