Certain and Approximately Certain Models for Statistical
Learning

CHENG ZHEN, Oregon State University, USA

NISCHAL ARYAL, Oregon State University, USA

ARASH TERMEHCHY, Oregon State University, USA
AMANDEEP SINGH CHABADA, Oregon State University, USA

Real-world data is often incomplete and contains missing values. To train accurate models over real-world
datasets, users need to spend a substantial amount of time and resources imputing and finding proper values
for missing data items. In this paper, we demonstrate that it is possible to learn accurate models directly
from data with missing values for certain training data and target models. We propose a unified approach
for checking the necessity of data imputation to learn accurate models across various widely-used machine
learning paradigms. We build efficient algorithms with theoretical guarantees to check this necessity and
return accurate models in cases where imputation is unnecessary. Our extensive experiments indicate that our
proposed algorithms significantly reduce the amount of time and effort needed for data imputation without
imposing considerable computational overhead.

CCS Concepts: « Information systems — Data cleaning; - Computing methodologies — Supervised
learning.

Additional Key Words and Phrases: Data Preparation, Data Quality, Uncertainty Quantification

ACM Reference Format:

Cheng Zhen, Nischal Aryal, Arash Termehchy, and Amandeep Singh Chabada. 2024. Certain and Approxi-
mately Certain Models for Statistical Learning. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 126 (June 2024),
25 pages. https://doi.org/10.1145/3654929

1 INTRODUCTION

The performance of a machine learning (ML) model relies substantially on the quality of its training
data. Real-world training data often contain a considerable number of examples with missing values,
i.e., incomplete data. One may train an ML model by ignoring the training examples with missing
values. This approach, however, may significantly reduce the accuracy of the resulting model as it
may lose out on some useful examples [30].

To address the problem of training over incomplete data, users usually replace each missing
data item with a value, i.e., data imputation, and train their models over the resulting repaired data.
To repair incomplete data, users must figure out the mechanisms and causes of data missingness,
e.g., completely at random or based on observed values of some features [28]. Based on this
mechanism, they build a (statistical) model for missing data and replace the missing values with

Authors’ addresses: Cheng Zhen, zhenc@oregonstate.edu, Oregon State University, 2500 NW Monroe Ave, Corvallis, Oregon,
USA, 97331; Nischal Aryal, aryaln@oregonstate.edu, Oregon State University, 2500 NW Monroe Ave, Corvallis, Oregon,
USA, 97331; Arash Termehchy, termehca@oregonstate.edu, Oregon State University, 2500 NW Monroe Ave, Corvallis,
Oregon, USA, 97331; Amandeep Singh Chabada, chabadaa@oregonstate.edu, Oregon State University, 2500 NW Monroe
Ave, Corvallis, Oregon, USA, 97331.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART126

https://doi.org/10.1145/3654929

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

https://doi.org/10.1145/3654929
https://doi.org/10.1145/3654929

126:2 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

some measurements defined over this model, e.g., mean. Users may also leverage a variety of ML
models to repair missing values, e.g., tree-based or linear regression [21]. Researchers have shown
that the desired imputation method may vary depending on the downstream ML task [20]. Hence,
it is often challenging to find a model of data missingness that results in an accurate ML model for a
downstream task [20]. The aforementioned steps of finding a missingness mechanism, constructing
an accurate missingness model, and finding the right statistical measurement(s) for imputation
usually require a significant amount of time and manual effort. Surveys indicate that most users
spend about 80% of their time on data preparation and repair [18, 24].

Researchers have recently shown that one may learn accurate Datalog rules [25] and K-nearest
neighbor classifier [10, 16] over a training dataset without cleaning and repairing it. Generally
speaking, these methods check whether incomplete or inconsistent examples influence the target
model. If this is not the case, they return the model learned over the original training data. This
approach may save significant time and effort spent repairing data.

However, it is not clear whether the methods above can be used to check the necessity of data
repair for other ML models. As opposed to learning Datalog rules or K-nearest neighbors, training
popular ML models usually requires optimizing a continuous loss function. Moreover, these methods
detect the necessity of data repair only for classification problems and do not handle learning over
missing data for regression models. Also, each of these methods handles a single ML model. Due
to the relatively large number and variety of ML models, one would ideally like to have a single
approach to the problem of learning over data with missing values for multiple types of ML models.

In this paper, we aim to develop a general approach for learning accurate ML models over
training data with missing values without any data repair. We focus on ML models that optimize
loss functions over continuous spaces, which arguably contain the most popular ML models. We
formally define the necessity of data repair for learning accurate models over training data with
missing values. Our methods efficiently detect whether data repair is needed to learn accurate
models. If data repair is not necessary, they learn effective models over the original training data.
Particularly, we make the following contributions:

e We formally define the conditions where data repair is not needed for training optimal models
over incomplete data for a large group of ML models (Section 3).

e We prove necessary and sufficient conditions for learning an optimal model without repairing
incomplete data for linear regression. Based on these conditions, we design an efficient
algorithm for 1) checking the existence of the optimal model, and 2) learning the optimal
model if it exists (Section 4).

e We prove necessary and sufficient conditions for learning an optimal model without repairing

incomplete data for linear Support Vector Machine (SVM), a popular classification ML model.

We present an efficient algorithm for checking and then learning the optimal model if it

exists (Section 5).

Linear SVM models only learn linear classifiers, limiting their representation power in

nonlinear spaces. We prove necessary and sufficient conditions for learning an optimal model

without repairing incomplete data for two popular kernel SVMs. Then we provide algorithms

to check and then learn the optimal models for each kernel SVM (Section 6)

We formalize the notion of certain models for Deep Neural Networks (DNNs). Due to the

non-convexity of the loss functions in DNN, it is challenging to design an algorithm that

efficiently finds the optimal model for them. We prove the necessary conditions for having

certain models for DNNs in some special cases (Section 7).

It might not be possible to learn an optimal model over incomplete data without any data

repair. Hence, we introduce and formally define the condition under which it is possible to

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:3

learn a model that is sufficiently close to an optimal model over incomplete data without any
repair. We propose novel and efficient algorithms to check for the existence of these models
over linear regression and SVM (Section 8).

e We conduct experiments to show cost savings in data cleaning and program execution time
compared to mean imputation, a deep learning-based imputation algorithm, and a benchmark
framework across real-world datasets with random corruption. We also extend the comparison
to diverse real-world datasets with inherent missing values, yielding results consistent with
randomly corrupted datasets. Our studies show that our algorithms significantly reduce data
repair costs when optimal or approximately optimal models can be learned over incomplete
data and introduce minimal computational overhead in other cases (Section 9).

2 BACKGROUND
2.1 Supervised Learning

In this section, we review ML terminology and notations.

Table 1. A training dataset for rain prediction

Temperature(F) Humidity(%) Rainfall

Seattle 65 80 1
New York 50 null -1

Dataset. In ML, we work with a relation consisting of a finite number of attributes and tuples.
For instance, the relation shown in Table 1 has two tuples and three attributes. For an ML problem, a
relation with tuples and attributes is generally referred to as a dataset with rows and columns.
In supervised learning, an ML model takes certain columns from a dataset as input and makes
predictions for a designated output column.

Features. The columns of the dataset we provide as input to an ML model are called features.
In Table 1, Temperature and Humidity are the two features that provide information on atmospheric
conditions. We denote a single feature as z and d features as [z, ..., z4]. The domain of feature z; is
the set of values that appear in feature z;. To simplify our exposition, we assume that the domain
of all values in a feature is the set of real numbers R.

Label. The column of the dataset we want an ML model to make predictions on is called a label.
In our example, given current atmospheric conditions we want to predict chances of Rainfall. Therefore
Rainfall is the label column, and it takes on two possible values: -1 to denote No Rain and 1 for Rain.
We represent a single label as y and the entire label column, consisting of n labels, as a vector

vy =[y1, . ynl.

Training Example. We refer to a row in the dataset as a training example. In Table 1, we observe
two examples, Seattle and New York. We denote a single training example as x. For n training
examples, a training set is a collection of an input matrix X = [x, ...,x,]|’ and a corresponding
label vector y = [y, ..., yn]T. Each training example with d features in X can be expressed as a
vector X; = [X;1, ..., X;q], where x;; represents the j*h feature in the i*" example.

Target Function. We define the domain of examples as X and the domain of labels as Y.
For n examples and d features, we assume, X and Y are R™4 and R", respectively. A target
function f(X,w) transforms feature inputs into label outputs based on model w, represented

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:4 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

as f(X,w) : X — Y. Here, model w is a real-valued vector parameterizing the space of target
functions that map from X to Y. For instance, consider a single training example x; consisting of d
features. Given a vector of real numbers w, the target function may be a linear transformation of
the example x;, i.e f(Xi, W) = Wy - Xi1 + ... + Wq - X;q.

wardd
H YOAT
o o
< 0 x © X
& : X
2 z
5| @ s| @
£ £
T Z| @
x %
: Py PP 4
- R
Temperature (F) Temperature (F)
(a) Data cleaning is not needed (b) Data cleaning is needed

Fig. 1. Data cleaning may not always be necessary

ExampLE 2.1. Consider Figure 1a, which uses a popular ML algorithm called Support Vector Machine
(SVM). The goal is to learn a linear boundary (blue rectangle) for rain prediction using temperature and
humidity features from different cities (examples X). The boundary (margin) separates the examples
based on their Rain outcomes. The target function transforms all examples to one of the two possible y
values [1, -1]. The approximation of the target function is (X, w)=w!X.

