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Real-world data is often incomplete and contains missing values. To train accurate models over real-world

datasets, users need to spend a substantial amount of time and resources imputing and finding proper values

for missing data items. In this paper, we demonstrate that it is possible to learn accurate models directly

from data with missing values for certain training data and target models. We propose a unified approach

for checking the necessity of data imputation to learn accurate models across various widely-used machine

learning paradigms. We build efficient algorithms with theoretical guarantees to check this necessity and

return accurate models in cases where imputation is unnecessary. Our extensive experiments indicate that our

proposed algorithms significantly reduce the amount of time and effort needed for data imputation without

imposing considerable computational overhead.
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1 INTRODUCTION
The performance of a machine learning (ML) model relies substantially on the quality of its training

data. Real-world training data often contain a considerable number of examples with missing values,

i.e., incomplete data. One may train an ML model by ignoring the training examples with missing

values. This approach, however, may significantly reduce the accuracy of the resulting model as it

may lose out on some useful examples [30].

To address the problem of training over incomplete data, users usually replace each missing

data item with a value, i.e., data imputation, and train their models over the resulting repaired data.
To repair incomplete data, users must figure out the mechanisms and causes of data missingness,

e.g., completely at random or based on observed values of some features [28]. Based on this

mechanism, they build a (statistical) model for missing data and replace the missing values with
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some measurements defined over this model, e.g., mean. Users may also leverage a variety of ML

models to repair missing values, e.g., tree-based or linear regression [21]. Researchers have shown

that the desired imputation method may vary depending on the downstream ML task [20]. Hence,

it is often challenging to find a model of data missingness that results in an accurate ML model for a

downstream task [20]. The aforementioned steps of finding a missingness mechanism, constructing

an accurate missingness model, and finding the right statistical measurement(s) for imputation

usually require a significant amount of time and manual effort. Surveys indicate that most users

spend about 80% of their time on data preparation and repair [18, 24].

Researchers have recently shown that one may learn accurate Datalog rules [25] and K-nearest

neighbor classifier [10, 16] over a training dataset without cleaning and repairing it. Generally

speaking, these methods check whether incomplete or inconsistent examples influence the target

model. If this is not the case, they return the model learned over the original training data. This

approach may save significant time and effort spent repairing data.

However, it is not clear whether the methods above can be used to check the necessity of data

repair for other ML models. As opposed to learning Datalog rules or K-nearest neighbors, training

popular MLmodels usually requires optimizing a continuous loss function. Moreover, these methods

detect the necessity of data repair only for classification problems and do not handle learning over

missing data for regression models. Also, each of these methods handles a single ML model. Due

to the relatively large number and variety of ML models, one would ideally like to have a single

approach to the problem of learning over data with missing values for multiple types of ML models.

In this paper, we aim to develop a general approach for learning accurate ML models over

training data with missing values without any data repair. We focus on ML models that optimize

loss functions over continuous spaces, which arguably contain the most popular ML models. We

formally define the necessity of data repair for learning accurate models over training data with

missing values. Our methods efficiently detect whether data repair is needed to learn accurate

models. If data repair is not necessary, they learn effective models over the original training data.

Particularly, we make the following contributions:

• We formally define the conditions where data repair is not needed for training optimal models

over incomplete data for a large group of ML models (Section 3).

• We prove necessary and sufficient conditions for learning an optimal model without repairing

incomplete data for linear regression. Based on these conditions, we design an efficient

algorithm for 1) checking the existence of the optimal model, and 2) learning the optimal

model if it exists (Section 4).

• We prove necessary and sufficient conditions for learning an optimal model without repairing

incomplete data for linear Support Vector Machine (SVM), a popular classificationML model.

We present an efficient algorithm for checking and then learning the optimal model if it

exists (Section 5).

• Linear SVM models only learn linear classifiers, limiting their representation power in

nonlinear spaces. We prove necessary and sufficient conditions for learning an optimal model

without repairing incomplete data for two popular kernel SVMs. Then we provide algorithms

to check and then learn the optimal models for each kernel SVM (Section 6)

• We formalize the notion of certain models for Deep Neural Networks (DNNs). Due to the

non-convexity of the loss functions in DNNs, it is challenging to design an algorithm that

efficiently finds the optimal model for them. We prove the necessary conditions for having

certain models for DNNs in some special cases (Section 7).

• It might not be possible to learn an optimal model over incomplete data without any data

repair. Hence, we introduce and formally define the condition under which it is possible to
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learn a model that is sufficiently close to an optimal model over incomplete data without any

repair. We propose novel and efficient algorithms to check for the existence of these models

over linear regression and SVM (Section 8).

• We conduct experiments to show cost savings in data cleaning and program execution time

compared to mean imputation, a deep learning-based imputation algorithm, and a benchmark

framework across real-world datasets with random corruption.We also extend the comparison

to diverse real-world datasets with inherent missing values, yielding results consistent with

randomly corrupted datasets. Our studies show that our algorithms significantly reduce data

repair costs when optimal or approximately optimal models can be learned over incomplete

data and introduce minimal computational overhead in other cases (Section 9).

2 BACKGROUND
2.1 Supervised Learning
In this section, we review ML terminology and notations.

Table 1. A training dataset for rain prediction

Temperature(F) Humidity(%) Rainfall

Seattle 65 80 1

New York 50 𝑛𝑢𝑙𝑙 -1

Dataset. In ML, we work with a relation consisting of a finite number of attributes and tuples.

For instance, the relation shown in Table 1 has two tuples and three attributes. For an ML problem, a

relation with tuples and attributes is generally referred to as a dataset with rows and columns.
In supervised learning, an ML model takes certain columns from a dataset as input and makes

predictions for a designated output column.

Features. The columns of the dataset we provide as input to an ML model are called features.

In Table 1, Temperature and Humidity are the two features that provide information on atmospheric
conditions. We denote a single feature as z and 𝑑 features as [z1, ..., z𝑑 ]. The domain of feature zi is
the set of values that appear in feature zi. To simplify our exposition, we assume that the domain

of all values in a feature is the set of real numbers R.

Label. The column of the dataset we want an ML model to make predictions on is called a label.

In our example, given current atmospheric conditions we want to predict chances of Rainfall. Therefore
Rainfall is the label column, and it takes on two possible values: -1 to denote No Rain and 1 for Rain.
We represent a single label as 𝑦 and the entire label column, consisting of 𝑛 labels, as a vector

y = [𝑦1, ..., 𝑦𝑛].

Training Example. We refer to a row in the dataset as a training example. In Table 1, we observe
two examples, Seattle and New York. We denote a single training example as x. For 𝑛 training

examples, a training set is a collection of an input matrix X = [x1, ..., x𝑛]𝑇 and a corresponding

label vector y = [𝑦1, ..., 𝑦𝑛]𝑇 . Each training example with 𝑑 features in X can be expressed as a

vector x𝑖 = [𝑥𝑖1, ..., 𝑥𝑖𝑑 ], where 𝑥𝑖 𝑗 represents the 𝑗𝑡ℎ feature in the 𝑖𝑡ℎ example.

Target Function. We define the domain of examples as X and the domain of labels as Y.
For 𝑛 examples and 𝑑 features, we assume, X and Y are R𝑛×𝑑 , and R𝑛 , respectively. A target

function 𝑓 (X,w) transforms feature inputs into label outputs based on model w, represented
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as 𝑓 (X,w) : X → Y. Here, model w is a real-valued vector parameterizing the space of target

functions that map from X to Y. For instance, consider a single training example xi consisting of 𝑑
features. Given a vector of real numbers w, the target function may be a linear transformation of

the example xi, i.e 𝑓 (xi,w) = 𝑤1 · 𝑥𝑖1 + ... +𝑤𝑑 · 𝑥𝑖𝑑 .

(a) Data cleaning is not needed (b) Data cleaning is needed

Fig. 1. Data cleaning may not always be necessary

Example 2.1. Consider Figure 1a, which uses a popular ML algorithm called Support Vector Machine
(SVM). The goal is to learn a linear boundary (blue rectangle) for rain prediction using temperature and
humidity features from different cities (examples X). The boundary (margin) separates the examples
based on their Rain outcomes. The target function transforms all examples to one of the two possible y
values [1, -1]. The approximation of the target function is 𝑓 (X,w)=w𝑇X.

Loss function. A loss function, L, is defined as a mapping of prediction for an example xi, i.e.,
𝑓 (xi,w), with its corresponding label 𝑦𝑖 to a real number 𝑙 ∈ R. 𝑙 captures the similarity between

𝑓 (xi,w) and 𝑦𝑖 . The exact form of the loss function varies between ML problems. One reasonable

measure to capture similarity is to get the difference between prediction 𝑓 (xi,w) and actual label

𝑦𝑖 . Aggregating over the 𝑛 examples in the input matrix (X), we find the overall loss function, 𝐿:
𝐿(𝑓 (X,w), y) = 1

𝑛

∑𝑛
𝑖=1 L(𝑓 (xi,w), 𝑦𝑖 ) = 1

𝑛

∑𝑛
𝑖=1 (𝑓 (xi,w) − 𝑦𝑖 )2. For the rest of the paper, we will

refer to the ‘overall loss function’ as the loss function since we will be working with a matrix of

examples rather than individual examples.

Example 2.2. For the SVM in Figure 1, the loss function, L, is defined as 𝐿(𝑓 (X,w), y) = 1

2
∥w∥2

2
+

𝐶
∑𝑛

𝑖=1 max{0, 1 − 𝑦𝑖w𝑇 x𝑖 }.
Here, w𝑇x𝑖 comes from the target function and represents the model’s prediction for an example
x𝑖 . The actual label is denoted as 𝑦𝑖 . When the prediction and the label have the same sign, they are
similar, therefore the loss is lower. The notation | | · | |2

2
represents the squared Euclidean norm, and

𝐶 ∈ (0, +∞) is a tunable parameter.

