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Abstract – Healthy honey bee colonies follow predictable patterns of weight change through the season, gaining 
weight when resources are abundant and losing weight during periods of scarcity. Divergence from this pattern 
can indicate trouble in the colony, necessitating beekeeper intervention. While colony weight monitoring has 
long been used to evaluate colony progress and diagnose potential problems, research has been limited by the 
labor associated with manual weight measurements. The introduction of next generation colony weight moni-
toring permits the collection of hive weight data continuously and remotely, enhancing the range of questions 
that can be answered with these data. However, there is currently no central guide for researchers aiming to use 
hive scales in their research. Here, we review the literature and describe current methods used to process and 
analyze within-day, or diel, and seasonal colony weight changes. Diel weight dynamics are based around the 
circadian rhythm of the colony, resulting from the departure and arrival of foragers and the intake, consumption, 
and dehydration of food stores. Seasonal weight dynamics can be used to assess colony survival and productiv-
ity, often in relation to large-scale patterns of climate, landscape, and floral resource phenology. In addition to 
describing methods, we highlight future applications of hive weight monitoring, including monitoring weight 
across ecological gradients and physiological time, coupling of weight monitoring with other colony monitoring 
techniques, and the practical use of weight monitoring in commercial beekeeping operations. This paper serves 
as a tool for those wishing to conduct research using colony weight monitoring, and guides the future of remote 
weight monitoring in honey bee research.
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1. INTRODUCTION

Happy families are all alike; every 
unhappy family is unhappy in its own way.
 ~ Leo Tolstoy (1878), Anna KareninaCorresponding author: H. B. G. McMinn-Sauder, 

hmcminn@clemson.edu 
Manuscript editor: Peter Rosenkranz.
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While Tolstoy presumably had human 
families in mind, it is perhaps not incidental 
that, as a beekeeper, he was well acquainted 
with another sort of family for which his insight 
is equally true. The diverse ailments of honey 
bee colonies lead to vast pathological possibility 
(Genersch  2010), but healthy colonies are, 
broadly speaking, all alike. In particular, healthy 
colonies gain weight during favorable conditions, 
and heavy colonies survive unfavorable 
conditions (Döke et al. 2019).

The estimation of weight as an integrative 
index of colony health and productivity is a 
standard practice among beekeepers that pre-
dates modern weighing technology. In its most 
basic form, a hive is gently tipped in such a way 
that an experienced beekeeper can infer whether 
the colony is relatively strong or weak for a 
given time of year in comparison to its neigh-
bors. Such qualitative assessment can serve as 
a quick, though coarse, guide for management 
decisions in situations that preclude detailed 
colony inspection.

With the advent of modern weighing devices, 
however, it became feasible to quantify hive weight 
and explore more refined questions about colony 
health and its relationship to internal and external 
conditions. In one of the first rigorous applications 
of colony weight monitoring, Hambleton (1925) 
used hive scales to investigate the role of weather 
in constraining the ability of honey bees to 
exploit floral resources. Notably, he remarks that 
the use of hive scales to track patterns of honey 
production was already widespread among “the 
best” beekeepers of his time (Hambleton 1925). 
Other investigators followed suit, using hive 
scales to study patterns of honey production and 
their dependency on conditions within and outside 
the hive (Mitchener 1947, 1955; McLellan 1977; 
Szabo and Lefkovitch 1990). These early studies 
were limited, though, by the mechanical platform 
scales available at the time, which require a 
human observer to record each weight reading. 
This necessity severely constrained the number 
of colonies and locations that could be monitored 
simultaneously and imposed a strict tradeoff 
between colony replication and measurement 
frequency.

In response to these shortcomings of 
traditional hive scales, Buchmann and Thoenes 
(1990) introduced the use of electronic hive 
scales coupled to data loggers to automate the 
recording of colony weight data, dramatically 
increasing both the resolution and the scale at 
which questions of colony weight dynamics 
could be explored. This approach was later 
adopted (Thoenes and Buchmann  1992) and 
refined (Meikle et  al.  2006), establishing 
the suite of methodologies we term “next-
generation” colony weight monitoring.

Since these pioneering studies, next-
generation colony weight monitoring has been 
applied in a variety of research contexts with a 
growing range of methodological adaptations 
and extensions. Our objective in this review 
is to synthesize existing methods of next-
generation colony weight monitoring, providing 
an organized toolkit for prospective users. We 
then identify opportunities for refining weight 
monitoring methods and extending their 
application to new scientific questions.