Loss function. A loss function, £, is defined as a mapping of prediction for an example x;, i.e.,
f (x4, w), with its corresponding label y; to a real number [€ R. [captures the similarity between
f (xi, w) and y;. The exact form of the loss function varies between ML problems. One reasonable
measure to capture similarity is to get the difference between prediction f(x;, w) and actual label
y;. Aggregating over the n examples in the input matrix (X), we find the overall loss function, L:
L(f(X,w),y) = % L L(f(xw),y) = % " (f(x1, w) — y;)% For the rest of the paper, we will
refer to the ‘overall loss function’ as the loss function since we will be working with a matrix of
examples rather than individual examples.

ExXAMPLE 2.2. For the SVM in Figure 1, the loss function, L, is defined as L(f(X,w),y) = %lelg +
CYr, max{0,1— y;w'x;}.
Here, w'x; comes from the target function and represents the model’s prediction for an example
x;. The actual label is denoted as y;. When the prediction and the label have the same sign, they are
similar, therefore the loss is lower. The notation || - ||5 represents the squared Euclidean norm, and
C € (0, +0) is a tunable parameter.

Classification and Regression. Supervised learning is divided into two types of ML problems.
In a classification problem, the label domain Y consists of discrete values (such as Rain(1) or No
Rain(-1)). Whereas if the label domain consists of continuous values (e.g. inches of Rainfall), then it
is a regression problem.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:5

Model Training. Taking an input matrix X, a label vector y, a targte function f, and a loss
function L, the goal of training is to find an optimal model w* that minimizes the training loss,
ie,w" =arg mi(er/L(f(X, W), V).

we

ExAMPLE 2.3. For the SVM in Figure 1, optimal model w* is the model that creates the widest
margin between the example with different labels (red and green) while ensuring accurate predictions,
to minimize training loss.

2.2 Missing Values and Repairs

In this section, we formally define concepts for missing value repair.

Missing values. Any x;; is a missing value (MV) if it is unknown (marked by null). We use the
term incomplete example to refer to an example with missing values, and incomplete feature
for a feature that contains missing values. Conversely, we use the terms complete feature and
complete example to describe features and examples that are free of missing values. We further
denote the set of incomplete examples as MV (x) = {x;|3x;;, x;; = null}, and the set of incomplete
features as MV (z) = {z;|3x;j, x;; = null}.

ExaMPLE 2.4. In Table 1, the Humidity feature is an incomplete feature while the Temperature
feature is a complete feature. Similarly, the New York example is an incomplete example, and the
Seattle example is a complete example

Repair. A repair is a complete version of the raw data where all missing values (MV) are imputed
i.e. replaced with values from the domain of features or examples (Subsection 2.1). More formally:

DEFINITION 1. (Repair) For an input matrix X having missing values (MV), X" is a repair to X if 1)
dimension(X") = dimension(X), 2) Vx; € X, x[; # null, and 3) Vx;; # null, Xj; = Xij.

ExampLE 2.5. In Table 1, the Humidity feature for the New York example has a missing value. From
Definition 1, replacing the missing data with a value (e.g. 90) yields a repair (X"). However, deleting
the humidity feature, which eliminates the missing value, is not a repair since it changes dimension(X).

Set of possible repairs. The range of values that can be used to replace missing values is large.
Consequently, a large number of repairs may exist. We denote this set of all possible repairs as XX.
For brevity, we refer to ‘a value replacing the missing value’ as a repairing value.

3 CERTAIN MODELS

In this section, we formally define certain models that minimize training loss irrespective of how
missing data is repaired.

DEFINITION 2. (Certain Model) A model w* is a certain model if:

VX e XR w' = argmin L(f (X", w), y) (1)
weW
Where X" is one possible repair, XX is the set of all possible repairs and L(f (X", w), y) is the loss
function
Definition’s intuition: Intuitively, Definition 2 says that if a model is optimal (minimizes the
training loss) for all possible repairs, this model is a certain model.

ExampLE 3.1. Consider the ML problem in Figure 1. Figures 1a and 1b display two sets of training
examples with a missing humidity value, possibly due to a malfunctioning sensor. The green dashed
line represents the range of possible values for the incomplete feature (empty circle). In Figure 1a, the

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:6 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

incomplete example does not touch the blue rectangle in any possible repair (X € XX). Therefore, the
model (decision boundary: blue dashed line) is optimal for all repairs. Hence, a certain model (w*)
exists. But, in Figure 1b, since the example may touch the blue rectangle in many repairs, the optimal
model changes from one repair to another and certain models do not exist.

Advantages of finding certain models: To repair incomplete data, users may resort to methods
such as deleting data (e.g., entire examples or features), potentially leading to information loss.
Another option is data imputation, which requires additional effort and domain expertise [30].
The data cleaning effort substantially increases with the exponentially growing number of ML
applications since good imputations depend on downstream ML applications[20]. For instance,
if the goal is to train a hundred different models with a dataset, a user may need to impute the
dataset a hundred times by different imputation methods. Regardless of how well these data repair
techniques are constructed, they may produce suboptimal results, i.e., the repaired data is not the
ground truth [22]. However when a certain model exists, imputing missing data is unnecessary since
this model is optimal for all possible repairs. Therefore users may save a significant amount of time
and effort by finding certain models. Users may ignore missing values in practice to investigate
the properties of the trained model. Nonetheless, there is no guarantee that their trained model is
accurate. The concept of certain models ensures cases for which this approach leads to accurate
models.

Prevalence of certain models: Certain models may not often exist from the restrictive definition
(a model is optimal for all repairs). However, when they exist, we save a significant amount of time
and resources. Furthermore, these savings significantly grow as the number of datasets increases
alongside the rapid expansion of the ML community utilizing these datasets for model training.
Problems: We aim to solve our problem of finding certain models by solving the following sub-
problems.

(1) Certain Model Checking: Given inputs (1) a training set consisting of a feature matrix
X potentially with missing values and a label vector y (2) a target function f(X, w) and (3)
a loss function L. The first problem is to determine whether a certain model w* exists that
minimizes the training loss L(f(X, w), y) for all repairs (VX" € XX) to the incomplete dataset.
If a certain model (w*) exists, it implies that data imputation is unnecessary.

(2) Certain Model Learning: If a certain model exists, then the second problem is learning a
certain model (w*), given a training set, loss function, and a target function as inputs. This
certain model output can be used for downstream tasks.

Minimal overhead of not finding certain models: When certain models exist users do not have
to spend any effort in repairing missing data. When certain models do not exist, the effort to check
for them may appear wasteful. Therefore, an ideal solution would require minimal time to check
for certain models even when they do not exist. Consequently, the overhead of checking certain
models is negligible compared to the significant time and resources users may save by finding
certain models.

Baseline Algorithm: Given Equation 1, a baseline algorithm for checking and learning a certain
model is: (1) learning possible models from all possible repairs one by one, and (2) a certain model
exists if all repairs share at least one mutual optimal model. Here, the set of possible repairs is
often large (Subsection 2.2). Therefore, learning models from all repairs may be incredibly slow.
More precisely, if we denote the training time for learning one model as O(T;4in), the baseline
algorithm’s complexity grows in proportion to the size of all possible repairs (X¥). This results
in a complexity of O(|XR| * T}, 4in), where |XF| represents the total number of possible repairs.
Therefore, we aim to find efficient algorithms to check for certain models in multiple ML problems.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:7

4 CERTAIN MODELS FOR LINEAR REGRESSION

Linear regression is a popular and classic ML model. It assumes a linear relationship between
feature input (X) and label output (y). The difference between the model’s prediction and actual
label, Xw — vy, is the residue e = [ey, ..., €,].

The loss function (Section 2) for linear regression is L(f(X, w),y) = || Xw — y||§ Here, || - ||§
represents the squared Euclidean norm.

4.1 Conditions For Having Certain Models

Based on the definition of certain models (Definition 2), the certain model w* for linear regres-
sion is defined as:

VX" € XK w* = argmin ||X"w — yll3 (2)
weWw
Where X" is one possible repair to the input matrix X, XX is set of all possible repairs and || X" w— y||2
is the loss function

Linear regression finds a model w* € R? such that the linear combination of all feature vectors,
wizy + ..+ w;zd, has the shortest Euclidean distance to the label vector vy, i.e., the minimum
training loss. Intuitively, a certain model exists when this Euclidean distance is independent of any
incomplete features z;, j € MV (z).

To formalize this intuition and avoid checking for all possible repairs, we introduce Theorem 4.2.
Given an input matrix with n examples and d features, X € R4, we denote a missing-value-free
(complete) matrix X, € R™™ as a submatrix (m < d) of the input matrix. X, only consists of the
m complete features z; from X, z; ¢ MV (z). Performing linear regression with X and the labels y,
we get the model w) € R™. To facilitate subsequent analysis, we introduce another model w*® by
expanding w’: from R™ to R? by appending (d — m) zero coefficients corresponding to incomplete
features. For example, if the columns 2 and 4 in X € R* contain missing values, and w} = [1, 1] T we
create w*® by expanding w to R* and inserting zeros in the second and fourth entries. This process
results in an expanded model, w* = [1,0,1, 0]7. This step aligns the linear coefficients between X,
and X', simplifying the following theorems and proof.

LemMa 4.1. If a certain model w" exists, Vz; € MV (z), the corresponding coefficient w; = 0. In
other words, if a certain model exists, w* is a certain model.

The proofs of the lemmas and theorems in this paper are detailed in our technical report [35].
Based on Lemma 4.1, we have the following result.

THEOREM 4.2. A certain model exists if and only if ;Vz; € MV (z), these conditions are met: 1)
inj = null, e = 0; 2) inj¢nu”xij e = 0.

