AAAI Fall Symposium Series (FSS-23)

Petri Nets for the Iterative Development of Interactive Robotic Systems

Pragathi Praveena', Andrew Schoen', Michael Gleicher', David Porfirio?, Bilge Mutlu'

'Department of Computer Sciences, University of Wisconsin—-Madison
2NRC Postdoctoral Research Associate, U.S. Naval Research Laboratory
pragathi @cs.wisc.edu, schoen@cs.wisc.edu, gleicher @cs.wisc.edu, david.porfirio.ctr@nrl.navy.mil, bilge @cs.wisc.edu

Abstract

We argue for the use of Petri nets as a modeling language
for the iterative development process of interactive robotic
systems. Petri nets, particularly Timed Colored Petri nets
(TCPNSs), have the potential to unify various phases of the de-
velopment process — design, specification, simulation, vali-
dation, implementation, and deployment. We additionally dis-
cuss future directions for creating a domain-specific variant
of TCPNss tailored specifically for HRI systems development.

Introduction
Imagine the following coffee shop scenario.

A robot assists the owner of a coffee shop in daily op-
erations, involving friendly banter with patrons and
reorganizing tables to accommodate large groups.
The robot also works with the pastry chef to arrange
cupcakes in the display case. As a large group delib-
erates over what to order; the robot offers suggestions
and manages the group’s multiple requests.

Developing an interactive system for the coffee shop sce-
nario involves coordinating the robot’s spoken dialogue with
social gestures, facilitating joint action between the owner
and the robot while reorganizing tables, managing access to
shared workspaces as the robot and chef arrange cupcakes,
and mediating interaction in group settings during the or-
der process. In the field of Human-Robot Interaction (HRI),
the development of such complex systems typically draws
on the expertise of a diverse array of application develop-
ers, including domain experts, designers, programmers, and
research professionals, each employing methods, tools, and
representations tailored to their specific stage of the devel-
opment cycle. Additionally, given the iterative nature of sys-
tems development, there is often a significant amount of re-
finement and cross-communication between these phases.
The representations and tools that application develop-
ers utilize for their respective phases of system develop-
ment—such as low-fidelity prototypes by designers and
high-fidelity simulators by algorithm developers—may not
be effectively interoperable across different phases. We pro-
pose that a unifying representation can facilitate a smoother
transition across the various stages of the iterative develop-
ment process. While representations and tools tailored for
individual phases are indispensable, we posit that an ac-
companying, unified representation can enhance this design

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

526

process by encoding information that can be used to coor-
dinate between phases. We believe that Petri nets, particu-
larly Timed Colored Petri nets (TCPNs), hold the potential
to unify various phases of the development process. In what
follows, we describe the benefits of TCPNs in terms of their
ability to unify all phases of systems development and aid
application developers to iteratively cycle between phases.

Related Work

Petri nets are a class of state machines that specialize in
modeling the flow and dependencies between events and
resources in distributed and concurrent systems (Peterson
1977). Petri nets are defined as a set of place nodes that hold
tokens, transition nodes that indicate actions that move to-
kens from place to place, and directed arcs between places
and transitions that define the logic of where and which to-
kens are consumed and produced by transitions. Firing a
transition, i.e., consuming tokens to execute a transition, de-
pends on the availability of sufficient tokens on incoming
arcs from places to each transition. The marking of the Petri
net is the arrangement of tokens across places in the net and
indicates its current state. High-level Petri nets represent a
class of Petri nets with additional features that allow for a
more compact representation of dependencies and behav-
iors while producing a more semantically meaningful graph
(Jensen 1983). A Colored Petri net is a High-level Petri net
that includes data values of different types (colors) in in-
dividual tokens, such as integers, strings, or user-defined
types, and guard functions that evaluate whether the tokens
present in incoming arcs are sufficient for the transition to
execute. A Timed Colored Petri net introduces the concept
of time, e.g., to indicate the time a token must remain in a
place before it can move or the time a transition will take to
fire once it is enabled. A full description of the formal spec-
ification of TCPNSs can be found in Jensen and Kristensen.
Although Petri nets have had a relatively modest adop-
tion in robotics (Costelha and Lima 2007; Chao and Thomaz
2016; Brooks 2017), they have demonstrated utility in wide-
ranging applications that span game design, biological sys-
tems, and industrial processes. Game narratives and player
interactions mirror the complexities found in robotic sys-
tems, and Petri nets have been successfully used to model
and analyze game mechanics (Balas et al. 2008; Aratjo and
Roque 2009; Muratet, Carron, and Yessad 2022). Variants of
Petri nets have been used to model complex biological pro-
cesses such as viral infection and 2D diffusion (Assaf 2022),
molecular transport across cell membranes (Liu 2012), and