Classification and Regression. Supervised learning is divided into two types of ML problems.

In a classification problem, the label domain Y consists of discrete values (such as Rain(1) or No
Rain(-1)). Whereas if the label domain consists of continuous values (e.g. inches of Rainfall), then it

is a regression problem.
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Model Training. Taking an input matrix X, a label vector y, a targte function 𝑓 , and a loss

function 𝐿, the goal of training is to find an optimal model w∗ that minimizes the training loss,
i.e., w∗ = arg min

w∈W
𝐿(𝑓 (X,w), y).

Example 2.3. For the SVM in Figure 1, optimal model w∗ is the model that creates the widest
margin between the example with different labels (red and green) while ensuring accurate predictions,
to minimize training loss.

2.2 Missing Values and Repairs
In this section, we formally define concepts for missing value repair.

Missing values. Any 𝑥𝑖 𝑗 is a missing value (MV) if it is unknown (marked by null). We use the

term incomplete example to refer to an example with missing values, and incomplete feature
for a feature that contains missing values. Conversely, we use the terms complete feature and
complete example to describe features and examples that are free of missing values. We further

denote the set of incomplete examples as𝑀𝑉 (x) = {x𝑖 |∃𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 = null}, and the set of incomplete

features as𝑀𝑉 (z) = {z𝑗 |∃𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 = null}.

Example 2.4. In Table 1, the Humidity feature is an incomplete feature while the Temperature
feature is a complete feature. Similarly, the New York example is an incomplete example, and the
Seattle example is a complete example

Repair. A repair is a complete version of the raw data where all missing values (MV) are imputed

i.e. replaced with values from the domain of features or examples (Subsection 2.1). More formally:

Definition 1. (Repair) For an input matrix X having missing values (MV), X𝑟 is a repair to X if 1)
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(X𝑟 ) = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(X), 2) ∀𝑥𝑟𝑖 𝑗 ∈ X𝑟 , 𝑥𝑟𝑖 𝑗 ≠ null, and 3) ∀𝑥𝑖 𝑗 ≠ null, 𝑥𝑟𝑖 𝑗 = 𝑥𝑖 𝑗 .

Example 2.5. In Table 1, the Humidity feature for the New York example has a missing value. From
Definition 1, replacing the missing data with a value (e.g. 90) yields a repair (X𝑟 ). However, deleting
the humidity feature, which eliminates the missing value, is not a repair since it changes dimension(X).

Set of possible repairs. The range of values that can be used to replace missing values is large.

Consequently, a large number of repairs may exist. We denote this set of all possible repairs as X𝑅
.

For brevity, we refer to ‘a value replacing the missing value’ as a repairing value.

3 CERTAIN MODELS
In this section, we formally define certain models that minimize training loss irrespective of how

missing data is repaired.

Definition 2. (Certain Model) A model w∗ is a certain model if:

∀X𝑟 ∈ X𝑅,w∗ = argmin

w∈W
𝐿(𝑓 (X𝑟 ,w), y) (1)

Where X𝑟 is one possible repair, X𝑅 is the set of all possible repairs and 𝐿(𝑓 (X𝑟 ,w), y) is the loss
function
Definition’s intuition: Intuitively, Definition 2 says that if a model is optimal (minimizes the

training loss) for all possible repairs, this model is a certain model.

Example 3.1. Consider the ML problem in Figure 1. Figures 1a and 1b display two sets of training
examples with a missing humidity value, possibly due to a malfunctioning sensor. The green dashed
line represents the range of possible values for the incomplete feature (empty circle). In Figure 1a, the
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incomplete example does not touch the blue rectangle in any possible repair (X𝑟 ∈ X𝑅). Therefore, the
model (decision boundary: blue dashed line) is optimal for all repairs. Hence, a certain model (w∗)
exists. But, in Figure 1b, since the example may touch the blue rectangle in many repairs, the optimal
model changes from one repair to another and certain models do not exist.

Advantages of finding certain models: To repair incomplete data, users may resort to methods

such as deleting data (e.g., entire examples or features), potentially leading to information loss.

Another option is data imputation, which requires additional effort and domain expertise [30].

The data cleaning effort substantially increases with the exponentially growing number of ML

applications since good imputations depend on downstream ML applications[20]. For instance,

if the goal is to train a hundred different models with a dataset, a user may need to impute the

dataset a hundred times by different imputation methods. Regardless of how well these data repair

techniques are constructed, they may produce suboptimal results, i.e., the repaired data is not the

ground truth [22]. However when a certain model exists, imputing missing data is unnecessary since
this model is optimal for all possible repairs. Therefore users may save a significant amount of time

and effort by finding certain models. Users may ignore missing values in practice to investigate

the properties of the trained model. Nonetheless, there is no guarantee that their trained model is

accurate. The concept of certain models ensures cases for which this approach leads to accurate

models.

Prevalence of certain models: Certain models may not often exist from the restrictive definition

(a model is optimal for all repairs). However, when they exist, we save a significant amount of time

and resources. Furthermore, these savings significantly grow as the number of datasets increases

alongside the rapid expansion of the ML community utilizing these datasets for model training.

Problems:We aim to solve our problem of finding certain models by solving the following sub-

problems.

(1) Certain Model Checking: Given inputs (1) a training set consisting of a feature matrix

X potentially with missing values and a label vector y (2) a target function 𝑓 (X,w) and (3)

a loss function 𝐿. The first problem is to determine whether a certain model w∗ exists that
minimizes the training loss 𝐿(𝑓 (X,w), y) for all repairs (∀X𝑟 ∈ X𝑅

) to the incomplete dataset.

If a certain model (w∗) exists, it implies that data imputation is unnecessary.

(2) Certain Model Learning: If a certain model exists, then the second problem is learning a
certain model (w∗), given a training set, loss function, and a target function as inputs. This
certain model output can be used for downstream tasks.

Minimal overhead of not finding certain models: When certain models exist users do not have
to spend any effort in repairing missing data. When certain models do not exist, the effort to check

for them may appear wasteful. Therefore, an ideal solution would require minimal time to check

for certain models even when they do not exist. Consequently, the overhead of checking certain
models is negligible compared to the significant time and resources users may save by finding
certain models.
Baseline Algorithm: Given Equation 1, a baseline algorithm for checking and learning a certain

model is: (1) learning possible models from all possible repairs one by one, and (2) a certain model

exists if all repairs share at least one mutual optimal model. Here, the set of possible repairs is

often large (Subsection 2.2). Therefore, learning models from all repairs may be incredibly slow.
More precisely, if we denote the training time for learning one model as O(𝑇𝑡𝑟𝑎𝑖𝑛), the baseline
algorithm’s complexity grows in proportion to the size of all possible repairs (X𝑅

). This results

in a complexity of O(|X𝑅 | ∗ 𝑇𝑡𝑟𝑎𝑖𝑛), where |X𝑅 | represents the total number of possible repairs.

Therefore, we aim to find efficient algorithms to check for certain models in multiple ML problems.
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4 CERTAIN MODELS FOR LINEAR REGRESSION
Linear regression is a popular and classic ML model. It assumes a linear relationship between

feature input (X) and label output (y). The difference between the model’s prediction and actual

label, Xw − y, is the residue e = [𝑒1, ..., 𝑒𝑛].
The loss function (Section 2) for linear regression is 𝐿(𝑓 (X,w), y) = | |Xw − y| |2

2
. Here, ∥ · ∥2

2

represents the squared Euclidean norm.

4.1 Conditions For Having Certain Models
Based on the definition of certain models (Definition 2), the certain model w∗ for linear regres-
sion is defined as:

∀X𝑟 ∈ X𝑅,w∗ = argmin

w∈W
| |X𝑟w − y| |2

2
(2)

Where X𝑟 is one possible repair to the input matrix X, X𝑅 is set of all possible repairs and | |X𝑟w − y| |2
2

is the loss function
Linear regression finds a model w∗ ∈ R𝑑 such that the linear combination of all feature vectors,

𝑤∗
1
z1 + ... + 𝑤∗𝑑z𝑑 , has the shortest Euclidean distance to the label vector y, i.e., the minimum

training loss. Intuitively, a certain model exists when this Euclidean distance is independent of any

incomplete features z𝑗 , 𝑗 ∈ 𝑀𝑉 (z).
To formalize this intuition and avoid checking for all possible repairs, we introduce Theorem 4.2.

Given an input matrix with 𝑛 examples and 𝑑 features, X ∈ R𝑛×𝑑 , we denote a missing-value-free

(complete) matrix X𝑐 ∈ R𝑛×𝑚 as a submatrix (𝑚 < 𝑑) of the input matrix. X𝑐 only consists of the

𝑚 complete features z𝑗 from X, z𝑗 ∉ 𝑀𝑉 (z). Performing linear regression with X𝑐 and the labels y,
we get the model w∗𝑐 ∈ R𝑚 . To facilitate subsequent analysis, we introduce another model w• by
expanding w∗𝑐 from R𝑚 to R𝑑 by appending (𝑑 −𝑚) zero coefficients corresponding to incomplete

features. For example, if the columns 2 and 4 inX ∈ R4 contain missing values, andw∗𝑐 = [1, 1]𝑇 , we
create w• by expanding w∗𝑐 to R4 and inserting zeros in the second and fourth entries. This process

results in an expanded model, w• = [1, 0, 1, 0]𝑇 . This step aligns the linear coefficients between X𝑐

and X𝑟
, simplifying the following theorems and proof.