2.  EXISTING TECHNIQUES 
AND APPLICATIONS

Colony weight monitoring techniques can be 
organized into two basic categories: those con-
cerned with diel (within-day) weight dynam-
ics and those concerned with seasonal weight 
dynamics. Each category is suited to certain 
kinds of research questions, and each poses dis-
tinct challenges.

2.1.  Diel weight dynamics

2.1.1.  Background

The basis of diel colony weight dynamics is 
the circadian rhythm of the honey bee colony. 
Each morning, foragers leave the nest en masse, 
causing an initial decrease in hive weight that 
is subsequently reversed as they return to the 
nest laden with nectar and pollen (Holst and 
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Meikle  2018). Nectar is dehydrated to form 
honey, first actively by the house bees to which 
it is transferred and later passively in the comb, 
causing a gradual loss of weight (Park 1925). 
Pollen is stored in the colony as bee bread and 
contributes minimally to weight fluctuation 
(Anderson et al. 2014). Nectar, honey, pollen, 
and bee bread are consumed throughout the 
day, resulting in some weight loss through res-
piration and defecation. Overall weight change 
during the day is, thus, an additive result of the 
departure and arrival of foragers and the intake, 
consumption, and dehydration of food stores. 
Daily weight normally peaks at dusk when all 
surviving foragers return to the nest and add 
their weight to that of the remaining colony. The 
processes of dehydration and consumption, how-
ever, continue through the night, and hive weight 
reaches a minimum with the initial departure of 
foragers the next day.

Studies of diel weight dynamics analyze pat-
terns at the scale of minutes or hours, and they are 
usually focused on questions of how colony-level 
behavior is reflected in weight changes. Weight 
monitoring, much like the waggle dance, provides 
a window into the “social physiology” of the honey 
bee colony (Seeley 1995). The basic challenge of 
diel weight monitoring studies is the detection and 
interpretation of subtle signals amid the noisy vari-
ation of within-day colony weight.

2.1.2.  Preprocessing of diel colony weight data

When analyzing diel weight dynamics, seasonal 
trends in colony weight can obscure the hourly or 
sub-hourly within-day patterns that are the basis of 
inference. In general, the first step in diel weight 
analysis is to detrend each colony weight time 
series by subtracting a daily running average from 
each individual weight reading, thus isolating the 
circadian component of colony weight dynamics 
(Meikle et al. 2006, 2008). Hourly time series, 
for example, can be detrended by subtracting 
from each weight reading a 25-h running average 
(including the focal reading and the adjacent 12 
hourly readings before and after it) (Figure 1).

One difficulty in modeling within-day weight 
changes is the sensitivity of the data to sources 
of extraneous variation, whether due to known 
sources such as precipitation or hive manipula-
tions or due to unknown sources such as possible 
equipment failures. Recording data frequently, 
such as every 5 min, makes errors relatively easy 
to detect. This is because weight changes due to 
colony behavior in short time frames are usually 
small. However, frequent data collection results 
in large data sets which can be more computa-
tionally demanding to analyze.

2.1.3.  Analyzing diel colony weight data

The circadian periodicity of detrended hive 
weights allows them to be modeled as cyclical 
functions of time. Meikle et al. (2008) modeled 
detrended colony weights using simple sine func-
tions and extracted amplitudes as an index of col-
ony foraging activity. When diel amplitudes are 
analyzed over seasonal time, they can serve as 
sensitive indicators of floral resource availability. 
Since foraging activity responds more quickly 
than colony weight to changing conditions, diel 
amplitude dynamics presage cumulative weight 
dynamics (Meikle et al. 2008, 2016a, b). This 
provides a useful link between the diel and sea-
sonal scales of colony weight analysis.