metabolic reactions between enzymes and substrates (Bal-
dan et al. 2010). Biological processes share many character-
istics with industrial and workflow-based processes, where
multiple actors may come together to transform compo-
nents or resources into products. Van der Aalst created a
variant of Petri nets called Workflow-Nets (WF-nets), and
Petri nets have been used to optimize agent-task allocations
and scheduling between humans and robots (Casalino et al.
2019; Cheng, Sun, and Fu 1994; Drakaki and Tzionas 2017).

Value Proposition of the Representation

We posit that TCPNs hold much untapped potential within
HRI. Specifically, TCPNs can yield cumulative benefits by
serving as a unifying representation for all phases of systems
development. We find it useful to think of systems develop-
ment in terms of six phases as shown in Figure 1: (1) design,
(2) specification, (3) simulation, (4) validation, (5) imple-
mentation, and (6) deployment. In what follows, we provide
details about how TCPNs can enhance each of these phases.

Design. Design is the conceptualization phase of systems
development where user requirements are gathered through
observations and participatory design, scenarios are created
to envision system interactions, and the system architecture
is structured. A high-level plan is established at this stage for
how the system will meet user needs and technical consider-
ations, and produces tangible outcomes such as wireframes,
user flows, personas, and low-fidelity prototypes.

A key property that enables Petri nets to enhance the De-
sign phase is their ability to be used at different levels of
abstraction. In the early stages of design, Petri nets support
high levels of abstraction, e.g., modeling the robot’s high-
level dialogue, joint action, and decision-making behavior.
This model can then be gradually refined to yield a more de-
tailed and precise description of the system under consider-
ation, ultimately resulting in an executable prototype of the
system (see Implementation). The ability for the representa-
tion to have various levels of abstraction could make it an ap-
propriate shared language for communication between do-
main experts, end-users, designers, and programmers. This
was demonstrated by (Jensen and Kristensen 2009) in a case
study where a suitably abstracted Petri net-based model was
used to engage end-users (hospital nurses) for elicitation, ne-
gotiation, and agreement of user requirements.

Specification. Specification involves defining the require-
ments, behavior, features, and constraints of the system be-
ing developed. Specifications expressed in natural language
or in visual formats like flowcharts and activity diagrams are
prone to ambiguity. Additionally, other representations (e.g.,
state machines) suffer from an explosion of state spaces as
the complexity of the system increases, resulting in repre-
sentations that are less comprehensible for human interpre-
tation. In contrast, TCPNs can model the same phenomenon
in a much more compact way. Hence, they provide a precise,
concise, and human-friendly way to represent system behav-
ior, yielding models that are both mathematically sound and
accessible to systems developers through their visual and
graphical nature (Jensen and Kristensen 2009).

527

Formal and Experimental Validation: Supports
formal validation through mathematical analysis;
designers can model and log human behavior for
experimental validation.
Example: Ensure that the robot never greets the
same human twice using verifiable logic.

Simulation

Interactive Exploration: Enables interactive
simulation and supports exploration of system behavior.
Concise Search Space: Offers a compact state space

for automated simulation.
Example: Emulate sensor activations or user inputs by
placing tokens in appropriate places within the Petri net

Implementation

User/Machine-Friendly: Balances formal underpinnings
with visual and graphical representation, aiding both
human comprehension and machine processing.
Example: Transitions can instigate behaviors such as motion,
planning or image processing.