Lemma 4.1. If a certain model w∗ exists, ∀z𝑗 ∈ 𝑀𝑉 (z), the corresponding coefficient 𝑤∗𝑗 = 0. In
other words, if a certain model exists, w• is a certain model.

The proofs of the lemmas and theorems in this paper are detailed in our technical report [35].

Based on Lemma 4.1, we have the following result.

Theorem 4.2. A certain model exists if and only if ;∀z𝑗 ∈ 𝑀𝑉 (z), these conditions are met: 1)
∀𝑥𝑖 𝑗 = null, 𝑒𝑖 = 0; 2)

∑
𝑥𝑖 𝑗≠null 𝑥𝑖 𝑗 · 𝑒𝑖 = 0.

4.2 Checking and Learning Certain Models
Theorem 4.2 says that a certain model exists for linear regression if and only if the residue vector

e is orthogonal to incomplete features. If a certain model exists, the incomplete features may be

safely ignored without compromising the minimization of training loss since they do not contribute

to a smaller training loss than e.
Based on Theorem 4.2, we present Algorithm 1. Our algorithm has two major steps: 1) computing

the residue vector e along with expanded model w• based on complete features, and 2) checking

the orthogonality between e and all incomplete features. Finally, we obtain a certain model when it

exists by getting w•, in which the incomplete features are ignored by the zero linear coefficients.
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The algorithm’s time complexity is O(𝑇𝑡𝑟𝑎𝑖𝑛), which is significantly faster than the baseline we

discuss in Section 3. The efficiency of our algorithm stems from its ability to check for certain

models without traversing over all possible repairs.

Algorithm 1 Checking and learning certain model for Linear Regression

𝑀𝑉 (z) ← features with missing values (incomplete features)

w• ← expanded model trained with complete features

e← fitting residue with complete features

𝑛 ← the number of training examples

for z𝑗 ∈ 𝑀𝑉 (z) do
𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ← 0

for 𝑖 = 1, 2, . . . , 𝑛 do
if 𝑥𝑖 𝑗 = null AND 𝑒𝑖 ≠ 0 then

return "Certain model does not exist"

else if 𝑥𝑖 𝑗 ≠ null then
𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ← 𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑥𝑖 𝑗 ∗ 𝑒𝑖

end if
end for
if 𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ≠ 0 then

return "Certain model does not exist"

end if
end for
return "A certain model w• exists"

5 CERTAIN MODELS FOR SVM
Another widely used ML model is SVM. In this section, we are specifically interested in linear SVM,

which aims to learn a linear decision boundary to classify examples. This decision boundary is of

the form w𝑇x = 0.

A typical soft-margin SVM’s loss function comprises of a loss term and a regularizer,𝐿(𝑓 (X,w), y) =
1

2
| |w| |2

2
+𝐶∑𝑛

𝑖=1𝑚𝑎𝑥{0, 1−𝑦𝑖w𝑇x𝑖 }. Here, the first term is the regularization, the second term is the

hinge loss [12], and 𝐶 ∈ (0, +∞) is a tunable parameter. Support vectors are the closest training
examples that decide a decision boundary, i.e. (x𝑖 , 𝑦𝑖 ) is a support vector if 𝑦𝑖w𝑇x𝑖 ≤ 1.

5.1 Conditions For Having Certain Models
Similar to the definition in Subsection 4.1, certain model, w∗, for SVM is defined as:

∀X𝑟 ∈ X𝑅,w∗ = argmin

w∈W
[ 1
2

| |w| |2
2
+𝐶

𝑛∑︁
𝑖=1

𝑚𝑎𝑥{0, 1 − 𝑦𝑖w𝑇x𝑖 }] (3)

Where X𝑟 denotes one possible repair, and X𝑅 is the set of all possible repairs. x𝑖 is an input example
with 𝑑 features, and 𝑦𝑖 is its corresponding label. w𝑇 x𝑖 comes from the target function and measures
the proximity between the example x𝑖 and the decision boundary
An SVM leverages support vectors to construct a decision boundary for classifying examples.

Therefore, the existence of a certain model for an SVM implies that either incomplete examples are

not support vectors in any repairs, or incomplete examples are support vectors in some repairs but

exactly standing on the functional margin (Lemma 5.1).
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Lemma 5.1. If a certain model w∗ exists, there are only two possible cases and they do not have
any overlap. Case 1: none of the incomplete examples is a support vector with respect to w∗ in any
repair, i.e., ∀X𝑟 ∈ X𝑅,∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖w∗𝑇 x𝑟𝑖 > 1. Case 2: ∃x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖w∗𝑇 x𝑟𝑖 = 1. Also,
∀z𝑗 ∈ 𝑀𝑉 (z),𝑤∗𝑗 = 0. And ∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖w∗𝑇 x𝑟𝑖 ≥ 1.

Based on Lemma 5.1, properties in Lemmas 5.2 and 5.3 hold.

Lemma 5.2. If a certain model exists by Case 1 in Lemma 5.1, w⋄ is the certain model.

Lemma 5.3. If a certain model exists by Case 2 in Lemma 5.1, models trained with any repairs of X
are certain models.

To formalize this intuition, we present Theorem 5.4 to check for certain models. Similar to the

notations used in Subsection 4.1, we denote a complete matrix X𝑐 as a submatrix of X that consists

of all the complete examples x𝑖 , x𝑖 ∉ 𝑀𝑉 (x). Similarly, we define a subvector y𝑐 to include all

labels corresponding to these complete training examples. We denote the SVM model trained with

these complete examples and labels as w⋄ = [𝑤 ⋄
1
, ...,𝑤 ⋄

𝑑
]𝑇 .

Theorem 5.4. A certain model exists if and only if one of the two sets of conditions below is met.
Set 1: 1) ∀z𝑗 ∈ 𝑀𝑉 (z),𝑤 ⋄𝑗 = 0, 2) ∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖

∑
𝑥𝑖 𝑗≠null𝑤

⋄
𝑗 𝑥𝑖 𝑗 > 1. Set 2: 1) training a model w′

with a random repair X𝑟 ′ ∈ X𝑅 , ∀z𝑗 ∈ 𝑀𝑉 (z),𝑤 ′𝑗 = 0, 2) ∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖
∑

𝑥𝑖 𝑗≠null𝑤
′
𝑗𝑥𝑖 𝑗 ≥ 1.

5.2 Checking and Learning Certain Models
Theorem 5.4 says that a certain model for SVM exists if and only if none of the incomplete training

examples are support vectors. Therefore, these incomplete examples are redundant when it comes

to learning the decision boundary given other complete examples.

Using Theorem 5.4, we propose Algorithm 2 with two major steps: 1) learningw⋄ from complete

training examples, and checking the conditions in Set 1 in Theorem 5.4 against w⋄ . If a certain
model exists, w⋄ is the certain model. 2) If certain models are not found in step 1, learning w′ from
an arbitrary repair, and checking the conditions in Set 2 against w′. If a certain model exists from

this step, w′ is the certain model. The algorithm’s time complexity is O(𝑇𝑡𝑟𝑎𝑖𝑛) as model training is

the dominant part compared to condition checking.

6 CERTAIN MODELS FOR KERNEL SVM
SVM models in Section 5 can only separate classes linearly, limiting their representation power in

the nonlinear space. A natural approach to overcome this limitation is to use kernel SVM.

Training a nonlinear model while maintaining the properties of linear SVM, a kernel SVM first

maps the input feature vectors, denoted as X, into a higher-dimensional space, often referred to

as the kernel space, through a non-linear transformation Φ. After this transformation, the kernel

SVM seeks to learn a linear SVM model within the kernel space. Therefore, the resulting model

is non-linear with respect to the original feature space, while remaining linear within the kernel

space.

However, transforming all training examples into kernel space is computationally expensive. To

avoid this cost, kernel function 𝑘 (x1, x2) =< Φ(x1),Φ(x2) >: X × X → R offers a shortcut for

computing inner products between two vectors in the kernel space without explicit transformation.

We presented the primal problem to linear SVM’s model training in Section 5. Here, to make use
of kernel functions, we present SVM training in terms of inner products through its dual problem.

max

a∈R𝑛

𝑛∑︁
𝑖=1

𝑎𝑖 −
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑎 𝑗𝑦𝑖𝑦 𝑗𝑘 (x𝑖 , x𝑗 ) (4)
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Algorithm 2 Checking and learning certain models for linear SVM

𝑀𝑉 (z) ← incomplete features

𝑀𝑉 (x) ← incomplete examples

w⋄ ← the model trained with complete training examples

for z𝑗 ∈ 𝑀𝑉 (z) do
if 𝑤 ⋄𝑗 ≠ 0 then

Case 1← False

end if
end for
if Case 1 ≠ False then

for x𝑖 ∈ 𝑀𝑉 (x) do
if 𝑦𝑖

∑
𝑥𝑖 𝑗≠null𝑤

⋄
𝑗 𝑥𝑖 𝑗 ≤ 1 then

Case 1← False

end if
end for

end if
if Case 1 ≠ False then

return "A certain model w⋄ exists"
else

w′ ← the model trained with an arbitrary repair

for z𝑗 ∈ 𝑀𝑉 (z) do
if 𝑤 ′𝑗 ≠ 0 then

return " Certain models do not exist"

end if
end for
for x𝑖 ∈ 𝑀𝑉 (x) do

if 𝑦𝑖
∑

𝑥𝑖 𝑗≠null𝑤
′
𝑗𝑥𝑖 𝑗 < 1 then

return " Certain models do not exist"

end if
end for
return "A certain model w′ exists"

end if

s.t. 𝐶 ≥ 𝑎𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛
𝑛∑︁
𝑖=1

𝑎𝑖𝑦𝑖 = 0

Based on this dual formulation, one can show that w∗ =
∑𝑛

𝑖=1 𝑎
∗
𝑖𝑦𝑖𝜙 (x𝑖 ) where a∗ = [𝑎∗1, ..., 𝑎∗𝑛]𝑇

is the solution to the dual problem. In Section 5, a training example (x𝑖 , 𝑦𝑖 ) is a support vector in
linear space if 𝑦𝑖w∗𝑇x𝑖 ≤ 1. Representing w∗𝑇 by its dual form, a training example (x𝑖 , 𝑦𝑖 ) is a
support vector in kernel space if 𝑦𝑖

∑𝑛
𝑗=1 𝑎

∗
𝑗𝑦 𝑗𝑘 (x𝑖 , x𝑗 ) ≤ 1.