4.2 Checking and Learning Certain Models

Theorem 4.2 says that a certain model exists for linear regression if and only if the residue vector
e is orthogonal to incomplete features. If a certain model exists, the incomplete features may be
safely ignored without compromising the minimization of training loss since they do not contribute
to a smaller training loss than e.

Based on Theorem 4.2, we present Algorithm 1. Our algorithm has two major steps: 1) computing
the residue vector e along with expanded model w*® based on complete features, and 2) checking
the orthogonality between e and all incomplete features. Finally, we obtain a certain model when it
exists by getting w*, in which the incomplete features are ignored by the zero linear coefficients.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:8 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

The algorithm’s time complexity is O(T;rqin), which is significantly faster than the baseline we
discuss in Section 3. The efficiency of our algorithm stems from its ability to check for certain
models without traversing over all possible repairs.

Algorithm 1 Checking and learning certain model for Linear Regression

MV (z) « features with missing values (incomplete features)
w*® « expanded model trained with complete features
e « fitting residue with complete features
n « the number of training examples
forz; € MV(z) do
innerProduct « 0
fori=1,2,...,ndo
if x;; = null AND e; # 0 then
return "Certain model does not exist"
else if x;; # null then
innerProduct < innerProduct + x;j * e;
end if
end for
if innerProduct # 0 then
return "Certain model does not exist"
end if
end for
return "A certain model w*® exists"

5 CERTAIN MODELS FOR SVM

Another widely used ML model is SVM. In this section, we are specifically interested in linear SVM,
which aims to learn a linear decision boundary to classify examples. This decision boundary is of
the form w’x = 0.

A typical soft-margin SVM’s loss function comprises of a loss term and a regularizer, L(f(X, w),y) =
%||w| 2+C XL, max{0,1— y;w'x;}. Here, the first term is the regularization, the second term is the
hinge loss [12], and C € (0, +0) is a tunable parameter. Support vectors are the closest training
examples that decide a decision boundary, i.e. (x;, ;) is a support vector if y;w’x; < 1.

5.1 Conditions For Having Certain Models

Similar to the definition in Subsection 4.1, certain model, w*, for SVM is defined as:

n
VX" e XK w* = arg min[%||w||§ + CZ max{0,1 - y;w'x;}] (3)
weWw =1
Where X" denotes one possible repair, and XX is the set of all possible repairs. x; is an input example
with d features, and y; is its corresponding label. w! x; comes from the target function and measures
the proximity between the example x; and the decision boundary

An SVM leverages support vectors to construct a decision boundary for classifying examples.
Therefore, the existence of a certain model for an SVM implies that either incomplete examples are
not support vectors in any repairs, or incomplete examples are support vectors in some repairs but
exactly standing on the functional margin (Lemma 5.1).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:9

LEMMA 5.1. If a certain model w* exists, there are only two possible cases and they do not have
any overlap. Case 1: none of the incomplete examples is a support vector with respect to w* in any
repair, i.e, VX € XRVx; € MV (x), yl-w*TxlT > 1. Case 2: Ax; € MV (x), yiw*TxlT = 1. Also,
Vzj € MV(z),w; =0. AndVx; € MV (x), yiw*Txlf > 1.

Based on Lemma 5.1, properties in Lemmas 5.2 and 5.3 hold.
LEmMMA 5.2. If a certain model exists by Case 1 in Lemma 5.1, w° is the certain model.

LEmMMA 5.3. If a certain model exists by Case 2 in Lemma 5.1, models trained with any repairs of X
are certain models.

To formalize this intuition, we present Theorem 5.4 to check for certain models. Similar to the
notations used in Subsection 4.1, we denote a complete matrix X, as a submatrix of X that consists
of all the complete examples x;,x; ¢ MV (x). Similarly, we define a subvector y, to include all
labels corresponding to these complete training examples. We denote the SVM model trained with
these complete examples and labels as w°® = [w], ..., w;]T.

THEOREM 5.4. A certain model exists if and only if one of the two sets of conditions below is met.
Set 1: 1)Vz; € MV (z),w] =0, 2)Vx; € MV(X), Yi Xy, #nuniW; Xij > 1. Set 2: 1) training a model w’
with a random repair X" € XK, Vzj € MV(2),w; =0,2)Vx; € MV(X), Yi 2, #nutWiXij 2 1.

5.2 Checking and Learning Certain Models

Theorem 5.4 says that a certain model for SVM exists if and only if none of the incomplete training
examples are support vectors. Therefore, these incomplete examples are redundant when it comes
to learning the decision boundary given other complete examples.

Using Theorem 5.4, we propose Algorithm 2 with two major steps: 1) learning w® from complete
training examples, and checking the conditions in Set 1 in Theorem 5.4 against w°. If a certain
model exists, w® is the certain model. 2) If certain models are not found in step 1, learning w’ from
an arbitrary repair, and checking the conditions in Set 2 against w’. If a certain model exists from
this step, w’ is the certain model. The algorithm’s time complexity is O(T;,4in) as model training is
the dominant part compared to condition checking.

6 CERTAIN MODELS FOR KERNEL SVM

SVM models in Section 5 can only separate classes linearly, limiting their representation power in
the nonlinear space. A natural approach to overcome this limitation is to use kernel SVM.

Training a nonlinear model while maintaining the properties of linear SVM, a kernel SVM first
maps the input feature vectors, denoted as X, into a higher-dimensional space, often referred to
as the kernel space, through a non-linear transformation ®. After this transformation, the kernel
SVM seeks to learn a linear SVM model within the kernel space. Therefore, the resulting model
is non-linear with respect to the original feature space, while remaining linear within the kernel
space.

However, transforming all training examples into kernel space is computationally expensive. To
avoid this cost, kernel function k(x, x;) =< ®(x1), ®(x,) >: X X X — R offers a shortcut for
computing inner products between two vectors in the kernel space without explicit transformation.

We presented the primal problem to linear SVM’s model training in Section 5. Here, to make use
of kernel functions, we present SVM training in terms of inner products through its dual problem.

n n n
1
max ; a4 - Z Z a;a;yiy;k(x;, x;) 4)

i=1 j=1

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:10 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

Algorithm 2 Checking and learning certain models for linear SVM

MV (z) « incomplete features
MV (x) « incomplete examples
w® « the model trained with complete training examples
for z; € MV (z) do
if w;? # 0 then
Case 1 « False
end if
end for
if Case 1 # False then
for x; € MV (x) do
if Yi 2 #murw; Xij < 1 then
Case 1 « False
end if
end for
end if
if Case 1 # False then
return "A certain model w® exists"
else
w’ « the model trained with an arbitrary repair
for z; € MV (z) do
if w} # 0 then
return " Certain models do not exist"
end if
end for
for x; € MV (x) do
if Yi injinullw}x,-j < 1then
return " Certain models do not exist"
end if
end for
return "A certain model w’ exists"

end if

st. C>a;>0,i=1,..,n
n

2o =0

i=1
Based on this dual formulation, one can show that w* = 31, a]y;$(x;) where a* = [a], ..., a},
is the solution to the dual problem. In Section 5, a training example (x;, y;) is a support vector in
linear space if y;w*'x; < 1. Representing w*! by its dual form, a training example (x;,y;) is a
support vector in kernel space if y; ¥, ajy;k(xi, x;) < 1.

]T

6.1 Conditions For Having Certain Models

The kernel function transforms input data to a higher dimension while the SVM model remains
linear. The linear properties of the kernel SVM are preserved within the kernel space. Hence, certain
model conditions in Section 5 still apply. A certain model exists if and only if none of the incomplete
examples are support vectors for any repair in the kernel space.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:11

We now formally present these conditions for kernel SVM. Following the same notations used in
Section 5, we use w° to denote the model learned from X, the subset of data that only containing
complete training examples, and y,, the corresponding labels. As derived from Equation 4, w® =
ZX#MV(X) a;ngzﬁ(xj). Hence, x}, a repair to an incomplete training example, is a support vector
in kernel space if y; Yy ¢mv (x) a;? y;k(x],x;) < 1. Therefore, the certain model conditions for
kernel SVM are represented as:

Vx; € MV(x),VX" € XR y; Z ayk(x),x;) > 1 (5)
XjﬁMV(X)
Further, seeking the opportunity to avoid materializing all possible repairs, we reformulate the
above condition to an optimization problem over possible repairs:

Vx; € MV (x), min y; Z ajyik(x;, x;) > 1 (6)
Xrex® x;¢MV (x)

From the dual problem, we note that a complete example, x;, x; ¢ MV (x), is a support vector if
and only if the corresponding solution a} # 0. Hence, only complete examples that are support
vectors play a role in Inequality 6

In the following sections, we apply these general conditions for certain model existence in kernel
SVM to popular kernel functions.

6.2 Polynomial kernel

The kernel function for a polynomial kernel is kpory (x;, X;) = (xl.ij + c)’l, where A =1,2,3,...is
the degree of the polynomial and ¢ > 0 is a free parameter tuning the impact of higher-degree
versus lower-degree terms.

We first intuitively look at how kpory (X;, X;) remains the same value for all repairs. For an
incomplete training example x; and a complete example x;, xl.Tx j can be expanded to x;1 - xj1 +... +
Xid * Xjq. Suppose the m’ h feature value x;,,, is missing in x;, the inner product xiTx ; goes to infinity
when x;, = 400 or —oo, unless the corresponding element x;,, equals 0, which ensures x, - xim = 0.
Hence, in order to satisfy Inequality 6, the set of support vectors, SV , for w°® should have zero
entries at all incomplete features z,,. This condition enforces that the value for kpory (x], x;) is
independent of the missing value repairs. We formalize these conditions in the following theorem.