Deployment

Dynamic Observation: Allows observation of dynamic
properties through token movement, facilitating
tically meaningful insights during deployment.
er monitors the Petri net to make sure the
Jccessfully interacting with its environment

Figure 1: Flow between development phases and properties
and examples of how Petri nets are useful at each.

The Petri net representation can be designed to map to
semantically meaningful domain properties (e.g., distinct
physical areas within a setting, human and robotic agents,
and abstract concepts like speaking floor). For instance,
physical spaces like tables or the cupcake display case can
be depicted as places, and the robot can be represented by
a token. The movement of the robot can be specified and
visualized as the movement of the token through the Petri
net. When the robot token occupies the cupcake display
case place, we can semantically infer that the robot is po-
sitioned at the display case, potentially assisting the pastry
chef. Additionally, Petri nets can facilitate the development
of complex systems by enabling users to specify smaller
subprocesses, which can then be automatically combined
using mathematical properties into a behavior model of a
larger and more intricate system. Finally, the formal speci-
fication of system behavior using Petri nets is beneficial for
the downstream process of Validation of the system through
the application of formal techniques.

Simulation. Simulation involves viewing how a system
behaves under different conditions via a simplified repre-
sentation of real-world phenomena. Any valid Petri net will
support simulation, and visual inspection can be enabled in
two ways: (1) interactive, where users have the ability to ac-
tively engage with the Petri net model to explore hypotheti-
cal scenarios by placing rokens or triggering transitions; and
(2) automated, where system behavior is analyzed without
user intervention based solely on the design of the system
and possible initial markings. The results of these simula-
tions could prompt the designer to consider alterations to
the Specification, Implementation, or prompt Validation.

Interactive: By placing tokens in appropriate places within
the Petri net, developers can emulate real-world events such
as sensor activations and user commands. Due to the visual
and graphical nature of the representation, developers can



visually track the movement of fokens as they traverse tran-
sitions and places. The comprehensibility of the interactive
simulation is enhanced when the Petri net elements hold se-
mantic significance (as elaborated in Specification).

Automated: Petri nets can facilitate the methodical explo-
ration and discovery of optimal system parameters via the
use of automated simulations. This can be particularly valu-
able for the design of complex systems where there are po-
tentially many choices for possible transitions given a cer-
tain marking, and in which naively selecting or handcraft-
ing actions and managing token consumption can lead to
suboptimal outcomes. Additionally, in interactive robotics
systems, it is important to account for actions from both
controlled (e.g., robots and other automated systems) and
uncontrolled (e.g., workers, customers, and pets) agents, as
these actions collectively impact interaction quality.

The exploration of these options and the determination of
optimal strategies can be accomplished through a combina-
tion of simulation and methods like search or reinforcement
learning. These methods can be relatively simple, as with
(Cheng, Sun, and Fu 1994), who used A* search to deter-
mine an optimal firing sequence of transitions in a Petri net
that modeled manufacturing systems. More recent methods
have utilized reinforcement learning and deep learning to de-
rive optimal strategies, i.e., policies, to support a nuanced set
of interactions (Drakaki and Tzionas 2017; Hu et al. 2020).

The focus of our work is on high-level control or behavior
modeling, thereby reducing the need for many off-the-shelf
robotics simulators that instead focus on realistic physics,
robot control, and computer vision (e.g., NVIDIA’s Omni-
verse (Mittal et al. 2023) or Habitat (Manolis Savva et al.
2019; Szot et al. 2021)). Only the features specified as fo-
kens and the structure of the Petri net need to be encoded,
reducing the state vector size. Furthermore, the action space
is generally more constrained given specific markings, so
methods such as action masking can be used to improve
learning in these action spaces (Huang and Ontafién 2020).
As such policies can be trained prior to deployment, they re-
quire minimal computational power to execute in real-time.
However, this does not preclude online learning if the devel-
oper wants to support in-situ adaptation.

