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Abstract — Healthy honey bee colonies follow predictable patterns of weight change through the season, gaining
weight when resources are abundant and losing weight during periods of scarcity. Divergence from this pattern
can indicate trouble in the colony, necessitating beekeeper intervention. While colony weight monitoring has
long been used to evaluate colony progress and diagnose potential problems, research has been limited by the
labor associated with manual weight measurements. The introduction of next generation colony weight moni-
toring permits the collection of hive weight data continuously and remotely, enhancing the range of questions
that can be answered with these data. However, there is currently no central guide for researchers aiming to use
hive scales in their research. Here, we review the literature and describe current methods used to process and
analyze within-day, or diel, and seasonal colony weight changes. Diel weight dynamics are based around the
circadian rhythm of the colony, resulting from the departure and arrival of foragers and the intake, consumption,
and dehydration of food stores. Seasonal weight dynamics can be used to assess colony survival and productiv-
ity, often in relation to large-scale patterns of climate, landscape, and floral resource phenology. In addition to
describing methods, we highlight future applications of hive weight monitoring, including monitoring weight
across ecological gradients and physiological time, coupling of weight monitoring with other colony monitoring
techniques, and the practical use of weight monitoring in commercial beekeeping operations. This paper serves
as a tool for those wishing to conduct research using colony weight monitoring, and guides the future of remote
weight monitoring in honey bee research.

hive scale / honey bee / Apis / pollinator / apiculture

1. INTRODUCTION

Happy families are all alike; every
unhappy family is unhappy in its own way.
~Leo Tolstoy (1878), Anna Karenina
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While Tolstoy presumably had human
families in mind, it is perhaps not incidental
that, as a beekeeper, he was well acquainted
with another sort of family for which his insight
is equally true. The diverse ailments of honey
bee colonies lead to vast pathological possibility
(Genersch 2010), but healthy colonies are,
broadly speaking, all alike. In particular, healthy
colonies gain weight during favorable conditions,
and heavy colonies survive unfavorable
conditions (Ddke et al. 2019).

The estimation of weight as an integrative
index of colony health and productivity is a
standard practice among beekeepers that pre-
dates modern weighing technology. In its most
basic form, a hive is gently tipped in such a way
that an experienced beekeeper can infer whether
the colony is relatively strong or weak for a
given time of year in comparison to its neigh-
bors. Such qualitative assessment can serve as
a quick, though coarse, guide for management
decisions in situations that preclude detailed
colony inspection.

With the advent of modern weighing devices,
however, it became feasible to quantify hive weight
and explore more refined questions about colony
health and its relationship to internal and external
conditions. In one of the first rigorous applications
of colony weight monitoring, Hambleton (1925)
used hive scales to investigate the role of weather
in constraining the ability of honey bees to
exploit floral resources. Notably, he remarks that
the use of hive scales to track patterns of honey
production was already widespread among “‘the
best” beekeepers of his time (Hambleton 1925).
Other investigators followed suit, using hive
scales to study patterns of honey production and
their dependency on conditions within and outside
the hive (Mitchener 1947, 1955; McLellan 1977,
Szabo and Lefkovitch 1990). These early studies
were limited, though, by the mechanical platform
scales available at the time, which require a
human observer to record each weight reading.
This necessity severely constrained the number
of colonies and locations that could be monitored
simultaneously and imposed a strict tradeoff
between colony replication and measurement
frequency.
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In response to these shortcomings of
traditional hive scales, Buchmann and Thoenes
(1990) introduced the use of electronic hive
scales coupled to data loggers to automate the
recording of colony weight data, dramatically
increasing both the resolution and the scale at
which questions of colony weight dynamics
could be explored. This approach was later
adopted (Thoenes and Buchmann 1992) and
refined (Meikle et al. 2006), establishing
the suite of methodologies we term ‘“next-
generation” colony weight monitoring.

Since these pioneering studies, next-
generation colony weight monitoring has been
applied in a variety of research contexts with a
growing range of methodological adaptations
and extensions. Our objective in this review
is to synthesize existing methods of next-
generation colony weight monitoring, providing
an organized toolkit for prospective users. We
then identify opportunities for refining weight
monitoring methods and extending their
application to new scientific questions.