THEOREM 6.1. A certain model exists if and only if the two conditions are met: 1) Vx; € SV,
Yz, € MV(z), Xjm = 0, and 2)Vx; € MV (x), Yi ijESV a;yj(z:xiqinullxiq *Xjg t+ C))L >1

Checking and Learning Certain Models: Informally Theorem 6.1 says that a certain model
for a polynomial kernel SVM (p-SVM) exists if (1) all the examples that are support vectors have
zero entries for corresponding incomplete features and (2) all incomplete examples are not support
vectors. Based on this theorem, Algorithm 3 efficiently checks and learns certain models. Similar to
the algorithm for linear SVM in Section 5.2, if a certain model is determined to exist, a° is exactly
the certain model based on Lemma 5.2. This algorithm’s time complexity is also O(T;yqin)-

6.3 RBF kernel

The RBF kernel function is kgpr (X, X;) = exp(—y||x;—x;||%). This kernel function’s transformation
depends on the squared Euclidean distance between the two vectors x; and x;.

To check if a certain model exists for the polynomial kernel, we derived conditions for kpory (], x;)
to remain the same for all repairs. In contrast, kgpr (X}, x;) changes among repairs as the Euclidean
distance between two vectors changes. Therefore, to check if a certain model exists for SVM with
RBF kernel (RBF-SVM), we need to directly solve the minimization problem in Inequality 6.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:12 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

Algorithm 3 Checking and learning certain models for p-SVM

MV (z) « incomplete features
MV (x) « incomplete examples
SV « set of support vectors
a’ « the model trained with complete training examples
for z,, € MV (z) do
for x; € SV do
if x;m # 0 then
return "Certain model does not exist"
end if
end for
end for
for x; € MV (x) do
if Yi ZXjESV a;yj(inq¢nullxiq : qu + C)/l < 1then
return "Certain model does not exist"
end if
end for
return "A certain model a°® exists"

However, this optimization problem is not convex, which means it is hard to find a method for
checking certain models with theoretical guarantees. Nonetheless, we can still discover the lower
bound (Iwb;) of the following optimization target:

VX" e XK Iwb; < y; Z a;yijBp(x{, X;) (7)
x; €MV (x)

For each missing value x;,,, we denote the possible range of missing value repairs such that
xmin < xf < xM9Y Yz, € MV(z), VX" € XR. This range may come from integrity constraint for
features: any value in a feature z,, is between its minimum x™" and maximum x%*. Now, we
apply this lower bound idea to reformulate the general certain model conditions for kernel SVM

from Inequality 6.
LEMMA 6.2. For any kernel SVM, a certain model exists if

Vx; € MV (x), lwb; = Z min f;;k(x, x;) > 1 (8)
X ¢MV (x) i €%

where fij = yiajy; and
Bij xf{_neiilfk("f’ xj) iffij >0
xI’nelarclR Bijk(x, x;) = § Bij xrflgg k(x,x;) iffij <0
0 if Bij =0

From Lemma 6.2, we see the key to an efficient implementation is to compute mirk k(x],x;)
b AS
and max k(x],x;) without materializing repairs. We formalize this idea in Theorem 7.3.

r exR
Xi EXi

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:13

THEOREM 6.3. For the RBF kernel, the minimum and maximum kernel function values between an
incomplete example and a complete example are as follows:

xrlrnel)rclf ke (x}, x;) = exp{—y{ Z MAX|[(x5 — xjm)Z,

Xim=null
(™ = xjm)°]

O (im = xm)H

Xim#null

max kepr (), %)) = exp{=y[> (tim = xjm)*]}
X, exR
i =X Xim#null
Checking and Learning Certain Models: Similar to the algorithm for the polynomial kernel, we
can use Theorem 6.3 to check and learn the certain model in O(T;y4i,) time.

7 CERTAIN MODELS FOR DNN

DNNs are popular ML models for a wide variety of tasks such as natural language processing
and image classification [2]. Training a DNN involves solving complex non-convex optimization
problems, making the discovery of an optimal model a challenging task [8]. Finding a certain model
for DNN adds another layer of difficulty because the certain model needs to be optimal for all
repairs within the non-convex loss landscape.

Fortunately, some well-studied kernel SVMs have been shown to approximate DNNs [8]. There-
fore, our goal in this section is to build on the conditions we prove for kernel SVMs in Section 6 to
prove the conditions for having certain models for DNN.

More specifically, we employ the arc-cosine kernel, which is used in SVM to approximate DNN’s
computation [7]. The justification behind this approximation stems from the following property.
Feeding two input vectors x; and x; individually into a single-layer network with polynomial acti-
vation functions, we obtain the corresponding output vectors y; and y;. Under some assumptions,
the inner product between these two output vectors can be represented by the arc-cosine kernel
function, i.e., karccos (Xi, X;) =<'y;, y; > [7]. This implies that the arc-cosine kernel function mimics
the computation in a single-layer network. Then, iteratively performing kernel transformation,
ie, < ¢(P(...0(x:))), p(¢(...¢(x;))) >, should mimic the computation in a multi-layer network.
The most basic arc-cos kernel function is defined by the inverse cosine of the dot product between

two vectors divided by the product of their Euclidean norms, i.e. karccos (X1, X;) = cos™! (|XXl|TZ|)
il X
By discovering the certain model conditions for SVM with the arc-cosine kernel (arccos-SVM), we
approximate the certain model conditions for DNN.
To check the existence of certain models, we need to solve the minimization problem in Inequality

6. As the problem is non-convex, we find a lower bound (Iwb;) for the necessary condition:

VX" e X8 Iwb; < Y Z a;yjkarccos(xg, X;)
x;¢MV (x)

Following a similar approach as we describe in Subsection 6.3, we look for the lower bound
defined in Lemma 6.2. The key of this process is to find the minimum and maximum values for
karccos (X}, x;) for a pair of incomplete example x; and complete example x;.

However, finding the minimum and maximum values for the arc-cosine kernel function in
the presence of missing data is also challenging due to the non-convex nature of the problem.
Nonetheless, when each incomplete example x; has only one missing value x;,, the problem
significantly simplifies. In the following proof, we show that any stationary point is a global

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:14 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

minimum under this assumption. Therefore, our analysis focuses on training sets with one missing
value per example. The investigation of scenarios with multiple missing values per example is left
for future work.

Following Theorem 6.3, we formalize this idea in Theorem 7.1.

THEOREM 7.1. For arc-cos kernel, the maximum and the minimum kernel function values between
an incomplete example (x]) and a complete example (x;) are as follows:

max Karceos (%, %;) = 1 — MAX[cos ™ (%), cos ™} (= 2)]
xf exR c c

2 2
a“-d+b
min kgrecos (X}, xj) = 7 — cos™(

)
) exR ' c-Va?-d>+b%-d
Suppose xi; = null. To simplify notations, we define a = xjz, b = X, wnunXip * Xjps ¢ = ||x;1l, and
_ 2
d= inpvtnull xip'

Theorem 7.1 shows that the maximum and minimum values for the arc-cos kernel can be
efficiently computed without materializing repairs. Further, plugging these values in Lemma 6.2,
we approximate a certain model condition for DNN that says a certain model exists if Inequality 8
holds.

8 APPROXIMATELY CERTAIN MODELS

The conditions for having certain models might be too restrictive for many datasets as it requires a
single model to be optimal for all repairs of a dataset. In practice, however, users are usually satisfied
with a model that is sufficiently close to the optimal one. In this section, we leverage this fact and
propose the concept of approximately certain model, which relaxes the conditions on certain models.
An approximately certain model is within a given threshold from every optimal model for each
repair of the input dataset. If there is an approximately certain model for a training task, users can
learn over incomplete data and skip data cleaning. We also propose novel and efficient algorithms
for finding approximately certain models for linear regression and SVM.

8.1 Formal Definition
DEFINITION 3. (Approximately Certain Model) Given a user-defined threshold e > 0, the model w™
is an approximately certain model (ACM) if the following condition holds:

VX" e XE L(f(X,wY),y) = min L(f(X,w),y) < e ©)

where X" is a possible repair, XX is the set of all possible repairs and L(f (X", w), y) is the loss function.

Definition 3 ensures that the training losses of ACMs are close to the minimal training loss for all
repairs. Therefore, when e is sufficiently small, ACMs are accurate for all repairs. In this scenario,
data imputation is unnecessary and users can proceed with an ACM without compromising the
model’s performance significantly. Certain models are special cases of ACMs by setting e = 0.

8.2 Learning ACMs Efficiently
The condition in Definition 3 is equivalent to g(w’) < e where

g(w') = sup h(w',X") (10)
XrexR
and
h(w',X") = L(f(X",w'),y) - min L(f(X", w),y)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:15

If there is a model w’ € ‘W that satisfies this condition, it is an ACM. Hence, to find an ACM, we
can check every w’ € ‘W for the condition in 10. This is equivalent to checking miny ey g(w’) < e.

LEMMA 8.1. The problem miny, cqy g(W') < e is convex for every model whose loss function
L(f(X,w),y) is convex with respect to w.

The loss functions of many types of models including linear regression and SVM are convex
with respect to w. Thus, Lemma 8.1 reduces the problem of finding ACMs to a convex optimization
problem for many types of models. Nonetheless, this problem is still challenging to solve via common
techniques, e.g., gradient descent, because computing Vg(w) involves finding the supremum over a
large set of possible repairs XX. We can reduce the search for finding the supremum to a significantly
smaller subset of repairs.