6.1 Conditions For Having Certain Models
The kernel function transforms input data to a higher dimension while the SVM model remains

linear. The linear properties of the kernel SVM are preserved within the kernel space. Hence, certain

model conditions in Section 5 still apply. A certain model exists if and only if none of the incomplete
examples are support vectors for any repair in the kernel space.
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We now formally present these conditions for kernel SVM. Following the same notations used in

Section 5, we use w⋄ to denote the model learned from X𝑐 , the subset of data that only containing

complete training examples, and y𝑐 , the corresponding labels. As derived from Equation 4, w⋄ =∑
x𝑗∉𝑀𝑉 (x) 𝑎

⋄
𝑗 𝑦 𝑗𝜙 (x𝑗 ). Hence, x𝑟𝑖 , a repair to an incomplete training example, is a support vector

in kernel space if 𝑦𝑖
∑

x𝑗∉𝑀𝑉 (x) 𝑎
⋄
𝑗 𝑦 𝑗𝑘 (x𝑟𝑖 , x𝑗 ) ≤ 1. Therefore, the certain model conditions for

kernel SVM are represented as:

∀x𝑖 ∈ 𝑀𝑉 (x),∀X𝑟 ∈ X𝑅, 𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘 (x𝑟𝑖 , x𝑗 ) ≥ 1 (5)

Further, seeking the opportunity to avoid materializing all possible repairs, we reformulate the

above condition to an optimization problem over possible repairs:

∀x𝑖 ∈ 𝑀𝑉 (x), min

X𝑟 ∈X𝑅
𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘 (x𝑟𝑖 , x𝑗 ) ≥ 1 (6)

From the dual problem, we note that a complete example, x𝑗 , x𝑗 ∉ 𝑀𝑉 (x), is a support vector if
and only if the corresponding solution 𝑎⋄𝑗 ≠ 0. Hence, only complete examples that are support

vectors play a role in Inequality 6

In the following sections, we apply these general conditions for certain model existence in kernel

SVM to popular kernel functions.

6.2 Polynomial kernel
The kernel function for a polynomial kernel is 𝑘𝑃𝑂𝐿𝑌 (x𝑖 , x𝑗 ) = (x𝑇𝑖 x𝑗 + 𝑐)𝜆 , where 𝜆 = 1, 2, 3, ... is

the degree of the polynomial and 𝑐 ≥ 0 is a free parameter tuning the impact of higher-degree

versus lower-degree terms.

We first intuitively look at how 𝑘𝑃𝑂𝐿𝑌 (x𝑖 , x𝑗 ) remains the same value for all repairs. For an

incomplete training example x𝑖 and a complete example x𝑗 , x𝑇𝑖 x𝑗 can be expanded to 𝑥𝑖1 · 𝑥 𝑗1 + ... +
𝑥𝑖𝑑 · 𝑥 𝑗𝑑 . Suppose the𝑚𝑡ℎ

feature value 𝑥𝑖𝑚 is missing in x𝑖 , the inner product x𝑇𝑖 x𝑗 goes to infinity

when 𝑥𝑖𝑚 = +∞ or −∞, unless the corresponding element 𝑥 𝑗𝑚 equals 0, which ensures 𝑥 𝑗𝑚 ·𝑥𝑖𝑚 = 0.

Hence, in order to satisfy Inequality 6, the set of support vectors, 𝑆𝑉 , for w⋄ should have zero

entries at all incomplete features z𝑚 . This condition enforces that the value for 𝑘𝑃𝑂𝐿𝑌 (x𝑟𝑖 , x𝑗 ) is
independent of the missing value repairs. We formalize these conditions in the following theorem.

Theorem 6.1. A certain model exists if and only if the two conditions are met: 1) ∀x𝑗 ∈ 𝑆𝑉 ,
∀z𝑚 ∈ 𝑀𝑉 (z), 𝑥 𝑗𝑚 = 0, and 2) ∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖

∑
x𝑗 ∈𝑆𝑉 𝑎⋄𝑗 𝑦 𝑗 (

∑
𝑥𝑖𝑞≠null 𝑥𝑖𝑞 · 𝑥 𝑗𝑞 + 𝑐)𝜆 > 1

Checking and Learning Certain Models: Informally Theorem 6.1 says that a certain model

for a polynomial kernel SVM (p-SVM) exists if (1) all the examples that are support vectors have

zero entries for corresponding incomplete features and (2) all incomplete examples are not support

vectors. Based on this theorem, Algorithm 3 efficiently checks and learns certain models. Similar to

the algorithm for linear SVM in Section 5.2, if a certain model is determined to exist, a⋄ is exactly
the certain model based on Lemma 5.2. This algorithm’s time complexity is also O(𝑇𝑡𝑟𝑎𝑖𝑛).

6.3 RBF kernel
The RBF kernel function is 𝑘𝑅𝐵𝐹 (x𝑖 , x𝑗 ) = 𝑒𝑥𝑝 (−𝛾 | |x𝑖−x𝑗 | |2). This kernel function’s transformation

depends on the squared Euclidean distance between the two vectors x𝑖 and x𝑗 .

To check if a certainmodel exists for the polynomial kernel, we derived conditions for𝑘𝑃𝑂𝐿𝑌 (x𝑟𝑖 , x𝑗 )
to remain the same for all repairs. In contrast, 𝑘𝑅𝐵𝐹 (x𝑟𝑖 , x𝑗 ) changes among repairs as the Euclidean

distance between two vectors changes. Therefore, to check if a certain model exists for SVM with

RBF kernel (RBF-SVM), we need to directly solve the minimization problem in Inequality 6.
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Algorithm 3 Checking and learning certain models for p-SVM

𝑀𝑉 (z) ← incomplete features

𝑀𝑉 (x) ← incomplete examples

𝑆𝑉 ← set of support vectors

a⋄ ← the model trained with complete training examples

for z𝑚 ∈ 𝑀𝑉 (z) do
for x𝑗 ∈ 𝑆𝑉 do

if 𝑥 𝑗𝑚 ≠ 0 then
return "Certain model does not exist"

end if
end for

end for
for x𝑖 ∈ 𝑀𝑉 (x) do

if 𝑦𝑖
∑

x𝑗 ∈𝑆𝑉 𝑎⋄𝑗 𝑦 𝑗 (
∑

𝑥𝑖𝑞≠null 𝑥𝑖𝑞 · 𝑥 𝑗𝑞 + 𝑐)𝜆 ≤ 1 then
return "Certain model does not exist"

end if
end for
return "A certain model a⋄ exists"

However, this optimization problem is not convex, which means it is hard to find a method for

checking certain models with theoretical guarantees. Nonetheless, we can still discover the lower
bound (𝑙𝑤𝑏𝑖 ) of the following optimization target:

∀X𝑟 ∈ X𝑅, 𝑙𝑤𝑏𝑖 ≤ 𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘𝑅𝐵𝐹 (x𝑟𝑖 , x𝑗 ) (7)

For each missing value 𝑥𝑖𝑚 , we denote the possible range of missing value repairs such that

𝑥𝑚𝑖𝑛
𝑚 ≤ 𝑥𝑟𝑖𝑚 ≤ 𝑥𝑚𝑎𝑥

𝑚 ,∀z𝑚 ∈ 𝑀𝑉 (z),∀X𝑟 ∈ X𝑅
. This range may come from integrity constraint for

features: any value in a feature z𝑚 is between its minimum 𝑥𝑚𝑖𝑛
𝑚 and maximum 𝑥𝑚𝑎𝑥

𝑚 . Now, we

apply this lower bound idea to reformulate the general certain model conditions for kernel SVM

from Inequality 6.