2. EXISTING TECHNIQUES
AND APPLICATIONS

Colony weight monitoring techniques can be
organized into two basic categories: those con-
cerned with diel (within-day) weight dynam-
ics and those concerned with seasonal weight
dynamics. Each category is suited to certain
kinds of research questions, and each poses dis-
tinct challenges.

2.1. Diel weight dynamics
2.1.1. Background

The basis of diel colony weight dynamics is
the circadian rhythm of the honey bee colony.
Each morning, foragers leave the nest en masse,
causing an initial decrease in hive weight that
is subsequently reversed as they return to the
nest laden with nectar and pollen (Holst and
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Meikle 2018). Nectar is dehydrated to form
honey, first actively by the house bees to which
it is transferred and later passively in the comb,
causing a gradual loss of weight (Park 1925).
Pollen is stored in the colony as bee bread and
contributes minimally to weight fluctuation
(Anderson et al. 2014). Nectar, honey, pollen,
and bee bread are consumed throughout the
day, resulting in some weight loss through res-
piration and defecation. Overall weight change
during the day is, thus, an additive result of the
departure and arrival of foragers and the intake,
consumption, and dehydration of food stores.
Daily weight normally peaks at dusk when all
surviving foragers return to the nest and add
their weight to that of the remaining colony. The
processes of dehydration and consumption, how-
ever, continue through the night, and hive weight
reaches a minimum with the initial departure of
foragers the next day.

Studies of diel weight dynamics analyze pat-
terns at the scale of minutes or hours, and they are
usually focused on questions of how colony-level
behavior is reflected in weight changes. Weight
monitoring, much like the waggle dance, provides
a window into the “social physiology” of the honey
bee colony (Seeley 1995). The basic challenge of
diel weight monitoring studies is the detection and
interpretation of subtle signals amid the noisy vari-
ation of within-day colony weight.

2.1.2. Preprocessing of diel colony weight data

When analyzing diel weight dynamics, seasonal
trends in colony weight can obscure the hourly or
sub-hourly within-day patterns that are the basis of
inference. In general, the first step in diel weight
analysis is to detrend each colony weight time
series by subtracting a daily running average from
each individual weight reading, thus isolating the
circadian component of colony weight dynamics
(Meikle et al. 2006, 2008). Hourly time series,
for example, can be detrended by subtracting
from each weight reading a 25-h running average
(including the focal reading and the adjacent 12
hourly readings before and after it) (Figure 1).
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One difficulty in modeling within-day weight
changes is the sensitivity of the data to sources
of extraneous variation, whether due to known
sources such as precipitation or hive manipula-
tions or due to unknown sources such as possible
equipment failures. Recording data frequently,
such as every 5 min, makes errors relatively easy
to detect. This is because weight changes due to
colony behavior in short time frames are usually
small. However, frequent data collection results
in large data sets which can be more computa-
tionally demanding to analyze.

2.1.3. Analyzing diel colony weight data

The circadian periodicity of detrended hive
weights allows them to be modeled as cyclical
functions of time. Meikle et al. (2008) modeled
detrended colony weights using simple sine func-
tions and extracted amplitudes as an index of col-
ony foraging activity. When diel amplitudes are
analyzed over seasonal time, they can serve as
sensitive indicators of floral resource availability.
Since foraging activity responds more quickly
than colony weight to changing conditions, diel
amplitude dynamics presage cumulative weight
dynamics (Meikle et al. 2008, 2016a, b). This
provides a useful link between the diel and sea-
sonal scales of colony weight analysis.