Validation. Validation involves assessing whether the sys-
tem is built correctly according to its design and performs its
intended functions accurately and reliably. HRI systems can
benefit from both formal and experimental validation tech-
niques. Formal techniques can be used to prove whether pro-
grams adhere to specific properties (Wing 1990), such as en-
suring a robot never greets the same human twice (Porfirio
et al. 2018). On the other hand, experimental techniques are
useful for validation of user behavior and ergonomic prop-
erties (Ait-Ameur and Baron 2006), such as ensuring that an
individual is able to effectively communicate with the robot
in the presence of ambient noise. Petri nets are formal mod-
els that can be shared between formal and experimental val-
idation, and bridge the gap between these techniques. Here
we elaborate on formal validation and discuss experimental
validation under Deployment.

It is often useful to verify the temporal or probabilis-

528

tic behavior of complex systems. For example, develop-
ers may need to ensure that the duration of a specific task
probabilistically falls within a certain time bound if per-
formed collaboratively with a robot. This and similar phe-
nomena can be captured within verifiable logic, such as Sig-
nal Temporal Logic (Donzé and Maler 2010), e.g., P =
? F[10,20) [success], orin plain English, what is the prob-
ability that the task will take between 10 and 20 seconds?

While expressing such properties is straightforward, their
verification is challenging. Example prior work in robotics
involves sampling simulated trajectories through methods
such as Monte Carlo (Scher, Sadraddini, and Kress-Gazit
2023). Combined with high-fidelity off-the-shelf simulators
(e.g., RoboSuite, Zhu et al. 2020), such techniques have been
shown to be successful, though they are restrictive to a small
set of domains and are expensive due to the large number of
samples required and simulator performance limitations.

The concise and semantically meaningful properties of
Petri nets are also well-suited for validation. Sampling a sin-
gle trajectory in a Petri net is much less computationally in-
tensive than if done in simulators with high realism, e.g.,
those with photorealism and physics engines. Although this
higher level of abstraction in modeling by the Petri net as
compared to high-fidelity simulation may constrain users to
verifying coarse approximations of phenomena, we hypoth-
esize that it facilitates system modeling at a level of abstrac-
tion that requires less effort compared to equivalent repre-
sentations (e.g., probabilistic timed automata).

Implementation. The Design, Specification, Simulation,
and Validation stages of the systems development process
produce a precise, concise, and human-friendly model in the
form of a Petri net, which can be integrated into the sys-
tem’s implementation. This integration eliminates any loss
of information or unintended alterations that might occur
during translations between different representations at var-
ious phases. As a result, the specified behaviors and inter-
actions captured within the Petri net model can be faithfully
translated into the program’s execution. If, at any point, the
designer realizes changes need to be made to the implemen-
tation, since the model is still represented as a Petri net, this
can seamlessly be introduced into the previous Specification,
Simulation, and Validation steps.

Existing Petri net libraries can facilitate the implemen-
tation of Petri net models. For instance, the SNAKES li-
brary (Pommereau 2015) supports a wide range of Petri
net models and allows the use of Python objects as fokens
and Python expressions for transition guards or arc condi-
tions. If a developer uses SNAKES for Design, Specifica-
tion, Simulation, and Validation, the same SNAKES models
can then be used as the skeleton upon which the full imple-
mentation can be built. For example, transitions within Petri
nets, which often signify system actions, can instigate sys-
tem behaviors (such as motion planning or image process-
ing) when they are fired. Further, sensor activations and user
commands can introduce fokens into the Petri net. Utilizing
a Petri net-based representation for modeling system behav-
ior allows the separation of high-level logic from low-level
processes (e.g., sensing and motion planning).