Another approach to the analysis of diel 
weight patterns is to decompose the within-
day weight patterns into discrete intervals that 
can be summarized with linear slope estimates. 
Meikle et  al. (2018) analyzed diel colony 
weight patterns using segmented regression, 
a technique that algorithmically optimizes the 
placement of nodes along a continuous x-axis, 
then fits linear regressions between nodes such 
that adjacent regression lines are constrained to 
connect at their shared nodes (Muggeo 2008). 
Using this approach, Meikle et al. (2018) esti-
mated the slope of weight change during key 
intervals corresponding to diel behavioral 
patterns, including the loss of weight due to 
departing foragers, the gain of weight due to 
returning foragers, and the loss of weight over-
night due to consumption and evaporation. In 
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a related study, Holst and Meikle (2018) used 
segmented regression to characterize a phe-
nomenon they term the “breakfast canyon” — a 
transient weight loss motif, first described by 
Hambleton (1925), caused by the initial depar-
ture of foragers in the morning. Analysis of diel 
weight patterns by segmented regression also 

indicated that both foraging effort (inferred 
from weight loss due to the initial departure 
foragers in the morning) and the relationship 
between foraging effort and cumulative weight 
gain can differ between colonies deployed for 
pollination in almond and blueberry production 
systems (Meikle et al. 2020).

Figure 1.  When hourly weight series are detrended by subtracting a running average (A), the circadian rhythm of 
diel weight dynamics emerges (B). Figure generated from a subset of data collected in 2018 from Philadelphia, PA, 
USA, with BroodMinder hive scales.
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Segmented regression has also been used to 
estimate the morning forager mass, using three 
parameters from a regression with four break 
points: (1) the slope of the segment from mid-
night until dawn, SN (hive weight change due to 
moisture loss at night); (2) dawn break point tD 
(start of daily foraging activity); and (3) slope 
of the 1st segment after dawn, SM (rate of morn-
ing hive weight change) (Meikle et al. 2022). 
Morning forager mass was corrected for mois-
ture loss thus:

with ΔF being the change in hive weight due 
to forager departure and  tD+1 being the break 
point following the dawn break point tD. A con-
cession was made for unexpected break points: 
if the first break point occurred before 4AM, 
the second break point was used as tD (with no 
restrictions placed on that second estimate) and 
the slope of the third, rather than second seg-
ment was used as SM.

Arias-Calluari et al. (2023) combined mod-
eling and statistical approaches to obtain quanti-
tative information about the foraging success of 
individual bees and the number of active foragers 
using diel colony weight variations. This model 
is based on several parameters that include the 
number of active foragers, the loss of weight due 
to respiration and bee activities, the mass of food 
brought by foragers, and the time spent by forag-
ers outside the hive.

One of the key utilities of diel colony weight 
analysis is detecting discrete events that are 
masked by long-term weight trends or discarded 
as noise at the seasonal time scale. Meikle et al. 
(2016a, b) found that diel weight amplitude is 
sensitive to both swarm events and pesticide-
induced bee kills, each of which results in a 
signature pattern of dampening in diel weight 
fluctuations due to the sudden loss of foragers. 
Similarly, Meikle et al. (2016a, b) and Colin 
et al. (2019) used diel weight amplitude and 
breakfast canyon depth, respectively, as indices 
of sublethal pesticide effects.

(1)ΔF = SM

(

tD+1 − tD

)

− SN

(

tD+1 − tD

)

2.2.  Seasonal weight dynamics

2.2.1.  Background

A colony’s seasonal weight dynamics are con-
strained foremost by regional climate. In temper-
ate and subpolar regions, colony development is 
restricted to a well-defined growing season that 
begins in late winter or early spring and ends with 
the onset of cold temperatures in the fall. In the trop-
ics and subtropics, seasonality is defined more by 
precipitation than by temperature, and drought can 
function analogously to winter. Within the bounds 
of climate, seasonal patterns of hive weight are the 
joint product of colony development and food accu-
mulation, principally honey, with the latter depend-
ing jointly on floral resource availability and the 
foraging strength of the colony (McLellan 1977; 
Meikle et al. 2008). Positive feedback between these 
drivers can be expected to cause strong, and lagged, 
temporal autocorrelation in weight patterns: colo-
nies with abundant food stores can produce more 
foragers, and colonies with more foragers can accu-
mulate more food, provided that sufficient floral 
resources are available (Khoury et al. 2013).

Studies of seasonal weight dynamics address var-
iation across days, typically extending over weeks or 
months, and often involving multiple colonies and 
sites. The key questions for these studies usually 
concern colony survival and productivity, often in 
relation to large-scale patterns of climate, landscape, 
and floral resource phenology. The basic challenge 
of seasonal weight monitoring studies is the valid 
interpretation of complex patterns of colony weight 
change in response to multiple interacting drivers 
and in the context of nested study designs (e.g., colo-
nies within sites within treatments).