Another approach to the analysis of diel
weight patterns is to decompose the within-
day weight patterns into discrete intervals that
can be summarized with linear slope estimates.
Meikle et al. (2018) analyzed diel colony
weight patterns using segmented regression,
a technique that algorithmically optimizes the
placement of nodes along a continuous x-axis,
then fits linear regressions between nodes such
that adjacent regression lines are constrained to
connect at their shared nodes (Muggeo 2008).
Using this approach, Meikle et al. (2018) esti-
mated the slope of weight change during key
intervals corresponding to diel behavioral
patterns, including the loss of weight due to
departing foragers, the gain of weight due to
returning foragers, and the loss of weight over-
night due to consumption and evaporation. In
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Figure 1. When hourly weight series are detrended by subtracting a running average (A), the circadian rhythm of
diel weight dynamics emerges (B). Figure generated from a subset of data collected in 2018 from Philadelphia, PA,

USA, with BroodMinder hive scales.

a related study, Holst and Meikle (2018) used
segmented regression to characterize a phe-
nomenon they term the “breakfast canyon” — a
transient weight loss motif, first described by
Hambleton (1925), caused by the initial depar-
ture of foragers in the morning. Analysis of diel
weight patterns by segmented regression also
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indicated that both foraging effort (inferred
from weight loss due to the initial departure
foragers in the morning) and the relationship
between foraging effort and cumulative weight
gain can differ between colonies deployed for
pollination in almond and blueberry production
systems (Meikle et al. 2020).
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Segmented regression has also been used to
estimate the morning forager mass, using three
parameters from a regression with four break
points: (1) the slope of the segment from mid-
night until dawn, Sy (hive weight change due to
moisture loss at night); (2) dawn break point ¢,
(start of daily foraging activity); and (3) slope
of the 1st segment after dawn, S, (rate of morn-
ing hive weight change) (Meikle et al. 2022).
Morning forager mass was corrected for mois-
ture loss thus:

AF = Sy (tpey —tp) = Sy (tp1 — 1p) (1)

with AF being the change in hive weight due
to forager departure and tp,; being the break
point following the dawn break point #;,. A con-
cession was made for unexpected break points:
if the first break point occurred before 4AM,
the second break point was used as 7, (with no
restrictions placed on that second estimate) and
the slope of the third, rather than second seg-
ment was used as S,,.

Arias-Calluari et al. (2023) combined mod-
eling and statistical approaches to obtain quanti-
tative information about the foraging success of
individual bees and the number of active foragers
using diel colony weight variations. This model
is based on several parameters that include the
number of active foragers, the loss of weight due
to respiration and bee activities, the mass of food
brought by foragers, and the time spent by forag-
ers outside the hive.

One of the key utilities of diel colony weight
analysis is detecting discrete events that are
masked by long-term weight trends or discarded
as noise at the seasonal time scale. Meikle et al.
(20164a, b) found that diel weight amplitude is
sensitive to both swarm events and pesticide-
induced bee kills, each of which results in a
signature pattern of dampening in diel weight
fluctuations due to the sudden loss of foragers.
Similarly, Meikle et al. (2016a, b) and Colin
et al. (2019) used diel weight amplitude and
breakfast canyon depth, respectively, as indices
of sublethal pesticide effects.
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2.2. Seasonal weight dynamics
2.2.1. Background

A colony’s seasonal weight dynamics are con-
strained foremost by regional climate. In temper-
ate and subpolar regions, colony development is
restricted to a well-defined growing season that
begins in late winter or early spring and ends with
the onset of cold temperatures in the fall. In the trop-
ics and subtropics, seasonality is defined more by
precipitation than by temperature, and drought can
function analogously to winter. Within the bounds
of climate, seasonal patterns of hive weight are the
joint product of colony development and food accu-
mulation, principally honey, with the latter depend-
ing jointly on floral resource availability and the
foraging strength of the colony (McLellan 1977,
Meikle et al. 2008). Positive feedback between these
drivers can be expected to cause strong, and lagged,
temporal autocorrelation in weight patterns: colo-
nies with abundant food stores can produce more
foragers, and colonies with more foragers can accu-
mulate more food, provided that sufficient floral
resources are available (Khoury et al. 2013).

Studies of seasonal weight dynamics address var-
iation across days, typically extending over weeks or
months, and often involving multiple colonies and
sites. The key questions for these studies usually
concern colony survival and productivity, often in
relation to large-scale patterns of climate, landscape,
and floral resource phenology. The basic challenge
of seasonal weight monitoring studies is the valid
interpretation of complex patterns of colony weight
change in response to multiple interacting drivers
and in the context of nested study designs (e.g., colo-
nies within sites within treatments).