Deployment. Petri nets can be beneficial to monitor and
visualize the real-time execution of finished systems. This
can prove challenging with alternative representations—
state machines tend to be large and difficult to visualize,
while block-based representations lack an explicit portrayal
of movement, progression, or transfer of system entities
(e.g., tracking the location of a cupcake or monitoring oc-
cupancy of a physical space). The compact and graphical
nature of Petri nets provides a clear depiction of the system
flow, especially with the use of tokens to model dynamic be-
haviors and allow for tracing an entity through the system.
Petri nets are ideal for run-time analysis and experimental
validation during deployment because they model complex
interactions, capture dynamic behaviors, and provide a vi-
sual presentation of system behavior. Complex systems are
characterized by many free interactions, leading to elaborate
interaction traces that are challenging for analysis and in-
terpretation by people. (Muratet, Yessad, and Carron 2016)
use a Petri net representation to algorithmically analyze and
label player behaviors during a game. However, even for
the manual generation of labels, qualitative coding of Petri
net traces could serve as a complement to, or even a po-
tential substitute for, video coding. Moreover, Petri net el-
ements could be time-stamped or tagged with data for dy-
namic behavior (e.g., when transitions are fired) to facilitate
downstream analysis such as understanding response times,
waiting times, and throughput. This approach could enable
a more direct translation of empirical insights from deploy-
ment into tangible improvements in the design, specifica-
tion, or implementation of system behavior. We emphasize
that the efficacy of this approach hinges on the model effec-
tively capturing all aspects that the developer seeks to ana-
lyze. This is achievable using Petri nets because of the repre-
sentation’s versatility in expressing a variety of concepts, in-
cluding user-activity model, task model, and context model.

Case Study: Arranging Cupcakes

Returning to the coffee shop scenario in which the robot as-
sists the pastry chef in arranging cupcakes, we present three
processes and observe how they can be modeled through a
Petri net-based representation (see Figure 2).

Cupcakes transfer: Both the chef and the robot can trans-
fer cupcakes from a tray to a display case. We model this
by two places: Tray Space @ and Case Space @ . Both the
human @ and the robot © start outside this Petri net mod-
ule and are represented by tokens of distinct color values but
the same Agent color type. An agent @ transitions into the
module from an external one () and occupies the tray @ to
collect a cupcake token € . Then, both the agent and the cup-
cake would transfer to the case @3 , resulting in a cupcake ©
displacing an empty spot @ in the case @ .

Single-occupancy enforcement: To ensure safety, we add
a Resource Place © , which contains tokens indicating the
occupancy of the tray or case. An agent can occupy a space
if the agent possesses the requisite resource token for either
the tray © or the case © . This design enforces the robot
to follow the single-occupancy rule. However, if the human
accesses the space while the robot is already present C3 , the
model assigns an error token @ to the human, which can then

529

Transitions Unsafe Tokens
{ Move Human ' & Cupcake
() Transfer e Modeling | @ Empty Spot
() Handover @ Handover Resource

©Tray Resource
©Case Resource
@ Human

@ Robot

® Error

{J Move (unsafe)
From External

Places
@ Handover Space

@Tray Space
@) Case Space
@) Resource Place

Figure 2: An example model of processes related to the sce-
nario where the robot assists the chef in arranging cupcakes.

be utilized by subsequent processes to either stop the robot
or withdraw it from the space. This approach allows us to
model the way humans might violate expectations within the
same representation used to specify robot behavior, thereby
enabling simulation or validation of such behaviors.
Double-occupancy for handovers: To model handovers,
where one agent delivers a cupcake to another, who then
transports it to the tray, a place called Handover Space @
is introduced. One agent arrives with a cupcake token, an-
other without a cupcake token, and both agents would have
to be in possession of the handover resource tokens @ to en-
able cupcake handover @3 . Upon exiting the transition, the
agent, initially without a cupcake token, now possesses one.

Discussion

Based on the value proposition that we discuss above, we ar-
gue that Petri nets could be an indispensable tool for iterative
systems development. However, we believe that there is a
need for an extended, domain-specific TCPN that is tailored
for HRI systems development. An extended representation
might enforce, for instance, that physical locations in the
robot’s environment are represented as places, or that tokens
are drawn from a predefined set of colors that represent the
robot, the human, or the availability of physical space (see
the Case Study above). Thus, our domain-specific instantia-
tion will inherit from TCPNs, contain semantic significance
to HRI systems, and be accessible to developers lacking ex-
perience with Petri nets. Given an extended TCPN represen-
tation, we also advocate the need for an end-user develop-
ment tool that selectively exposes aspects of the underlying
representation to developers in an intuitive, graphical way.