DEFINITION 4. (Edge Repair) Assume each missing value x;; in X is bounded by an interval such
that xl.’;.”” < xij < x;;**. A repair X° is an edge repair if x{; = xZ.’”’ or xi’}?i” for all missing values x;;.
XE denotes the set of all possible edge repairs X€.

THEOREM 8.2. For linear regression and SVM, we have

g(w’) = sup h(w’,X)
XeeXxF
when the intervals for all missing values are [—o0, +00].

Based on Theorem 8.2, we can compute g(w”) by finding the supremum of A(w’, X") only from
edge repairs. In practice, the edge repairs associated with infinite intervals can be approximated by
sufficiently wide intervals. This approach is efficient for datasets with a relatively small number
of missing values. However, it may take long for datasets with many missing values because the
number of edge repairs is 2"MV) where n(MV) is the number of missing values in X.

To accelerate finding ACMs for linear regression and SVM, Algorithm 4 randomly samples edge
repairs and estimates the supremum of A(w’, X"). This estimation is reasonable when the number
of samples s is large. The algorithm’s time complexity is O(k - d - n - s), where k stands for the
number of iterations in gradient descent.

Algorithm 4 Learning ACM

s «— the number of edge repairs to sample
e « user-defined threshold for approximate optimality

E E
sample < random.sample(X", s)

> randomly add s edge repairs to the sample set

for X¢ € XF do
sample

h(w',X¢) «— L(f(X%,w),y) — mingeqw L(f (X% w),y)
end for

W < arg ming ey SUPXeexE,

h(w’,X¢)
> This optimization is solved by existing algorithms
if g(w™) < e then
return w”
else
return "Approximately certain models do not exist"

end if

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:16 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

Table 2. Details of Real World Dataset containing missing values

Data Set Task Features | Training Examples | Missing Factor
Breast Cancer | Classification 10 559 1.97%
Intel-Sensor Classification 11 1850945 4.05%
NFL Regression 34 34302 9.04%
Water-Potability | Classification 9 2620 39.00%
Online Education | Classification 36 7026 35.48%
COVID Regression 188 60229 53.67%
Air-Quality Regression 12 7192 90.99%
Communities Regression 1954 1595 93.67%

8.3 ACMs for Regression With Guarantees

For linear regression, if some conditions hold in the dataset, we can decompose the computation of
the supremum for h(w’, X¢) in Theorem 8.2 to each example and compute ACMs in linear time.

THEOREM 8.3. For linear regression, if
Vie[1,..,n],Vx{ # x{ L(F(x{, W), yi) — L(F(x5, w'), yi) =
min L(f(xic, W), y)
weW

where x;. is created by ignoring features with missing values in x;, then

g(w) = LF(X,w).y) = min L(F(X"", w).y)

where
Viel,..,n],x¢

* /T e AY
“=arg rgla))(g(w X — y;)

Xi EXi

and x¥ is the set of edge repairs for x;.

Because training examples are independent, X** maximizes the overall training loss if and only
if each training example in X®* maximizes the squared error for the example. Further, when the
latter condition in the theorem holds, h(w’, X¢*) is also the supremum of h(w’, X¢). It is because
this condition ensures that the training loss term is absolutely dominant in A(w’, X¢). This allows
us to find the supremum edge repair for each training example individually.

Algorithm 5 uses this result to efficiently compute ACMs for linear regression. It uses the common
gradient descent algorithm as g(w) is convex. Its time complexity is O(k - d - n). The latter condition
in Theorem 8.3 is checked in linear time.

ACM for kernel SVM. Many properties in linear regression and linear SVM, such as the linearity
that is used to prove Theorem 8.2, do not hold for kernel SVM. Therefore, it is very challenging to
efficiently compute g(w”) and check ACM for kernel SVM. We plan to put this line of research as
the future work.

9 EXPERIMENTAL EVALUATION

We conduct experiments on a diverse set of real-world datasets and compare our algorithms with
two natural baselines, a KNN imputation method, a deep learning-based imputation algorithm, and
a benchmark method, ActiveClean. Our findings illustrate substantial savings in data cleaning costs
and program running times when certain and approximately certain models exist. Moreover, our

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning

126:17

Algorithm 5 Learning ACMs for Linear Regression

w® —w

t«—0

init

n « the number of training examples

e « user-defined threshold for approximate optimality

while [|[Vg(w®))|| > € do
te—t+1
fori=1,2,...,ndo

X; < argmax, [lw(=DTxe — g

end for
Vg(w(D) VL(F(X*", wlrD)
w) — wt=D) — pvg(wlt-1)
end while
if g(w?)) < e then
return w'?)

else

2
2

return "Approximately certain models do not exist"

end if

Table 3. Linear SVM: Comparing Performance on Randomly Corrupted Real-World Datasets

(a) Data Sets Where Certain Models Exist

Data Set ME Examples Cleaned Time (Sec) Accuracy (%)
AC MI/KI/DI AC CM DI KI MI NI AC DI KI MI CM/NI
Gisette 0.1% 6.07 14 17.48 2.14 N/A 4.21 1.43 0.90 97.94 N/A 96.60 97.60 97.40
1% 60.40 135 20.32 2.18 N/A 17.88 1.42 0.88 97.89 N/A 97.60 97.60 97.33
0.1% 1.0 2 4.56 0.73 N/A 0.96 0.74 0.34 96.09 N/A 96.24 96.24 96.24
Malware 1% 14.3 20 3.93 0.86 N/A 1.56 0.73 0.44 96.10 N/A 96.24 96.24 96.24
5% 44.93 200 3.17 0.78 N/A 3.99 0.72 0.36 96.54 N/A 96.24 96.24 96.57
Tuandromd 0.1% 3 5 3.71 0.04 62.17 0.17 0.05 0.04 98.73 98.86 98.09 98.09 98.76
1% 30.9 45 3.72 0.03 78.81 0.29 0.04 0.03 98.88 98.92 98.80 98.76 98.58

(b) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set MF Examples Cleaned Time (Sec) Accuracy (%)
AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI ACM
Gisette 5% 248.93 675 17.62 1.82 10.37 N/A 53.97 1.45 0.71 97.03 N/A 97.60 97.43 97.30 97.35
10% 393.33 1350 1.73 1.73 12.94 N/A 97.01 1.40 0.65 99.93 N/A 97.00 97.53 97.07 97.60
Tuandromd 5% 91.40 223 2.41 0.04 4.31 74.21 0.44 0.05 0.04 98.08 98.76 98.36 98.36 98.21 98.18
(c) Data Set Where Neither Certain Nor Approximately Certain Models Exist
Data Set ME Examples Cleaned Time (Sec) Accuracy (%)
AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI
Malware 10% 66.0 200 1.97 0.70 7.16 N/A 6.78 0.73 0.33 88.05 N/A 96.24 96.24 83.95
Tuandromd 10% 121.33 446 1.64 0.04 4.98 82.45 0.74 0.05 0.04 97.36 98.76 98.76 98.20 98.54

study highlights the minimal computational overhead incurred by our algorithms when verifying
certain and approximately certain model conditions, even when these models do not exist.

9.1
9.1.1

Experimental Setup

Hardware and Platform. We experiment on a configuration with two tasks, each utilizing two

CPUs, and running on a cluster partition equipped with one 11GB GPU. The underlying hardware
consists of Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz machines.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:18 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

Table 4. p-SVM: Comparing Performance on Randomly Corrupted Real-World Datasets

(a) Data Sets Where Certain Models Exist

Examples Cleaned Time (Sec Accuracy (%
DataSet | MF MUKTDT CM DI KI(: M N | DI K YN(H) CM/NI
Gisette 0.1% 14 55.69 N/A 56.61 56.01 55.27 N/A 96.70 96.70 96.70
Malware 0.1% 2 4.98 N/A 4.95 5.01 4.66 N/A 92.98 92.98 92.98
Tuandromd | 0.1% 5 0.20 49.24 0.21 0.21 0.20 98.54 98.54 98.54 98.54

(b) Data Set Where Certain Models Do Not Exist

Examples Cleaned Time (Sec) Accuracy (%)
Data Set MEF MIKI/DI CM DI KI MI NI DI KI MI CM/NI
Gisette 0.1% 14 1379 N/A 5233 5169 5132 | N/A 9680 9670 96.70
1% 135 4284 N/A 6004 5120 5004 | NJ/A 9670 96.70 96.70
5% 675 36.15 N/A 8598 4295 37.12 | N/A 9675 9670 96.80
10% 1350 3694 N/A 11580 4527 4163 | N/A 9670 9670 97.00
0.1% 2 435 N/A 564 518 435 | N/A 92.87 9287 9275
Malware 1% 20 413 N/A 676 480 453 | N/A 9298 9298 92.98
5% 100 484 N/A 790 481 414 | NJA 9298 9298 92.98
10% 200 460 N/A 979 581 484 | N/A 9298 9274 92.98
Toandromd | 017 5 020 7022 021 021 019 | 9854 93854 9854 98.54
1% 45 0.18 4481 030 021 019 | 98.54 9854 98.54 98.54
5% 223 018 4239 054 020 0.17 | 9854 98.54 9854 9831
10% 446 019 4245 075 021 0.16 | 9854 98.79 9854 98.54

9.1.2 Real-world Datasets with randomly generated missing values. In our certain model experiments
with linear SVM, polynomial SVM, and DNN (arccosine SVM) we utilize three real-world datasets.
These datasets originally do not contain any missing values, but we introduce corruption by
randomly injecting missing values at missing factors of 0.1%, 1%, 5%, and 10%. Where missing
factor (MF) represents the ratio of incomplete examples (examples with at least 1 missing
value) to the total number of examples. It is important to note that certain models do not
exist in all versions of the corrupted datasets. Therefore, we present experimental results for both
scenarios, when certain models exist and when they do not. For each dataset and each missing factor,
we present the average results based on three randomly corrupted versions of the dataset in which
certain models exist. This is to reduce the variability in algorithm performance resulting from the
randomness of missing value injection.