2.2.2.  Preprocessing of seasonal colony 
weight data

The issue of data quality emerges frequently 
in seasonal studies of colony weight, largely 
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because of the inevitable tradeoff between data 
quality and data quantity. With multiple hives 
and multiple sites, it quickly becomes impracti-
cal to prevent perturbations that can bias weight 
readings, and studies with high colony replica-
tion must often use cheaper and simpler meas-
urement set-ups that are more prone to erro-
neous readings. In one of the first multi-site, 
seasonal-scale applications of next generation 
weight monitoring, Lecocq et al. (2015) relied 
on collaborating beekeepers to manage 26 colo-
nies distributed across Denmark. An inevita-
ble problem that arises in such a design is the 

introduction of management artifacts in colony 
weight time series due to beekeeping activities 
(see also Sponsler et al. 2020). Lecocq et al. 
(2015) mitigated management artifacts by fil-
tering the first-order difference of the bi-hourly 
time series (i.e., a numerical differentiation, 
subtracting each reading from the previous one) 
using a threshold that represented the maximum 
plausible weight change a colony could experi-
ence over a 2-h interval. This approach was later 
adopted by Sponsler et al. (2020) to address the 
same problem (Figure 2). This simple filtering 
technique also corrects the transient reading 

Figure 2.  This seasonal colony weight series (A) contains level-shift outliers due to a possible swarm event around 
June 5 and the addition of honey supers around June 15, as well as an additive outlier around June 10 likely due to 
transient scale malfunction. By taking the first-order difference (B) of the raw time series, the original level shift out-
liers turn into additive outliers, and the original additive outlier turns into a pair of additive outliers. Applying a filter 
(B) to the differences time series, in this case an absolute value of 2.5 kg, both types of outliers can be removed (C). 
Taking the cumulative sum of the clean differenced series produces an outlier-free and zero-based time series (D) 
that can be used for downstream analysis. Figure generated from a subset of data collected in 2018 from Philadel-
phia, PA, USA, with BroodMinder hive scales.
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errors (additive outliers) that sometimes occur in 
colony weight time series (Sponsler et al. 2020). 
It does not, however, account for potential time-
lagged effects of management on subsequent 
weight dynamics, an issue that remains unad-
dressed by existing methods. In some studies, 
it may also be important to distinguish between 
management artifacts and swarm events, which 
could cause similar downward level-shift outliers 
in a time series; in such cases, close inspection 
of diel amplitude patterns corresponding to the 
outlier event may be informative (Section 2.1).

In contrast to the relatively discrete time series 
generated by daily readings from traditional 
hive scales, next-generation hive scales produce 
smooth, continuous time series with hourly or 
even sub-hourly resolution. In studies of seasonal 
patterns, researchers may find themselves in the 
unusual situation of having much more data than 
they need, which necessitates principled decisions 
about how to summarize time series in a way that 
respects the data-generating process while provid-
ing clear answers to focal research questions. A 
common approach when analyzing between-day 
patterns is to collapse within-day readings into 
a single daily value, like a 25-h running mean 
(Lecocq et al. 2015) or a midnight reading (Smart 
et al. 2017; Sponsler et al. 2020). Such pre-pro-
cessing enables subsequent analyses to focus on 
variation at the scale of interest without also hav-
ing to model cyclical within-day variation.

When extending diel amplitude to the sea-
sonal scale as an indicator of foraging activity 
(Meikle et al. 2008, 2016a, b), one must choose 
appropriate time intervals over which to aggre-
gate diel weight patterns. To fit a sine wave, for 
example, to detrended diel data, a more stable 
fit can be obtained when multiple days of data 
are used to fit the model, but this comes at the 
cost of reduced temporal resolution. In their 
initial application of this method, Meikle et al. 
(2008) fit sine waves to 7-day intervals, resulting 
in weekly amplitude estimates. In a later paper, 
Meikle et al. (2016a, b) compared the seasonal 
dynamics inferred from sine waves fit to 7-, 3-, 
and 1-day intervals and concluded that 3-day 
intervals provide an acceptable compromise 
between stability and temporal resolution.