Our future work will involve creating a new representa-
tion specifically tailored to HRI that extends TCPNs and
evaluating its effectiveness in terms of developer accessibil-
ity. We believe that Petri nets can enable the development of
more complex and nuanced human-robot interactions.



Acknowledgements

This work was supported by a NASA University Lead-
ership Initiative (ULI) grant awarded to the UW-
Madison and The Boeing Company (Cooperative Agree-
ment #80NSSC19M0124) and National Science Founda-
tion (NSF) awards 1925043 and 2026478. This work was
conducted while David Porfirio was an NRC Postdoctoral
Research Associate at the Naval Research Laboratory. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessar-
ily representing the official policies, either expressed or im-
plied, of the US Navy or NSF.

References

Ait-Ameur, Y.; and Baron, M. 2006. Formal and Experimen-
tal Validation Approaches in HCI Systems Design Based on
a Shared Event B Model. International Journal on Software
Tools for Technology Transfer, 8: 547-563.

Aratjo, M.; and Roque, L. 2009. Modeling Games with
Petri Nets. In Digra conference. Citeseer.

Assaf, G. 2022. Fuzzy Coloured Petri Nets for Mod-
elling Biological Systems with Uncertain Kinetic Parame-
ters. Doctoral thesis, BTU Cottbus - Senftenberg.

Balas, D. B. D.; Brom, C.; Abonyi, A.; and Gemrot, J. 2008.
Hierarchical Petri Nets for Story Plots Featuring Virtual Hu-
mans. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 4, 2-9.

Baldan, P.; Cocco, N.; Marin, A.; and Simeoni, M. 2010.
Petri Nets for Modelling Metabolic Pathways: A Survey.
Natural Computing, 9: 955-989.

Brooks, N. 2017. Situational Awareness and Mixed Initia-
tive Markup for Human-Robot Team Plans. Ph.D. thesis,
Carnegie Mellon University.

Casalino, A.; Zanchettin, A. M.; Piroddi, L.; and Rocco, P.
2019. Optimal Scheduling of Human—Robot Collaborative
Assembly Operations with Time Petri Nets. IEEE Transac-
tions on Automation Science and Engineering, 18(1): 70-84.
Chao, C.-M.; and Thomaz, A. 2016. Timed Petri Nets for
Fluent Turn-Taking over Multimodal Interaction Resources
in Human-Robot Collaboration. The International Journal
of Robotics Research, 35(11): 1330-1353.

Cheng, C.-W.; Sun, T.-H.; and Fu, L.-C. 1994. Petri-Net
Based Modeling and Scheduling of a Flexible Manufactur-
ing System. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, 513-518. IEEE.
Costelha, H.; and Lima, P. 2007. Modelling, Analysis and
Execution of Robotic Tasks using Petri Nets. In 2007
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 14491454,

Donzé, A.; and Maler, O. 2010. Robust Satisfaction of
Temporal Logic Over Real-Valued Signals. In International
Conference on Formal Modeling and Analysis of Timed Sys-
tems, 92—106. Springer.

Drakaki, M.; and Tzionas, P. 2017. Manufacturing Schedul-
ing Using Colored Petri Nets and Reinforcement Learning.
Applied Sciences, 7(2): 136.

530

Hu, L.; Liu, Z.; Hu, W.; Wang, Y.; Tan, J.; and Wu, F. 2020.
Petri-net-based Dynamic Scheduling of Flexible Manufac-
turing System via Deep Reinforcement Learning with Graph
Convolutional Network. Journal of Manufacturing Systems,
55: 1-14.

Huang, S.; and Ontaiién, S. 2020. A Closer Look at In-
valid Action Masking in Policy Gradient Algorithms. arXiv
preprint arXiv:2006.14171.