Malware Dataset. The Malware dataset aims to distinguish between malware and benign software
through the analysis of JAR files [27]. It comprises 6825 features and 1996 training examples.

Gisette Dataset. The Gisette dataset addresses the problem of handwritten digit recognition, with
a specific focus on distinguishing between the easily confused digits 4 and 9 [14]. It consists of
13500 training examples and 5000 features.

TUANDROMBD Dataset. The TUANDROMD dataset is designed for the detection of Android
malware software in contrast to benign or "goodware" applications [4]. It comprises 4464 training
examples and incorporates 241 distinct features.

9.1.3 Real-world Datasets originally containing missing values. We also conduct experiments on
8 real-world datasets originally containing missing values. Our selection includes datasets from
diverse domains and missing factors (Section 9.1.2). Table 2 presents a summary of the datasets. For
preprocessing the dataset if the label is missing we drop all corresponding examples and utilize
sklearns OneHotEncoder to featurize the categorical attributes.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:19

Intel Sensor. This dataset contains temperature, humidity, and light readings collected from
sensors deployed in the Intel Berkeley Research lab [3, 17]. The classification task is to predict
whether the readings came from a particular sensor (sensor 49).

Water Potability . The dataset contains information about the properties and substances (sulfate,
pH) in freshwater sources, the classification task is to predict if the water is potable or not [15].

COVID . This U.S. Department of Health and Human Services dataset provides data for hospital
utilization dating back to January 1, 2020 [1]. The regression task is to predict the number of
hospitals anticipating critical staffing shortages.

Air Quality. The dataset contains instances of hourly averaged responses from an array of chem-
ical sensors embedded in an Air Quality Chemical Multisensor Device [32]. Given air-composition
measurements, the regression task is to predict hourly Temperature.

NFL. This dataset contains play-by-play logs from US Football games. Given a play, the regression
objective is to predict the score difference between the two teams [13]. We use a numeric version
of this dataset since encoding string-valued attributes inflates the feature dimension by 80 times.

Breast Cancer. The dataset contains information about characteristics of potential cancerous
tissue and the classification task is to predict if it is benign or malignant [34].

Online Education. This dataset contains responses to a survey on online education. The classifi-
cation objective is to predict whether students prefer cellphones or laptops for online courses [31].

Communities-Crimes. The data contains socio-economic and crime data from the US Census
and FBI. The regression task is to predict the total number of violent crimes per 100K population [26].

9.1.4 Algorithms for Comparison. In our experiments, we include two natural imputation baselines,
a deep learning-based imputation algorithm, and a benchmark algorithm for comparison.

Active Clean(AC): ActiveClean [18, 19] aims at minimizing the number of repaired examples
to achieve an accurate model. We use ActiveClean for linear regression and linear SVM, but not
for kernel SVM because ActiveClean’s implementation relies on sklearn’s SGDClassifier module,
which does not support non-linear models such as kernel SVM [19]. Simply switching to sklearn’s
Support Vector Classification (SVC) module cannot resolve the issue since SVC does not support
‘partial fit’, an essential function in ActiveClean.

KNN-Imputer(KI): This method predicts the values of missing items based on observed examples
using a KNN classifier [23, 29].

Deep-learning based Imputation (DI): We utilize MIWAE [23] as a sophisticated state-of-the-art
imputation algorithm for comparison. This approach uses deep latent variable models to predict
the values of missing data items based on the value of observed examples. Specifically, MIWAE
adapts the objective of importance-weighted autoencoders [5] and maximizes a potentially tight
lower bound of the log-likelihood of the observed data.

Mean Imputation(MI): MI is a widely used method for handling missing values in practice. Each
missing feature value is imputed with the mean value of that feature [23].

No Imputation(NI): NI naively drops all missing values and trains the model on the complete
training set [18]. When certain model exists the model trained with NI is equivalent to Certain
Model algorithms.

9.1.5 Metrics. We evaluate all algorithms on a held-out test set with complete examples. We
use accuracy as a metric for classification tasks. Accuracy reflects the percentage of total correct

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:20 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

class predictions therefore higher accuracy is preferred. For regression tasks, we use mean squared
error (MSE). MSE measures the average squared difference between actual and predicted values.
Therefore, a lower MSE is preferred. We also study the algorithms’ data-cleaning efforts in terms of
program execution time and the number of examples cleaned.

9.2 Results on Real-world Datasets with Random Corruption

In this section, we present results for all scenarios, when certain models exist, when certain models do
not exist but approximately certain models exist, and when neither exists for 3 datasets with different
degrees of random corruption (Section 9.1.2).

When certain models exist : We begin by focusing on scenarios where certain models are known
to exist. Tables 3a and 4a present a performance comparison between certain model algorithms and
baselines for linear SVM and p-SVM, respectively. We observe that certain models exist when the
missing factor is small. This is because certain SVM models require that incomplete examples should
not be support vectors in any repair (Section 5). When the missing factor is small, the number of
incomplete examples is also small. Therefore, the likelihood of such examples being support vectors
is also small. Since certain models exist, certain model algorithms by definition (Section 3) clean zero
missing data. In contrast, baseline methods spend substantial effort on data cleaning, represented
by examples cleaned column in Tables 3a and 4a. In terms of program execution time, certain model
(CM) algorithms are slower than simple methods such as Mean Imputation (MI) and No Imputation
(NI). However, MI and NI are both heuristics without any guarantees of the optimality of the trained
model. Moreover, to find the appropriate imputation method for a specific incomplete dataset, users
may want to check missing data mechanisms, which often take longer time than implementing
certain model algorithms. Also, MI still requires a large number of imputations. Compared with
ActiveClean (AC) and the advanced imputation methods, Deep-learning based Imputer (DI) and
KNN-Imputer (KI), certain model algorithms run much faster and also guarantee an optimal model.
In the tables, DI has "N/A" results for some datasets in this section when it runs for more than one
hour but fails to return a result. To emphasize, when certain models exist, we do not need to check for
approximately certain models since they exist by definition (Section 8).

When certain models do not exist but approximately certain models exist: When certain
models do not exist, we may resort to approximately certain models (ACM). Table 3b shows the
datasets where certain models do not exist due to the strict conditions, but approximately certain
models exist and clean zero missing data. The prediction accuracy of approximately certain models
is very close to the results from all baseline methods. This is because when approximately certain
models exist, their approximate optimality is guaranteed. In terms of program execution time,
approximately certain model algorithms run faster than DI and KI, but slower than AC, MI, and NI
However still in this scenario, checking and learning approximately certain models saves imputation
costs with minimal compromise on the model’s accuracy.

When neither certain nor approximately certain models exist: Sometimes, neither certain
nor approximately certain models may exist, as shown in Table 3c for linear SVM with relatively
large missing factor. Since approximately certain model algorithms are not available for kernel
SVMs, in Tables 4b and 5 we present the datasets where certain models do not exist for polynomial
SVM (p-SVM), and our DNN approximation with arccosine SVM, respectively. However, even if
our algorithms do not find certain models for DNN, certain models may still exist. This is because
the related theorem for DNN is necessary but not sufficient as described in Section 7. We also
investigate certain model existence for RBF-SVM. We observe similar patterns and results to that
of arccos-SVM. Due to the limited space, we exclude the results for RBF-SVM from the paper. In
scenarios when neither a certain model nor an approximately certain model exists, checking for
them incurs some computational overhead. Nonetheless, paying for this overhead is worthwhile

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning

126:21

Table 5. DNN: Comparing Performance on Randomly Corrupted Real-World Datasets: CMs are not found

Examples Cleaned Time (Sec) Accuracy (%)

Data Set | MF MI/KI/DI cM DI ©{ M N | DI K M NI
e | 0% 2 3127 N/A 4079 4062 3967 | N/A 5230 5230 5210
1% 135 3546 N/A 4069 4063 3957 | N/A 5230 5230 5210
5% 675 3328 N/A 3991 3067 3606 | N/A 5230 5230 5200
10% 1350 2098 N/A 3994 3084 3410 | N/A 5230 5230 5170
0.1% 2 327 N/A 602 606 593 | N/A 4837 4837 4837
Malware | 1% 20 315 N/A 599 678 576 | N/JA 4837 4837 4837
5% 100 403 N/A 598 600 539 | NJA 4837 4837 4837
10% 200 412 N/A 598 596 492 | N/A 4837 4837 3400
roandromg | 0.1% 5 022 4756 021 028 020 | 6181 6181 6181 618l
1% 45 025 6924 021 020 020 | 61.81 6181 6181 6181
5% 223 020 6794 022 021 018 | 6181 6181 6181 6181
10% 446 018 7013 025 026 017 | 6181 6181 6181 66,52

Table 6. Linear Regression: Performance Comparison on Real-World Datasets with Missing Values

(a) Data Sets Where Certain Models Exist

Data Set Examples Cleaned Time (Sec) MSE
AC MI/KI/DI AC CM DI KI MI NI AC DI KI MI CM/NI
NFL 12.0 3101 49.91 7.11 394.18 12.96 0.14 0.13 0.02 0.00 0.00 0.00 0.00
COVID 33.6 32325 100.59 438.79 1944.10 587.87 0.68 0.28 2.07 0.00 0.00 0.00 0.00

