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A b s t r a c t .  We prove a quantum version of the localization formula of Witten
[31], see also [28], [22], [35], that relates invariants of a git quotient with the
equivariant invariants of the action.
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1. Introduction

The main result of this paper is a formula relating the equivariant Gromov-Witten
graph invariants of a smooth projective variety with group action and the graph
invariants of the geometric invariant theory quotient. To  state the main result we
introduce the following notation. Let G  be a connected complex reductive group
acting on a smooth polarized projective variety X .  Let

X==G =  X s s =G

denote the git quotient of X  by G, which here means the stack-theoretic quotient of
the semistable locus X s s  by the group action. We assume that G  acts with only nite
stabilizers on the semistable locus X ss . In this case the git quotient X==G is a
smooth proper Deligne-Mumford stack with projective coarse moduli space by
Mumford et al [17]. Let H (X ==G )  resp. H G ( X )  denote the rational resp. equivariant
rational cohomology of X==G resp. X .  Kirwan’s thesis [14] studies the natural map

X ; G  : H G ( X )  !  H ( X ==G )
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given by restriction to the semistable locus and descent. Equivariant integration
resp. integration over X  resp. X==G dene trace maps

X g R  : H G ( X )  !  Q; X = G  : H (X == G)  !  Q

where the rst can be dened using equivariant cohomology with distributional
coecients as in [35]. Witten [31] introduced a formula, which he termed non-abelian
localization, which expresses the dierence between the composition X = G   X ; G  and X g
as a sum over critical points of the norm-square of the moment map. Mathematical
versions can be found in Paradan [21], [22], Teleman in the case of sheaf cohomology
[28], and Woodward [35]. Witten’s localization principle quanties the failure of the
following diagram to commute:

H G ( X )
X ; G

H (X == G)
(1)

X g R  
s  

Q 
+ X = G

:

A  dierent formula computing the composition is given in Jerey-Kirwan [13]. A
virtual Witten localization formula has recently appeared in Halpern-Leistner [12,
(5)].

Naturally one wishes for a quantum version of Witten’s localization formula which
computes the Gromov-Witten invariants of the moduli spaces of stable maps to a git
quotient. For conceptual reasons we explain below one expects such an invariant only
for parametrized stable maps; in good cases these compactify the space of maps
Hom(P1; X ) from the projective line P1. The action of G  on X  induces an action on
Hom(P1; X ) and our main result is a formula for the dierence in integrals over
\compactications" of

Hom(P1; X==G); Hom(P1; X )==G

as a sum of integrals over maps to the Kirwan-Ness strata of X ;  here the second
quotient is dened as the quotient of a suitable semistable locus. As a sample
potential application, since the integral over Hom(P1; X )==G may be related to the
abelian quotient Hom(P1; X )==T by Martin’s formula [16], this provides an inductive
approach to abelianization questions, where the induction is over the rank of the
group G.

To  state the result in more detail let !  2  H 2  ( X )  be the rst Chern class of the
linearization (that is, the symplectic class) and let

(  
1

)
G  =             ciqdi ; ci 2  Q; di 2  H G (X ; Q);  lim hdi ; ! i =  1

i = 0

denote the equivariant Novikov eld for X .  Let

Q H G ( X )  =  H G ( X )
 X

denote the equivariant quantum cohomology of X .  Virtual integration over the
moduli stack of n-marked genus 0 stable maps M 0 ; n ( X )  for n  3 denes a family
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of formal quantum products

? : TQH G (X ) 2  !  TQH G (X ) ;  2  QH G (X ) :

Formal in this setting means that only the Taylor coecients of the maps are conver-
gent. Dene a quantum version of Witten’s trace as follows. Let P1 =  (C2  f0g)=C
denote the projective line. For d 2  H 2 ( X ; Z )  let

Mn (P1 ; X ; d)  : =  M0;n (P1  X; (1; d))

denote the moduli stack of parametrized stable maps from P1 to X  of class d 2
H G ( X ; Z ) .  The action of G  on X  induces a natural action on Mn (P1 ; X; d). A
natural stability condition for the action is given by requiring that the stable map
has generically semistable value for all one-parameter subgroups [5]. Denote by
Mn (P1 ; X; d)==G the stack-theoretic quotient of the semistable locus by the group ac-
tion. By, for example, [7, Lemma 2.6], Mn (P1 ; X; d)==G is a proper Deligne-Mumford
stack with a perfect relative obstruction theory. Via equivariant formality we may
consider H2 (X; Z)= torsion as a subgroup of H G (X ; Q).  Denote by X ; G  the formal
trace map given by virtual integration over the moduli stacks Mn (P1 ; X; d)==G:

X ; G  : Q H G ( X )  !  X

 !
X qd Z

ev(
 : : :
 )  n0;d2H2 (X;Z)= torsion             [M n (P1 ;X ;d) =G]

for  2  H G ( X )  and by X ; G  its n-th Taylor coecient. More generally, dene a trace
\with insertions" for a sequence of classes  : =  fn gn0 such that

n 2  M n  : =  M0;n (P1; 1); n  0

by

X ; G ( ; )  =
X qd Z

ev(
 : : :
 )  [  f n  n0;d2H2 (X;Z)= torsion             [M n (P1 ;X ;d) =G]

where f n  : Mn (P1 ; X; d)==G !  M n  is the forgetful map. The map X ; G  is a quantum
version of Witten’s trace in the sense that if one sets q =  0 and takes n  to be point
classes, which xes the positions of the markings then one obtains the classical
Witten trace, that is, the integral of exp() over X==G.

A  quantum version of Kirwan’s map counting maps to the quotient stack with
semistability enforced at a marked point was introduced in [32], [33], [34]. The
quantum Kirwan map is a non-linear map, still denoted X ; G ,

(2) X ; G  : Q H G ( X )  !  QH (X==G)

with the property that any linearization

D X ; G  : TQH G ( X )  !  T X ; G ( ) QH (X==G)

is a homomorphism with respect to the quantum products. In particular, if X ; G (0)  =  0
(which happens only in very special cases) then D 0 X ; G  is a homomorphism from
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the small equivariant quantum cohomology T0 QH G (X )  of X  to the quantum coho-
mology T0 QH (X==G) of X==G.