2.2.3.  Analyzing seasonal colony weight data

Daily weight readings extending over weeks or 
months are complex datasets, and difficult deci-
sions must be made regarding how such datasets 
should be modeled and summarized in the con-
text of a given study. A straightforward approach 
is to reduce a time series to a single estimate of 
overall growth, such as by calculating net (Lecocq 
et al. 2015) or mean (Smart et al. 2017) weight 
change between the first and last readings of 
the season. A limitation of this approach is that 
it ignores the intervening patterns that connect 
the beginning and endpoint. Cumulative weight 
change could be the product of steady increase and 
decrease or alternations of gain and loss, and when 
such patterns are collapsed into a single summary 
value, the opportunity to make inference concern-
ing the processes behind those patterns is forfeited. 
It is not unusual, for example, for a strong colony 
in a rich foraging landscape to succumb rapidly 
to an unmanaged Varroa mite (Varroa destructor) 
infestation late in the year and have its honey stores 
robbed by neighboring colonies. A single value of 
net weight loss for such a colony could easily be 
misinterpreted as an indication of poor resource 
conditions in the surrounding landscape.

A more nuanced approach is to break a weight 
series down into time periods of interest and focus 
on net weight change across these focal intervals 
(Quinlan et al. 2022). This retains the simplicity 
of single-value indices of weight change, but it 
respects the seasonal structure of colony weight 
dynamics. Focal intervals can be designated a pri-
ori (e.g., weight change during May) or they can be 
determined empirically by identifying meaningful 
discontinuities in the seasonal time series, either 
informally by visual inspection of weight curves or 
by more formal methods such as segmented regres-
sion, as discussed previously in the context of diel 
weight dynamics.

Alternatively, one can embrace the continuous 
nature of colony weight time series and model 
them accordingly, albeit at the cost of added model 
complexity. Generalized additive models (GAMs) 
are especially promising as a unifying modeling 
framework for handling colony weight time series 
(Sponsler et al. 2020), but their application to such 
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studies is still in its infancy. Unlike conventional 
regression-based techniques, GAMs model data 
as a smooth process using flexible splines to cap-
ture nonlinear patterns while penalizing spline 
complexity to avoid overfitting (Hastie and Tib-
shirani 1990). This aligns well with the goals of 
seasonal colony weight analysis, where the chal-
lenge is typically to extract the smooth processes 
of floral resource phenology and colony develop-
ment from amid the noise of daily variation due 
to effectively stochastic processes like weather 
fluctuation. GAMs can also accommodate hierar-
chical data structures (Pedersen et al. 2019), with 
smooth functions within groups (e.g., hives, sites) 
modeled as deviations from a global smooth func-
tion (Figure 3).

Depending on the hive scale used and its man-
ner of installation in the field, inaccuracies in the 
absolute value of weight readings can emerge. 
Some hive scales, for example, are sensitive to a 
hive’s internal weight distribution or to the lev-
elness of the hive stand. These factors can vary 
across hives and sites and confound inferences 
based on absolute weight readings. Analyses 
that focus on the direction of weight change 
rather than on comparisons of absolute weight 
across hives are robust to this kind of data qual-
ity issue and can yield clear inferences about 
the timing of nectar flow and dearth periods 
(Sponsler et al. 2020). Additionally, quality of 
scales is variable, often directly related to scale 
cost. Less expensive scales may have batteries 
that exhaust more quickly or have lower storage 
capacity compared to more expensive scales. 
When selecting a scale type for long-term data 
analysis, these considerations are important.

3.  CHALLENGES 
AND OPPORTUNITIES

Colony weight monitoring is now well-
established among both researchers and beekeepers, 
but there remain salient challenges and opportunities 
to be addressed by future work. We group these 
under four overarching topics: (1) analyzing weight 
dynamics across environmental gradients, (2) 
integrating weight with environmental models, 

(3) linking weight to other colony monitoring 
technologies, and (4) applying colony weight 
monitoring in commercial beekeeping operations.