2.2.2. Preprocessing of seasonal colony
weight data

The issue of data quality emerges frequently
in seasonal studies of colony weight, largely

INRAZ $D|B @Springer
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because of the inevitable tradeoff between data
quality and data quantity. With multiple hives
and multiple sites, it quickly becomes impracti-
cal to prevent perturbations that can bias weight
readings, and studies with high colony replica-
tion must often use cheaper and simpler meas-
urement set-ups that are more prone to erro-
neous readings. In one of the first multi-site,
seasonal-scale applications of next generation
weight monitoring, Lecocq et al. (2015) relied
on collaborating beekeepers to manage 26 colo-
nies distributed across Denmark. An inevita-
ble problem that arises in such a design is the
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introduction of management artifacts in colony
weight time series due to beekeeping activities
(see also Sponsler et al. 2020). Lecocq et al.
(2015) mitigated management artifacts by fil-
tering the first-order difference of the bi-hourly
time series (i.e., a numerical differentiation,
subtracting each reading from the previous one)
using a threshold that represented the maximum
plausible weight change a colony could experi-
ence over a 2-h interval. This approach was later
adopted by Sponsler et al. (2020) to address the
same problem (Figure 2). This simple filtering
technique also corrects the transient reading

C

A Weight (kg)

-1.0

Jun04 Jun11 Juni8 Jun25 Jul 02

Weight (kg)

Jun04 Juni1 Juni8 Jun25 Jul 02

Figure 2. This seasonal colony weight series (A) contains level-shift outliers due to a possible swarm event around
June 5 and the addition of honey supers around June 15, as well as an additive outlier around June 10 likely due to
transient scale malfunction. By taking the first-order difference (B) of the raw time series, the original level shift out-
liers turn into additive outliers, and the original additive outlier turns into a pair of additive outliers. Applying a filter
(B) to the differences time series, in this case an absolute value of 2.5 kg, both types of outliers can be removed (C).
Taking the cumulative sum of the clean differenced series produces an outlier-free and zero-based time series (D)
that can be used for downstream analysis. Figure generated from a subset of data collected in 2018 from Philadel-

phia, PA, USA, with BroodMinder hive scales.
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errors (additive outliers) that sometimes occur in
colony weight time series (Sponsler et al. 2020).
It does not, however, account for potential time-
lagged effects of management on subsequent
weight dynamics, an issue that remains unad-
dressed by existing methods. In some studies,
it may also be important to distinguish between
management artifacts and swarm events, which
could cause similar downward level-shift outliers
in a time series; in such cases, close inspection
of diel amplitude patterns corresponding to the
outlier event may be informative (Section 2.1).

In contrast to the relatively discrete time series
generated by daily readings from traditional
hive scales, next-generation hive scales produce
smooth, continuous time series with hourly or
even sub-hourly resolution. In studies of seasonal
patterns, researchers may find themselves in the
unusual situation of having much more data than
they need, which necessitates principled decisions
about how to summarize time series in a way that
respects the data-generating process while provid-
ing clear answers to focal research questions. A
common approach when analyzing between-day
patterns is to collapse within-day readings into
a single daily value, like a 25-h running mean
(Lecocq et al. 2015) or a midnight reading (Smart
et al. 2017; Sponsler et al. 2020). Such pre-pro-
cessing enables subsequent analyses to focus on
variation at the scale of interest without also hav-
ing to model cyclical within-day variation.

When extending diel amplitude to the sea-
sonal scale as an indicator of foraging activity
(Meikle et al. 2008, 20164, b), one must choose
appropriate time intervals over which to aggre-
gate diel weight patterns. To fit a sine wave, for
example, to detrended diel data, a more stable
fit can be obtained when multiple days of data
are used to fit the model, but this comes at the
cost of reduced temporal resolution. In their
initial application of this method, Meikle et al.
(2008) fit sine waves to 7-day intervals, resulting
in weekly amplitude estimates. In a later paper,
Meikle et al. (2016a, b) compared the seasonal
dynamics inferred from sine waves fit to 7-, 3-,
and 1-day intervals and concluded that 3-day
intervals provide an acceptable compromise
between stability and temporal resolution.
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2.2.3. Analyzing seasonal colony weight data