A  quantum version of the integration over the geometric invariant theory quotient
is dened by a count of stable maps to the graph space. Recall that M  (P1; X==G; d)
denotes stable maps to P1 (X==G) of class (1; d). Using the Behrend-Fantechi virtual
fundamental classes [2] dene

X = G  : QH (X==G)  !  X  Z
 ! ev(

 : : :
 )  [  f n  n0;d2H 2 (X =G;Q)             [M n (P1 ;X =G;d)]

for  2  H (X==G).  The quantum Witten localization formula gives a precise descrip-tion
of the dierence between the traces X ; G  and X = G  X ; G .  That is, it measures the failure of
the \quantum integration" to commute with reduction, i.e. the failure of
commutativity of the diagram

Q H G ( X )
X ; G  -  QH (X==G)

(3)
X ; G  s +  X = G

:
X

As in the classical Witten localization formula [31], the failure to commute is given by a
sum of xed point contributions. Each term is a gauged Gromov-Witten invariant X ;G; ;
associated to the action of centralizers on components of the xed point variety of
some one-parameter subgroup exp(C)  G;  2  g, stable with respect to the linearization
L  for some  2  (0 ; 1 ) .  We denote by M G ( C ; X ; L ; )  the moduli of such xed gauged
maps.

In order to state the result, we must indicate how the insertions of cohomology
classes from the moduli spaces of curves are distributed in the composition. For a
xed curve C  let M n ; 1 (C )  be the moduli stack of scaled n-marked maps from [32]; a
generic element is an n-marked map  : C  !  C  with a relative dierential  2  H 0 (C ; ! ) .
The variety M n ; 1 (C )  contains a prime divisor M n ( C )  corresponding to maps with
zero dierential  =  0, and for any partition I1  [  : : : [  I r  =  f1; : : : ; ng with jI j j  >  1, a
prime divisor DI1 ;: : : ; I r  isomorphic to

DI1 ;: : : ; I r  =  M r ( C )   
Y  

M j I j j ( C )
j = 1

whose generic element is a curve C  with innite dierential  =  1  on the one
unmarked component C0  =  C  and nite dierentials on the remaining components
C1; : : : ; Cr .

The main result is the following:

Theorem 1.1. (Quantum Witten localization) Let C  be a smooth connected projec-
tive curve of genus 0, X  a smooth projective G-variety, and L  !  X  a linearization.



n

G

X

l
k k k

0
r

l
r jj I  j

1 j

2

n

X

Q U A N T U M  W I T T E N  L O C A L I Z AT I O N 5

Suppose that for every  2  g and  2  ( 0 ; 1 ) ,  stable=semistable for M G ( C ; X ; L ; ) ,  and
stable=semistable for the G-action on X .  Then the following equality holds for formal
maps from Q H G ( X )  to X :

(4) X ; G  X = G   X ; G  = X ;G; ;
[ ] = 0 ; 2 ( 0 ; 1 )

in the following sense: For any class  2  M n ; 1 (C )  let

X Y
1

 1
 : : :

 r  ; resp

.

 0 
k = 1  I 1 [ : : : [ I r = f1 ; : : : ;ng

be its restrictions to 1

H  @ M r ( C )   
Y  

M j I j j ( C ) A ; resp. H ( M n ( C ) )
j = 1

respectively. Then

X ;G (; 0 ) 
X

X = G ( ; k  )   X ; G (; k )  =
X

X;G;;(; 0 ) k = 1

[ ] = 0 ;2 ( 0 ; 1 )

in the sense that the (well-dened) Taylor coecients on both sides agree.

The proof is concluded at the end of Section 5. The Theorem arose out of an
attempt to compare Givental’s results [4] to those of Witten [31].

Example 1.2. Suppose that G  is semi-simple and that d is not in the image of
H 2 ( X )  !  H G ( X ) .  The degree d contribution to X ; G  vanishes, since the degree d
part of M G (P 1 ; X )  is empty. We obtain a formula for the degree d contribution of
Gromov-Witten invariants in the quotient as a sum of contributions over reducible
gauged maps:

Coe(q d ; X =G  X ; G )  =   Coe(q d; X;G;;):
[ ] = 0 ; 2 ( 0 ; 1 )

The particular case of the action of scalars on ane space (adapted to the quasipro-
jective case) is described in Example 7.6.

2. Mundet s ta b i l i t y

Mundet stability combines the slope conditions from Ramanathan stability for
bundles and Hilbert-Mumford stability for points in the target. First we recall
Mumford-Seshadri stability. Let C  be a smooth projective curve and E  !  C  a
vector bundle of vanishing degree deg(E ) =  (c1 (E ); [C ]). The bundle

E  semistable resp. stable ( )  (deg(F )  0 resp: <  0; 8F  E )

for all holomorphic sub-bundles F   E  [20]. Ramanathan’s stability [25] generalizes
the Mumford-Seshadri condition to principal bundles as a condition on parabolic
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reductions. Let G  be a connected reductive group with Lie algebra g. Let T  G  be a
maximal torus, with Lie algebra t. Denote the integral resp. rational weights resp.
coweights

tZ =  exp 1(e); t_  t_ : =  Hom(t; C); tQ =  tZ

Z  Q; tQ =  tZ

Z  Q Let R  =  R +  [  R    tZ  denote a set of positive and negative roots so that

g =  t g g:
2 R                          2 R +

A  parabolic subgroup of G  is a subgroup Q such that G=Q is complete. Up to
conjugacy this means that the Lie algebra q of Q is given by

q =  t g g
2 R                          2 R Q

for some subset of the roots R Q   R +  such that q is a Lie subalgebra of g. A  Levi
subgroup of Q is a maximal reductive subgroup L(Q); again up to conjugacy the Lie
algebra l(q) of L (Q)  resp. u(q) of a maximal unipotent U (Q) is

l(q) =  t g g; u(q) = g: 2
R Q                     2 R Q                                                2  R Q

The parabolic subgroup and its Lie algebra admit decompositions into reductive and
unipotent parts

q =  l(q)  u(q); Q =  L(Q)U (Q):
Taking the quotient by the maximal unipotent gives a projection

Q  : Q !  Q=U (Q) =  L(Q):

This projection has the following alternative description. A  dominant coweight for
Q is a coweight  2  t such that

(()  0; 8 2  R + ) and (() =  0; 8 2  R(Q)):

Any rational coweight for Q determines a one-parameter subgroup

 : C  !  Q; z !  (z): If

2  q is a dominant rational coweight then

Q (q ) =  lim Ad( (z))q:

Choose an equivariant identication g !  g_ that identies the subspaces of rational
weights and coweights tQ !  t_ . The identication and  2  t determine a rational
weight _  2  t_ . After nite cover  denes a one-dimensional representation

_  : Q !  C; q !  _ (q )  which
factors through L(Q).