3.1.  Weight dynamics across 
environmental gradients

Honey bee colony weight dynamics are 
influenced by biotic and abiotic conditions that 
differ based on colony location. Researchers may 
deploy hive scales along a gradient of environmental 
variables such as agricultural land use, urban–rural 
gradients, or elevation. Colony weight may then be 
assessed with patterns of land use change or large-
scale regional weather and climate trends. Factors 
including nectar flow and colony productivity could 
then be compared across a gradient or suite of land 
use conditions or to describe and predict regional or 
national variation in such metrics. Remote weight 
monitoring promotes opportunities for large-scale 
comparisons of weight change, as demonstrated in a 
multi-state study in the Northcentral US, integrating 
the effects of climate, weather, and landscape on 
colony weight (Quinlan et al. 2022). A similar 
study aimed to assess landscape influences on 
food collection and colony weight change, with 
focus on weather and forest structure (Czekońska 
et al. 2023). Furthermore, temporal variation of 
nectar flows along elevational gradients could 
be detected with colony weight monitoring 
(Vansell 1928; Bayir and Albayrak 2016). These 
data could be used to investigate the influence 
of elevation on the phenological timing of plant-
pollinator interactions and investigate the effects of 
climate on these dynamics.

Because climate and weather can have direct 
effects on colonies through the constraint of for-
aging activity, as well as indirect effects via flo-
ral resource availability, both must be considered 
when drawing conclusions from colony weight 
data (Mao and Huang 2009; Sun et al. 2015; 
Ziska et al. 2016; Lawson and Rands 2019). 
Weather and climate condition the ability of 
bees to forage, as bees do not fly when local 
weather conditions are cold or rainy, and climate 
drives these trends over years. Previous work has 
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demonstrated that changing climates modify flo-
ral resources by shifting bloom periods (Rafferty 
et al. 2016) and altering nectar and pollen output 

(Scaven and Rafferty 2013). Colony weight mon-
itoring could be used to identify how floral phe-
nology and active periods are shifting over time.

Figure 3.  Seasonal weight monitoring studies often involve the replication of hives within sites (A), causing non-
independence both between measurement-within-hive and hives-within-site. Hierarchical GAMs can simultaneously 
estimate smooth across hierarchical data structures, such as site (B) and colony (C–E). Figure generated from a sub-
set of data collected in 2018 from Philadelphia, PA, USA, with BroodMinder hive scales.
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3.2.  Integration of weight and 
environmental models

Hive scale monitoring offers a promising 
avenue to collect the data required to address 
the interacting effects of climate, weather, and 
the environment on colony dynamics. The inte-
gration of environmental models with in-hive 
metrics could be used to make predictions that 
support pollinators and beekeepers.

Changes in colony weight could be used to model 
relationships between foraging, colony size, and 
resource acquisition. In plant systems, a “growing 
degree day” metric is used to predict plant growth 
and development under particular weather conditions. 
Developing the concept of “foraging degree days” as 
a weather-based measure of suitable foraging periods 
could be used in beekeeping to better assess floral 
availability (Szabo and Lefkovitch 1990). These 
models could help to make more accurate estimates 
of landscape-level resource availability by comparing 
foraging degree days with realized floral resources. 
If a colony has ample opportunity to forage, as deter-
mined by foraging degree days, but collects less than 
expected, it might indicate limited floral availability 
on the landscape.

The integration of colony weight monitoring 
with weather and climate models could elucidate 
the short and long-term effects of these factors 
on colony weight. The lagged effects of annual 
weather conditions on colony weight could be 
better understood by integrating rainfall and tem-
perature models with colony weight. Addition-
ally, weight data could be analyzed with climate 
models to assess how climate trends are impact-
ing colony weight over multiple years.

Beekeepers could benefit by using results from 
these models in their management practices. By mod-
eling foraging degree days, beekeepers could more 
accurately anticipate key events and manage swarms, 
supplemental feeding, or honey harvesting accord-
ingly. In addition, occasional periods of dearth may 
be exacerbated by factors such as seasonal or annual 
drought conditions. In these cases, colonies may 
require supplemental feeding provided by beekeep-
ers to persist in certain locations and to limit the det-
rimental effects of robbing behavior among colonies 
(Downs and Ratnieks 2000).

3.3.  Linking weight to other in-hive 
sensors

Due to the high labor and financial costs 
associated with the maintenance of honey bee 
colonies, research often suffers from insufficient 
colony-level sample sizes. One way to strengthen 
scientific findings is to verify that the changes 
expected in a hive are detected across multiple 
indicator variables (Meikle and Holst 2015). 
Hive weight, temperature, humidity,  CO2 con-
centrations, and bee activity can be expected to 
respond concomitantly to changes in the envi-
ronment or treatments (Meikle et al. 2022). The 
intensity and timing of the response are likely to 
vary, but because many of these variables depend 
on each other or on similar processes within the 
hives, strong effects on multiple variables should 
often be observable.