Jensen, K. 1983. High-Level Petri Nets. In Applications
and Theory of Petri Nets: Selected Papers from the 3rd Eu-
ropean Workshop on Applications and Theory of Petri Nets
Varenna, Italy, September 27-30, 1982 (under auspices of
AFCET, AICA, GI, and EATCS), 166—-180. Springer.

Jensen, K.; and Kristensen, L. M. 2009. Coloured Petri Nets.
Berlin, Heidelberg: Springer.

Liu, F. 2012. Colored Petri Nets for Systems Biology. Doc-
toral thesis, BTU Cottbus - Senftenberg.

Manolis Savva; Abhishek Kadian; Oleksandr Maksymets;
Zhao, Y.; Wijmans, E.; Jain, B.; Straub, J.; Liu, J.; Koltun,
V.; Malik, J.; Parikh, D.; and Batra, D. 2019. Habitat: A
Platform for Embodied AI Research. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion (ICCV).

Mittal, M.; Yu, C.; Yu, Q.; Liu, J.; Rudin, N.; Hoeller, D.;
Yuan, J. L.; Tehrani, P. P.; Singh, R.; Guo, Y.; Mazhar, H.;
Mandlekar, A.; Babich, B.; State, G.; Hutter, M.; and Garg,
A. 2023. ORBIT: A Unified Simulation Framework for In-
teractive Robot Learning Environments. .

Muratet, M.; Carron, T.; and Yessad, A. 2022. How to As-
sist Designers to Model Learning Games with Petri Nets?
In Proceedings of the 17th International Conference on
the Foundations of Digital Games, FDG ’22. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450397957.

Muratet, M.; Yessad, A.; and Carron, T. 2016. Understand-
ing Learners’ Behaviors in Serious Games. In Chiu, D.;
Marenzi, I.; Nanni, U.; Spaniol, M.; and Temperini, M., eds.,
Advances in Web-Based Learning — ICWL 2016, volume
10013 of Lecture Notes in Computer Science. Springer.

Peterson, J. L. 1977. Petri Nets. ACM Computing Surveys
(CSUR), 9(3): 223-252.

Pommereau, F. 2015. SNAKES: A Flexible High-level Petri
Nets Library. In Proceedings of PETRI NETS’15, volume
9115 of Lecture Notes in Computer Science. Springer.

Porfirio, D.; Sauppé, A.; Albarghouthi, A.; and Mutlu, B.
2018. Authoring and Verifying Human-Robot Interactions.
In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology, UIST ’18, 75-86.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450359481.

Scher, G.; Sadraddini, S.; and Kress-Gazit, H. 2023. Prob-
abilistic Rare-Event Verification for Temporal Logic Robot
Tasks. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), 12409-12415. IEEE.

Szot, A.; Clegg, A.; Undersander, E.; Wijmans, E.; Zhao,
Y.; Turner, J.; Maestre, N.; Mukadam, M.; Chaplot, D.;



Maksymets, O.; Gokaslan, A.; Vondrus, V.; Dharur, S.;
Meier, F.; Galuba, W.; Chang, A.; Kira, Z.; Koltun, V.; Ma-
lik, J.; Savva, M.; and Batra, D. 2021. Habitat 2.0: Training
Home Assistants to Rearrange their Habitat. In Advances in
Neural Information Processing Systems (NeurIPS).

Van der Aalst, W. M. 1998. The Application of Petri Nets to
Workflow Management. Journal of Circuits, Systems, and
Computers, 8(01): 21-66.

Wing, J. 1990. A Specifier’s Introduction to Formal Meth-
ods. Computer, 23(9): 8-22.

Zhu, Y.; Wong, J.; Mandlekar, A.; Martin-Martin, R.; Joshi,
A.; Nasiriany, S.; and Zhu, Y. 2020. RoboSuite: A Modular
Simulation Framework and Benchmark for Robot Learning.
arXiv preprint arXiv:2009.12293.

531