The analog for principal bundles of the stability condition for sub-bundles is a
condition for parabolic reductions together with dominant coweights. Let P  !  C  be a
principal G  bundle on a curve C  over a scheme S ; bundles are by assumption locally
trivial in the etale topology. A  parabolic reduction is a section  : C  !  P=Q. Any
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parabolic reduction induces a reduction of structure group given by a sub-bundle
(P )   P  with structure group Q, given by pull-back of the Q-bundle P  !  P =Q. We
denote by

Gr(P ) : =  (Q )(P )  !  C

the corresponding L(Q)-bundle, called the associated graded bundle of P  associ-
ated to the parabolic reduction . In case G  =  G L ( C n ) ,  a parabolic reduction is
equivalent to a partial ag of sub-bundles

E i 1   E i 2   : : :  E i l  =  E

in the associated vector bundle E  =  P (C n );  the corresponding parabolic reduction P
is the bundle of frames whose rst i k  elements belong to E i k  for k =  1; : : : ; l. The
associated graded principal bundle is the principal bundle of frames of the
associated graded vector bundle

Gr(E )  =  
M

( E i j + 1 = E i j  ); Gr(P ) =  Fr(Gr(E )) :
j

The construction of the associated graded bundle also has an interpretation via
degeneration. The family of elements  (z) denes a family of automorphisms Ad(
(z )) : G  !  G. Consider the family of bundles P  !  C   C  dened by conjugating
the transition maps of P  by (z) 1. Then P  extends over the central ber C   f0g
as the bundle Gr(P ). The Ramanathan weight of a principal bundle with respect to a
parabolic reduction and dominant weight is the degree of the line bundle
corresponding to the given dominant coweight:

(; ) =  deg(Gr(P ) L ( Q )  C )  =  ([C ]; c1 (Gr(P ) L ( Q )  C)):  Dene

P  is semistable resp. stable ( )  (; )  0 resp. <  0; 8(; ):

Remark 2.1. This version of stability omits a constant on the right hand side cor-
responding to the rst Chern class of the bundle, and stability forces the existence of a
at, rather than merely central curvature, connection. Indeed the rst Chern class of
the bundle must vanish, by taking trivial parabolic reductions. For rational curves,
Birkho-Grothendieck [10] implies that a principal bundle with vanishing degree is
semistable if and only if it is trivial, since it must admit a reduction to the maximal
torus with all sub-bundles of zero weight.

As for vector bundles, it suces to check the stability condition for reduction to
maximal parabolic subgroups Q. Ramanathan [25] shows the existence of a projec-
tive coarse moduli space for semistable principal bundles with reductive structure
group and xed numerical invariants.

Mundet semistability [18, 26] generalizes Ramanathan stability to the case of
maps to a quotient stack. Let G  be a connected reductive group acting on a smooth
projective variety X .  By a gauged map with domain a curve C  we mean a map from
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C  to the quotient stack X= G,  given by a pair (P; u) of a G-bundle and section of
the associated X -ber bundle:

P  !  C; u : C  !  P  G  X :

Given a pair (P  !  C; u : C  !  P (X ) ) ,  the section u denes a section u of P ( X )  as
follows: In any local trivialization P ( X ) j =  U  X  the section u is given by a
map uj : U !  X ,  and the sections  (z)u patch together to a section of P ( X ) .  By
Gromov compactness, u extends over the central ber C   f0g as a stable map
denoted Gr(u) : C  !  Gr(P )(X ) .  Associated to this limit there is an associated
Hilbert-Mumford weight dened as follows. The principal component C0  of C  is the
irreducible component such that the restriction u0 of u to C0  maps isomorphi-
cally to C .  The principal component Gr(u)0 of the associated graded section Gr(u)
takes values in the xed point set (Gr(P ) (X ) )  =  Gr (P ) (X )  of the innitesimal
automorphism of Gr (P ) (X )  induced by . The Hilbert-Mumford weight

(5) H (; )  2  Z

determined by the linearization L ,  is the weight of the C-action generated by   on
the ber of the bundle (Gr(P )) (L)  !  (Gr (P ) ) (X )  over a generic value of Gr(u)0:

(z)x~ =  z H (;) x~; z 2  C:

The Mundet weight is the sum of the Hilbert-Mumford and Ramanathan weights:

M (; ) : =  H (; )  +  R (; ):

Then

(P; u) semistable resp. stable ( )  (; )  0 resp. <  0; 8(; ):

Mundet’s original denition allowed possibly irrational , but this is unnecessary in the
case that the symplectic class is rational by [33, Remark 5.8]. Mundet semista-bility
is realized as a git stability condition in Schmitt [26, 27].

The moduli stack of Mundet-semistable morphisms admits a natural Kontsevich-
style compactication that allows formation of bubbles in the bers of the associ-ated
bundle: An n-marked gauged map from C  to X  over a scheme S  is a datum
(C ; P; u; z) where C  !  S  is a proper at morphism with reduced nodal curves as
bers, P  !  C   S  is a principal G-bundle; and

u : C  !  P ( X )  : =  (P   X ) = G

is a family of stable maps with base class [C ], that is, for a xed ber over s 2  S , the
composition of u with the projection P ( X )  !  C  has class [C ]. A  morphism between
gauged maps (S; C ; P; u) and (S0; C0; P 0; u0) consists of a morphism  : S  !  S0, a
morphism  : P  !  (   1)P 0, and a morphism : C  !  C0 such that the rst
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diagram below is Cartesian and the second and third commute:

C   -  S
?

C0 -  S0

P  -  S   C
 ? id (

1)P 0 -  S0  C

^ -  P ( X )

?
[idX ]

^0     u0      P
0 (X ):

An n-marked nodal gauged map is equipped with an n-tuple (z1; : : : ; zn) 2  C n  of
distinct smooth S-points on C . An n-marked nodal gauged map (C ; P; z; u) is
Mundet semistable resp. stable if the principal component is Mundet semistable
resp. stable and the section u : C  !  P ( X )  is a stable section, in the sense that any
component on which u is constant has at least three special (nodal or marked) points.

3. Gauged maps

We introduce the following notations for moduli stacks. Denote by M G (C ; X ; d)
resp. M G ( C ; X ; d )  the category of gauged maps resp. Mundet semistable gauged
maps from C  to X = G  of homology class d and n markings.

Theorem 3.1. For any d; n, if stable=semistable then the stack M G ( C ; X ; d )  is a
proper Deligne-Mumford stack equipped with evaluation morphisms

ev : M n  (C ; X ; d)  !  (X=G) n ; (C ; P; u) !  (zP; zu)

and virtual fundamental class [ M n  (C; X; d)] 2  H n ( M n  (C; X ; d)).