Lemma 6.2. For any kernel SVM, a certain model exists if

∀x𝑖 ∈ 𝑀𝑉 (x), 𝑙𝑤𝑏𝑖 =
∑︁

x𝑗∉𝑀𝑉 (x)
min

x𝑟
𝑖
∈x𝑅

𝑖

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗 ) > 1 (8)

where 𝛽𝑖 𝑗 = 𝑦𝑖𝑎
⋄
𝑗 𝑦 𝑗 and

min

x𝑟
𝑖
∈x𝑅

𝑖

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗 ) =


𝛽𝑖 𝑗 min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟𝑖 , x𝑗 ) if 𝛽𝑖 𝑗 > 0

𝛽𝑖 𝑗 max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟𝑖 , x𝑗 ) if 𝛽𝑖 𝑗 < 0

0 if 𝛽𝑖 𝑗 = 0

From Lemma 6.2, we see the key to an efficient implementation is to compute min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟𝑖 , x𝑗 )

and max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟𝑖 , x𝑗 ) without materializing repairs. We formalize this idea in Theorem 7.3.
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Theorem 6.3. For the RBF kernel, the minimum and maximum kernel function values between an
incomplete example and a complete example are as follows:

min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑟𝑏𝑓 (x𝑟𝑖 , x𝑗 ) = 𝑒𝑥𝑝{−𝛾{
∑︁

𝑥𝑖𝑚=null

𝑀𝐴𝑋 [(𝑥𝑚𝑎𝑥
𝑚 − 𝑥 𝑗𝑚)2,

(𝑥𝑚𝑖𝑛
𝑚 − 𝑥 𝑗𝑚)2]

+
∑︁

𝑥𝑖𝑚≠null

(𝑥𝑖𝑚 − 𝑥 𝑗𝑚)2}}

max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑟𝑏𝑓 (x𝑟𝑖 , x𝑗 ) = 𝑒𝑥𝑝{−𝛾 [
∑︁

𝑥𝑖𝑚≠null

(𝑥𝑖𝑚 − 𝑥 𝑗𝑚)2]}

Checking and Learning Certain Models: Similar to the algorithm for the polynomial kernel, we

can use Theorem 6.3 to check and learn the certain model in O(𝑇𝑡𝑟𝑎𝑖𝑛) time.

7 CERTAIN MODELS FOR DNN
DNNs are popular ML models for a wide variety of tasks such as natural language processing

and image classification [2]. Training a DNN involves solving complex non-convex optimization

problems, making the discovery of an optimal model a challenging task [8]. Finding a certain model

for DNN adds another layer of difficulty because the certain model needs to be optimal for all

repairs within the non-convex loss landscape.

Fortunately, some well-studied kernel SVMs have been shown to approximate DNNs [8]. There-

fore, our goal in this section is to build on the conditions we prove for kernel SVMs in Section 6 to

prove the conditions for having certain models for DNN.

More specifically, we employ the arc-cosine kernel, which is used in SVM to approximate DNN’s

computation [7]. The justification behind this approximation stems from the following property.

Feeding two input vectors x𝑖 and x𝑗 individually into a single-layer network with polynomial acti-

vation functions, we obtain the corresponding output vectors y𝑖 and y𝑗 . Under some assumptions,

the inner product between these two output vectors can be represented by the arc-cosine kernel

function, i.e., 𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑖 , x𝑗 ) =< y𝑖 , y𝑗 > [7]. This implies that the arc-cosine kernel function mimics

the computation in a single-layer network. Then, iteratively performing kernel transformation,

i.e., < 𝜙 (𝜙 (...𝜙 (x𝑖 ))), 𝜙 (𝜙 (...𝜙 (x𝑗 ))) >, should mimic the computation in a multi-layer network.

The most basic arc-cos kernel function is defined by the inverse cosine of the dot product between

two vectors divided by the product of their Euclidean norms, i.e. 𝑘arccos(x𝑖 , x𝑗 ) = cos
−1

(
x𝑖 ·x𝑗
|x𝑖 | · |x𝑗 |

)
.

By discovering the certain model conditions for SVM with the arc-cosine kernel (arccos-SVM), we

approximate the certain model conditions for DNN.

To check the existence of certain models, we need to solve the minimization problem in Inequality

6. As the problem is non-convex, we find a lower bound (𝑙𝑤𝑏𝑖 ) for the necessary condition:

∀X𝑟 ∈ X𝑅, 𝑙𝑤𝑏𝑖 ≤ 𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗 )

Following a similar approach as we describe in Subsection 6.3, we look for the lower bound

defined in Lemma 6.2. The key of this process is to find the minimum and maximum values for

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗 ) for a pair of incomplete example x𝑖 and complete example x𝑗 .

However, finding the minimum and maximum values for the arc-cosine kernel function in

the presence of missing data is also challenging due to the non-convex nature of the problem.

Nonetheless, when each incomplete example x𝑖 has only one missing value 𝑥𝑖𝑧 , the problem

significantly simplifies. In the following proof, we show that any stationary point is a global
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minimum under this assumption. Therefore, our analysis focuses on training sets with one missing

value per example. The investigation of scenarios with multiple missing values per example is left

for future work.

Following Theorem 6.3, we formalize this idea in Theorem 7.1.

Theorem 7.1. For arc-cos kernel, the maximum and the minimum kernel function values between
an incomplete example (x𝑟𝑖 ) and a complete example (x𝑗 ) are as follows:

max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗 ) = 𝜋 −𝑀𝐴𝑋 [𝑐𝑜𝑠−1 (𝑎
𝑐
), 𝑐𝑜𝑠−1 (−𝑎

𝑐
)]

min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗 ) = 𝜋 − 𝑐𝑜𝑠−1 ( 𝑎2 · 𝑑 + 𝑏2

𝑐 ·
√
𝑎2 · 𝑑2 + 𝑏2 · 𝑑

)

Suppose 𝑥𝑖𝑧 = null. To simplify notations, we define 𝑎 = 𝑥 𝑗𝑧 , 𝑏 =
∑

𝑥𝑖𝑝≠null 𝑥𝑖𝑝 · 𝑥 𝑗𝑝 , 𝑐 = | |x𝑗 | |, and
𝑑 =

∑
𝑥𝑖𝑝≠null 𝑥

2

𝑖𝑝 .

Theorem 7.1 shows that the maximum and minimum values for the arc-cos kernel can be

efficiently computed without materializing repairs. Further, plugging these values in Lemma 6.2,

we approximate a certain model condition for DNN that says a certain model exists if Inequality 8

holds.

8 APPROXIMATELY CERTAIN MODELS
The conditions for having certain models might be too restrictive for many datasets as it requires a

single model to be optimal for all repairs of a dataset. In practice, however, users are usually satisfied

with a model that is sufficiently close to the optimal one. In this section, we leverage this fact and

propose the concept of approximately certain model, which relaxes the conditions on certain models.

An approximately certain model is within a given threshold from every optimal model for each

repair of the input dataset. If there is an approximately certain model for a training task, users can

learn over incomplete data and skip data cleaning. We also propose novel and efficient algorithms

for finding approximately certain models for linear regression and SVM.

8.1 Formal Definition
Definition 3. (Approximately Certain Model) Given a user-defined threshold 𝑒 ≥ 0, the model w≈

is an approximately certain model (ACM) if the following condition holds:

∀X𝑟 ∈ X𝑅, 𝐿(𝑓 (X𝑟 ,w≈), y) − min

w∈W
𝐿(𝑓 (X𝑟 ,w), y) ≤ 𝑒 (9)

where X𝑟 is a possible repair, X𝑅 is the set of all possible repairs and 𝐿(𝑓 (X𝑟 ,w), y) is the loss function.
Definition 3 ensures that the training losses of ACMs are close to the minimal training loss for all

repairs. Therefore, when 𝑒 is sufficiently small, ACMs are accurate for all repairs. In this scenario,

data imputation is unnecessary and users can proceed with an ACM without compromising the

model’s performance significantly. Certain models are special cases of ACMs by setting 𝑒 = 0.

8.2 Learning ACMs Efficiently
The condition in Definition 3 is equivalent to 𝑔(w′) ≤ 𝑒 where

𝑔(w′) = sup

X𝑟 ∈X𝑅

ℎ(w′,X𝑟 ) (10)

and

ℎ(w′,X𝑟 ) = 𝐿(𝑓 (X𝑟 ,w′), y) − min

w∈W
𝐿(𝑓 (X𝑟 ,w), y)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.



Certain and Approximately Certain Models for Statistical Learning 126:15

If there is a model w′ ∈ W that satisfies this condition, it is an ACM. Hence, to find an ACM, we

can check everyw′ ∈ W for the condition in 10. This is equivalent to checkingminw′∈W 𝑔(w′) ≤ 𝑒 .

Lemma 8.1. The problem minw′∈W 𝑔(w′) ≤ 𝑒 is convex for every model whose loss function
𝐿(𝑓 (X,w), y) is convex with respect to w.

The loss functions of many types of models including linear regression and SVM are convex

with respect to w. Thus, Lemma 8.1 reduces the problem of finding ACMs to a convex optimization

problem formany types of models. Nonetheless, this problem is still challenging to solve via common

techniques, e.g., gradient descent, because computing ∇𝑔(w) involves finding the supremum over a

large set of possible repairsX𝑅
. We can reduce the search for finding the supremum to a significantly

smaller subset of repairs.

Definition 4. (Edge Repair) Assume each missing value 𝑥𝑖 𝑗 in X is bounded by an interval such
that 𝑥𝑚𝑖𝑛

𝑖 𝑗 ≤ 𝑥𝑖 𝑗 ≤ 𝑥𝑚𝑎𝑥
𝑖 𝑗 . A repair X𝑒 is an edge repair if 𝑥𝑒𝑖 𝑗 = 𝑥𝑚𝑖𝑛

𝑖 𝑗 or 𝑥𝑚𝑖𝑛
𝑖 𝑗 for all missing values 𝑥𝑖 𝑗 .

X𝐸 denotes the set of all possible edge repairs X𝑒 .

Theorem 8.2. For linear regression and SVM, we have

𝑔(w′) = sup

X𝑒 ∈X𝐸

ℎ(w′,X𝑒 )

when the intervals for all missing values are [−∞, +∞] .