3.3.1.  Temperature

Slow and long-lasting changes in temperature 
regulation concomitant with changes in weight 
are expected in unhealthy hives that are unable to 
grow or maintain a sufficient adult bee population. 
Small colonies struggle to regulate temperature 
and accumulate resources (Colin et al. 2021), and 
very small colonies usually diminish in size until 
they die, unless a beekeeper intervenes (Dennis 
and Kemp 2016). In such cases, both temperature 
regulation and weight gain are expected to further 
decrease as the population of each new generation 
of workers shrinks.

Concomitant hive weight and temperature 
changes may also be expected when the tem-
perature within the hive exceeds what workers 
consider ideal. In most temperate areas, water 
is readily available, and bees often collect water 
promptly (Jones and Oldroyd 2006). Thus, fol-
lowing spikes in temperature, high precision 
scales may record a rapid increase in weight 
and relative humidity as bees collect water for 
evaporative cooling. As the hive returns to the 
ideal temperature range, any weight increase due 
to rapid water foraging should cease and weight 
may decrease due to evaporation. In hot weather, 
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a lack of rapid weight increase due to water col-
lection could indicate that bees are unable to 
source water which may lead to death by over-
heating. If weight increase associated with water 
collection can be detected using hive scales, they 
could be the basis for warning systems in hot and 
arid areas or during heat waves.

3.3.2.  CO2

Analyzing  CO2 concentration together with 
weight could accelerate research focusing on 
the regulation of  CO2 within hives.  CO2 produc-
tion increases with metabolism (Heinrich 1981), 
so  CO2 concentration may reflect the number of 
individuals in a colony, changes in bee activity, 
or basal metabolism (Meikle et al. 2022). During 
the active foraging season, weight variations are 
mostly affected by nectar evaporation and forag-
ing activity (Meikle et al. 2018), which makes 
the detection of food consumption using scales 
difficult. Rainy days could be used to study  CO2 
variations in relation with weight loss as bees 
generally stay in the hive in these conditions.

In winter, bees consume the honey stores they 
were accumulated during summer which drives 
weight change. Food consumption varies accord-
ing to various factors, including colony size, out-
door temperature, and possibly breeds and sub-
species (Norrström et al. 2021). This should ease 
comparisons of the  CO2 concentration expected 
from weight loss due to food consumption to 
actual concentrations of  CO2. This would allow 
the determination of basic but crucial data on 
the regulation of  CO2 concentrations, which may 
play a role in the maintenance of overwintering 
dormancy (Van Nerum and Buelens 1997).

3.3.3.  RFID

RFID (radio-frequency identification) and 
QR code (quick response code) technologies 
can track the time at which bees enter and leave 
the hive (Odemer 2022). Individual bees can be 
fitted with tags that contain a unique identifier, 
glued onto their thorax. This, combined with an 

antenna for RFID systems or a camera for QR 
code systems, allows to determine the times at 
which a bee leaves the hive and comes back. 
When enough bees are tagged, the changes in 
departures and arrivals can be compared to hive 
weight variations. RFID methods, in particular, 
are now well-established and can be deployed in 
the field (Colin et al. 2022). The combination of 
these data with hive weight has the potential to 
confirm predictions that have been made about 
bee foraging (Arias-Calluari et al. 2023).

Colonies lose weight in the morning due to a 
greater number of foragers departing than returning 
for the first few hours after sunrise (Meikle 
et al. 2018). Maximum morning weight loss and 
the rate of weight change have been used to indicate 
hive activity; however, these variables may be 
affected by other factors. First, bees commonly 
remove waste in the morning (Winston 1987), 
resulting in bees departing the hive that weigh 
more than their body weight. Second, the average 
foraging time, trip frequency, and foraging success 
should influence the rate of weight change and the 
maximum weight loss since the onset of foraging. 
Rapid weight loss could indicate not only the 
presence of diseases increasing waste production 
but also higher foraging activity. Low maximum 
weight loss since the onset of foraging could 
indicate low foraging activity due to a lack of 
foragers, poor foraging conditions, or the presence 
of abundant food near the hive.