The properties of the moduli stacks in the above theorem were proved elsewhere.
Properness is covered in [9, Theorem 1.1]. Virtual fundamental classes are [33,
Example 6.6]. We sketch the construction for completeness. The proof of properness
uses a simpler Grothendieck-style compactication obtained by allowing the maps to
acquire base points, studied by Schmitt [26], [27, Section 2.7]. Suppose that X
P(V ) is embedded in the projectivization P(V ) of a G-representation V . A  map C
!  P (P(V )) gives rise to a line sub-bundle L   C   P (V ). By dualization such a sub-
bundle gives rise to a quotient map q : C   P (V ) _  !  L _ .  A  gauged quotient is a
datum (P; L; q; z), called by Schmitt [26] a bundle with map. Denote by
MG ;quo t (C; X; d) the compactication of the space of gauged quotients whose section
takes values in P ( X )   P (V ). The moduli stacks MG ;quo t (C; X ; d) only admit
evaluation morphisms to the quotient stacks for the ambient vector spaces,

ev : M n  (C ; X ; d)  !  (V =(G  C))n ; (C ; P; u) !  (zP; zL; zq):

The moduli stack of stable gauged quotients admits a construction as a geometric
invariant theory quotient by Schmitt [26, 27]. Choose a faithful representation G  !
G L ( V  ), so that X   P(V ). A  k-level structure for a stable gauged quotient is a
collection of sections s1; : : : ; sk : C  !  P (V ) generating P (V ). Equivalently, a
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level structure is a surjective morphism Ok !  P (V )_ . The action of GL (k )  on C
C k  induces an action on the set of level structures by composition. The stack
MG;lev ;quot (C; X; d) of gauged quotients with level structure is naturally an Artin
stack with an action of GL (k )  on the sections. Schmitt [26, Section 2.7] constructs a
linearization D ( L )  !  G;lev;quot (C; X; d) giving rise to a projective embedding of
the coarse moduli space, so that the git quotient is the stack of gauged quotients:

G;quot (C; X; d) =  MG;lev ;quot (C; X; d)==GL(k):

In particular this construction implies that MG ;quot (C; X ; d) has proper coarse mod-
uli space. If stable=semistable then all stabilizers are nite, and since we are in char-
acteristic zero, this implies that MG ;quot (C; X ; d) is Deligne-Mumford and proper.
Now the Kontsevich-style compactication M G ( C ; X ; d )  admits a Givental style
proper relative morphism given by Popa-Roth [24, Theorem 7.1]

G (C ; X ; d)  !  G;quot (C; X; d)

and so is also proper. Denote by MG ; l e v (C ; X ; d)  the moduli stack of gauged
maps with level structure on the associated vector bundle P (V ). The Givental
construction on the moduli stack of maps with level structure gives a morphism
: MG ; l e v (C ; X ; d)  !  G;lev;quot (C; X; d). Then the moduli stack of gauged maps
is also a stack-theoretic quotient

G (C ; X ; d)  =   1( G;lev;quot (C; X; d)ss )=G:

However, the pull-back of the linearization D ( L )  is not ample on MG ; l e v (C; X ; d).
Thus this quotient cannot be considered a git quotient without further perturbation of
the linearization.

Virtual fundamental classes are obtained from the construction of Behrend-Fantechi
[2]. The universal curve C ( C ; X )  is the stack whose objects are tuples (C; P; u; z; z0)
where (C ; P; u; z) is a gauged map and z0 2  C  is a (possibly singular) point. Forget-
ting z0 denes a projection

p : C n ( C ; X )  !  M n  ( C ; X )

while evaluating at z0 denes a universal gauged map

e : C n ( C ; X )  !  X= G:
The relative obstruction theory has complex given by R  eT (X=G)_  equipped with its
canonical morphism to the cotangent complex of M G ( C ; X ) .  If stable=semistable then
the obstruction theory is perfect and M G ( C ; X ; d )  is a proper smooth Deligne-
Mumford stack with perfect relative obstruction theory over the stack of semistable
n-marked maps to C , see [33]. Denote by [M G (C ; X ; d) ]  2  H ( M G ( C ; X ; d ) )  the
virtual fundamental classes constructed via Behrend-Fantechi machinery.

Using the virtual fundamental classes, gauged Gromov-Witten potentials are de-
ned as follows. Suppose that stable=semistable for all gauged maps. The gauged
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potential X ; G  is the formal map dened by

X ; G  : Q H G ( X )  !  X

 !
X qd

ev(
 : : :
 )  [  f n  n0;d2H2  (X;Z)= torsion             [ M n  (C ;X ;d)]

for  2  H G ( X ) .  We also write X ; G ; L  to emphasize the dependence on the lineariza-
tion.

4. The master  space

The strategy for the localization formula is the same as that outlined in the nite-
dimensional case described by Thaddeus [29] for the case of variation of linearization in
geometric invariant theory. The wall-crossing formula is obtained from a master
space construction as follows. Suppose L  !  X  are polarizations. Given integers r
; r >  0, a class dG 2  H  (B G) ,  integers d L  =  (d L  ; dL )  and G-modules V ; V+

of ranks r  ; r + ,  a bundle with pair is a tuple
_(P ; L  ; L + ; ’  ; ’ + )  ’ +  : P (V _ )  = :  E +  !  L +

consisting of a G-bundle P  with rst Chern class d , line bundles L  ; L of degrees
d L  and non-zero maps ’  ; ’ +  from the associated vector bundles E  : =  P (V _ ).  For
weights  ; +  >  0 a parabolic reduction  and Lie algebra element  generating a one-
parameter subgroup dene

     ; + ( ; )  =  R (; )  +   H ;  (; ) +  + H ; + ( ; )

where H;(; ) is the weight of the one-parameter subgroup on the associated
graded for the map ’ .  A  datum (P ; L  ; L + ; ’  ; ’ + )  is semistable if and only if

     ; + ( ; )   0 8(; ):

Let MG;quot (C; V ; V+ ; dG ; dL ) denote the moduli stack of semistable tuples (P ; L  ; L + ; ’  ; ’ + ) .
For suciently large d L  , there exists a projective scheme MG;quot;lev (C; V ; V+ ; dG ; dL )
with G L ( r  ) G L ( r  )  action such that for any + ;  , the stack MG;quot (C; V ; V+ ; dG ; dL ) has
coarse moduli space that is the good quotient of an open subset of semistable points
MG;quot;lev (C; V ; V+ ; dG ; dL )

MG;quot (C; V ; V+ ; dG ; dL ) =  MG;quot;lev (C; V ; V+ ; dG ; dL )ss =GL(r  )   G L ( r + ) :

Furthermore, for any choice of  >  0 the semistable locus is a git semistable locus in
the sense that there exists a nite injective equivariant morphism

MG;quot;lev (C; V ; V+ ; dG ; dL ) !  QG;lev (C; V ; V+ ; dG ; dL )

to a G L ( r  )   GL(r+ )-scheme QG;lev (C; V ; V+ ; dG ; dL ) and a line bundle

D ( L  ; L + )  !  QG;lev (C; V ; V+ ; dG ; dL )
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so that the following holds: A  bundle with pair (P ; L  ; L + ; ’  ; ’ + )  is semistable if
and only if its image in QG;lev (C; V ; V+ ; dG ; dL ) is semistable, that is, there exists a
non-trivial invariant section of D ( L  ; L + )  non-vanishing at (P ; L  ; L + ; ’  ; ’ + ) .  This
follows from [26, Theorem 2.3.5.11] and its generalization to G-bundles in [26, Section
2.7]. More generally, given the projective G-variety X  and G-equivariant
embeddings