Based on Theorem 8.2, we can compute 𝑔(w′) by finding the supremum of ℎ(w′,X𝑟 ) only from

edge repairs. In practice, the edge repairs associated with infinite intervals can be approximated by

sufficiently wide intervals. This approach is efficient for datasets with a relatively small number

of missing values. However, it may take long for datasets with many missing values because the

number of edge repairs is 2
𝑛 (𝑀𝑉 )

where 𝑛(𝑀𝑉 ) is the number of missing values in X.
To accelerate finding ACMs for linear regression and SVM, Algorithm 4 randomly samples edge

repairs and estimates the supremum of ℎ(w′,X𝑟 ). This estimation is reasonable when the number

of samples 𝑠 is large. The algorithm’s time complexity is O(𝑘 · 𝑑 · 𝑛 · 𝑠), where 𝑘 stands for the

number of iterations in gradient descent.

Algorithm 4 Learning ACM

𝑠 ← the number of edge repairs to sample

𝑒 ← user-defined threshold for approximate optimality

X𝐸
𝑠𝑎𝑚𝑝𝑙𝑒

← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑠𝑎𝑚𝑝𝑙𝑒 (X𝐸, 𝑠)
⊲ randomly add 𝑠 edge repairs to the sample set

for X𝑒 ∈ X𝐸
𝑠𝑎𝑚𝑝𝑙𝑒

do
ℎ(w′,X𝑒 ) ← 𝐿(𝑓 (X𝑒 ,w′), y) −minw∈W 𝐿(𝑓 (X𝑒 ,w), y)

end for
w≈ ← 𝑎𝑟𝑔minw∈W supX𝑒 ∈X𝐸

𝑠𝑎𝑚𝑝𝑙𝑒
ℎ(w′,X𝑒 )

⊲ This optimization is solved by existing algorithms

if 𝑔(w≈) ≤ 𝑒 then
return𝑤≈

else
return "Approximately certain models do not exist"

end if
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Table 2. Details of Real World Dataset containing missing values

Data Set Task Features Training Examples Missing Factor

Breast Cancer Classification 10 559 1.97%

Intel-Sensor Classification 11 1850945 4.05%

NFL Regression 34 34302 9.04%

Water-Potability Classification 9 2620 39.00%

Online Education Classification 36 7026 35.48%

COVID Regression 188 60229 53.67%

Air-Quality Regression 12 7192 90.99%

Communities Regression 1954 1595 93.67%

8.3 ACMs for Regression With Guarantees
For linear regression, if some conditions hold in the dataset, we can decompose the computation of

the supremum for ℎ(w′,X𝑒 ) in Theorem 8.2 to each example and compute ACMs in linear time.

Theorem 8.3. For linear regression, if

∀𝑖 ∈ [1, ..., 𝑛],∀x𝑒𝑖 ≠ x𝑒∗𝑖 , 𝐿(𝑓 (x𝑒∗𝑖 ,w′), yi) − 𝐿(𝑓 (x𝑒𝑖 ,w′), yi) ≥
min

w∈W
𝐿(𝑓 (xi𝑐 ,w), y)

where 𝑥𝑖𝑐 is created by ignoring features with missing values in 𝑥𝑖 , then

𝑔(w′) = 𝐿(𝑓 (X𝑒∗,w′), y) − min

w∈W
𝐿(𝑓 (X𝑒∗,w), y)

where
∀𝑖 ∈ [1, ..., 𝑛], x𝑒∗𝑖 = 𝑎𝑟𝑔 max

x𝑒
𝑖
∈x𝐸

𝑖

(w′𝑇 x𝑒𝑖 − 𝑦𝑖 )2

and x𝐸𝑖 is the set of edge repairs for 𝑥𝑖 .

Because training examples are independent, X𝑒∗
maximizes the overall training loss if and only

if each training example in X𝑒∗
maximizes the squared error for the example. Further, when the

latter condition in the theorem holds, ℎ(w′,X𝑒∗) is also the supremum of ℎ(w′,X𝑒 ). It is because
this condition ensures that the training loss term is absolutely dominant in ℎ(w′,X𝑒 ). This allows
us to find the supremum edge repair for each training example individually.

Algorithm 5 uses this result to efficiently compute ACMs for linear regression. It uses the common

gradient descent algorithm as 𝑔(w) is convex. Its time complexity is O(𝑘 ·𝑑 ·𝑛). The latter condition
in Theorem 8.3 is checked in linear time.

ACM for kernel SVM. Many properties in linear regression and linear SVM, such as the linearity

that is used to prove Theorem 8.2, do not hold for kernel SVM. Therefore, it is very challenging to

efficiently compute 𝑔(w′) and check ACM for kernel SVM. We plan to put this line of research as

the future work.

9 EXPERIMENTAL EVALUATION
We conduct experiments on a diverse set of real-world datasets and compare our algorithms with

two natural baselines, a KNN imputation method, a deep learning-based imputation algorithm, and

a benchmark method, ActiveClean. Our findings illustrate substantial savings in data cleaning costs

and program running times when certain and approximately certain models exist. Moreover, our
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Algorithm 5 Learning ACMs for Linear Regression

w(0) ← w𝑖𝑛𝑖𝑡

𝑡 ← 0

𝑛 ← the number of training examples

𝑒 ← user-defined threshold for approximate optimality

while | |∇𝑔(w(𝑡 ) ) | | > 𝜖 do
𝑡 ← 𝑡 + 1
for 𝑖 = 1, 2, ..., 𝑛 do

xe*𝑖 ← argmaxxe
𝑖
| |w(𝑡−1)𝑇 xe𝑖 − 𝑦𝑖 | |22

end for
∇𝑔(w(𝑡−1) ) ← ∇𝐿(𝑓 (X𝑒∗,w(𝑡−1) )
w(𝑡 ) ← w(𝑡−1) − 𝜂∇𝑔(w(𝑡−1) )

end while
if 𝑔(w(𝑡 ) ) ≤ 𝑒 then

return𝑤 (𝑡 )

else
return "Approximately certain models do not exist"

end if

Table 3. Linear SVM: Comparing Performance on Randomly Corrupted Real-World Datasets

(a) Data Sets Where Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM DI KI MI NI AC DI KI MI CM/NI

Gisette

0.1% 6.07 14 17.48 2.14 N/A 4.21 1.43 0.90 97.94 N/A 96.60 97.60 97.40

1% 60.40 135 20.32 2.18 N/A 17.88 1.42 0.88 97.89 N/A 97.60 97.60 97.33

Malware

0.1% 1.0 2 4.56 0.73 N/A 0.96 0.74 0.34 96.09 N/A 96.24 96.24 96.24
1% 14.3 20 3.93 0.86 N/A 1.56 0.73 0.44 96.10 N/A 96.24 96.24 96.24
5% 44.93 200 3.17 0.78 N/A 3.99 0.72 0.36 96.54 N/A 96.24 96.24 96.57

Tuandromd

0.1% 3 5 3.71 0.04 62.17 0.17 0.05 0.04 98.73 98.86 98.09 98.09 98.76

1% 30.9 45 3.72 0.03 78.81 0.29 0.04 0.03 98.88 98.92 98.80 98.76 98.58

(b) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI ACM

Gisette

5% 248.93 675 17.62 1.82 10.37 N/A 53.97 1.45 0.71 97.03 N/A 97.60 97.43 97.30 97.35

10% 393.33 1350 1.73 1.73 12.94 N/A 97.01 1.40 0.65 99.93 N/A 97.00 97.53 97.07 97.60

Tuandromd 5% 91.40 223 2.41 0.04 4.31 74.21 0.44 0.05 0.04 98.08 98.76 98.36 98.36 98.21 98.18

(c) Data Set Where Neither Certain Nor Approximately Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI

Malware 10% 66.0 200 1.97 0.70 7.16 N/A 6.78 0.73 0.33 88.05 N/A 96.24 96.24 83.95

Tuandromd 10% 121.33 446 1.64 0.04 4.98 82.45 0.74 0.05 0.04 97.36 98.76 98.76 98.20 98.54

study highlights the minimal computational overhead incurred by our algorithms when verifying

certain and approximately certain model conditions, even when these models do not exist.

9.1 Experimental Setup
9.1.1 Hardware and Platform. We experiment on a configuration with two tasks, each utilizing two

CPUs, and running on a cluster partition equipped with one 11GB GPU. The underlying hardware

consists of Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz machines.
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Table 4. p-SVM: Comparing Performance on Randomly Corrupted Real-World Datasets

(a) Data Sets Where Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

MI/KI/DI CM DI KI MI NI DI KI MI CM/NI

Gisette 0.1% 14 55.69 N/A 56.61 56.01 55.27 N/A 96.70 96.70 96.70
Malware 0.1% 2 4.98 N/A 4.95 5.01 4.66 N/A 92.98 92.98 92.98

Tuandromd 0.1% 5 0.20 49.24 0.21 0.21 0.20 98.54 98.54 98.54 98.54

(b) Data Set Where Certain Models Do Not Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

MI/KI/DI CM DI KI MI NI DI KI MI CM/NI

Gisette

0.1% 14 43.79 N/A 52.33 51.69 51.32 N/A 96.80 96.70 96.70

1% 135 42.84 N/A 60.04 51.20 50.04 N/A 96.70 96.70 96.70
5% 675 36.15 N/A 85.98 42.95 37.12 N/A 96.75 96.70 96.80
10% 1350 36.94 N/A 115.80 45.27 41.63 N/A 96.70 96.70 97.00

Malware

0.1% 2 4.35 N/A 5.64 5.18 4.35 N/A 92.87 92.87 92.75

1% 20 4.13 N/A 6.76 4.80 4.53 N/A 92.98 92.98 92.98
5% 100 4.84 N/A 7.90 4.81 4.14 N/A 92.98 92.98 92.98
10% 200 4.60 N/A 9.79 5.81 4.84 N/A 92.98 92.74 92.98

Tuandromd

0.1% 5 0.20 70.22 0.21 0.21 0.19 98.54 98.54 98.54 98.54
1% 45 0.18 44.81 0.30 0.21 0.19 98.54 98.54 98.54 98.54
5% 223 0.18 42.39 0.54 0.20 0.17 98.54 98.54 98.54 98.31

10% 446 0.19 42.45 0.75 0.21 0.16 98.54 98.79 98.54 98.54

9.1.2 Real-world Datasets with randomly generated missing values. In our certainmodel experiments

with linear SVM, polynomial SVM, and DNN (arccosine SVM) we utilize three real-world datasets.