Daily weight readings extending over weeks or
months are complex datasets, and difficult deci-
sions must be made regarding how such datasets
should be modeled and summarized in the con-
text of a given study. A straightforward approach
is to reduce a time series to a single estimate of
overall growth, such as by calculating net (Lecocq
et al. 2015) or mean (Smart et al. 2017) weight
change between the first and last readings of
the season. A limitation of this approach is that
it ignores the intervening patterns that connect
the beginning and endpoint. Cumulative weight
change could be the product of steady increase and
decrease or alternations of gain and loss, and when
such patterns are collapsed into a single summary
value, the opportunity to make inference concern-
ing the processes behind those patterns is forfeited.
It is not unusual, for example, for a strong colony
in a rich foraging landscape to succumb rapidly
to an unmanaged Varroa mite (Varroa destructor)
infestation late in the year and have its honey stores
robbed by neighboring colonies. A single value of
net weight loss for such a colony could easily be
misinterpreted as an indication of poor resource
conditions in the surrounding landscape.

A more nuanced approach is to break a weight
series down into time periods of interest and focus
on net weight change across these focal intervals
(Quinlan et al. 2022). This retains the simplicity
of single-value indices of weight change, but it
respects the seasonal structure of colony weight
dynamics. Focal intervals can be designated a pri-
ori (e.g., weight change during May) or they can be
determined empirically by identifying meaningful
discontinuities in the seasonal time series, either
informally by visual inspection of weight curves or
by more formal methods such as segmented regres-
sion, as discussed previously in the context of diel
weight dynamics.

Alternatively, one can embrace the continuous
nature of colony weight time series and model
them accordingly, albeit at the cost of added model
complexity. Generalized additive models (GAMs)
are especially promising as a unifying modeling
framework for handling colony weight time series
(Sponsler et al. 2020), but their application to such
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studies is still in its infancy. Unlike conventional
regression-based techniques, GAMs model data
as a smooth process using flexible splines to cap-
ture nonlinear patterns while penalizing spline
complexity to avoid overfitting (Hastie and Tib-
shirani 1990). This aligns well with the goals of
seasonal colony weight analysis, where the chal-
lenge is typically to extract the smooth processes
of floral resource phenology and colony develop-
ment from amid the noise of daily variation due
to effectively stochastic processes like weather
fluctuation. GAMs can also accommodate hierar-
chical data structures (Pedersen et al. 2019), with
smooth functions within groups (e.g., hives, sites)
modeled as deviations from a global smooth func-
tion (Figure 3).

Depending on the hive scale used and its man-
ner of installation in the field, inaccuracies in the
absolute value of weight readings can emerge.
Some hive scales, for example, are sensitive to a
hive’s internal weight distribution or to the lev-
elness of the hive stand. These factors can vary
across hives and sites and confound inferences
based on absolute weight readings. Analyses
that focus on the direction of weight change
rather than on comparisons of absolute weight
across hives are robust to this kind of data qual-
ity issue and can yield clear inferences about
the timing of nectar flow and dearth periods
(Sponsler et al. 2020). Additionally, quality of
scales is variable, often directly related to scale
cost. Less expensive scales may have batteries
that exhaust more quickly or have lower storage
capacity compared to more expensive scales.
When selecting a scale type for long-term data
analysis, these considerations are important.

3. CHALLENGES
AND OPPORTUNITIES

Colony weight monitoring is now well-
established among both researchers and beekeepers,
but there remain salient challenges and opportunities
to be addressed by future work. We group these
under four overarching topics: (1) analyzing weight
dynamics across environmental gradients, (2)
integrating weight with environmental models,
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(3) linking weight to other colony monitoring
technologies, and (4) applying colony weight
monitoring in commercial beekeeping operations.