 : X  !  P(V)
let MG ;quot (C ; X; V ; V+ ; dG ; dL ) denote the substack of MG;quot (C; V ; V+ ; dG ; dL )
consisting of data

( P ; ’   : E   !  L  ; ’ +  : E +  !  L + )
so that

( [ ’  (z )]; [ ’+ (z )])  2  (    + ) ( X )   P(V )   P(V+ )
for the generic point z 2  C .  Including level structures for the bundles E  ; E +  into
the data gives a G L ( r  )   GL(r + )-stack

MG;quot; lev (C; X; V ; V+ ; dG ; dL )          MG;quot;lev (C; V ; V+ ; dG ; dL )

Let QG ; l e v (C; X; dG ; dL )  denote its image in QG;lev (C; V ; V+ ; dG ; dL ). Denote the
quotient stack

MG;quot (C; V ; V+ ; dG ; dL ) =  MG;quot;lev (C; V ; V+ ; dG ; dL )=(GL(r  )   G L ( r + ) ) :

Denote by D ( L )  the line bundle obtained by pull-back from the case V is trivial.
Consider the rank two bundle obtained from the direct sum:

D ( L  )   D ( L + )  !  MG;lev;quot (C; X; d):

Taking the projectivization of the total space gives a P1-bration

P ( D ( L  )   D ( L + ) )  !  MG;lev;quot (C; X; d):

The action of G L ( r  )   G L ( r  )  lifts to the bration, since the bundles D ( L )  are
G L ( r  )   GL(r+)-equivariant. The bundle

OP( D ( L      )  D ( L + ) ) (1 )  !  P ( D ( L  )   D ( L + ) )

is automatically ample on the coarse moduli space of P ( D ( L  )   D ( L + ) ) .  Denote
the quotient of the pull-back of the semistable locus on QG; l e v (C; X; dG ; dL )  by

MG ; l e v ;quo t (C; X; L  ; L+ ; d)  =  P ( D ( L  )   D ( L + ) ) == G L ( r  )   G L ( r + ) :

Similarly, let
P ( D ( L  )   D ( L + ) )  !  M G ; l e v (C ; X ; d)

denote the pull-back to the stack of stable gauged maps with level structure, where
as before  : MG ; l e v (C ; X ; d)  !  MG;lev;quot (C; X; d). Let

M n  ( C ; X ; L  ; L+ ; d)  =   1 (P(D (L  )   D (L + ) ) ) s s = GL( r  )   G L ( r + )  denote the
quotient of the pull-back of the semistable locus. The action of C  on P ( D ( L  )
D ( L + ) )  induces an action of C  on M n  ( C ; X ; L  ; L+ ; d).
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The xed point components for the natural circle action are of two types. First,
there are inclusions

P( D ( L )   0) !  P ( D ( L  )   D ( L + ) )  and

isomorphisms
P( D ( L )   0) =  M n  (C ; X ; L ) :

These induce embeddings

M n  ( C ; X ; L )  !  M n  ( C ; X ; L  ; L + ) C

in the locus of xed points of the C-action. On the other hand, there are xed
point components correspond to reducible gauged maps for some stability condition
L t  : =  L ( 1  t)=2

 L(1+t)=2 ; t 2  (  1; 1) interpolating between those dened by L .  Reducibility means
that the xed point components consist of maps v =  (P; u) : C  !  X = G  that admit a
one-parameter family of automorphisms  : C  !  Aut(P ); via evaluation at a point
Aut(P ) !  Aut(Pz ), any such one-parameter family may be identied with a one-
parameter family of automorphisms of G  generated by some element  2  g. Euler-
twisted integration over the xed point components gives rise to xed point
contributions

X;G;;t : Q H G ( X )  !  X :

The xed point contributions are curves with bubble trees consisting of maps to the
quotient stack with one-parameter automorphisms and stable maps xed up to
isomorphism by one-parameter subgroups. Suppose that a gauged map (P  !  C; u :
C  !  P ( X ) )  is reducible, that is, has a one-parameter family of automorphisms
: C  !  Aut(P ) covering the identity on the principal component so that the
associated automorphism satises

( X )  : P ( X )  !  P ( X ) ; (X ) u  =  u:

Evaluation at any ber denes a homomorphism

z : C  !  Aut(Pz ) =  G
and so identies z  with a one-parameter subgroup of G. Let  2  g be a generator of z and
G   G  the centralizer. The structure group of P  reduces to the centralizer G  of .
Furthermore the restriction ujC0 of u to the principal component C0  takes values in
P ( X )  where X  =  f x  2  X j X ( x )  =  0g. Any bubble tree attached at z 2  C0  must
be xed, up to isomorphism, by the action of z 2  Aut(Pz (X )) .  That is, there exists a
one-parameter family of automorphisms : C  !  Aut(C ) so that

u =  ( X )   u.

We introduce notation for these xed point stacks and their normal complexes
as follows. For each  2  g, let M G ( C ; X ; L t ; )  denote the stack of Lt-Mundet-
semistable morphisms from C  to X = G  that are C  -xed and take values in X  on
the principal component. Via the inclusion G  !  G  the universal curve over
M G ( C ; X ; L t ; )  admits a morphism to X= G.      Denote by  the virtual normal

complex for the morphism M n  (C ; X ; L t ; )  !  M n  ( C ; X ; L  ; L+ ; d).
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The virtual fundamental classes on these xed point stacks lead to xed point
contributions appearing in the wall-crossing formula. Let QH G ; n (X )  denote the
tensor product of H G ( X )  with the sub-ring

)

G
;n = ciqdi ; di 2  H G (X ) ; c i  2  Q  G  i = 1

of nite sums. Let  denote the equivariant parameter for the action of the one-
parameter subgroup generated by  and

I
Resid : C[  1; ] !  C; f  !  

2i
f ()d

the residue of  at 0, that is, the map taking the coecient of  1. Virtual integration over
M n  (C ; X ; L ; )  denes a \xed point contribution"

(6)     X ; G ; ; L  : QH G ; n (X )  !  G

 H ( B C ) ;

 !
X X

R e s i d
qd 

ev(; : : : ; ) [  Eul()  1 d 2 H 2

( X ; Z )  n0                       [ M n  (C;X ;L;;d)]

for  2  H G ( X ) .  Here we omit the restriction map H G ; n (X )  !  H G  ( X )  to simplify
notation. In case L t  is a family of linearizations we write X;G;;t  : =  X ; G ; ; L  . The
following is [7, Theorem 3.14].