These datasets originally do not contain any missing values, but we introduce corruption by

randomly injecting missing values at missing factors of 0.1%, 1%, 5%, and 10%. Where missing
factor (MF) represents the ratio of incomplete examples (examples with at least 1 missing
value) to the total number of examples. It is important to note that certain models do not

exist in all versions of the corrupted datasets. Therefore, we present experimental results for both

scenarios, when certain models exist and when they do not. For each dataset and each missing factor,

we present the average results based on three randomly corrupted versions of the dataset in which

certain models exist. This is to reduce the variability in algorithm performance resulting from the

randomness of missing value injection.

Malware Dataset. TheMalware dataset aims to distinguish between malware and benign software

through the analysis of JAR files [27]. It comprises 6825 features and 1996 training examples.

Gisette Dataset. The Gisette dataset addresses the problem of handwritten digit recognition, with

a specific focus on distinguishing between the easily confused digits 4 and 9 [14]. It consists of

13500 training examples and 5000 features.

TUANDROMD Dataset. The TUANDROMD dataset is designed for the detection of Android

malware software in contrast to benign or "goodware" applications [4]. It comprises 4464 training

examples and incorporates 241 distinct features.

9.1.3 Real-world Datasets originally containing missing values. We also conduct experiments on

8 real-world datasets originally containing missing values. Our selection includes datasets from

diverse domains and missing factors (Section 9.1.2). Table 2 presents a summary of the datasets. For

preprocessing the dataset if the label is missing we drop all corresponding examples and utilize

sklearns OneHotEncoder to featurize the categorical attributes.
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Intel Sensor. This dataset contains temperature, humidity, and light readings collected from

sensors deployed in the Intel Berkeley Research lab [3, 17]. The classification task is to predict

whether the readings came from a particular sensor (sensor 49).

Water Potability . The dataset contains information about the properties and substances (sulfate,

pH) in freshwater sources, the classification task is to predict if the water is potable or not [15].

COVID . This U.S. Department of Health and Human Services dataset provides data for hospital

utilization dating back to January 1, 2020 [1]. The regression task is to predict the number of

hospitals anticipating critical staffing shortages.

Air Quality. The dataset contains instances of hourly averaged responses from an array of chem-

ical sensors embedded in an Air Quality Chemical Multisensor Device [32]. Given air-composition

measurements, the regression task is to predict hourly Temperature.

NFL. This dataset contains play-by-play logs from US Football games. Given a play, the regression

objective is to predict the score difference between the two teams [13]. We use a numeric version

of this dataset since encoding string-valued attributes inflates the feature dimension by 80 times.

Breast Cancer. The dataset contains information about characteristics of potential cancerous

tissue and the classification task is to predict if it is benign or malignant [34].

Online Education. This dataset contains responses to a survey on online education. The classifi-

cation objective is to predict whether students prefer cellphones or laptops for online courses [31].

Communities-Crimes. The data contains socio-economic and crime data from the US Census

and FBI. The regression task is to predict the total number of violent crimes per 100K population [26].

9.1.4 Algorithms for Comparison. In our experiments, we include two natural imputation baselines,

a deep learning-based imputation algorithm, and a benchmark algorithm for comparison.

Active Clean(AC): ActiveClean [18, 19] aims at minimizing the number of repaired examples

to achieve an accurate model. We use ActiveClean for linear regression and linear SVM, but not

for kernel SVM because ActiveClean’s implementation relies on sklearn’s SGDClassifier module,

which does not support non-linear models such as kernel SVM [19]. Simply switching to sklearn’s

Support Vector Classification (SVC) module cannot resolve the issue since SVC does not support

‘partial fit’, an essential function in ActiveClean.

KNN-Imputer(KI): This method predicts the values of missing items based on observed examples

using a KNN classifier [23, 29].

Deep-learning based Imputation (DI):We utilize MIWAE [23] as a sophisticated state-of-the-art

imputation algorithm for comparison. This approach uses deep latent variable models to predict

the values of missing data items based on the value of observed examples. Specifically, MIWAE

adapts the objective of importance-weighted autoencoders [5] and maximizes a potentially tight

lower bound of the log-likelihood of the observed data.

Mean Imputation(MI): MI is a widely used method for handling missing values in practice. Each

missing feature value is imputed with the mean value of that feature [23].

No Imputation(NI): NI naively drops all missing values and trains the model on the complete

training set [18]. When certain model exists the model trained with NI is equivalent to Certain

Model algorithms.

9.1.5 Metrics. We evaluate all algorithms on a held-out test set with complete examples. We

use accuracy as a metric for classification tasks. Accuracy reflects the percentage of total correct
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class predictions therefore higher accuracy is preferred. For regression tasks, we use mean squared

error (MSE). MSE measures the average squared difference between actual and predicted values.

Therefore, a lower MSE is preferred. We also study the algorithms’ data-cleaning efforts in terms of

program execution time and the number of examples cleaned.

9.2 Results on Real-world Datasets with Random Corruption
In this section, we present results for all scenarios, when certain models exist, when certain models do
not exist but approximately certain models exist, and when neither exists for 3 datasets with different

degrees of random corruption (Section 9.1.2).

When certain models exist :We begin by focusing on scenarios where certain models are known

to exist. Tables 3a and 4a present a performance comparison between certain model algorithms and

baselines for linear SVM and p-SVM, respectively. We observe that certain models exist when the

missing factor is small. This is because certain SVMmodels require that incomplete examples should

not be support vectors in any repair (Section 5). When the missing factor is small, the number of

incomplete examples is also small. Therefore, the likelihood of such examples being support vectors

is also small. Since certain models exist, certain model algorithms by definition (Section 3) clean zero

missing data. In contrast, baseline methods spend substantial effort on data cleaning, represented

by examples cleaned column in Tables 3a and 4a. In terms of program execution time, certain model

(CM) algorithms are slower than simple methods such as Mean Imputation (MI) and No Imputation

(NI). However, MI and NI are both heuristics without any guarantees of the optimality of the trained

model. Moreover, to find the appropriate imputation method for a specific incomplete dataset, users

may want to check missing data mechanisms, which often take longer time than implementing

certain model algorithms. Also, MI still requires a large number of imputations. Compared with

ActiveClean (AC) and the advanced imputation methods, Deep-learning based Imputer (DI) and

KNN-Imputer (KI), certain model algorithms run much faster and also guarantee an optimal model.

In the tables, DI has "N/A" results for some datasets in this section when it runs for more than one

hour but fails to return a result. To emphasize, when certain models exist, we do not need to check for
approximately certain models since they exist by definition (Section 8).

When certain models do not exist but approximately certain models exist:When certain

models do not exist, we may resort to approximately certain models (ACM). Table 3b shows the

datasets where certain models do not exist due to the strict conditions, but approximately certain

models exist and clean zero missing data. The prediction accuracy of approximately certain models

is very close to the results from all baseline methods. This is because when approximately certain

models exist, their approximate optimality is guaranteed. In terms of program execution time,

approximately certain model algorithms run faster than DI and KI, but slower than AC, MI, and NI.

However still in this scenario, checking and learning approximately certain models saves imputation

costs with minimal compromise on the model’s accuracy.

When neither certain nor approximately certain models exist: Sometimes, neither certain

nor approximately certain models may exist, as shown in Table 3c for linear SVM with relatively

large missing factor. Since approximately certain model algorithms are not available for kernel

SVMs, in Tables 4b and 5 we present the datasets where certain models do not exist for polynomial

SVM (p-SVM), and our DNN approximation with arccosine SVM, respectively. However, even if

our algorithms do not find certain models for DNN, certain models may still exist. This is because
the related theorem for DNN is necessary but not sufficient as described in Section 7. We also

investigate certain model existence for RBF-SVM. We observe similar patterns and results to that

of arccos-SVM. Due to the limited space, we exclude the results for RBF-SVM from the paper. In

scenarios when neither a certain model nor an approximately certain model exists, checking for

them incurs some computational overhead. Nonetheless, paying for this overhead is worthwhile
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Table 5. DNN: Comparing Performance on Randomly Corrupted Real-World Datasets: CMs are not found

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

MI/KI/DI CM DI KI MI NI DI KI MI NI

Gisette

0.1% 14 31.27 N/A 40.79 40.62 39.67 N/A 52.30 52.30 52.10

1% 135 35.46 N/A 40.69 40.63 39.57 N/A 52.30 52.30 52.10

5% 675 33.28 N/A 39.91 39.67 36.06 N/A 52.30 52.30 52.00

10% 1350 29.98 N/A 39.94 39.84 34.10 N/A 52.30 52.30 51.70

Malware

0.1% 2 3.27 N/A 6.02 6.06 5.93 N/A 48.37 48.37 48.37

1% 20 3.15 N/A 5.99 6.78 5.76 N/A 48.37 48.37 48.37

5% 100 4.03 N/A 5.98 6.00 5.39 N/A 48.37 48.37 48.37

10% 200 4.12 N/A 5.98 5.96 4.92 N/A 48.37 48.37 34.09

Tuandromd

0.1% 5 0.22 47.56 0.21 0.28 0.20 61.81 61.81 61.81 61.81

1% 45 0.25 69.24 0.21 0.20 0.20 61.81 61.81 61.81 61.81

5% 223 0.20 67.94 0.22 0.21 0.18 61.81 61.81 61.81 61.81

10% 446 0.18 70.13 0.25 0.26 0.17 61.81 61.81 61.81 66.52

Table 6. Linear Regression: Performance Comparison on Real-World Datasets with Missing Values