3.1. Weight dynamics across
environmental gradients

Honey bee colony weight dynamics are
influenced by biotic and abiotic conditions that
differ based on colony location. Researchers may
deploy hive scales along a gradient of environmental
variables such as agricultural land use, urban—rural
gradients, or elevation. Colony weight may then be
assessed with patterns of land use change or large-
scale regional weather and climate trends. Factors
including nectar flow and colony productivity could
then be compared across a gradient or suite of land
use conditions or to describe and predict regional or
national variation in such metrics. Remote weight
monitoring promotes opportunities for large-scale
comparisons of weight change, as demonstrated in a
multi-state study in the Northcentral US, integrating
the effects of climate, weather, and landscape on
colony weight (Quinlan et al. 2022). A similar
study aimed to assess landscape influences on
food collection and colony weight change, with
focus on weather and forest structure (Czekonska
et al. 2023). Furthermore, temporal variation of
nectar flows along elevational gradients could
be detected with colony weight monitoring
(Vansell 1928; Bayir and Albayrak 2016). These
data could be used to investigate the influence
of elevation on the phenological timing of plant-
pollinator interactions and investigate the effects of
climate on these dynamics.

Because climate and weather can have direct
effects on colonies through the constraint of for-
aging activity, as well as indirect effects via flo-
ral resource availability, both must be considered
when drawing conclusions from colony weight
data (Mao and Huang 2009; Sun et al. 2015;
Ziska et al. 2016; Lawson and Rands 2019).
Weather and climate condition the ability of
bees to forage, as bees do not fly when local
weather conditions are cold or rainy, and climate
drives these trends over years. Previous work has
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Figure 3. Seasonal weight monitoring studies often involve the replication of hives within sites (A), causing non-
independence both between measurement-within-hive and hives-within-site. Hierarchical GAMs can simultaneously
estimate smooth across hierarchical data structures, such as site (B) and colony (C-E). Figure generated from a sub-
set of data collected in 2018 from Philadelphia, PA, USA, with BroodMinder hive scales.

demonstrated that changing climates modify flo-
ral resources by shifting bloom periods (Rafferty
et al. 2016) and altering nectar and pollen output

(Scaven and Rafferty 2013). Colony weight mon-
itoring could be used to identify how floral phe-
nology and active periods are shifting over time.
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3.2. Integration of weight and
environmental models

Hive scale monitoring offers a promising
avenue to collect the data required to address
the interacting effects of climate, weather, and
the environment on colony dynamics. The inte-
gration of environmental models with in-hive
metrics could be used to make predictions that
support pollinators and beekeepers.

Changes in colony weight could be used to model
relationships between foraging, colony size, and
resource acquisition. In plant systems, a “growing
degree day” metric is used to predict plant growth
and development under particular weather conditions.
Developing the concept of “foraging degree days” as
a weather-based measure of suitable foraging periods
could be used in beekeeping to better assess floral
availability (Szabo and Lefkovitch 1990). These
models could help to make more accurate estimates
of landscape-level resource availability by comparing
foraging degree days with realized floral resources.
If a colony has ample opportunity to forage, as deter-
mined by foraging degree days, but collects less than
expected, it might indicate limited floral availability
on the landscape.

The integration of colony weight monitoring
with weather and climate models could elucidate
the short and long-term effects of these factors
on colony weight. The lagged effects of annual
weather conditions on colony weight could be
better understood by integrating rainfall and tem-
perature models with colony weight. Addition-
ally, weight data could be analyzed with climate
models to assess how climate trends are impact-
ing colony weight over multiple years.

Beekeepers could benefit by using results from
these models in their management practices. By mod-
eling foraging degree days, beekeepers could more
accurately anticipate key events and manage swarms,
supplemental feeding, or honey harvesting accord-
ingly. In addition, occasional periods of dearth may
be exacerbated by factors such as seasonal or annual
drought conditions. In these cases, colonies may
require supplemental feeding provided by beekeep-
ers to persist in certain locations and to limit the det-
rimental effects of robbing behavior among colonies
(Downs and Ratnieks 2000).
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3.3. Linking weight to other in-hive
sensors

Due to the high labor and financial costs
associated with the maintenance of honey bee
colonies, research often suffers from insufficient
colony-level sample sizes. One way to strengthen
scientific findings is to verify that the changes
expected in a hive are detected across multiple
indicator variables (Meikle and Holst 2015).
Hive weight, temperature, humidity, CO, con-
centrations, and bee activity can be expected to
respond concomitantly to changes in the envi-
ronment or treatments (Meikle et al. 2022). The
intensity and timing of the response are likely to
vary, but because many of these variables depend
on each other or on similar processes within the
hives, strong effects on multiple variables should
often be observable.