(b) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set Examples Cleaned Time (Sec) MSE
ata >e AC____MUKUDI | AC__CM___ACM5 __ACM6 DI KL MI___NI | AC__DI _KI__MI__NI__ACM
Communities | 3196 1494 210 145 415 374 408846 1582 139 0.08 | 006 035 063 130 230 _ 0.03
(c) Data Set Where Neither Certain Nor Approximately Certain Models Exist
Data Set Examples Cleaned Time (Sec) MSE
AC____MUKUDI | AC__CM___ACM5 _ACM6 DI KT _MI__NI | AC_ DI _KI__MI__N
Air-Quality 48.80 6544 0.87 0.01 4.62 N/A 111.08 3.67 0.02 0.01 28.22 2.11 3.05 1.07 3.47
Table 7. Linear SVM: Performance Comparison on Real-World Datasets with Missing Values
(a) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist
Data Set Examples Cleaned Time (Sec) Accuracy (%)
AC___ MUKUDI AC CM____ACM DI KI M NI AC___ DI K MI NI __ACM
Tntel | 30.0 75080 35558 27601 242876 _N/A 1377593 27549 273.24 | 9880 N/A _ 98.90 9750 9839 _ 9843
(b) Data Set Where Neither Certain Nor Approximately Certain Models Exist
Data Set Examples Cleaned Time (Sec) Accuracy(%)
atase AC __MUKIUDI | AC__CM__ACM DI ___KI___MI__NI | AC DI KT MI NI
Water Potability 29.0 1022 0.34 0.01 0.69 56.14 0.30 0.04 0.01 49.15 56.33 39.95 39.70 41.89
Onlinc Education | 164 2493 388 003 503 8887 209 014 002 | 6306 6385 6285 6137 3633
Breast Cancer 9.8 14 0.06 0.01 0.15 7.37 0.33 0.01 0.00 50.44 65.94 65.94 65.94 34.05

for two reasons. First, substantial data-cleaning savings are realized when certain models exist (as
we discuss in the previous paragraphs). Second, the time costs associated with checking certain
models are minimal (confirmed by the small program running times in Tables 3c, 4b, and 5).

9.3 Results on Real-world Dataset with Inherent Missingness

In our certain model experiments with linear regression, linear SVM, and SVM with kernels, we
utilize 8 real-world datasets (Section 9.1.3). These datasets originally contain missing values.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:22

Table 8. p-SVM: Performance Comparison on Real-World Datasets with Missing Values-CMs do not exist

Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

Data Set Number of Examples Cleaned Time (Sec) Accuracy(%)
MI/KI/DI CM DI KI MI NI DI KI MI NI

Intel Sensor 1022 3321.85 N/A 3498.51 3128.54 3007.65 N/A 53.78 58.37 51.98

Water Potability 1022 0.05 41.27 1.03 0.16 0.06 63.94 62.17 62.96 61.19

Online Education 354 0.18 57.13 0.98 0.22 0.20 97.13 95.52 97.26 93.29

Breast Cancer 11 0.01 42.35 0.25 0.01 0.01 71.24 70.86 70.71 69.63

Table 9. DNN: Performance Comparison on Real-World Datasets with Missing Values-CMs are not found

Data Set

Number of Examples Cleaned

Time (Sec)

Accuracy(%)

MI/KI/DI

CM

DI

KI

MI

NI

DI

KI MI NI

Online Education

354

0.16

51.37

0.79

0.22

0.20

42.75

40.96 41.04 41.06

Breast Cancer

11

0.02

48.96

0.02

0.01

0.01

65.20

6426 67.86 66.67

When certain models exist: We present the result for the first scenario in Table 6a. Certain
models exist for NFL and COVID datasets. By checking and learning certain models with zero
imputation, we save substantial energy in data cleaning compared to all 4 baselines. This imputation
cost saving also comes with guarantees on the optimal model, experimentally proved by almost the
same performance between certain models and the models from baseline methods. There is one
exception in the COVID dataset where ActiveClean has a regression error slightly different from
other baselines. This may be because partial-fit is used to proxy a complete-fit in ActiveClean’s
implementation [19], which in some cases may converge early but with errors. We further investi-
gate the data scenarios that entail certain models and verify that features irrelevant to the label are
the ones with missing values. For instance, the COVID dataset receives regular data updates from
three different sources. We observe that the newly added features are the ones with missing values.
When certain models do not exist but approximately certain models exist: Table 6b and 7a
present the results for linear regression and linear SVM, respectively. Two datasets (Communities
and Intel-Sensor) do not have certain models but have approximately certain models. Approximately
certain models result in similar MSE/accuracy compared to all baseline methods, supported by the
theoretical guarantee from approximately certain models (Section 8). In this scenario, checking and
learning approximately certain models also eliminates the need for any form of data imputations. In
terms of program execution time, we observe similar patterns as the results of randomly corrupted
datasets. To understand the influence of data characteristics on certain model existence, we study
the results for both certain models (CM and ACM). We find that certain and approximately certain
models are more likely to exist in regression tasks when the number of features is large (e.g.,
Communities and COVID), and in classification tasks when the number of examples is large (e.g.,
Intel-Sensor). This is because the uncertainty from incomplete features and examples is diluted in
model training when the number of features and examples is large.

When neither certain nor approximately certain models exist: Tables 6¢, 7b, 8, and 9 show
the cases where neither a CM nor an ACM exists (or is not found) for linear regression, linear
SVM, p-SVM, and DNN, respectively. We report DNN’s result (Table 9) only on two out of four
classification datasets because the DNN’s theorem in Section 7 only applies to datasets where each
example has at most one missing value. For p-SVM and DNN, the prediction accuracy is almost
the same from different baseline imputations, which often empirically suggests the existence of
certain or approximately certain models. However, certain models do not exist (or are not found).
To explain, when certain models do not exist, different imputations may lead to different models.
Nonetheless, different models sometimes can still make identical predictions on the testing set. e. In
terms of program execution time, checking certain and approximately certain models is worthwhile
even if we do not find any upon checking, based on the same reasons discussed in Section 9.2.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

Certain and Approximately Certain Models for Statistical Learning 126:23

10 RELATED WORK

Stochastic and Robust Optimization. Researchers have proposed stochastic optimization to find
a model by optimizing the expected loss function over the probability distributions of missing data
items in the training examples [11]. This approach avoids imputing missing values by redefining
the loss function to include the uncertainty due to missing values in the training data. Similarly, in
robust optimization, researchers minimize the loss function of a model for the worst-case repair to
an incomplete dataset, i.e., the repair that brings the highest training loss, given distributions of
the missing values. However, the distributions of missing data items are not often available. Thus,
users may spend significant time and effort to discover or train these distributions. Additionally,
for a given type of model, users must solve various and possibly challenging optimization problems
for many possible (combinations of) distributions of missing values. In our approach, users do not
need to find the probability distribution of the missing data. Moreover, our algorithm for each type
of model generalizes for all types and distributions of missing values in the training data.

Subset Selection over Incomplete Data. To save data cleaning costs, researchers propose to
select a representative subset of training data and impute the missing values in the subset [6, 33].
Then, a model is trained with the clean version of this subset. This approach still cleans data items.
One still needs to spend time constructing a model to select a proper subset. Also, the trained model
is often not the same as the model trained with the whole dataset.

ML Poisoning Attacks. Researchers have proposed methods to build ML models that are robust
to malicious modifications of training data to induce unwanted behavior in the model [9]. We,
however, focus on robustness against missing values in the data.

11 CONCLUSION AND FUTURE WORK

In this paper, we present the conditions where data repair is not needed for training optimal and
approximately optimal models over incomplete data, i.e., certain or approximately certain models
exist. We also offer efficient algorithms for checking and learning certain and approximately certain
models for linear regression, linear SVM, kernel SVMs, and DNN. Our experiments with real-world
datasets demonstrate significant cost savings in data cleaning compared to five popular benchmark
methods, without introducing significant overhead to the running time.

11.1 Suggesting a subset of incomplete examples to impute

Sometimes certain models do not exist and users cannot get accurate models without imputation.
Nonetheless, Theorem 5.4 can suggest a subset of incomplete examples to impute. Specifically,
Algorithm 2 identifies a subset of incomplete examples that violate certain model conditions. Users
can choose to impute the examples in this subset instead of all missing values to get a certain model.
Cleaning costs are saved by partial cleaning, although one may not need to clean all examples in
this subset to achieve a certain model. Interesting future work is how to efficiently suggest the
minimal number of examples to impute to get a certain model.

11.2 Handling dirty data beyond missing values

Although this paper focuses on missing values, CM and ACM methods can be applied to other
types of dirty data that require imputations to fix. This is because CM and ACM algorithms check
if a model is optimal over all possible imputations. For example, a value x;; is an outlier if it
substantially deviates from the distribution of the corresponding feature. An outlier can be fixed by
imputing it. Certain types of data inconsistency also require imputations such as those caused by
constraint violations over individual tuples. When CM or ACM exists, cleaning outliers and certain
types of inconsistency is unnecessary. However, the applicability of our methods to complex data

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

126:24 Cheng Zhen, Nischal Aryal, Arash Termehchy, & Amandeep Singh Chabada

inconsistencies, such as violations of functional dependencies across multiple attributes, remains
unclear. Addressing these challenges is an important direction for future research.

ACKNOWLEDGMENTS

This research was partially funded through NSF grant CNS-1941892 and the Industry-University
Cooperative Research Center on Pervasive Personalized Intelligence.