Theorem 4.1 (Wall-crossing for gauged Gromov-Witten potentials). Let X  be a
smooth projective G-variety. Suppose that L  !  X  are linearizations such that
semistable=stable for the stack of polarized gauged maps in [7]. Then the gauged
Gromov-Witten potentials are related by

(7) X ; G ; L +  X ; G ; L       = X;G;;t
[];t2( 1;1)

where the sum is over equivalence classes [] of unparametrized one-parameter sub-
groups generated by  2  g.

Remark 4.2. The xed point contributions can be re-written as contributions from
gauged Gromov-Witten invariants with structure group of smaller rank as follows.
For  2  g let C     

  G  denote the one-parameter subgroup generated by , and G=C
the quotient. Let X   X  denote the xed point set of C  . Let

M 0 ; n ( X ) C       M 0 ; n ( X )

denote the C  -xed point stack of stable maps to X .  The evaluation map restricted to
M 0 ; n ( X ) C       automatically takes values in the xed point locus X   X ,  that is, ev :
M 0 ; n ( X ) C

 
!  (X ) n :  Push-pull over the moduli stack M 0 ; n + 1 ( X ) C

 
denes a quantum

restriction map

 : Q H ( X )  !  QH G  (X ) ;  !  j X  +  
X  qd 

evn+1; ev1  [  : : : [  evn  n;d
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combined with the restriction map Q H G ( X )  !  QH G  ( X ) .  Let G
 
: X

 !  G  be the

canonical map of Novikov rings induced by H 2  
 ( X )  !  H G ( X ) .

Lemma 4.3. Suppose that stable=semistable for -xed gauged maps. Then (8)

X ; L t ; G ;  =  G  
 X ; L t j X ; G = C      

 :

Proof. Decomposing the xed point locus according to the number of markings on
each bubble tree gives an isomorphism

M n  (C ; X ; L ; )      =

=

[ Y
( f p t g  [  M 0 ; i j + 1 ( X ) C  )

I 1 [ : : : [ I r = f1 ; : : : ;ng  j = 1

( X ) r  M G ; f r (C ; X )=G r

[ Y
( f p t g = G  [  M 0 ; j i j j + 1 (X ) C =G)

I 1 [ : : : [ I r = f1 ; : : : ;ng  j = 1

( X = G ) r  M
G = C  ( C ; X )

where fptg represents a trivial bubble tree attached at the j -th node on the principal
component. Since these isomorphisms are induced by the natural decomposition of
markings on bubble trees, they are compatible with the obstruction theories and
thus, it follows that integration over M G ( C ; X ; L ; )  is given by push-forward of ev1

[  : : : evi
j 
 over each

evi j +1  : fptg [  M 0 ; i j + 1 ( X ) C  =G !  X = G

followed by integration over M r  
 (C ; X ) ,  or more precisely, C-equivariant integra-tion

over the Deligne-Mumford stack M
G = C

( C ; X )  (for which stable=semistable).

The rank of the structure group for the xed point contributions is less than the
rank of the original group. More precisely, there exists a canonical isomorphism

M G  ( C ; X )  !  M G = C ( C ; X ) :
Indeed via the projection map G  !  G=C      any gauged map to X = G  denes a
gauged map to X = ( G = C  ) and we obtain a map

(9) M G  ( C ; X )  !  M G = C ( C ; X ) :  Up

to nite cover the exact sequence

1 !  C  !  G  !  G=C  !  1
splits. Given a gauged map to X =(G=C)) ,  let c denote the weight of the C  -action
on L j X .  Taking the bundle C  -bundle with rst Chern class  c denes the inverse map to
(9). This ends the Remark.
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5. Quantum K i rwa n  map

In this section we recall the quantum Kirwan map X ; G  of (2). The map X ; G  is
dened by virtual integration over a moduli stack scaled ane gauged maps to X .

Denit ion 5.1. (Ane gauged maps) Let n  0 be an integer. An n-marked ane gauged
map is a tuple

(P  !  C; u : C  !  P ( X ) ;  : C  !  P ( ! C   C); z =  (z0; : : : ; zn))

where C  is a twisted balanced curve as in orbifold Gromov-Witten theory [1], P  !  C  is
a principal G-bundle, ! C  is the dualizing sheaf on C ,  and  is a section of its
projectivization P ( ! C   C )  which satises the

(Monotonicity Condition): On any maximal non-self-crossing path of components
C0; C1; : : : ; Cl of C  starting with the component C0  containing z0, jC i  is non-zero

and nite on exactly one component C i ,  on which jC i  has a single double pole.

A  tuple (P; u; ; z) is semistable if u takes values in X==G on the locus  1 ( 1 )   C ,  the
bundle P  is trivial on the locus  1(0), z0 2   1 ( 1 )  while z1; : : : ; zn 2   1 ( <  1 )  and the
datum admits no non-trivial automorphisms. The last condition means the following:
Each component on which (i) the scaling  is nite and non-zero resp. zero or innite
and (ii) on which (P; u) is trivializable has at least two resp. three special points
(nodes and markings.)

We introduce notation for moduli stacks and evaluation maps. Denote by M n ; 1 ( C ; X )
the moduli stack and M n ; 1 (C)  the case that G  and X  are trivial. Each component
M G  (C; X ; d)  of homology class d 2  H G (X; Z)= torsion and n markings has evalua-
tion maps

e v 1  ev : Mn ; 1 (C; X ; d)  !  (X==G)   (X = G ) n (P; u; ; z) !  (u(z0); : : : ; u(zn)):

The formula for the quantum Kirwan map X ; G  is

X ; G ( )  =  
X  qd 

ev 1 ;  ev(; : : : ; ) n0;d

where again, the map is formal in the sense that only each Taylor coecient is
convergent.

Remark 5.2. If the target satises an equivariant Fano condition then the derivative of
the quantum Kirwan map at zero is a homomorphism of small quantum coho-
mologies. Namely suppose that the rst Chern class c G (T X )  has pairing at least 2
with any non-zero curve class d for which there is a generically semistable map to the
quotient stack. In this case, by [34, Remark 8.7] the moduli stacks M G ( C ; X ; d )  have
dimension

dim Mn  (C; X ; d)   dim(X==G) +  1:
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Hence

(10) X ; G (0)  =  0; D 0 X ; G  : T0 QH G (X )  !  T0 QH (X==G):

This ends the remark.

Example 5.3. (Quantum Kirwan map for the scalar multiplication on ane space) Let
G  =  C  act on X  =  C k  with k 2  Z; k  2 by scalar multiplication, so that X==G =  Pk

1. We have
T0 QH G (X )  =  X [];

with  the equivariant parameter, while

T0 QH (X==G) =  X [ ! ] = ( ! k  q);
with !  2  H (Pk  1) the standard hyperplane class. By the previous remark X ; G (0)  =
0 and

D 0 X ; G ( l )  =  ! l ; l <  k:
A  special case of the main result of [8] (quantum Stanley-Reisner relations) implies
that

D 0 X ; G ( k )  =  q:
Hence D 0 X ; G  is surjective and

T0 QH (X==G) =  T0 QHG (X )= ker D0 X ;G =  G  []=(k q)

as expected.