(a) Data Sets Where Certain Models Exist

Data Set

Examples Cleaned Time (Sec) MSE

AC MI/KI/DI AC CM DI KI MI NI AC DI KI MI CM/NI

NFL 12.0 3101 49.91 7.11 394.18 12.96 0.14 0.13 0.02 0.00 0.00 0.00 0.00
COVID 33.6 32325 100.59 438.79 1944.10 587.87 0.68 0.28 2.07 0.00 0.00 0.00 0.00

(b) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) MSE

AC MI/KI/DI AC CM ACM5 ACM6 DI KI MI NI AC DI KI MI NI ACM

Communities 319.6 1494 2.10 1.45 4.15 3.74 4088.46 15.82 1.39 0.08 0.06 0.35 0.63 1.30 2.30 0.03

(c) Data Set Where Neither Certain Nor Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) MSE

AC MI/KI/DI AC CM ACM5 ACM6 DI KI MI NI AC DI KI MI NI

Air-Quality 48.80 6544 0.87 0.01 4.62 N/A 111.08 3.67 0.02 0.01 28.22 2.11 3.05 1.07 3.47

Table 7. Linear SVM: Performance Comparison on Real-World Datasets with Missing Values

(a) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI ACM

Intel 30.0 75080 355.58 276.01 2428.76 N/A 13775.93 275.49 273.24 98.80 N/A 98.90 97.50 98.39 98.43

(b) Data Set Where Neither Certain Nor Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) Accuracy(%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI

Water Potability 29.0 1022 0.34 0.01 0.69 56.14 0.30 0.04 0.01 49.15 56.33 39.95 39.70 41.89

Online Education 16.4 2493 3.88 0.03 5.03 88.87 2.09 0.14 0.02 63.06 63.85 62.85 61.37 36.33

Breast Cancer 9.8 14 0.06 0.01 0.15 7.37 0.33 0.01 0.00 50.44 65.94 65.94 65.94 34.05

for two reasons. First, substantial data-cleaning savings are realized when certain models exist (as

we discuss in the previous paragraphs). Second, the time costs associated with checking certain

models are minimal (confirmed by the small program running times in Tables 3c, 4b, and 5).

9.3 Results on Real-world Dataset with Inherent Missingness
In our certain model experiments with linear regression, linear SVM, and SVM with kernels, we

utilize 8 real-world datasets (Section 9.1.3). These datasets originally contain missing values.
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Table 8. p-SVM: Performance Comparison on Real-World Datasets with Missing Values-CMs do not exist

Data Set

Number of Examples Cleaned Time (Sec) Accuracy(%)

MI/KI/DI CM DI KI MI NI DI KI MI NI

Intel Sensor 1022 3321.85 N/A 3498.51 3128.54 3007.65 N/A 53.78 58.37 51.98

Water Potability 1022 0.05 41.27 1.03 0.16 0.06 63.94 62.17 62.96 61.19

Online Education 354 0.18 57.13 0.98 0.22 0.20 97.13 95.52 97.26 93.29

Breast Cancer 11 0.01 42.35 0.25 0.01 0.01 71.24 70.86 70.71 69.63

Table 9. DNN: Performance Comparison on Real-World Datasets with Missing Values-CMs are not found

Data Set

Number of Examples Cleaned Time (Sec) Accuracy(%)

MI/KI/DI CM DI KI MI NI DI KI MI NI

Online Education 354 0.16 51.37 0.79 0.22 0.20 42.75 40.96 41.04 41.06

Breast Cancer 11 0.02 48.96 0.02 0.01 0.01 65.20 64.26 67.86 66.67

When certain models exist: We present the result for the first scenario in Table 6a. Certain

models exist for NFL and COVID datasets. By checking and learning certain models with zero

imputation, we save substantial energy in data cleaning compared to all 4 baselines. This imputation

cost saving also comes with guarantees on the optimal model, experimentally proved by almost the

same performance between certain models and the models from baseline methods. There is one

exception in the COVID dataset where ActiveClean has a regression error slightly different from

other baselines. This may be because partial-fit is used to proxy a complete-fit in ActiveClean’s

implementation [19], which in some cases may converge early but with errors. We further investi-

gate the data scenarios that entail certain models and verify that features irrelevant to the label are

the ones with missing values. For instance, the COVID dataset receives regular data updates from

three different sources. We observe that the newly added features are the ones with missing values.

When certain models do not exist but approximately certain models exist: Table 6b and 7a

present the results for linear regression and linear SVM, respectively. Two datasets (Communities

and Intel-Sensor) do not have certain models but have approximately certain models. Approximately

certain models result in similar MSE/accuracy compared to all baseline methods, supported by the

theoretical guarantee from approximately certain models (Section 8). In this scenario, checking and

learning approximately certain models also eliminates the need for any form of data imputations. In

terms of program execution time, we observe similar patterns as the results of randomly corrupted

datasets. To understand the influence of data characteristics on certain model existence, we study
the results for both certain models (CM and ACM). We find that certain and approximately certain

models are more likely to exist in regression tasks when the number of features is large (e.g.,

Communities and COVID), and in classification tasks when the number of examples is large (e.g.,

Intel-Sensor). This is because the uncertainty from incomplete features and examples is diluted in

model training when the number of features and examples is large.

When neither certain nor approximately certain models exist: Tables 6c, 7b, 8, and 9 show

the cases where neither a CM nor an ACM exists (or is not found) for linear regression, linear

SVM, p-SVM, and DNN, respectively. We report DNN’s result (Table 9) only on two out of four

classification datasets because the DNN’s theorem in Section 7 only applies to datasets where each

example has at most one missing value. For p-SVM and DNN, the prediction accuracy is almost

the same from different baseline imputations, which often empirically suggests the existence of

certain or approximately certain models. However, certain models do not exist (or are not found).

To explain, when certain models do not exist, different imputations may lead to different models.

Nonetheless, different models sometimes can still make identical predictions on the testing set. e. In

terms of program execution time, checking certain and approximately certain models is worthwhile

even if we do not find any upon checking, based on the same reasons discussed in Section 9.2.
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10 RELATEDWORK
Stochastic and Robust Optimization. Researchers have proposed stochastic optimization to find

a model by optimizing the expected loss function over the probability distributions of missing data
items in the training examples [11]. This approach avoids imputing missing values by redefining

the loss function to include the uncertainty due to missing values in the training data. Similarly, in

robust optimization, researchers minimize the loss function of a model for the worst-case repair to

an incomplete dataset, i.e., the repair that brings the highest training loss, given distributions of

the missing values. However, the distributions of missing data items are not often available. Thus,

users may spend significant time and effort to discover or train these distributions. Additionally,

for a given type of model, users must solve various and possibly challenging optimization problems

for many possible (combinations of) distributions of missing values. In our approach, users do not

need to find the probability distribution of the missing data. Moreover, our algorithm for each type

of model generalizes for all types and distributions of missing values in the training data.

Subset Selection over Incomplete Data. To save data cleaning costs, researchers propose to

select a representative subset of training data and impute the missing values in the subset [6, 33].

Then, a model is trained with the clean version of this subset. This approach still cleans data items.

One still needs to spend time constructing a model to select a proper subset. Also, the trained model

is often not the same as the model trained with the whole dataset.

ML Poisoning Attacks. Researchers have proposed methods to build ML models that are robust

to malicious modifications of training data to induce unwanted behavior in the model [9]. We,

however, focus on robustness against missing values in the data.

11 CONCLUSION AND FUTURE WORK
In this paper, we present the conditions where data repair is not needed for training optimal and

approximately optimal models over incomplete data, i.e., certain or approximately certain models

exist. We also offer efficient algorithms for checking and learning certain and approximately certain

models for linear regression, linear SVM, kernel SVMs, and DNN. Our experiments with real-world

datasets demonstrate significant cost savings in data cleaning compared to five popular benchmark

methods, without introducing significant overhead to the running time.

11.1 Suggesting a subset of incomplete examples to impute
Sometimes certain models do not exist and users cannot get accurate models without imputation.

Nonetheless, Theorem 5.4 can suggest a subset of incomplete examples to impute. Specifically,

Algorithm 2 identifies a subset of incomplete examples that violate certain model conditions. Users

can choose to impute the examples in this subset instead of all missing values to get a certain model.

Cleaning costs are saved by partial cleaning, although one may not need to clean all examples in

this subset to achieve a certain model. Interesting future work is how to efficiently suggest the

minimal number of examples to impute to get a certain model.

11.2 Handling dirty data beyond missing values
Although this paper focuses on missing values, CM and ACM methods can be applied to other

types of dirty data that require imputations to fix. This is because CM and ACM algorithms check

if a model is optimal over all possible imputations. For example, a value 𝑥𝑖 𝑗 is an outlier if it

substantially deviates from the distribution of the corresponding feature. An outlier can be fixed by

imputing it. Certain types of data inconsistency also require imputations such as those caused by

constraint violations over individual tuples. When CM or ACM exists, cleaning outliers and certain

types of inconsistency is unnecessary. However, the applicability of our methods to complex data
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inconsistencies, such as violations of functional dependencies across multiple attributes, remains

unclear. Addressing these challenges is an important direction for future research.
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