REFERENCES

(1]

[2

—

[10]

[11]
[12]
[13]
[14

(15
[16]

=

[17]
[18]
[19]

[20]

2023. COVID-19 Reported Patient Impact and Hospital Capacity. https://catalog.data.gov/dataset/covid-19-reported-
patient-impact-and-hospital-capacity-by- state- timeseries-cf58c. Accessed on 01-01-2024.

L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie,
and L. Farhan. 2021. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future
Directions. Journal of Big Data 8, 1 (2021), 53. https://doi.org/10.1186/s40537-021-00444-8

Peter Bodik, Wei Hong, Carlos Guestrin, Sam Madden, Mark Paskin, and Romain Thibaux. 2004. Intel Berkley Research
Lab Data. https://db.csail. mit.edu/labdata/labdata.html

Parthajit Borah, DK Bhattacharyya, and JK Kalita. 2020. Malware Dataset Generation and Evaluation. In 2020 IEEE 4th
Conference on Information and Communication Technology (CICT). IEEE, 1-6.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2016. Importance Weighted Autoencoders.
arXiv:1509.00519 [cs.LG]

Chengliang Chai, Jiabin Liu, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu Luo, and Guoliang Li. 2023. GoodCore:
Data-effective and Data-efficient Machine Learning through Coreset Selection over Incomplete Data. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1-27.

Youngmin Cho and Lawrence Saul. 2009. Kernel methods for deep learning. Advances in neural information processing
systems 22 (2009).

Youngmin Cho and Lawrence K Saul. 2011. Analysis and extension of arc-cosine kernels for large margin classification.
arXiv preprint arXiv:1112.3712 (2011).

Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2020. Proving data-poisoning robustness in decision trees. In
Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 1083-1097. https:
//doi.org/10.1145/3385412.3385975

Austen Z. Fan and Paraschos Koutris. 2022. Certifiable Robustness for Nearest Neighbor Classifiers. In 25th International
Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference) (LIPIcs,
Vol. 220), Dan Olteanu and Nils Vortmeier (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 6:1-6:20. https:
//doi.org/10.4230/LIPICS ICDT.2022.6

Ravi Ganti and Rebecca M Willett. 2015. Sparse Linear regression with missing data. arXiv preprint arXiv:1503.08348
(2015).

Claudio Gentile and Manfred K. K Warmuth. 1998. Linear Hinge Loss and Average Margin. In Advances in Neural
Information Processing Systems, M. Kearns, S. Solla, and D. Cohn (Eds.), Vol. 11. MIT Press.

Max Horowitz. 2015. Detailed NFL Play-by-Play Data 2015. Kaggle. https://www.kaggle.com/datasets/maxhorowitz/
nflplaybyplay2015

Isabelle Guyon, Steve Gunn, Asa Ben-Hur, Gideon Dror. 2003. Gisette. https://doi.org/10.24432/C5HP5B

Aditya Kadiwal. 2021. Water Potability. Kaggle. https://www.kaggle.com/datasets/adityakadiwal/water-potability
Bojan Karlag, Peng Li, Renzhi Wu, Nezihe Merve Giirel, Xu Chu, Wentao Wu, and Ce Zhang. 2020. Nearest neighbor
classifiers over incomplete information: From certain answers to certain predictions. arXiv preprint arXiv:2005.05117
(2020).

Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017. BoostClean: Automated Error Detection
and Repair for Machine Learning. arXiv:1711.01299 [cs.DB]

Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Goldberg. 2016. Activeclean: Interactive
data cleaning for statistical modeling. Proceedings of the VLDB Endowment 9, 12 (2016), 948-959.

Krishnan, Sanjay and Wang, Jiannan and Wu, Eugene and Franklin, Michael J and Goldberg, Ken. 2018. Cleaning for
Data Science. https://activeclean.github.io/

Marine Le Morvan, Julie Josse, Erwan Scornet, and Gael Varoquaux. 2021. What’s a good imputation to predict with
missing values?. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 11530-11540. https://proceedings.neurips.cc/
paper_files/paper/2021/file/5fe8fdc79ce292¢39¢5£209d734b7206-Paper.pdf

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-state-timeseries-cf58c
https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-state-timeseries-cf58c
https://doi.org/10.1186/s40537-021-00444-8
https://db.csail.mit.edu/labdata/labdata.html
https://arxiv.org/abs/1509.00519
https://doi.org/10.1145/3385412.3385975
https://doi.org/10.1145/3385412.3385975
https://doi.org/10.4230/LIPICS.ICDT.2022.6
https://doi.org/10.4230/LIPICS.ICDT.2022.6
https://www.kaggle.com/datasets/maxhorowitz/nflplaybyplay2015
https://www.kaggle.com/datasets/maxhorowitz/nflplaybyplay2015
https://doi.org/10.24432/C5HP5B
https://www.kaggle.com/datasets/adityakadiwal/water-potability
https://arxiv.org/abs/1711.01299
https://activeclean.github.io/
https://proceedings.neurips.cc/paper_files/paper/2021/file/5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf

Certain and Approximately Certain Models for Statistical Learning 126:25

[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]
[33]

[34]
[35]

RJ.A. Little and D.B. Rubin. 2002. Statistical analysis with missing data. Wiley. http://books.google.com/books?id=
aYPWAAAAMAA]

Tongyu Liu, Ju Fan, Yinqing Luo, Nan Tang, Guoliang Li, and Xiaoyong Du. 2021. Adaptive Data Augmentation for
Supervised Learning over Missing Data. Proc. VLDB Endow. 14, 7 (mar 2021), 1202-1214. https://doi.org/10.14778/
3450980.3450989

Pierre-Alexandre Mattei and Jes Frellsen. 2019. MIWAE: Deep Generative Modelling and Imputation of Incomplete
Data Sets. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 4413-4423. https://proceedings.mlr.
press/v97/matteil9a.html

Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From Cleaning before ML to Cleaning for ML.
IEEE Data Eng. Bull. 44, 1 (2021), 24-41.

Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. 2020. Learning over dirty data without cleaning. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 1301-1316.

Michael Redmond. 2009. Communities and Crime. UCI Machine Learning Repository.

Ricardo P Pinheiro, Sidney M. L. Lima, Sérgio M. M. Fernandes, E. D. Q. Albuquerque, S. Medeiros, Danilo Souza, T.
Monteiro, Petronio Lopes, Rafael Lima, Jemerson Oliveira, Sthéfano Silva. 2019. REJAFADA. https://doi.org/10.24432/
C5HG8D

DONALD B. RUBIN. 1976. Inference and missing data. Biometrika 63, 3 (12 1976), 581-592. https://doi.org/10.1093/
biomet/63.3.581 arXiv:https://academic.oup.com/biomet/article-pdf/63/3/581/756166/63-3-581.pdf

Olga Troyanskaya, Mike Cantor, Gavin Sherlock, Trevor Hastie, Rob Tibshirani, David Botstein, and Russ Altman.
2001. Missing Value Estimation Methods for DNA Microarrays. Bioinformatics 17 (07 2001), 520-525. https:
//doi.org/10.1093/bioinformatics/17.6.520

Stef Van Buuren. 2018. Flexible imputation of missing data. CRC press.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML: Networked Science in Machine
Learning. SIGKDD Explorations 15, 2 (2013), 49-60. https://doi.org/10.1145/2641190.2641198

Saverio Vito. 2016. Air Quality. UCI Machine Learning Repository.

Yining Wang and Aarti Singh. 2015. Column subset selection with missing data via active sampling. In Artificial
Intelligence and Statistics. PMLR, 1033-1041.

William Wolberg. 1992. Breast Cancer Wisconsin (Original). UCI Machine Learning Repository.

Cheng Zhen, Nischal Aryal, Arash Termehchy, and Amandeep Singh Chabada. 2024. Certain and Approximately
Certain Models for Statistical Learning. arXiv preprint arXiv:2402.17926 (2024).

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 126. Publication date: June 2024.

http://books.google.com/books?id=aYPwAAAAMAAJ
http://books.google.com/books?id=aYPwAAAAMAAJ
https://doi.org/10.14778/3450980.3450989
https://doi.org/10.14778/3450980.3450989
https://proceedings.mlr.press/v97/mattei19a.html
https://proceedings.mlr.press/v97/mattei19a.html
https://doi.org/10.24432/C5HG8D
https://doi.org/10.24432/C5HG8D
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/63/3/581/756166/63-3-581.pdf
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1145/2641190.2641198

	Abstract
	1 Introduction
	2 Background
	2.1 Supervised Learning
	2.2 Missing Values and Repairs

	3 Certain Models
	4 Certain Models for Linear Regression
	4.1 Conditions For Having Certain Models
	4.2 Checking and Learning Certain Models

	5 Certain Models for SVM
	5.1 Conditions For Having Certain Models
	5.2 Checking and Learning Certain Models

	6 Certain Models for Kernel SVM
	6.1 Conditions For Having Certain Models
	6.2 Polynomial kernel
	6.3 RBF kernel

	7 Certain Models for DNN
	8 Approximately Certain Models
	8.1 Formal Definition
	8.2 Learning ACMs Efficiently
	8.3 ACMs for Regression With Guarantees

	9 Experimental Evaluation
	9.1 Experimental Setup
	9.2 Results on Real-world Datasets with Random Corruption
	9.3 Results on Real-world Dataset with Inherent Missingness

	10 Related Work
	11 Conclusion and Future Work
	11.1 Suggesting a subset of incomplete examples to impute
	11.2 Handling dirty data beyond missing values

	Acknowledgments
	References