5.1. Adiabat ic  limit theorem. The following theorem describes the relationship
between the gauged potential and the graph potential of the quotient. Let  be a
positive integer and consider the family of linearizations L  with  !  1 .

Theorem 5.4. (Adiabatic limit theorem [34]) If stable=semistable for the action of
G  on X  then stable=semistable for gauged maps for  suciently large (more precisely,
for any class d 2  H G ( X ; Z )  there exists an r  >  0 such that  >  r  implies
stable=semistable) and

X = G   X ; G  =  lim X ; G  : Q H G ( X )  !  X

in the following sense of Taylor coecients: For any class  2  M n ; 1 (C )  let

X Y
1

 1

 : : : r ; resp

.

 0 
k = 1  I 1 [ : : : [ I r = f1 ; : : : ;ng

be its restrictions to 1

H  @ M r ( C )   
Y  

M j I j j ( C ) A ; resp. H ( M n ( C ) )
j = 1

respectively. Then

lim X ; G  =  
X

X = G ( ; 1 )   G; j I j j ( ; j  )  k = 1
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In other words, the diagram

Q H G ( X )
X ; G  -  QH (X==G)

(11)
X ; G  s +  X = G

X

commutes in the limit  !  1 .

The limit of the Mundet semistability condition in which the linearization goes to
zero is studied in the paper [5]. In this limit, the bundle must be semistable since the
Ramanathan weight dominates the Hilbert-Mumford weight. By Remark 2.1, the
bundle must be trivial. Furthermore, after trivialization the value of the resulting
map u : C  !  X satises the Hilbert-Mumford condition for any one-parameter
subgroups at a generic point in C . Hence the moduli stack of gauged maps is a
quotient of the moduli space of parametrized stable maps to X :

9(d); (  >  (d)) = )  M n  (C ; X ; L ; d)  =  Mn (C ; X ; d)==G:

where M n (C ; X ; d)==G is the quotient of a \semistable locus" so dened. Theorem
1.1 follows from Theorems 4.1 and Theorem 5.4.

6. Quantum abelianization

In this section we sketch an application of quantum Witten localization to a
version of the quantum Martin conjecture of Bertram et al [3] that compares Gromov-
Witten invariants of a git quotient X==G and the quotient X==T =  X ss;T  =T by a
maximal torus T  G. Recall the classical version of abelianization due to Martin [16].
Let g=t denote the bundle over X==T induced from the trivial bundle with ber g=t over
X  and g=t

T the Euler-twisted integration map
Z

g=t =  X ss;T  
T  (g=t); g=t      : H (X==T ) !  Q;  !  [  Eul(g=t ):

[X =T ]

Let W =  N (T )=T denote the Weyl group of T  G  and rG the isomorphism with
Weyl-invariants

rG : H G ( X )  =  H T  (X ) W  :
Suppose that stable=semistable for the actions of T and G  on X .  According to
Martin [16] the integrations over X==G and X==T are related by

X = G   X ; G  =  jW j 1
X = T   X ; T   rG :

Let Q H G ( X )   Q H G ( X )  denote the subspace generated by Chern characters of
algebraic vector bundles,

H G ( X )  : =  f C h G ( E )  j E  !  X  vector bundle g; Q H G ( X )  : =  H G ( X )
 X :

The restriction to Chern characters is necessary because our arguments use sheaf
cohomology.
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Theorem 6.1. (Quantum Martin formula) Let C  be a smooth connected projective
genus 0 curve and X  a smooth linearized projective G-variety. Suppose that sta-
ble=semistable for T and G  actions on X .  The following equality holds on QH G (X ) :

X = G   X ; G =      jW j 1 G  g=t
T  g=t      rT

=      jW j 1 G  X ; T   rT : Q H G ( X )  !  X :

That is, there is a commutative diagram

Q H G ( X )  -  QHT  ( X )
X ; G  ?

QH (X==G)

g = t
X ; T

QH (X==T )
X = G  ? jW j     1

X = T

X  
              

X

We sketch a proof the Theorem in the case stable=semistable for linearized gauged
maps. We take as the inductive hypothesis that Theorem 6.1 holds for any group of
rank less than dim(G). We wish to compare the xed point contributions in the
quantum Witten localization formulas

(12) X ; G  X = G   X ; G  =  
X  

X ; X ; G ;  []=0;

and

(13) T;g=t g=t g=t X g=t
X X = T X ; T X ; X ; T ;

[]=0;

In the version for T , both the traces and quantum Kirwan maps have been twisted by
the Euler class of the index of g=t. Now T;g=t

 
resp. X ; G  is dened by integration over

M n (C ; X )==T resp. M n (C ; X )==G.  This is essentially the setting considered by
Martin [16]. In Gonzalez-Woodward [5, Chapter 5] we show

X ; G  =  jW j 1 G  T ;g=t

This follows by Martin’s argument in [16], if the moduli spaces of stable maps are
smooth and the virtual fundamental classes are the usual ones, or by a virtual version of
Martin’s argument if the moduli spaces of stable maps are only virtually smooth. We
note that the virtual non-abelian localization formula used in [5] had a gap in the
proof, which was xed by Halpern-Leistner [12, Formula (2)].

Using abelianization in the small-area limit to prove abelianization it suces to
show abelianization for the right-hand-sides in (12), (13). Each contribution X
corresponds to jW=Wj contributions X w; w 2  W=W for the T -action. (Note that WC
is not necessarily equal to W, but the action of WC=W gives a double cover
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of the corresponding xed point set in the master space.) The identity we wish to
show is

(14) X ; X ; G ;  =  jWj 1
T 

  
X ; X ; T ;

:

In the case G  is abelian the group W is trivial and the equality holds automatically.
More generally the equation (8) gives

X ; X t ; G ;  =  X ; G = C  
  and

X ; X t ; T ;  =  X ; T = C  
 : By the

inductive hypothesis,

X ; G = C  =  jWj 1
G   

X ;T =C
:

Equation (14) follows. See Guillemin-Kalkman [11, Section 4] for similar arguments
involving recursive applications of xed point formulae. The equality with X = T   X ; T

rT follows from by combining wall-crossing with Theorem 5.4.

7. The convex case

A  slightly modied version of the quantum Witten localization formula holds in
quasiprojective cases under a convexity assumption.