These questions could be answered by analyz-
ing the common patterns of hive weight changes 
in combination with data from individual bees 
equipped with RFID or QR code tags from hives 
at different locations. Estimates of the number of 
bees within colonies, of floral resources around 
the hives, and measures of daily weight change 
and of the foraging history of a few bees could be 
combined to better understand which factors con-
tribute most to patterns of daily weight changes. 
The use of a camera near the entrance may allow, 
in the future, to further analyze the changes in 
hive weight in terms of bee behaviors. It may help 
determine more cryptic causes of weight varia-
tions, such as undertaking and water evaporation 
through fanning, and to differentiate weight gain 
resulting from pollen or nectar foraging.
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3.4.  Weight monitoring as a tool for 
commercial beekeeping operations

Commercial beekeepers manage hundreds or 
thousands of colonies, often with a high ratio 
of colonies per beekeeper, making it difficult 
to closely monitor all hives through the season. 
Real-time analysis of changes in daily weight 
variations and overall trends could be used to 
build health warning tools to support manage-
ment decisions in commercial operations. Hives 
experiencing consistent or sudden weight losses 
and reduced foraging activity at times where they 
are expected to access ample forage could serve 
as early indicators of colony failure and give 
beekeepers more time to intervene to maintain 
colony strength.

Almond trees located in the central valleys of 
California bloom in early spring (February–March) 
and most varieties require cross-pollination to set 
seed. Beekeepers in the USA relocate millions 
of colonies to California each spring to satisfy 
the demand for pollination in almonds. Previous 
work has shown that continuous weight monitor-
ing can be used to assess colony foraging effort in 
the fulfillment of pollination contracts in almond 
orchards (Meikle et al. 2020). In addition to assess-
ing colony performance, colony weight monitoring 
could be used as a tool prior to contracted polli-
nation to assess colony readiness. Weight moni-
toring could be added to a regimen to aid in the 
assessment of colony population size and health 
before transportation to California and could assist 
beekeepers in the selection of the best colonies to 
send to pollination. Migratory beekeeping is asso-
ciated with stressors such as transportation, nutri-
tion, pests and pathogens, and pesticides (Bruckner 
et al. 2022; Simone-Finstrom et al. 2016). Hive 
scales could be used as a tool to monitor the effects 
of these various sources of colony stress. Continu-
ous colony monitoring before, during, and after 
pollination service would allow comparison with 
colonies not moved for pollination to identify key 
differences in colony growth and performance 
associated with migratory beekeeping and pollina-
tion. Additionally, weight data can be used to pro-
vide information on Varroa destructor population 
dynamics. Onset of brood rearing, detectable with 

hive scales, is closely tied to season-long Varroa 
infestation levels, permitting beekeepers to take 
early action toward mite control.

Indoor overwintering of commercial 
honey bee colonies in temperate climates 
has been conducted for more than 100 years 
(Doolittle  1902; McCutcheon  1984) to 
improve overwintering survival and, more 
recently, in preparation to meet early spring 
pollination contracts for almonds in California. 
Overwintering colonies in temperature-
controlled facilities offers an attractive means 
for providing the larger colony population sizes 
sought after by almond growers (DeGrandi-
Hoffman et al. 2019) as well as for beekeepers 
living in northern latitudes with very cold 
winters (Hopkins et  al.  2021). The addition 
of weight monitoring to indoor overwintering 
operations presents an opportunity to deliver 
more successful colonies to spring pollination 
contracts. Continuous weight monitoring could 
serve as an early indicator of trouble in colonies, 
alerting beekeepers of insufficient food stores or 
low colony population sizes.

4.  CONCLUSION

Colony weight monitoring exploits the pre-
dictable patterns of daily and seasonal honey 
bee colony dynamics to better understand colony 
health and behavior. Through the introduction 
of next-generation weight monitoring, research-
ers can ask questions at spatial and temporal 
scales that were previously impossible. Here, we 
review the existing literature on next-generation 
weight monitoring, exploring the differences in 
methods for diel and running weight analyses. 
By outlining the procedures and methods that 
have been developed for each type of data, we 
provide a tool for those wishing to use hive 
scales in research. We look forward at where we 
believe there is research opportunity, highlight-
ing questions that can be asked and biological 
phenomena that can be assessed with colony 
weight monitoring, as well as opportunities for 
developing methods to better support the needs 
of commercial beekeepers.
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