3.3.1. Temperature

Slow and long-lasting changes in temperature
regulation concomitant with changes in weight
are expected in unhealthy hives that are unable to
grow or maintain a sufficient adult bee population.
Small colonies struggle to regulate temperature
and accumulate resources (Colin et al. 2021), and
very small colonies usually diminish in size until
they die, unless a beekeeper intervenes (Dennis
and Kemp 2016). In such cases, both temperature
regulation and weight gain are expected to further
decrease as the population of each new generation
of workers shrinks.

Concomitant hive weight and temperature
changes may also be expected when the tem-
perature within the hive exceeds what workers
consider ideal. In most temperate areas, water
is readily available, and bees often collect water
promptly (Jones and Oldroyd 2006). Thus, fol-
lowing spikes in temperature, high precision
scales may record a rapid increase in weight
and relative humidity as bees collect water for
evaporative cooling. As the hive returns to the
ideal temperature range, any weight increase due
to rapid water foraging should cease and weight
may decrease due to evaporation. In hot weather,
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a lack of rapid weight increase due to water col-
lection could indicate that bees are unable to
source water which may lead to death by over-
heating. If weight increase associated with water
collection can be detected using hive scales, they
could be the basis for warning systems in hot and
arid areas or during heat waves.

3.3.2. Co,

Analyzing CO, concentration together with
weight could accelerate research focusing on
the regulation of CO, within hives. CO, produc-
tion increases with metabolism (Heinrich 1981),
so CO, concentration may reflect the number of
individuals in a colony, changes in bee activity,
or basal metabolism (Meikle et al. 2022). During
the active foraging season, weight variations are
mostly affected by nectar evaporation and forag-
ing activity (Meikle et al. 2018), which makes
the detection of food consumption using scales
difficult. Rainy days could be used to study CO,
variations in relation with weight loss as bees
generally stay in the hive in these conditions.

In winter, bees consume the honey stores they
were accumulated during summer which drives
weight change. Food consumption varies accord-
ing to various factors, including colony size, out-
door temperature, and possibly breeds and sub-
species (Norrstrom et al. 2021). This should ease
comparisons of the CO, concentration expected
from weight loss due to food consumption to
actual concentrations of CO,. This would allow
the determination of basic but crucial data on
the regulation of CO, concentrations, which may
play a role in the maintenance of overwintering
dormancy (Van Nerum and Buelens 1997).

3.3.3. RFID

RFID (radio-frequency identification) and
QR code (quick response code) technologies
can track the time at which bees enter and leave
the hive (Odemer 2022). Individual bees can be
fitted with tags that contain a unique identifier,
glued onto their thorax. This, combined with an
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antenna for RFID systems or a camera for QR
code systems, allows to determine the times at
which a bee leaves the hive and comes back.
When enough bees are tagged, the changes in
departures and arrivals can be compared to hive
weight variations. RFID methods, in particular,
are now well-established and can be deployed in
the field (Colin et al. 2022). The combination of
these data with hive weight has the potential to
confirm predictions that have been made about
bee foraging (Arias-Calluari et al. 2023).

Colonies lose weight in the morning due to a
greater number of foragers departing than returning
for the first few hours after sunrise (Meikle
et al. 2018). Maximum morning weight loss and
the rate of weight change have been used to indicate
hive activity; however, these variables may be
affected by other factors. First, bees commonly
remove waste in the morning (Winston 1987),
resulting in bees departing the hive that weigh
more than their body weight. Second, the average
foraging time, trip frequency, and foraging success
should influence the rate of weight change and the
maximum weight loss since the onset of foraging.
Rapid weight loss could indicate not only the
presence of diseases increasing waste production
but also higher foraging activity. Low maximum
weight loss since the onset of foraging could
indicate low foraging activity due to a lack of
foragers, poor foraging conditions, or the presence
of abundant food near the hive.