Denit ion 7.1. A  nite dimensional complex G-vector space V with weights  2  g_ will be
called convex if there exists a central one-parameter subgroup  : C  !  G  such that V
has positive weights (; ) for the induced action of ,

V =  
M

V ; (; ) >  0:

Given a convex G-vector space, the projectivization of V is the quotient

V =  ((V  C )  f(0; 0)g)=C

where C  acts on C  with weight one. Thus V is a weighted projective space and
contains V as an open subset. A  quasiprojective G-variety X  will be called convex if
there exists a projective morphism  : X  !  V to a convex G-vector space V . Denote
by V 1  =  V V and X 1  =   1 (V 1 )  the divisor at innity.

The following is a simple application of the technique called symplectic cutting in
the literature [15]:

Lemma 7.2. Any convex G-variety X  admits a G-equivariant compactication X
by adding single C  -xed divisor.



2

2
G

G

^

2 G

  1
(

L

2 n

Q U A N T U M  W I T T E N  L O C A L I Z AT I O N 21

Proof. Let L  !  X  denote the given linearization on X  and L(k )  the linearization on
X  C  obtained by twisting by the C-character with weight k. Consider the git quotient

X  =  ( X   C)==C:

The inverse image of (0; 0) 2  V  C  is unstable, for suciently large k. Thus the proper
morphism X  !  V induces a proper morphism X  to V . In particular, the quotient X
is also proper. The G  action on X C  given by g(x; z) =  (gx; z) descends to a G-action
on X ,  and restricts to the given action on the open subset X   X .

Corol lary 7.3. Let d 2  H G ( X )  be a class that pairs trivially with the divisor class
[ X 1 ]  =  [ X    X ]  2  H G ( X ) .  Then for k  0 the moduli stack M n  (C; X ; L(k ); d)
consists of maps whose images are disjoint from ( X  X ) = G .  Similarly, if L  !  X
are two dierent linearizations then for k  0 the moduli stack M n  (C ; X ; d)  consists of
maps whose images are disjoint from ( X  X ) = G .

Proof. The intersection number of any curve u : P1 !  X  contained in X    X  with X
X  is non-negative. Indeed X    X  has ample normal bundle in X  being the pull-back
of the compactifying divisor in a weighted projective space. On the other hand, there
are no stable gauged maps C  !  X = G  with image in ( X    X ) = G  for suciently large d
since the trivial reduction  together with the generator  of the one-parameter
subgroup C  has weight (; ) !  1  as k !  1 .  Combining these
observations let v : C  !  X = G  be a stable gauged map intersecting ( X    X )=G.  The
intersection number # u  1 ( P ( X  X ) )  >  0 is positive and equal to the pairing
(d; [X   X ] )  2  Q of d 2  H G (X ; Q)  with [ X    X ]  2  H 2  (X ; Q). The latter vanishes
by assumption, a contradiction.

The corollary implies that the wall-crossing formula also holds for convex varieties
by applying the formula to the compactied variety with compactifying divisor suf-
ciently far away at innity. However, the quantum Witten localization formula in
Theorem 1.1 does not hold as stated because, eventually, the compactifying divisor
[ X  X ]  will make a contribution in the localization formula.

The following alternative argument gives a formula similar to that in quantum
Witten localization. Let  be a character of G  that is negative on the one-parameter
subgroup generated by  and C  the corresponding trivial line bundle over X .  Con-
sider the path of linearizations L  !  X  obtained by shifting by multiples of the
character :

(15) L  = L
 C

     1  1

  1

considered as elements in the rational Picard group P ic G (X )
Z  Q.

Lemma 7.4. For any homology class d 2  H G ( X ; Z ) ,  the stack M G ( C ; X ; L ; d )  is
empty for   0.
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Proof. Let  : C  !  P =G be the trivial parabolic reduction, and  the generator of
the one-parameter subgroup in the denition of convexity. Given a gauged map v : C
!  X= G,  the associated graded pair Gr(P ); Gr(u) for (; ) projects to the origin in
V =G. The Mundet weight picks up a term (  1   1)(; ) which goes to innity as  !  0.
Hence there are no Mundet-semistable gauged maps with class d, for  suciently small.

Theorem 7.5. (Quantum Witten formula for convex varieties) Let X  be a convex G-
variety, C  a genus zero curve, and suppose that stable=semistable for the G-action on
X ,  for gauged maps with linearization L ,  and for polarized gauged maps for the path
L .  Then

(16) X = G   X ; G  =   X;G;;:
[]=0;

where the sum is over conjugacy classes unparametrized one-parameter subgroups
generated by  2  g.

Proof. This is a combination of the adiabatic limit theorem 5.4, the wall-crossing
formula Theorem 4.1, the vanishing of the invariants for large  in Lemma 7.4. The
application of these results to the non-proper variety X  is justied by the relationship
between invariants of the compactication X  with those of X  in Corollary 7.3.

Example 7.6. (Quantum Witten formula for the scalar multiplication on ane space) To
explain the notation we use (16) to compute the three-point Gromov-Witten
invariants of projective space using quantum Witten localization. Suppose that G
=  C  acts diagonally on X  =  C k  so that

X==G =  Ck ==C =  Pk 1:

We have

H G ( X ; Z )  =  H 2 (X==G)  =  Z[P1]; H 2  ( X ; Z )  =  H 2 (X==G)  =  Z !
where !  is the hyperplane class, the image of the equivariant generator  2  H 2  ( X ; Z )
under the Kirwan map. We compute the class d =  1 three-point invariants using
quantum Witten localization. Let  2  H 6 (M 3 (C ) )  be the fundamental class. We
identify Q H G ( X )  =  X []. Consider the three-point invariants with insertions

a; b; c 2  Q H G ( X )   S (g)_ :
Since c G ( X )  is at least 2k on classes d >  0, the derivative D 0 X ; G  of the quantum
Kirwan map has no quantum corrections by (10). The image of a; b; c under D 0 X ; G

is equal to ! a ; ! b ; ! c  respectively. We consider a path L  obtained by
shifting by a negative character ; this means that in the xed point formula we take
the residue with respect to  . By the formula (16),

q d h!a ; !b ; !c i0;d =      3 
= G (! a ; ! b ; ! c ; )  d0

=       @a@b@cX;G;;(0; ): ;[]
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There is a unique G-xed point in X .  The G-bundle P  with rst Chern class d =  1
together with the zero section u 2  H 0 (C ; P G  X )  forms a Mundet semistable map for
a unique value of the parameter . For d =  1 the index bundle and its Euler class
are

Ind(T (X=G)) =  H 0 (O(k) 
C  C k )  =  C2k ; Eul(Ind(T (X=G))) =  2k:

The unique xed point contribution

@a@b@cX;G;;(0; )     =

=

a + b + c
q Resid 2k

q a +  b +  c =  2k 1
0 otherwise:

We obtain

as expected.

(

h!a ; ! b ; ! c i0;1 = 0
a +  b +  c =  2k 1;
otherwise
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