These questions could be answered by analyz-
ing the common patterns of hive weight changes
in combination with data from individual bees
equipped with RFID or QR code tags from hives
at different locations. Estimates of the number of
bees within colonies, of floral resources around
the hives, and measures of daily weight change
and of the foraging history of a few bees could be
combined to better understand which factors con-
tribute most to patterns of daily weight changes.
The use of a camera near the entrance may allow,
in the future, to further analyze the changes in
hive weight in terms of bee behaviors. It may help
determine more cryptic causes of weight varia-
tions, such as undertaking and water evaporation
through fanning, and to differentiate weight gain
resulting from pollen or nectar foraging.
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3.4. Weight monitoring as a tool for
commercial beekeeping operations

Commercial beekeepers manage hundreds or
thousands of colonies, often with a high ratio
of colonies per beekeeper, making it difficult
to closely monitor all hives through the season.
Real-time analysis of changes in daily weight
variations and overall trends could be used to
build health warning tools to support manage-
ment decisions in commercial operations. Hives
experiencing consistent or sudden weight losses
and reduced foraging activity at times where they
are expected to access ample forage could serve
as early indicators of colony failure and give
beekeepers more time to intervene to maintain
colony strength.

Almond trees located in the central valleys of
California bloom in early spring (February—March)
and most varieties require cross-pollination to set
seed. Beekeepers in the USA relocate millions
of colonies to California each spring to satisfy
the demand for pollination in almonds. Previous
work has shown that continuous weight monitor-
ing can be used to assess colony foraging effort in
the fulfillment of pollination contracts in almond
orchards (Meikle et al. 2020). In addition to assess-
ing colony performance, colony weight monitoring
could be used as a tool prior to contracted polli-
nation to assess colony readiness. Weight moni-
toring could be added to a regimen to aid in the
assessment of colony population size and health
before transportation to California and could assist
beekeepers in the selection of the best colonies to
send to pollination. Migratory beekeeping is asso-
ciated with stressors such as transportation, nutri-
tion, pests and pathogens, and pesticides (Bruckner
et al. 2022; Simone-Finstrom et al. 2016). Hive
scales could be used as a tool to monitor the effects
of these various sources of colony stress. Continu-
ous colony monitoring before, during, and after
pollination service would allow comparison with
colonies not moved for pollination to identify key
differences in colony growth and performance
associated with migratory beekeeping and pollina-
tion. Additionally, weight data can be used to pro-
vide information on Varroa destructor population
dynamics. Onset of brood rearing, detectable with
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hive scales, is closely tied to season-long Varroa
infestation levels, permitting beekeepers to take
early action toward mite control.

Indoor overwintering of commercial
honey bee colonies in temperate climates
has been conducted for more than 100 years
(Doolittle 1902; McCutcheon 1984) to
improve overwintering survival and, more
recently, in preparation to meet early spring
pollination contracts for almonds in California.
Overwintering colonies in temperature-
controlled facilities offers an attractive means
for providing the larger colony population sizes
sought after by almond growers (DeGrandi-
Hoffman et al. 2019) as well as for beekeepers
living in northern latitudes with very cold
winters (Hopkins et al. 2021). The addition
of weight monitoring to indoor overwintering
operations presents an opportunity to deliver
more successful colonies to spring pollination
contracts. Continuous weight monitoring could
serve as an early indicator of trouble in colonies,
alerting beekeepers of insufficient food stores or
low colony population sizes.

4. CONCLUSION

Colony weight monitoring exploits the pre-
dictable patterns of daily and seasonal honey
bee colony dynamics to better understand colony
health and behavior. Through the introduction
of next-generation weight monitoring, research-
ers can ask questions at spatial and temporal
scales that were previously impossible. Here, we
review the existing literature on next-generation
weight monitoring, exploring the differences in
methods for diel and running weight analyses.
By outlining the procedures and methods that
have been developed for each type of data, we
provide a tool for those wishing to use hive
scales in research. We look forward at where we
believe there is research opportunity, highlight-
ing questions that can be asked and biological
phenomena that can be assessed with colony
weight monitoring, as well as opportunities for
developing methods to better support the needs
of commercial beekeepers.
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